Cotutelle Doctoral Program

Doctoral Dissertation on

Solution of Coupled Thermoelasticity Problem In Rotating Disks

by Ayoob Entezari

Supervisors: Prof. M. A. Kouchakzadeh¹ and Prof. Erasmo Carrera²

Advisor: Dr. Matteo Filippi²

¹Sharif University of Technology Department of Aerospace Engineering, Tehran, Iran

²MUL2 research group, Polytechnic University of Turin, Italy

²Polytechnic University of Turin, Department of Mechanical and Aerospace Engineering, Italy

26 September, 2017

Outlines

- 1. Introduction to rotating disks
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach
- 5. Numerical approach
- 6. Conclusion

Outlines

1. Introduction to rotating disks

- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach
- 5. Numerical approach
- 6. Conclusion

Applications

- ✓ Aerospace (aero-engines, turbo-pumps, turbo-chargers, etc.)
- ✓ Mechanical (spindles, flywheel, brake disks, etc.)
- ✓ Naval
- $\checkmark\,$ Power plant (steam and gas turbines, turbo-generators,)
- ✓ Chemical plant
- ✓ Electronics (electrical machines)

Configurations

Operating conditions

□ Main Loads

- ✓ Centrifugal forces
- ✓ Thermal loads.

□ Transient thermal load

- ✓ In some of applications, the disks may be exposed to sudden temperature changes in short periods of time (for Ex. start and stop cycles)
- ✓ These sudden changes in temperature can cause time dependent thermal stresses.
- ✓ Thermal stresses due to large temperature gradients are higher than the steady-state stresses.
- \checkmark In such conditions, the disk should be designed with consideration of transient effects.

Disk materials

- ✓ Metals: steels, super alloys
- ✓ Ceramic matrix composites (CMC)
- ✓ Functionally graded materials (FGMs)

ceramic-metal FGM

ceramic-metal FGM

Effective properties of FGMs

 $P_{eff} = V_m P_m + V_c P_c = V_m (P_m - P_c) + P_c$

 P_m and P_c : properties of metal and ceramic V_m and V_c : volume fractions of metal and ceramic $V_m = f(x, y, z)$

7

FGM disk

power gradation law for metal volume fraction along the radius

 $V_{\rm m} = \left(\frac{b-r}{b-a}\right)^n$

Effective properties of FGMs

$$P_{eff} = V_m P_m + V_c P_c = V_m (P_m - P_c) + P_c$$

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach
- 5. Numerical approach
- 6. Conclusion

Classification of thermoelastic problems

10

Classification of thermoelastic problems

static steady-state problems

equation of motion

$$(C_{ijkl}u_{k,l})_{,j} - (\beta_{ij}T)_{,j} + X_i = 0$$

- $T \rightarrow$ temperature change
- $u_i \rightarrow \text{displacements}$
- $C_{ijkl} \rightarrow$ elastic coefficients
- $X_i \rightarrow \text{body forces}$
- $\beta_{ij} \rightarrow$ thermoelastic moduli
- $\kappa_{ij} \rightarrow$ thermal conductivity
- $R \rightarrow$ internal heat source

Classification of thermoelastic problems

static steady-state problems

Under axisymmetric & plane stress assumptions

equation of motion

$$\frac{d}{dr}(rh\sigma_r) - h\sigma_\theta + \rho\omega^2 hr^2 = 0$$

energy equation
$$T(r) = T_a + \frac{(T_b - T_a)}{\ln(r_a/r_b)} \ln(r/r_b)$$

12

Classification of thermoelastic problems

Quasi-static problems

• $\rho \rightarrow \text{density}$

 $c \rightarrow \text{specific heat}$

Classification of thermoelastic problems

Dynamic uncoupled problems

equation of motion

$$(C_{ijkl}u_{k,l})_{,j} - (\beta_{ij}T)_{,j} + X_i = \rho \ddot{u}_i$$

energy equation

$$\rho c \dot{T} - (\kappa_{ij}T_{,j})_{,i} = R$$

Classification of thermoelastic problems

Dynamic uncoupled problemsConsidering mechanical dampingequation of motion
$$(\zeta_{ijkl}u_{k,l})_{,j} - (\beta_{ij}T)_{,j} + X_i = \rho \ddot{u}_i + \zeta \dot{u}_i$$

energy equation

$$\rho c \dot{T} - (\kappa_{ij} T_{,j})_{,i} = R$$

• $\zeta \rightarrow$ mechanical damping coefficient of material

Classification of thermoelastic problems

Coupled thermoelasticity

- ✓ the time rate of strain is taken into account in the energy equation
- $\checkmark\,$ elasticity and energy equations are coupled.
- these coupled equations must be solved simultaneously.

equation of motion energy equation

Mechanical and thermal BCs and ICs

 $T(x_i, t), u_i(x_i, t)$

Classification of thermoelastic problems

Classical coupled problems

equation of motion

$$(C_{ijkl}u_{k,l})_{,j} - (\beta_{ij}T)_{,j} + X_i = \rho \ddot{u}_i$$

energy equation

$$\rho c \dot{T} - (\kappa_{ij} T_{,j})_{,i} + T_0 \beta_{ij} \dot{u}_{i,j} = R$$

• $T_0 \rightarrow$ reference temperature

Classification of thermoelastic problems

Classification of thermoelastic problems

in the classical thermoelasticity

- heat conduction equation is of a parabolic type.
- Predicting infinite speed for heat propagation
- The prediction is not physically acceptable.
- ✓ thermal wave disturbances are not detectable.
- generalized theories of thermoelasticity
 - non-classical theories with the finite speed of the thermal wave.

