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In this work, functionally graded beams subjected to thermal loadings are analysed. To this end, several
beam models are hierarchically derived by means of a unified formulation that makes the formulation
independent from the displacements polynomial approximation order over the cross-section. The tem-
perature profile is determined by solving Fourier’s heat conduction equation. The governing equations
are, then, derived from the Principle of Virtual Displacements considering the temperature field as an
external load. A Navier-type, closed form solution is used. Simply supported beams are, therefore, consid-
ered. Functionally graded mono-layer and sandwich cross-section configurations are investigated.
Numerical results in terms of temperature, displacement and stress distributions are provided for differ-
ent beam slenderness ratios. Results are assessed towards three-dimensional finite element solutions
demonstrating that accurate results can be obtained with reduced computational costs.
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1. Introduction

Beam-like structures operating in severe temperature environ-
ments are examples of typical aeronautical and space applications.
High-temperature resistant materials are, therefore, required.
Structures made of ceramic–metal Functionally Graded Materials
(FGMs) are able to combine temperature resistance and a continu-
ous stress distribution because of a smooth variation of material
properties along some preferred directions.

A brief overview of recent works about thermo-mechanical
analysis of functionally graded structures is presented below. Sev-
eral applications of the theory of thermo-elasticity can be found in
the book by Hetnarski and Eslami [1]. In particular, the thermal
stress analysis of beams based on Euler–Bernoulli assumptions
was presented. Beams made of functionally graded materials were
also investigated. The problem of thermal stresses in FGMs was ad-
dressed by Noda [2]. The optimal gradation profiles to decrease the
thermal stresses in FGMs were discussed. The thermoelastic
behaviour of functionally graded beams was also studied by Chakr-
aborty et al. [3]. A beam finite element based on Timoshenko’s the-
ory was developed, accounting for an exponential and a power law
through-the-thickness variation of elastic and thermal properties.
ll rights reserved.
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a).
A thermo-elastic stress analysis of multi-layered non-homoge-
neous beams was carried out by Carpinteri and Paggi [4]. Analytical
solutions were provided under Euler–Bernoulli’s kinematic
hypotheses. Functionally graded materials were also investigated,
considering a linear variation of material properties along the
beam’s thickness. A meshless method for thermo-elastic analysis
of functionally graded materials combined with radial basis func-
tions was presented by Wang and Qin [5]. Mahi et al. [6] studied
the free vibration of FGM beams subjected to initial thermal stress.
Exact solutions based on several shear deformation theories were
presented considering different boundary conditions. The temper-
ature profile was computed solving a one-dimensional steady-
state heat conduction equation. Thermal buckling and thermo-
elastic vibration analysis of FGM beams were carried out by Watt-
anasakulpong et al. [7] by means of a third-order shear deforma-
tion theory. Material properties were considered to dependent on
the temperature via a non-linear polynomial law [8]. The static re-
sponse of functionally graded plates subjected to thermal loads
was addressed by Brischetto et al. [9]. The temperature field was
determined by solving Fourier’s equation. Different volume frac-
tions of the material constituents were considered to evaluate
the temperature, displacement and stress distributions.

A thermal analysis of functionally graded beams via refined
models is addressed in this paper. Models are derived via a Unified
Formulation (UF) that has been previously proposed for plates and
shells (see Carrera [10]) and extended to solid and composite
beams (see Carrera et al. [11], Giunta et al. [12,13] and Catapano
et al. [14]). In the proposed UF, the displacements’ polynomial
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Table 1
Mac Laurin’s polynomials terms via Pascal’s triangle.

N Nu Fs

0 1 F1 = 1
1 3 F2 = y F3 = z
2 6 F4 = y2 F5 = yz F6 = z2

3 10 F7 = y3 F8 = y2z F9 = yz2 F10 = z3

. . . . . . . . .

N ðNþ1ÞðNþ2Þ
2

FðN2þNþ2Þ
2

¼ yN F ðN2þNþ4Þ
2

¼ yN�1z � � � FNðNþ3Þ
2
¼ yzN�1 F ðNþ1ÞðNþ2Þ

2
¼ zN

Table 2
FGM constituents elastic and thermal properties.

E (GPa) m K (W/mK) a (10�6 K�1)

Zirconia 151.01 0.300 2.09 10.
Monel 179.40 0.368 25.00 15.

Fig. 2. Mono-layer FGM beam.
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approximation over the beam cross-section is derived in a compact
form. The governing equations variationally consistent with the as-
sumed kinematic hypothesis are derived through the Principle of
Virtual Displacement (PVD) in terms of a fundamental nucleo. This
nucleo does not depend upon the displacements order of expan-
sion. As a result, a set of several kinematic models can be obtained
that accounts for transverse shear deformations and cross-section
in- and out-of-plane warping. The temperature field is obtained
by solving Fourier’s heat conduction equation. Governing differen-
tial equations are solved via a Navier-type, closed form solution.
Slender and deep beams are investigated. As far as the material
gradation along the beam cross-section is concerned, the material
gradation is considered by means of a Lagrange approximation
based upon a Newton series expansion upon a Chebyshev grid of
sampling points over the cross-section. In such a manner, the fun-
damental nucleo is formulated in a general manner with respect to
the particular gradation law. The numerical investigations are
carried out considering a power law variation along the beam
thickness direction of the elastic and thermal material properties.
The proposed models are validated through comparison with
three-dimensional FEM solutions. Numerical results show that
accurate results can be obtained with small computational costs.