Classification of thermoelastic problems

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach
- 5. Numerical approach
- 6. Conclusion

Literature review & present work

Conclusion of the literature review

- > Coupled thermoelasticity problems are still topics of active research.
- > Analytical solution of the these problems are mathematically difficult.
- > Number of papers on analytical solutions is limited.
- > Numerical methods are often used to solve these problems.
- > Numerical solutions of these problems have been presented in many articles.
- > Finite element method is still applied as a powerful numerical tool in such problems.
- The major presented solutions are related to the basic problems (infinite medium, half-space, layer and axisymmetric problems).
- > Analytical and numerical solution of rotating disk problems has never before been presented.

Literature review & present work

Present work

- Main purpose
 - Study of coupled thermoelastic behavior in disks subjected to thermal shock loads
 - $\checkmark\,$ based on the generalized and classic theories
 - ✓ Disks with constant and variable thickness
 - ✓ Made of FGM
- Implementation
 - Analytical approach
 - Numerical approach

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work

4. Analytical approach

- Solution method
- > Numerical evaluation
- 5. Numerical approach
- 6. Conclusion

Governing equations

Consider

- An annular rotating disk with constant thickness,
- made of isotropic & homogeneous material,
- Under axisymmetric thermal and mechanical shock loads.

Based on LS generalized coupled theory

$$\tilde{\lambda} = \frac{2\mu}{\lambda + 2\mu}\lambda \qquad \tilde{\beta} = \frac{2\mu}{\lambda + 2\mu}(3\lambda + 2\mu)\alpha$$

- $\lambda \& \mu \rightarrow \text{Lame constants}$
- $\alpha \rightarrow$ coefficient of linear thermal expansion

 λ

25

Governing equations

Coupled System Of Equations $\begin{bmatrix} \mathbf{I} \\ \delta r^{2} + \frac{1}{r} \frac{\partial}{\partial r} \end{bmatrix} - \rho c \frac{\partial}{\partial t} \left(1 + t_{0} \frac{\partial}{\partial t} \right) T - \tilde{\beta} T_{0} \left\{ t_{0} \left[\frac{\partial^{3}}{\partial r \partial t^{2}} + \frac{1}{r} \frac{\partial^{2}}{\partial t^{2}} \right] + \frac{\partial^{2}}{\partial r \partial t} + \frac{1}{r} \frac{\partial}{\partial t} \right\} u = 0$ $\begin{bmatrix} \mathbf{I} \\ \left(\tilde{\lambda} + 2\mu \right) \left[\frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{r^{2}} \right] - \rho \frac{\partial^{2}}{\partial t^{2}} \right\} u - \tilde{\beta} \frac{\partial T}{\partial r} = -\rho r \omega^{2}$ $f_2(t), f_4(t)$ Mechanical BCs. & ICs thermal BCs. & ICs $k_{31} \frac{\partial u}{\partial r}|_{r=r_i} + k_{32} u(r_i, t) = f_3(t)$ $k_{41} \frac{\partial u}{\partial r}|_{r=r_o} + k_{42} u(r_o, t) = f_4(t)$ Inner radius of the disk r_i $k_{11} \frac{\partial T}{\partial r}|_{r=r_i} + k_{12}T(r_i, t) = f_1(t)$ $k_{21} \frac{\partial T}{\partial r}|_{r=r_o} + k_{22}T(r_o, t) = f_2(t)$ Outer radius of the disk r_0 $f_1(t) - f_4(t)$ time dependent known functions k_{ii} constant parameters $u(r, 0) = g_3(r),$ $T(r,0) = g_1(r),$ $\dot{T}(r,0) = g_2(r)$ $\dot{u}(r,0) = g_4(r)$ $g_1(r) - g_4(r)$ known functions of r

Governing equations in Non-dimensional form

Non-dimensional parameters

$$\hat{r} = \frac{r}{l}, \qquad \hat{t} = \frac{tV_e}{l}, \qquad \hat{t}_0 = \frac{t_0 V_e}{l}$$

$$\hat{\sigma}_{rr} = \frac{\sigma_{rr}}{\tilde{\beta}T_0}, \qquad \hat{\sigma}_{\theta\theta} = \frac{\sigma_{\theta\theta}}{\tilde{\beta}T_0}, \qquad \hat{T} = \frac{T}{T_0}$$

$$\hat{u} = \frac{(\tilde{\lambda} + 2\mu)u}{l\tilde{\beta}T_0}, \qquad \hat{\omega} = \sqrt{\frac{\rho l^2}{\tilde{\beta}T_0}}\omega$$

propagation speed of elastic longitudinal wave

$$V_e = \sqrt{\left(\tilde{\lambda} + 2\mu\right)/
ho}$$

 $l = k/\rho \, cV_e$

Governing equations in Non-dimensional form

Coupled System Of Equations

$$\left\{ \frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} - \frac{1}{\hat{r}^2} - \frac{\partial^2}{\partial \hat{t}^2} \right\} \hat{u} - \frac{\partial \hat{T}}{\partial \hat{r}} = -\hat{r} \widehat{\omega}^2$$

$$\left\{ \frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} - \frac{\partial}{\partial \hat{t}} \left(1 + \hat{t}_0 \frac{\partial}{\partial \hat{t}} \right) \right\} \hat{T} - \left\{ C \left\{ \hat{t}_0 \left[\frac{\partial^3}{\partial \hat{r} \partial \hat{t}^2} + \frac{1}{\hat{r}} \frac{\partial^2}{\partial \hat{t}^2} \right] + \frac{\partial^2}{\partial \hat{r} \partial \hat{t}} + \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{t}} \right\} \hat{u} = 0$$

where

$$C = \frac{T_0 \tilde{\beta}^2}{\rho c (\tilde{\lambda} + 2\mu)}$$
 Thermoelastic damping or coupling parameter

- Non-dimensional propagation speed of thermal wave $\rightarrow \hat{V}_T = \sqrt{1/\hat{t}_0}$
- Non-dimensional propagation speed of elastic longitudinal wave $\rightarrow \hat{V}_e = 1$

I

Solution of non-dimensional equations

Coupled System Of Equations

$$\begin{cases} \frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}}\frac{\partial}{\partial \hat{r}} - \frac{1}{\hat{r}^2} - \frac{\partial^2}{\partial \hat{t}^2} \right\} \hat{u} - \frac{\partial \hat{T}}{\partial \hat{r}} = -\hat{r}\hat{\omega}^2 \\ \begin{cases} \frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}}\frac{\partial}{\partial \hat{r}} - \frac{\partial}{\partial \hat{t}} \left(1 + \hat{t}_0 \frac{\partial}{\partial \hat{t}}\right) \right\} \hat{T} - \mathcal{C} \left\{ \hat{t}_0 \left[\frac{\partial^3}{\partial \hat{r} \partial \hat{t}^2} + \frac{1}{\hat{r}}\frac{\partial^2}{\partial \hat{t}^2} \right] + \frac{\partial^2}{\partial \hat{r} \partial \hat{t}} + \frac{1}{\hat{r}}\frac{\partial}{\partial \hat{t}} \right\} \hat{u} = 0 \end{cases}$$

Thermal and mechanical BCs. & ICs

$$\begin{split} \hat{k}_{11} \frac{\partial \hat{T}}{\partial \hat{r}}|_{\hat{r}=a} + \hat{k}_{12} \hat{T}(a,t) &= \hat{f}_1(\hat{t}) & \hat{k}_{21} \frac{\partial \hat{T}}{\partial \hat{r}}|_{\hat{r}=b} + \hat{k}_{22} \hat{T}(b,t) &= \hat{f}_2(\hat{t}) \\ \hat{k}_{31} \frac{\partial \hat{u}}{\partial \hat{r}}|_{\hat{r}=a} + \hat{k}_{32} \hat{u}(a,t) &= \hat{f}_3(\hat{t}) & \hat{k}_{41} \frac{\partial \hat{u}}{\partial \hat{r}}|_{\hat{r}=b} + \hat{k}_{42} \hat{u}(b,t) &= \hat{f}_4(\hat{t}) \\ \hat{T}(\hat{r},0) &= \hat{g}_1(\hat{r}), \quad \dot{T}(\hat{r},0) &= \hat{g}_2(\hat{r}) \\ \hat{u}(\hat{r},0) &= \hat{g}_3(\hat{r}), \quad \dot{u}(\hat{r},0) &= \hat{g}_4(\hat{r}) \end{split}$$