2. Preliminaries

A beam, see Fig. 1, is a structure whose axial extension (l) is pre-
dominant if compared to any other dimension orthogonal to it. The
cross-section (X) is identified by intersecting the beam with planes
that are orthogonal to its axis. A Cartesian reference system is
adopted: y- and z-axis are two orthogonal directions laying on X.
The x coordinate is coincident to the axis of the beam. It is bounded
such that 0 6 x 6 l. The cross-section is considered to be constant
along x. The displacement field is:

uTðx; y; zÞ ¼ uxðx; y; zÞ uyðx; y; zÞ uzðx; y; zÞf g ð1Þ

in which ux, uy and uz are the displacement components along x-, y-
and z-axis. Superscript ‘T’ represents the transposition operator.
Stress, r, and strain, e, vectors are grouped into vectors rn, en that
lay on the cross-section:

rT
n ¼ rxx rxy rxzf g eT

n ¼ exx exy exzf g ð2Þ

and rp, ep laying on planes orthogonal to X:

rT
p ¼ ryy rzz ryzf g eT

p ¼ eyy ezz eyzf g ð3Þ
Fig. 1. Beam structure and reference system.
Under the hypothesis of linear analysis, the following strain–dis-
placement geometrical relations hold:

eT
n ¼ ux;x ux;y þ uy;x ux;z þ uz;xf g

eT
p ¼ uy;y uz;z uy;z þ uz;yf g

ð4Þ

Subscripts ‘x’, ‘y’ and ‘z’, when preceded by comma, represent deri-
vation versus the corresponding spatial coordinate. A compact vec-
torial notation can be adopted for Eq. (4):

en ¼ Dnpuþ Dnxu

ep ¼ Dpu
ð5Þ

where Dnp, Dnx and Dp are the following differential matrix
operators:

Dnp ¼

0 0 0
@
@y 0 0

@
@z 0 0

2
664

3
775 Dnx ¼ I

@

@x
Dp ¼

0 @
@y 0

0 0 @
@z

0 @
@z

@
@y

2
6664

3
7775 ð6Þ

I is the unit matrix. In the case of thermo-mechanical problems, the
constitutive equations are:

rp ¼ rpe � rpt ¼ Cppep þ Cpnen � kpT

rn ¼ rne � rnt ¼ Cnpep þ Cnnen � knT
ð7Þ

where subscripts ‘e’ and ‘t’ refer to the elastic and the thermal con-
tributions, respectively. For isotropic materials, the matrices Cpp,
Cpn, Cnp and Cnn in Eq. (7) are:



Fig. 3. Mono-layer FGM beam temperature profile [K] at x/l = 1/2 via (a) Fourier’s
equation solution and (b) FEM 3Da, l/a = 10.

Table 3
Mono-layer FGM beam, displacements (m), l/a = 100.

�10 � �uz �10 � �ux 103 � �uy

FEM 3Da 6.583 1.204 1.972
FEM 3Db 6.527 1.205 1.967
N = 9 � 13 6.533 1.205 1.961
N = 8 6.533 1.205 1.960
N = 7 6.533 1.205 1.958
N = 6 6.534 1.205 1.955
N = 5 6.534 1.205 1.950
N = 4 6.538 1.205 1.948
N = 3 6.537 1.205 1.937
N = 2 6.697 1.202 1.889
TBT 6.522 1.205 0.000
EBT 6.521 1.205 0.000

a Mesh 30 � 30 � 30.
b Mesh 20 � 20 � 20.

Table 4
Mono-layer FGM beam, stresses (Pa), l/a = 100.

10�7 � �rxx 10�5 � �rxz 10�6 � �rzz

FEM 3Da 1.088 2.247 5.522
FEM 3Db 1.098 2.239 5.590
N = 13 1.109 2.232 5.582
N = 12 1.119 2.235 5.778
N = 11 1.119 2.240 5.770
N = 10 1.121 2.231 5.804
N = 9 1.120 2.225 5.800
N = 8 1.115 2.218 5.736
N = 7 1.117 2.191 5.772
N = 6 1.171 2.293 6.618
N = 5 1.156 2.289 6.333
N = 4 0.885 1.892 1.516
N = 3 0.945 2.020 2.451
N = 2 2.351 1.573 23.55
TBT 0.793 4.135c –d

EBT 0.787 – –

a Mesh 30 � 30 � 30.
b Mesh 20 � 20 � 20.
c Scaling factor �105 (instead of 10�5).
d Result not provided by the theory.

Table 5
Mono-layer FGM beam, displacements (m), l/a = 10.

�103 � uz �102 � ux 103 � uy

FEM 3Da 6.704 1.195 1.953
FEM 3Db 6.644 1.196 1.958
N = 12,13 6.648 1.197 1.955
N = 9–11 6.648 1.197 1.954
N = 8 6.648 1.197 1.953
N = 7 6.648 1.197 1.952
N = 6 6.648 1.197 1.947
N = 5 6.648 1.197 1.943
N = 4 6.653 1.197 1.940
N = 3 6.655 1.197 1.929
N = 2 6.854 1.194 1.866
TBT 6.649 1.191 0.000
EBT 6.648 1.191 0.000

a Mesh 30 � 30 � 30.
b Mesh 20 � 20 � 20.
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Cpp ¼
C22 C23 0
C23 C33 0
0 0 C44