29

Ι

Π

Solution of non-dimensional equations

30

$$\begin{cases} \frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} - \frac{\partial}{\partial \hat{t}} \left(1 + \hat{t}_0 \frac{\partial}{\partial \hat{t}} \right) \right) \hat{T} - C \left\{ \hat{t}_0 \left[\frac{\partial^3}{\partial \hat{r} \partial \hat{t}^2} + \frac{1}{\hat{r}} \frac{\partial^2}{\partial \hat{t}^2} \right] + \frac{\partial^2}{\partial \hat{r} \partial \hat{t}} + \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{t}} \right\} \hat{u} = 0 \quad \text{energy Eq.} \\ \hline decomposition \\ \frac{\partial^2 T_1}{\partial r^2} + \frac{1}{r} \frac{\partial T_1}{\partial r} - \dot{T}_1 - t_0 \ddot{T}_1 = 0 \\ k_{11} \frac{\partial T_1}{\partial r}|_{r=a} + k_{12} T_1(a, t) = f_1(t) \\ k_{21} \frac{\partial T_1}{\partial r}|_{r=b} + k_{22} T_1(b, t) = f_2(t) \\ T_1(r, 0) = 0 \quad , \quad \dot{T}_1(r, 0) = 0 \\ \end{cases} \quad \begin{array}{c} \frac{\partial^2 T_2}{\partial r^2} + \frac{1}{\hat{r}} \frac{\partial T_2}{\partial r} - \dot{T}_2 - t_0 \ddot{T}_2 = C \left\{ t_0 \left(\ddot{u}_r + \frac{\dot{u}}{r} \right) + \dot{u}_r + \frac{\dot{u}}{r} \right\} \\ k_{11} \frac{\partial T_1}{\partial r}|_{r=b} + k_{22} T_1(b, t) = f_2(t) \\ T_1(r, 0) = 0 \quad , \quad \dot{T}_1(r, 0) = 0 \\ \end{array} \quad \begin{array}{c} \frac{\partial^2 T_2}{\partial r} + \frac{1}{r} \frac{\partial T_2}{\partial r} - \dot{T}_2 - t_0 \ddot{T}_2 = C \left\{ t_0 \left(\ddot{u}_r + \frac{\dot{u}}{r} \right) + \dot{u}_r + \frac{\dot{u}}{r} \right\} \\ k_{11} \frac{\partial T_2}{\partial r}|_{r=b} + k_{12} T_2(a, t) = 0 \\ k_{21} \frac{\partial T_1}{\partial r}|_{r=b} + k_{22} T_2(b, t) = 0 \\ T_1(r, 0) = 0 \quad , \quad \dot{T}_1(r, 0) = 0 \\ \end{array}$$

Solution of non-dimensional equations

Solution of non-dimensional equations

Bessel equation and can be separately solved using finite Hankel transform

Solution of non-dimensional equations

Finite Hankel transform

$$\mathcal{H}[T_1(r,t)] = \overline{T}_1(t,\xi_m) = \int_a^b r T_1(r,t) K_0(r,\xi_m) dr$$
$$\mathcal{H}[u_1(r,t)] = \overline{u}_1(t,\eta_n) = \int_a^b r u_1(r,t) K_1(r,\eta_n) dr$$

--- kernel functions

$$K_{0}(r,\xi_{m}) = J_{0}(\xi_{m}r) \left(k_{21} \frac{\partial Y_{0}(\xi_{m}r)}{\partial r} |_{r=b} + k_{22}Y_{0}(\xi_{m}b) \right) - Y_{0}(\xi_{m}r) \left(k_{21} \frac{\partial J_{0}(\xi_{m}r)}{\partial r} |_{r=b} + k_{22}J_{0}(\xi_{m}b) \right)$$
$$K_{1}(r,\eta_{n}) = J_{1}(\eta_{n}r) \left(k_{41} \frac{\partial Y_{1}(\eta_{n}r)}{\partial r} |_{r=b} + k_{42}Y_{1}(\eta_{n}b) \right) - Y_{1}(\eta_{n}r) \left(k_{41} \frac{\partial J_{1}(\eta_{n}r)}{\partial r} |_{r=b} + k_{42}J_{1}(\eta_{n}b) \right)$$

 ξ_m and η_n are positive roots of the following equations

$$\begin{pmatrix} k_{11} \frac{\partial Y_0(\xi_m r)}{\partial r}|_{r=a} + k_{12}Y_0(\xi_m a) \end{pmatrix} \begin{pmatrix} k_{21} \frac{\partial J_0(\xi_m r)}{\partial r}|_{r=b} + k_{22}J_0(\xi_m b) \end{pmatrix} - \begin{pmatrix} k_{21} \frac{\partial Y_0(\xi_m r)}{\partial r}|_{r=b} + k_{22}Y_0(\xi_m b) \end{pmatrix} \begin{pmatrix} k_{11} \frac{\partial J_0(\xi_m r)}{\partial r}|_{r=a} + k_{12}J_0(\xi_m a) \end{pmatrix} \\ = 0 \\ \begin{pmatrix} k_{31} \frac{\partial Y_1(\eta_n r)}{\partial r}|_{r=a} + k_{32}Y_1(\eta_n a) \end{pmatrix} \begin{pmatrix} k_{41} \frac{\partial J_1(\eta_n r)}{\partial r}|_{r=b} + k_{42}J_1(\eta_n b) \end{pmatrix} - \begin{pmatrix} k_{41} \frac{\partial Y_1(\eta_n r)}{\partial r}|_{r=b} + k_{42}Y_1(\eta_n b) \end{pmatrix} \begin{pmatrix} k_{31} \frac{\partial J_1(\eta_n r)}{\partial r}|_{r=a} + k_{32}J_1(\eta_n a) \end{pmatrix} = 0 \end{cases}$$

Solution of non-dimensional equations

Uncoupled sub-IBVPs (Bessel equations)

$$\begin{split} \frac{\partial^2 u_1}{\partial r^2} &+ \frac{1}{r} \frac{\partial u_1}{\partial r} - \frac{u_1}{r^2} - \ddot{u}_1 = 0 \\ k_{31} \frac{\partial u_1}{\partial r} \bigg|_{r=a} &+ k_{32} u_1(a,t) = f_3(t) \\ k_{41} \frac{\partial u_1}{\partial r} \bigg|_{r=b} &+ k_{42} u_1(b,t) = f_4(t) \\ u_1(r,0) &= 0 \quad , \quad \dot{u}_1(r,0) = 0 \end{split}$$

$$\begin{aligned} \frac{\partial^2 T_1}{\partial r^2} + \frac{1}{r} \frac{\partial T_1}{\partial r} - \dot{T_1} - t_0 \ddot{T_1} &= 0 \\ k_{11} \frac{\partial T_1}{\partial r} \bigg|_{r=a} + k_{12} T_1(a,t) &= f_1(t) \\ k_{21} \frac{\partial T_1}{\partial r} \bigg|_{r=b} + k_{22} T_1(b,t) &= f_2(t) \\ T_1(r,0) &= 0 \quad , \quad \dot{T_1}(r,0) &= 0 \end{aligned}$$

$$\overline{u}_{1} + \eta_{n}^{2}\overline{u}_{1} = \frac{2}{\pi} \left(f_{4}(t) - \frac{d_{4}}{d_{3}} f_{3}(t) \right)$$

$$\overline{u}_{1}(t, \eta_{n})$$

$$\overline{u}_{1}(t, \eta_{n})$$

$$\overline{u}_{1}(t, \eta_{n})$$

$$\overline{u}_{1}(t, \eta_{n})$$

$$\overline{u}_{1}(t, \eta_{n})$$

$$\overline{u}_{1}(t, \xi_{n})$$

$$\overline{u}_{1}(t, \xi_{n})$$

$$\overline{u}_{1}(t, \xi_{n})$$

Solution of non-dimensional equations

Uncoupled sub-IBVPs (Bessel equations)

Solution of non-dimensional equations

$$\begin{cases} \frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}} - \frac{1}{\hat{r}^2} - \frac{\partial^2}{\partial \hat{t}^2} \right\} \hat{u} - \frac{\partial \hat{T}}{\partial \hat{r}} = -\hat{r} \hat{\omega}^2 \quad \text{Eq. of motion} \\ \end{cases}$$

$$\frac{\partial^2 u_1}{\partial r^2} + \frac{1}{\hat{r}} \frac{\partial u_1}{\partial r} - \frac{u_1}{r^2} - \ddot{u}_1 = 0 \quad \text{decomposition} \\ k_{31} \frac{\partial u_1}{\partial r}|_{r=a} + k_{32} u_1(a,t) = f_3(t) \quad \text{decomposition} \\ k_{41} \frac{\partial u_1}{\partial r}|_{r=b} + k_{42} u_1(b,t) = f_4(t) \quad \text{decomposition} \\ u_1(r,0) = 0 \quad , \quad \dot{u}_1(r,0) = 0 \end{cases}$$

$$T_2(r,t) = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} Q_{mn}(t) K_0(r,\xi_m) \quad , \quad u_2(r,t) = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} S_{mn}(t) K_1(r,\eta_n)$$

Analytical approach - Solution method

Solution of non-dimensional equations

Coupled System Of Equations

$$\begin{cases} \frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}}\frac{\partial}{\partial \hat{r}} - \frac{1}{\hat{r}^2} - \frac{\partial^2}{\partial \hat{t}^2} \right\} \hat{u} - \frac{\partial \hat{T}}{\partial \hat{r}} = -\hat{r}\hat{\omega}^2 \\ \begin{cases} \frac{\partial^2}{\partial \hat{r}^2} + \frac{1}{\hat{r}}\frac{\partial}{\partial \hat{r}} - \frac{\partial}{\partial \hat{t}} \left(1 + \hat{t}_0 \frac{\partial}{\partial \hat{t}}\right) \right\} \hat{T} - C \left\{ \hat{t}_0 \left[\frac{\partial^3}{\partial \hat{r} \partial \hat{t}^2} + \frac{1}{\hat{r}}\frac{\partial^2}{\partial \hat{t}^2} \right] + \frac{\partial^2}{\partial \hat{r} \partial \hat{t}} + \frac{1}{\hat{r}}\frac{\partial}{\partial \hat{t}} \right\} \hat{u} = 0 \end{cases}$$

$$T(r,t) = \sum_{m=1}^{\infty} \tilde{a}_m \overline{T}_1(t,\xi_m) K_0(r,\xi_m) + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Q_{mn}(t) K_0(r,\xi_m)$$
$$u(r,t) = \sum_{n=1}^{\infty} \tilde{b}_n \overline{u}_1(t,\eta_n) K_1(r,\eta_n) + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} S_{mn}(t) K_1(r,\eta_n)$$

Ι

Π

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work

4. Analytical approach

- Solution method
- > Numerical evaluation
- 5. Numerical approach
- 6. Conclusion