2
64

3
75 Cpn ¼ CT

np ¼
C12 0 0
C13 0 0
0 0 0

2
64

3
75

Cnn ¼
C11 0 0
0 C66 0
0 0 C55

2
64

3
75 ð8Þ

The coefficients Cij are:

C11 ¼ C22 ¼ C33 ¼
1� m

ð1þ mÞð1� 2mÞ E

C12 ¼ C13 ¼ C23 ¼
m

ð1þ mÞð1� 2mÞ E

C44 ¼ C55 ¼ C66 ¼
1

2ð1þ mÞ E ð9Þ

being Young’s modulus (E) and Poisson’s ratio (m) function of the
cross-section coordinates. The coefficients kn and kp:

kT
n ¼ k1 0 0f g kT

p ¼ k2 k3 0f g ð10Þ

are related to the thermal expansion coefficients an and ap:
aT
n ¼ a1 0 0f g aT

p ¼ a2 a3 0f g ð11Þ

through the following equations:

kp ¼ Cppap þ Cpnan

kn ¼ Cnpap þ Cnnan
ð12Þ



Table 6
Mono-layer FGM beam, stresses (Pa), l/a = 10.

10�6 � �rxx 10�6 � �rxz 10�6 � �rzz

FEM 3Da 8.635 2.292 6.459
FEM 3Db 8.738 2.284 6.535
N = 13 8.865 2.276 6.521
N = 12 8.968 2.279 6.722
N = 11 8.964 2.285 6.714
N = 10 8.980 2.276 6.740
N = 9 8.977 2.270 6.735
N = 8 8.915 2.261 6.663
N = 7 8.942 2.232 6.703
N = 6 9.540 2.335 7.648
N = 5 9.374 2.331 7.330
N = 4 6.383 1.925 2.011
N = 3 7.024 2.058 3.020
N = 2 23.19 1.601 27.53
TBT 10.62 4.090c –d

EBT 10.57 – –

a Mesh 30 � 30 � 30.
b Mesh 20 � 20 � 20.
c Scaling factor �105 (instead of 10�6).
d Result not provided by the theory.

Fig. 4. Mono-layer FGM beam, uz [m] at x/l = 1/2 via (a) N = 4 and (b) FEM 3Da, l/
a = 10.
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A Lagrange approximation on Np Chebyshev points along y and z
cross-section co-ordinates based on Newton series expansion is
assumed for the material stiffness coefficients Cij and thermal coef-
ficients ki:

Cijðy; zÞ � xnðyÞxgðzÞCij½y0; y1; . . . ; yn; z0; z1; . . . ; zg�
kiðy; zÞ � xnðyÞxgðzÞki½y0; y1; . . . ; yn; z0; z1; . . . ; zg�

with n;g ¼ 0;1; . . . ;Np ð13Þ

being:

xmðfÞ ¼
1 m ¼ 0Ym�1

n¼0

ðf� fnÞ m 2 ½1;Np�

8><
>: ð14Þ

and Cij[. . .; . . .] and ki[. . .; . . .] the divided difference of the approxi-
mated function, see Philips [15]. Chebyshev’s points are defined
on the domain [�1,+1] via the following equation:

fm ¼ cos
mp
Np

� �
with m ¼ 0;1; . . . ;Np ð15Þ

These points are then mapped into the cross-section domain via a
variable transformation. In this manner, the software implementa-
tion of the proposed models is general and does not depend upon a
specific gradation law that, once defined, will be approximated via a
Newton series expansion.

The beam models are derived considering the temperature (T)
as an external loading resulting from the internal thermal stresses.
This requires that the temperature profile is known over the whole
beam domain. Fourier’s heat conduction equation is solved in order
to obtain T. In order to obtain a strong form solution of the problem
governing equations, the temperature is written as follows:

Tðx; y; zÞ ¼ HnðxÞHXðy; zÞ ð16Þ

The whole solution procedure is presented in Appendix A.

3. Hierarchical beam theories

The variation of the displacement field over the cross-section can
be postulated a priori. Several displacement-based theories can be
formulated on the basis of the following generic kinematic field:

uðx; y; zÞ ¼ Fsðy; zÞusðxÞ with s ¼ 1;2; . . . ;Nu ð17Þ

where Nu stands for the number of unknowns. It depends on the
approximation order N that is a free parameter of the formulation.
The compact expression is based on Einstein’s notation: a repeated
index stands for summation. Thanks to this notation, problem’s gov-
erning differential equations and boundary conditions can be de-
rived in terms of a single ‘fundamental nucleo’. The complexity
related to higher than classical approximation terms is tackled and
the theoretical formulation is valid for the generic approximation or-
der and approximating functions Fs(y,z). In this paper, the functions
Fs are assumed to be Mac Laurin’s polynomials. This choice is in-
spired by the classical beam models. Nu and Fs as functions of N
can be obtained via Pascal’s triangle as shown in Table 1. The actual
governing differential equations and boundary conditions due to a
fixed approximation order and polynomials type are obtained
straightforwardly via summation of the nucleo corresponding to
each term of the expansion. According to the previous choice of
the polynomial functions, the generic, N-order displacement field is:

ux ¼ ux1 þ ux2yþ ux3zþ � � � þ u
xðN

2þNþ2Þ
2

yN þ � � � þ uxðNþ1ÞðNþ2Þ
2

zN

uy ¼ uy1 þ uy2yþ uy3zþ � � � þ u
yðN

2þNþ2Þ
2

yN þ � � � þ uyðNþ1ÞðNþ2Þ
2

zN

uz ¼ uz1 þ uz2yþ uz3zþ � � � þ u
zðN

2þNþ2Þ
2

yN þ � � � þ uzðNþ1ÞðNþ2Þ
2

zN

ð18Þ



Fig. 5. Mono-layer FGM beam, ux [m] at x/l = 0 via (a) TBT, (b) N = 4 and (c) FEM 3Da,
l/a = 10.