Specifications of numerical example

geometry	Boundary conditions
$\begin{array}{l}a=1\\b=2\end{array}$	at $\hat{r} = a \rightarrow \begin{cases} -\frac{\partial \hat{T}}{\partial \hat{r}} = \hat{q}_{in}(t) \\ \hat{u} = 0 \end{cases}$
material properties	at $\hat{r} = b \rightarrow \begin{cases} \hat{T} = 0\\ \hat{\sigma}_{rr} = 0 \end{cases}$
$\lambda = 40.4 \text{ GPa}$	$(0_{rr} - 0)$
$\mu = 27 \text{ GPa}$ $\alpha = 23 \times 10^{-6} \text{ K}^{-1}$	
$\rho = 2707 \text{ kg/m}^3$	$\hat{q}_{in}(t) = \begin{cases} 0 & \hat{t} \leq 0 \\ 1 & \hat{t} > 0 \end{cases}$
$k = 204 \text{ W/m} \cdot \text{K}$	
$c = 903 \mathrm{J/kg} \cdot \mathrm{K}$	

Time history of the non-dimensional solution at mid-radius

a

Time history of the non-dimensional solution at mid-radius

a

Results and discussion

Radial distribution for different values of the time.

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach
- 5. Numerical approach
- 6. Conclusion

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method
- Evaluations and results

6. Conclusion

Numerical approach

Motivations

Analytical solutions are limited to those of a disk with simple geometry and boundary conditions.

FE method is more widely used for this class of problems.

□ 1D and 2D FE models are not able to provide all the desired information.

□ 3D FE modeling techniques may be required for a detailed coupled thermoelastic analysis.

□ 3D FE models still impose large computational costs, specially, in a time-consuming transient solution.

□ There is a growing interest in the development of refined FE models with lower computational efforts.

A refined FE approach was developed by Prof. Carrera *et al.*

□ They formulated the FE methods on the basis of a class of theories of structures.

Numerical approach

Main characteristics of FE models refined by Carrera

- ✓ 3D capabilities
- $\checkmark\,$ lower computational costs
- ✓ ability to analyze multi-field problems and multi-layered structures

MUL2 research group, Polytechnic University, Turin, Italy www.mul2.polito.it

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method
- Evaluations and results

6. Conclusion

Approaches to FE modeling

- Variational approach
- Weighted residual methods

- Weighted residual method based on Galerkin technique
 - ✓ Efficient, high rate of convergence
 - ✓ most common method to obtain a weak formulation of the problem

Governing equations

- ✓ For **anisotropic and nonhomogeneous** materials.
- ✓ Including LS, GL and classical theories of thermoelasticity.
- ✓ Considering mechanical damping effect.

Equation of motion $\sigma_{ij,j} + X_i = \rho \ddot{u}_i + \zeta \dot{u}_i$

Hooke's law $\sigma_{ij} = C_{ijpq} \varepsilon_{pq} - \beta_{ij} (T + t_1 \dot{T})$

Energy equation

$$\rho c (t_0 + t_2) \ddot{T} + \rho c \dot{T} - 2 \tilde{c}_i \dot{T}_{,i} - (\kappa_{ij} T_{,j})_{,i}$$

$$+ t_0 T_0 \beta_{ij} \ddot{u}_{i,j} + T_0 \beta_{ij} \dot{u}_{i,j} = R + t_0 \dot{R}$$

 \checkmark $t_0 = t_1 = t_2 = \tilde{c}_i = 0 \rightarrow$ classical theory

$$\checkmark t_1 = t_2 = \tilde{c}_i = 0 \rightarrow \mathsf{LS}$$
 theory

 \checkmark $t_0 = 0 \rightarrow \text{GL}$ theory.

FE formulation through Galerkin technique

• In 3D conventional FE method

$$u_i^{(e)}(x, y, z, t) = \phi_m(x, y, z)U_i^m(t)$$

$$T^{(e)}(x, y, z, t) = \phi_m(x, y, z)\Theta^m(t)$$

- $m = 1, \cdots, r$
- r = number of nodal points in a element

FE formulation through Galerkin technique

Weighting function

 $\phi_m(x,y,z)$

Equation of motion

energy equation

$$\int_{V^{(e)}} \left(\sigma_{ij,j} + X_i - \rho \ddot{u}_i - \zeta \dot{u}_i \right) \phi_m \, dV = 0$$

$$\int_{V^{(e)}} \left(\rho c(t_0 + t_2) \ddot{T} + \rho c \dot{T} - 2 \tilde{c}_i \dot{T}_{,i} - (\kappa_{ij} T_{,j}) \right)_{,i} + t_0 T_0 \beta_{ij} \ddot{u}_{i,j} + T_0 \beta_{ij} \dot{u}_{i,j} - R - t_0 \dot{R} \right) \phi_m dV = 0$$

FE formulation through Galerkin technique

* y

Refined 1D FE model through Carrera unified formulation

- $m = 1, \cdots, M$ ٠
- M = number of bar nodes •

Refined 1D FE model through Carrera unified formulation

Refined 1D FE model through CUF

refined 1D 2-nodes element

55

Refined 1D FE model through CUF

1D FE modeling

elements and shape functions in 1D FE modeling

Refined 1D FE model through CUF

$$1D \text{ FE-CUF}$$
$$\mathbf{u}(x, y, z, t) = N_m(y)F_{\tau}(x, z) \mathbf{U}^{m\tau}(t)$$
$$T(x, y, z, t) = N_m(y)F_{\tau}(x, z) \Theta^{m\tau}(t)$$

In Carrera unified formulation

- ✓ selection of $F_{\tau}(x, z)$ and N_{CUF} ($\tau = 1, \dots, N_{\text{CUF}}$) is arbitrary.
- ✓ various kinds of basic functions such as polynomials, harmonics and exponentials of any-order.
- ✓ For instance, different classes of polynomials such as Taylor, Legendre and Lagrange polynomials.