Fig. 6. Mono-layer FGM beam, uy [m] at x/l = 1/2 via (a) N = 4 and (b) FEM 3Da, l/
a = 10.
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As far as the first-order approximation order is concerned, the kine-
matic field is:
ux ¼ ux1 þ ux2yþ ux3z

uy ¼ uy1 þ uy2yþ uy3z

uz ¼ uz1 þ uz2yþ uz3z

ð19Þ

Classical models, such as Timoshenko beam theory (TBT):

ux ¼ ux1 þ ux2yþ ux3z

uy ¼ uy1

uz ¼ uz1

ð20Þ

and Euler–Bernoulli beam theory (EBT):

ux ¼ ux1 � uy1;xy� uz1;xz

uy ¼ uy1

uz ¼ uz1

ð21Þ

are straightforwardly derived from the first-order approximation
model. In TBT, no shear correction coefficient is considered, since
it depends upon several parameters, such as the geometry of the
cross-section (see, for instance, Cowper [16] and Murty [17]). High-
er-order models yield a more detailed description of the shear
mechanics (no shear correction coefficient is required), of the
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in- and out-of-section deformations, of the coupling of the spatial
directions due to Poisson’s effect and of the torsional mechanics
than classical models do. EBT theory neglects them all, since it
was formulated to describe a pure bending mechanics. TBT model
accounts for constant shear stress and strain components. In the
case of classical models, the material stiffness coefficients should
be corrected in order to contrast a phenomenon known in literature
as Poisson’s locking (see Giunta et al. [18]).

4. Governing equations

The governing equations and the boundary conditions are de-
rived through the PVD:

dLi ¼ 0 ð22Þ

where d stands for a virtual variation and Li represents the strain en-
ergy. According to the grouping of the stress and strain components
in Eqs. (2) and (3), the virtual variation of the strain energy for a
thermo-mechanical case is:

dLi ¼
Z

l

Z
X

d�T
nðrne � rntÞ þ d�T

pðrpe � rptÞ
h i

dXdx ð23Þ

By substitution of the geometrical relations, Eq. (5), the constitutive
equations, Eq. (7), and the unified hierarchical approximation of the
displacements, Eq. (17), Eq. (23) becomes:
Fig. 7. Mono-layer FGM beam, rxx [Pa] at x/l = 1/2 via (a
dLi ¼
Z

l
duT

s

Z
X
ðDnpFsÞT CnpðDpFsÞ þ ðDnpFsÞT CnnðDnpFsÞ
h

þ ðDnpFsÞT CnnFsDnx þ ðDpFsÞT CppðDpFsÞ þ ðDpFsÞT CpnðDnpFsÞ
þ ðDpFsÞT CpnFsDnx þ DT

nxCnpFsðDpFsÞ
þ DT

nxCnnFsðDnpFsÞ þ DT
nxCnnFsFsDnx

i
dXus dx

�
Z

l
duT

s

Z
X
ðDnpFsÞT knHXIð Þ
h

þ DpFs
� �TðkpHXIÞ

þ DT
nxFsðknHXIÞ

i
dXHn dx ð24Þ

After integration by parts, Eq. (24) reads:

dLi ¼
Z

l
duT

s

Z
X
ðDnpFsÞT CnpðDpFsÞ þ ðDnpFsÞT CnnðDnpFsÞ
h

þðDnpFsÞT CnnFsDnx þ ðDpFsÞT CppðDpFsÞ þ ðDpFsÞT CpnðDnpFsÞ
þ ðDpFsÞT CpnFsDnx � DT

nxCnpFsðDpFsÞ � DT
nxCnnFsðDnpFsÞ

� DT
nxCnnFsFsDnx

i
dXus dx�

Z
l

duT
s

Z
X
ðDnpFsÞTðknHXIÞ
h

þðDpFsÞTðkpHXIÞ � DT
nxFsðknHXIÞ

i
dXHn dx

þ duT
s

Z
X

Fs CnpðDpFsÞ þ CnnðDnpFsÞ þ CnnFsDnx
� �

dXusjx¼l
x¼0

� duT
s

Z
X

FsðknHXIÞdXHnjx¼l
x¼0 ð25Þ
) TBT, (b) N = 4, (c) N = 13 and (d) FEM 3Da, l/a = 10.
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In a compact vectorial form:

dLi ¼
Z

l
duT

sKss
uuus dx�

Z
l

duT
sKs

uhHn dxþ duT
sP

ss
uuus

� �x¼l

x¼0

� duT
sP

s
uhHn

� �x¼l

x¼0 ð26Þ

The components of the differential stiffness matrix Kss
uu are:

Kss
uuxx
¼ J66

s;ys;y
þ J55

s;zs;z
� J11

ss
@2

@x2 Kss
uuxy
¼ J66

s;ys � J12
ss;y

� 	 @
@x

Kss
uuxz
¼ J55

s;zs � J13
ss;z

� 	 @

@x

Kss
uuyy
¼ J22

s;ys;y
þ J44

s;zs;z
� J66

ss
@2

@x2 Kss
uuyx
¼ J12

s;ys � J66
ss;y

� 	 @

@x

Kss
uuyz
¼ J23

s;ys;z
þ J44

s;zs;y

Kss
uuzz
¼ J44

s;ys;y
þ J33

s;zs;z
� J55

ss
@2

@x2 Kss
uuzx
¼ J13

s;zs � J55
ss;z

� 	 @

@x

Kss
uuzy
¼ J23

s;zs;y
þ J44

s;ys;z

ð27Þ

The generic term Jgh
sð;/Þsð;nÞ is a cross-section moment:
Fig. 8. Mono-layer FGM beam, rxz [Pa] at x/l = 0 via (a)
Jgh
sð;/Þsð;nÞ ¼

Z
X

CghFsð;/ÞFsð;nÞ dX ð28Þ

The components of the differential thermo-mechanical coupling
matrix Ks

uh are:

Ks
uhxx
¼ �J1

s
@

@x
Ks

uhyy
¼ J2

s;y Ks
uhzz
¼ J3

s;z ð29Þ

The generic term Jg
sð;/Þ is:

Jg
sð;/Þ ¼

Z
X

Fsð;/ÞkgHX dX ð30Þ

As far as the boundary conditions are concerned, the components of
Pss

uu are:

Pss
uuxx
¼ J11

ss
@

@x
Pss

uuxy
¼ J12

ss;y
Pss

uuxz
¼ J13

ss;z

Pss
uuyy
¼ J66

ss
@

@x
Pss

uuyx
¼ J66

ss;y
Pss

uuyz
¼ 0

Pss
uuzz
¼ J55

ss
@

@x
Pss

uuzx
¼ J55

ss;z
Pss

uuzy
¼ 0

ð31Þ

and the components of Ps
uh are:

Ps
uhxx
¼ J1

s Ps
uhyy
¼ 0 Ps

uhzz
¼ 0 ð32Þ
N = 4, (b) N = 13, (c) FEM 3Da and (d) TBT, l/a = 10.



Fig. 9. Mono-layer FGM beam, rxy [Pa] at x/l = 0 via (a) N = 4, (b) N = 13 and (c) FEM
3Da, l/a = 10.

Fig. 10. Mono-layer FGM beam, ryz [Pa] at x/l = 1/2 via (a) N = 13 and (b) FEM 3Da, l/
a = 10.
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The fundamental nucleo of the governing equations in a compact
vectorial form is:

duT
s : Kss

uuus ¼ Ks
uhHn ð33Þ
In explicit form:

duxs : �J11
ss uxs;xx þ J55

s;zs;z
þ J66

s;ys;y

� 	
uxs þ J66

s;ys � J12
ss;y

� 	
uys;x

þ J55
s;zs � J13

ss;z

� 	
uzs;x ¼ �J1

sHn;x

duys : J12
s;ys � J66

ss;y

� 	
uxs;x � J66

ss uys;xx þ J22
s;ys;y
þ J44

s;zs;z

� 	
uys

þþ J23
s;ys;z
þ J44

s;zs;y

� 	
uzs ¼ J2

s;y Hn

duzs : J13
s;zs � J55

ss;z

� 	
uxs;x þ J23

s;zs;y
þ J44

s;ys;z

� 	
uys � J55

ss uzs;xx

þþ J33
s;zs;z
þ J44

s;ys;y

� 	
uzs ¼ J3

s;zHn

ð34Þ

The fundamental nucleo of the natural and mechanical boundary
conditions at x = 0 and l are:

either uxs ¼ �uxs or J11
ss uxs;x þ J12

ss;y
uys þ J13

ss;z
uzs � J1

sHn ¼ 0

either uys ¼ �uys or J66
ss;y

uxs þ J66
ss uys;x ¼ 0

either uzs ¼ �uzs or J55
ss;z

uxs þ J55
ss uzs;x ¼ 0

ð35Þ

For a fixed approximation order, the nucleo has to be expanded ver-
sus the indexes s and s in order to obtain the governing equations
and the boundary conditions of the desired model.



Fig. 11. Mono-layer FGM beam, ryy [Pa] at x/l = 1/2 via (a) N = 4, (b) N = 13 and (c)
FEM 3Da, l/a = 10.

Fig. 12. Mono-layer FGM beam, rzz [Pa] at x/l = 1/2 via (a) N = 13 and (b) FEM 3Da, l/
a = 10.

Fig. 13. Sandwich FGM beam.
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5. Closed form analytical solution

The differential equations are solved via a Navier-type solution.
Simply supported beams are, therefore, investigated. The following
harmonic form for the axial variation of the displacement and tem-
perature fields is adopted:

ux ¼ UxsFsðy; zÞ cosðaxÞ
uy ¼ UysFsðy; zÞ sinðaxÞ
uz ¼ UzsFsðy; zÞ sinðaxÞ
T ¼ HXðy; zÞHnðxÞ ¼ HX sinðaxÞ

ð36Þ



Table 7
Sandwich FGM beam, displacements [m], l/a = 100.

�1 � uz �10 � ux 103 � uy

FEM 3Da 1.022 1.126 1.919
FEM 3Db 1.019 1.127 1.902
N = 11 � 13 1.023 1.126 1.900
N = 9,10 1.023 1.126 1.899
N = 8 1.023 1.126 1.898
N = 7 1.023 1.126 1.890
N = 6 1.024 1.126 1.883
N = 5 1.024 1.126 1.868
N = 4 1.024 1.126 1.865
N = 3 1.024 1.126 1.827
N = 2 1.047 1.122 1.763
TBT, EBT 1.021 1.126 0.000

a Mesh 30 � 30 � 30.
b Mesh 20 � 20 � 20.

Table 8
Sandwich FGM beam, stresses [Pa], l/a = 100.

10�7 � rxx 10�5 � rxz 10�6 � rzz

FEM 3Da 1.457 3.881 7.721
FEM 3Db 1.460 3.871 7.737
N = 13 1.465 3.870 7.828
N = 12 1.462 3.883 7.739
N = 11 1.449 3.911 7.479
N = 10 1.444 3.919 7.416
N = 9 1.463 3.912 7.811
N = 8 1.487 3.852 8.293
N = 7 1.502 3.749 8.528
N = 6 1.533 3.883 8.843
N = 5 1.422 3.826 6.777
N = 4 1.036 3.285 �0.090
N = 3 1.300 3.721 3.897
N = 2 3.118 2.459 31.22
TBT 1.037 4.869c �d

EBT 1.032 – –

a Mesh 30 � 30 � 30.
b Mesh 20 � 20 � 20.
c Scaling factor �105 (instead of 10�5).
d Result not provided by the theory.

Table 9
Sandwich FGM beam, displacements [m], l/a = 10.

�102 � uz �102 � ux 103 � uy

FEM 3Da 1.033 1.118 1.894
FEM 3Db 1.029 1.119 1.895
N = 12,13 1.034 1.118 1.894
N = 10,11 1.034 1.118 1.893
N = 8,9 1.034 1.118 1.892
N = 7 1.034 1.118 1.883
N = 6 1.034 1.118 1.877
N = 5 1.033 1.118 1.861
N = 4 1.034 1.118 1.858
N = 3 1.034 1.118 1.818
N = 2 1.063 1.114 1.741
TBT 1.033 1.113 0.000
EBT 1.033 1.112 0.000

a Mesh 30 � 30 � 30.
b Mesh 20 � 20 � 20.

Table 10
Sandwich FGM beam, stresses [Pa], l/a = 10.

10�7 � rxx 10�6 � rxz 10�6 � rzz

FEM 3Da 1.237 3.921 8.701
FEM 3Db 1.239 3.910 8.721
N = 13 1.245 3.910 8.802
N = 12 1.242 3.922 8.700
N = 11 1.229 3.951 8.441
N = 10 1.222 3.959 8.358
N = 9 1.242 3.951 8.757
N = 8 1.269 3.891 9.29
N = 7 1.284 3.785 9.526
N = 6 1.317 3.920 9.888
N = 5 1.206 3.863 7.790
N = 4 0.783 3.311 0.269
N = 3 1.053 3.752 4.346
N = 2 3.080 2.483 35.13
TBT 1.303 4.816c –d

EBT 1.297 – –

a Mesh 30 � 30 � 30.
b Mesh 20 � 20 � 20.
c Scaling factor � 0.1 (instead of 10�6).
d Result not provided by the theory.
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where a is:

a ¼ mp
l

ð37Þ

m 2 N+ represents the half-wave number along the beam axis. {Uis:
i = x,y,z} are the maximal amplitudes of the displacement compo-
nents. Upon substitution of Eq. (36) into Eq. (34), the algebraic fun-
damental nucleo is obtained:

dUxs : a2J11
ss þ J55

s;zs;z
þ J66

s;ys;y

� 	
Uxs þ a J66

s;ys � J12
ss;y

� 	
Uys

þ a J55
s;zs � J13

ss;z

� 	
Uzs ¼ �aJ1

s

dUys : a J66
ss;y
� J12

s;ys

� 	
Uxs þ a2J66

ss þ J22
s;ys;y
þ J44

s;zs;z

� 	
Uys

þ J23
s;ys;z
þ J44

s;zs;y

� 	
Uzs ¼ J2

s;y

dUzs : a J55
ss;z
� J13

s;zs

� 	
Uxs þ J23

s;zs;y
þ J44

s;ys;z

� 	
Uys

þ a2J55
ss þ J33

s;zs;z
þ J44

s;ys;y

� 	
Uzs ¼ J3

s;z

ð38Þ

The determination of the temperature profile by solving Fourier’s
heat conduction equation is presented in Appendix A.

6. Numerical results and discussion

A ceramic–metallic gradation along the thickness direction is
considered. The ceramic phase is made of Zirconia (ZrO2), whereas
Monel (70Ni–30Cu), a nikel-based alloy, is considered as metallic
phase. Materials properties are presented in Table 2. The generic
material property, f, is assumed to vary versus the thickness coor-
dinate z according to the following power law distribution:

f ¼ ðf1 � f2Þðazzþ bzÞ
nz þ f2 ð39Þ

This law is obtained through the assumption of a power grada-
tion law of the volume fraction of the two constituent materials
and the rule of mixtures, see Praveen and Reddy [19] and Chakr-
aborty et al. [3]. nz is the power law exponent and it is equal to
the unit, fi is the generic material property of each constituent
and az and bz are two constant coefficients that depend upon the
through-the-thickness extension of the FGM layer and the
through-the-thickness position of the center of the reference sys-
tem, which is centred at the cross-section bottom left corner. A
mono-layer and a sandwich FGM cross-section configuration are
investigated. In the case of the mono-layer FGM cross-section
and for the assumed reference system, az = 1/b and bz = 0. The
half-wave number m in Eq. (37) is equal to one. The thermal
boundary conditions (see Eq. (45) in Appendix A) are: Tt = +400 K
and Tb = +300 K. Square cross-sections with sides length
a = b = 1 m are considered. The length-to-side ratio l/a is equal to