Refined 1D FE model through CUF

1D FE-CUF

$$\mathbf{u}(x, y, z, t) = N_m(y)F_{\tau}(x, z) \mathbf{U}^{m\tau}(t)$$

$$T(x, y, z, t) = N_m(y)F_{\tau}(x, z) \Theta^{m\tau}(t)$$

 $F_{\tau}(x,z) \rightarrow$ bi-dimensional Lagrange functions

cross-sections can be discretized using Lagrange elements

- linear three-point (L3)
- quadratic six-point (L6)
- bilinear four-point (L4)

- biquadratic nine-point (L9)
- bi-cubic sixteen-point (L16)

FE equations in CUF form

Substituting

1D FE-CUF $\mathbf{u}(x, y, z, t) = N_m(y)F_\tau(x, z) \mathbf{U}^{m\tau}(t)$ $T(x, y, z, t) = N_m(y)F_\tau(x, z) \Theta^{m\tau}(t)$

weighting function $\phi_m(x, y, z) = N_m(y)F_\tau(x, z)$

into the weak forms of equation of motion and energy equation gives

$$\mathbf{M}^{lm au s} \ddot{oldsymbol{\delta}}^{ls} + \mathbf{G}^{lm au s} \dot{oldsymbol{\delta}}^{ls} + \mathbf{K}^{lm au s} oldsymbol{\delta}^{ls} = \mathbf{p}^{m au}$$

- $\mathbf{M}^{lm\tau s}, \mathbf{G}^{lm\tau s}$ and $\mathbf{K}^{lm\tau s} \rightarrow 4 \times 4$ fundamental nuclei (FNs) of the mass, damping, and stiffness matrices
- $\mathbf{p}^{m\tau} \rightarrow 4 \times 1$ FN of the load vector
- $\delta^{ls} \rightarrow 4 \times 1$ FN of the unknowns vector

FE equations in CUF form

$$\mathbf{M}^{lm au s} \ddot{oldsymbol{\delta}}^{ls} + \mathbf{G}^{lm au s} \dot{oldsymbol{\delta}}^{ls} + \mathbf{K}^{lm au s} oldsymbol{\delta}^{ls} = \mathbf{p}^{m au}$$

or

$\begin{bmatrix} \mathbf{M}_{UU}^{lm\tau s} & \mathbf{0} \\ \mathbf{M}_{\Theta U}^{lm\tau s} & \mathbf{M}_{\Theta\Theta}^{lm\tau s} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{U}}^{ls} \\ \ddot{\mathbf{\partial}}^{ls} \end{bmatrix} + \begin{bmatrix} \mathbf{G}_{UU}^{lm\tau s} & \mathbf{G}_{U\Theta}^{lm\tau s} \\ \mathbf{G}_{\Theta U}^{lm\tau s} & \mathbf{G}_{\Theta\Theta}^{lm\tau s} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{U}}^{ls} \\ \dot{\mathbf{\partial}}^{ls} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{UU}^{lm\tau s} & \mathbf{K}_{U\Theta}^{lm\tau s} \\ \mathbf{0} & \mathbf{K}_{\Theta\Theta}^{lm\tau s} \end{bmatrix} \begin{bmatrix} \mathbf{U}^{ls} \\ \mathbf{O}^{ls} \end{bmatrix} = \begin{bmatrix} \mathbf{F}^{m\tau} \\ \mathbf{Q}^{m\tau} \end{bmatrix}$

	Conditio	ons	Theory
Duranti	$t_0 = 0$		Generalized,
Dynamic coupled	$\overline{t_1 = t_2 = \tilde{\mathbf{c}} = 0}$		Generalized, L
	$t_0 = 0$ $t_1 = t_2 = \tilde{\mathbf{c}} = 0$		Classical
		$\mathbf{G}_{\Theta U}^{Im au s}=0$	Dynamic
Uncoupled	$t_0 = 0$ $t_1 = t_2 = \tilde{\mathbf{c}} = 0$		Quasi-static
			Static

 $\mathbf{G}_{UU}^{lm\tau s} \rightarrow \text{structural damping effect}$

Rayleigh damping model
$\mathbf{G}_{UU}^{lm\tau s} = \zeta_1 \mathbf{M}_{UU}^{lm\tau s} + \zeta_2 \mathbf{K}_{UU}^{lm\tau s}$

Assembly procedure via Fundamental Nuclei

Time history analysis

Transfinite element technique

- $\tilde{s} \rightarrow$ the Laplace variable
- $\mathbf{K}_{eq}^{lm\tau s} \rightarrow \mathbf{FN}$ of the equivalent stiffness matrix
- denotes Laplace transform of the terms.