Fig. 14. Sandwich FGM beam, displacements components [m] via N = 13 and FEM 3Da, l/a = 10.
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100 and 10. Slender and deep beams are, therefore, investigated. As
far as tabular results are concerned, the displacements and stresses
evaluated at the following points are considered:
�ux ¼ uxð0; a=2; bÞ �uy ¼ uyðl=2; a; bÞ �uz ¼ uzðl=2; a=2; b=2Þ
�rxx ¼ rxxðl=2; a=2; b=2Þ �rxz ¼ rxzð0;0; b=2Þ �rzz ¼ rzzðl=2; a=2; b=2Þ

ð40Þ

Results obtained using the proposed higher-order models
are compared with three-dimensional FEM solutions obtained via
the commercial code ANSYS�. The three-dimensional quadratic
element ‘‘Solid90’’ is used for the thermal analysis, whereas the
20-node element ‘‘Solid186’’ is considered for the mechanical
problem. For a FGM layer, each element is considered as homoge-
neous by referring to the material properties at its centre. The
accuracy of the three-dimensional FEM solution depends upon
both the FEM numerical approximation and the approximation of
the gradation law. In order to present the convergence of the
three-dimensional reference solution, two different meshes are
considered for each analysis. The acronym FEM 3Da stands for a
three-dimensional FEM model with a 30 � 30 � 30 elements mesh,



Fig. 15. Sandwich FGM beam, rn stress components [Pa] via N = 13 and FEM 3Da, l/a = 10.
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whereas the coarser 20 � 20 � 20 mesh solution is addressed by
FEM 3Db. Although the three-dimensional FEM solution and the
analytical one are different in nature, some considerations about
computational effort can be addressed. The degrees of freedom
(DOFs) of the three-dimensional FEM mechanical problem over a
beam cross-section as function of the number of elements for each
side, n, are 3(3n + 1)(n + 1). n is as low as 20 (DOFs = 3843) and as
high as 30 (DOFs = 8463). For a fixed approximation order N, the
DOFs of the proposed solutions are 3(N + 1)(N + 2)/2. In the case
of the highest considered expansion order (N = 13) they are 315.

6.1. Mono-layer FGM beam

Beams made of a single FGM layer, see Fig. 2, are first investi-
gated. The temperature variation over the cross-section at mid-
span in presented in Fig. 3. The solution of Fourier’s equation via



Fig. 16. Sandwich FGM beam, rn stress components [Pa] at x/l = 1/2 via N = 13 and FEM 3Da, l/a = 10.
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the procedure presented in Appendix A has been obtained consid-
ering 16 fictitious layers. It matches the FEM 3Da solution. Tables
3–6 present the displacements and the stresses in Eq. (40) for slen-
der and thick beams. Differently from a bending mechanical load, a
thermal load results in axial and through-the-thickness displace-
ment components as well as normal stress components of compa-
rable order of magnitude. This is due to the fact that in the former
case the mechanics is mainly governed by bending (and shear, for
thick beams), whereas the normal stresses along the other two
directions are mainly due to the coupling governed by the Poisson
effect. In the thermo-mechanical case, the deformations are
governed by the thermal expansion coefficients. Classical theo-
ries yield a zero through-the-width displacement since, according
to their kinematic hypotheses (see Eqs. (20) and (21)), the
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cross-section is rigid on its own plane and the problem is
symmetric versus a plane parallel to Oxz and passing at mid-width.
Nevertheless, they provide a well globally estimated displacement
field. As shown in Figs. 4–6, where the variation of the displace-
ment components over the cross-section is presented, lower-order
theories match the reference solution FEM 3Da. For instance, a
fourth-order model is able to predict the trough-the-width varia-
tion of the axial displacement component, which it is constant in
the case of TBT. As far as the stresses are concerned, higher-order
models (e.g., N as low as eight) are required for an accurate solu-
tion. The stress field is three-dimensional. Fig. 7 shows the axial
stress component at mid-span cross-section. Results are obtained
via, TBT, fourth- and 13th-order model and FEM 3Da. The latter
presents a relevant though-the-width variation and a high
through-the-thickness gradient, especially at cross-section top.
This is very different from a typical mechanical problem of global
bending. The solution for N = 13 compares globally well with the
reference solution. The shear component rxz is presented in
Fig. 8. TBT yields a solution several order of magnitude smaller
than the reference solution. A different scale has been used in
the figure and the tables for this reason. A steep stress gradient
is present at both cross-section sides. N = 13 solution matches
the reference one. Fig. 9 presents rxy computed via N = 4 and 13
and FEM 3Da. The fourth-order theory yields an acceptable estima-
tion in the neighbourhood of cross-section’s centre. The last two
solutions compare very well. This is also true for the shear compo-
nent ryz presented in Fig. 10. The normal stress component ryy is
shown in Fig. 11. N = 13 and FEM 3Da solutions compare fairly well.
This stress component presents a relevant thought-the-width var-
iation and localised stress zones. A fourth-order approximation is
obviously not sufficient to describe it. N = 13 yields also a fairly
accurate prediction of rzz as demonstrated by Fig. 12. The results
presented in a graphical form have been all obtained for l/a = 10.
The case of slender beams is very similar and it is not presented
here for the sake of brevity.
6.2. Sandwich FGM beam

A FGM sandwich configuration is investigated, see Fig. 13. A
FGM core connects the top and bottom layers that are entirely
made of zirconia and monel. The thickness, hf, of the top and bot-
tom faces is 0.1 times the cross-section side length. The solution of
Fourier’s equation is accurate when compared to the FEM 3Da solu-
tion. It is not presented here for the sake of brevity. The main dif-
ference versus the mono-layer configuration is in a globally slightly
cooler bottom part of the cross-section since the ceramic layer acts
as a further thermal barrier. Displacements and stresses for slender
and thick beams are presented in Tables 7–10. Higher-order mod-
els match the reference three-dimensional FEM results. Lower-or-
der and classical theories yield good displacements but are not
capable of predicting the stress field properly. When compared
with the mono-layer configuration, a higher transverse displace-
ment (resulting in higher stresses) is observed. For the sake of
brevity, only a 13th-order model is considered for the plots over
the cross-section of displacements and stresses. Fig. 14 shows
the displacement components. Results are practically identical.
The stress components rn are presented in Fig. 15. The proposed
results and the reference solutions match. The presence of an inner
and outer homogeneous layer changes the profile of the axial stress
increasing the maximum and minimum values and introducing a
stress gradient also at the cross-section bottom. Finally, Fig. 16 pre-
sents the stress components rp. The normal stress components also
present localised stress areas that make them difficult to be cor-
rectly predicted, especially in the case of rzz. Nevertheless, fairly
good results are obtained. A future work perspective consists in a
the formulation of higher-order theories by means of a layer-wise
approach that should enhance the accuracy of the approximation.

7. Conclusions

A thermo-mechanical analysis of functionally graded beams has
been carried out in this paper. Several one-dimensional displace-
ments-based beam models have been derived by means of a uni-
fied formulation. Via this formulation, higher-order theories as
well as classical Euler–Bernoulli’s an Timoshenko’s models can be
formulated straightforwardly. This is possible thanks a compact
notation for the a priori displacement field approximation. A closed
form, Navier-type solution has been used. The temperature field
has been obtained by solving Fourier’s heat conduction equation
and it has been accounted for in the mechanical analysis as an
external load. Beams made of a single FGM layer as well as a sand-
wich configurations have been studied. Slender and thick beams
have been investigated in terms of temperature, displacements
and stresses. Results have been validated through comparison with
three-dimensional FEM solutions obtained via the commercial
code ANSYS�. In has been shown that the considered thermo-
mechanical problems, although presenting a global bending defor-
mation, are governed by three-dimensional stress fields that call
for very accurate models. Through an appropriate choice of the
approximation order over the cross-section, the proposed formula-
tion yields accurate results with reduced computational costs.
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Appendix A

A solution of Fourier’s heat conduction equation for FGM beams
can be obtained by ideally dividing the cross-section X into NXk

non-overlapping sub-domains (or layers) along the through-the-
thickness direction z:

X ¼ [
N

Xk

k¼1
Xk ð41Þ

Each sub-domain is, then, supposed to be homogeneous, being the
elastic and material properties constant and equal to the value at
sub-domain’s centre. For a kth homogeneous and isotropic layer,
the Fourier differential equation becomes:

@2Tk

@x2 þ
@2Tk

@y2 þ
@2Tk

@z2 ¼ 0 ð42Þ

In order to obtain a closed form analytical solution, it is further as-
sumed that the temperature does not depend upon the through-
the-width co-ordinate y. This also implies that the material grada-
tion law should be independent from y. The continuity of the tem-
perature and the through-the-thickness heat flux qz hold at each
interface between two consecutive sub-domains:

Tk
t ¼ Tkþ1

b

qk
zt ¼ qkþ1

zb

ð43Þ

Subscript ‘t’ and ‘b’ stand for sub-domain top and bottom, respec-
tively. The through-the-thickness heat flux is proportional to the
temperature derivative versus z:

qk
z ¼ Kk @Tk

@z
ð44Þ
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being Kk the thermal conductivity. The following temperatures are
imposed at cross-section through-the-thickness top and bottom:

T ¼ Tt sinðaxÞ
T ¼ Tb sinðaxÞ

ð45Þ

Tt and Tt are the maximal amplitudes and a has been introduced in
Eq. (37). The following temperature field:

Tkðx; zÞ ¼ Hk
XðzÞ sinðaxÞ ¼ Tk

0 expðszÞ sinðaxÞ ð46Þ

represents a solution of the considered heat conduction problem. Tk
0

is an unknown constant obtained by imposing the boundary condi-
tion, whereas s is obtained by replacing Eq. (46) into Eq. (42):

s1;2 ¼ �a ð47Þ

Hk
XðzÞ, therefore, becomes:

Hk
XðzÞ ¼ Tk

01 expðþazÞ þ Tk
02 expð�azÞ ð48Þ

or, equivalently:

Hk
XðzÞ ¼ Ck

1 coshðazÞ þ Ck
2 sinhðazÞ ð49Þ

For a cross-section division into NXk sub-domains, there are 2 � NXk

unknowns Ck
j . The problem is mathematically well posed since

the boundary conditions in Eqs. (43) and (45) yield a linear alge-
braic system of 2 � NXk equations in Ck

j . The solution convergence
versus NXk (although not presented here) has been investigated. It
has been found that, for the considered material gradation,
NXk ¼ 16 ensures a converged temperature field.
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