Non-dimensional Equation for isotropic FGMs

Non-dimensional FNs for isotropic FGMs based on LS theory

Non-dimensional FNs for isotropic FGMs based on LS theory

$$\lhd \cdots \rhd = \int_{A^{(e)}} (\cdots) dA$$

$$\begin{bmatrix} I_L^{ml} & \left| I_L^{m,_yl} & \left| I_L^{ml,_y} & \left| I_L^{m,_yl,_y} \!=\! \int_{L^{\!(e)}} \! \left(\! N_m N_l & \left| N_{m,_y} N_l & \left| N_m N_{l_{\!,y}} & \left| N_{m,_y} N_{l_{\!,y}} \right| \right) \! dy \end{bmatrix} \!$$

$$\hat{C}_{\rho} = \frac{\rho}{\rho_{\rm m}}, \ \hat{C}_{\beta} = \frac{\beta}{\beta_{\rm m}} \ , \ \hat{C}_{\kappa} = \frac{\kappa}{\kappa_{\rm m}} \ , \ \hat{C}_{c} = \frac{c}{c_{\rm m}}$$

$$\begin{split} \hat{C}_{11} &= \hat{C}_{22} = \hat{C}_{33} = \frac{\left(2\mu + \lambda\right)}{\left(\lambda_{\rm m} + 2\mu_{\rm m}\right)} \\ \hat{C}_{44} &= \hat{C}_{55} = \hat{C}_{66} = \frac{\mu}{\left(\lambda_{\rm m} + 2\mu_{\rm m}\right)} \\ \hat{C}_{12} &= \hat{C}_{13} = \hat{C}_{23} = \frac{\lambda}{\left(\lambda_{\rm m} + 2\mu_{\rm m}\right)} \end{split}$$

thermoelastic coupling parameter \rightarrow

$$\label{eq:constraint} \frac{C}{c_{\rm m}\rho_{\rm m}(\lambda_{\rm m}+\mu_{\rm m})}$$

$$\begin{split} K_{11}^{\,\tau slm} &= \tilde{s}^{\,2} \lhd \hat{C}_{\rho} F_{\tau} \, F_{s} \rhd I_{L}^{\,ml} + \lhd \hat{C}_{22} \, F_{\tau,x} \, F_{s,x} \rhd I_{L}^{\,ml} \\ &+ \lhd \hat{C}_{66} F_{\tau} \, F_{s} \rhd I_{L}^{m, l, l} + \lhd \hat{C}_{44} F_{\tau, z} \, F_{s, z} \rhd I_{L}^{\,ml} \\ K_{12}^{\,\tau slm} &= \lhd \hat{C}_{66} F_{\tau} \, F_{s, x} \rhd I_{L}^{m, l} + \lhd \hat{C}_{23} F_{\tau, x} \, F_{s} \rhd I_{L}^{ml, l} \\ K_{13}^{\,\tau slm} &= \lhd \hat{C}_{44} F_{\tau, z} \, F_{s, x} \rhd I_{L}^{\,ml} + \lhd \hat{C}_{21} F_{\tau, x} \, F_{s, z} \rhd I_{L}^{\,ml} \\ K_{14}^{\,\tau slm} &= - \lhd \hat{C}_{\beta} F_{\tau, x} \, F_{s} \triangleright I_{L}^{\,ml} \end{split}$$

$$\begin{split} K_{41}^{\tau slm} &= \pmb{C} \left(\tilde{s}^2 \hat{t}_0 + \tilde{s} \right) \lhd \hat{C}_\beta F_\tau F_{s,x} \triangleright I_L^{ml} \\ K_{42}^{\tau slm} &= \pmb{C} \left(\tilde{s}^2 \hat{t}_0 + \tilde{s} \right) \lhd \hat{C}_\beta F_\tau F_s \triangleright I_L^{ml,y} \\ K_{43}^{\tau slm} &= \pmb{C} \left(\tilde{s}^2 \hat{t}_0 + \tilde{s} \right) \lhd \hat{C}_\beta F_\tau F_{s,z} \triangleright I_L^{ml} \\ K_{44}^{\tau slm} &= \left(\tilde{s}^2 \hat{t}_0 + \tilde{s} \right) \lhd \hat{C}_\rho \hat{C}_c F_\tau F_s \triangleright I_L^{ml} + \\ &+ \lhd \hat{C}_\kappa F_{\tau,x} F_{s,x} \triangleright I_L^{ml} + \lhd \hat{C}_\kappa F_\tau F_s \triangleright I_L^{m,yl,y} \\ &+ \lhd \hat{C}_\kappa F_{\tau,z} F_{s,z} \triangleright I_L^{ml} \end{split}$$

65

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method
- Evaluations and results

6. Conclusion

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method
- Evaluations and results
 - o Static structural analysis
 - Example 1. Rotating variable thickness disk
 - Example 2. Rotating variable thickness disk subjected thermal load
 - ✓ Example 3. Complex rotor
 - o Static structural-thermal analysis Example 4. simple beam
 - o **Quasi-static structural-thermal analysis** Example 5. simple beam
 - o **Dynamic coupled structural-thermal analysis**
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials
 - ✓ Example 7. Constant thickness disk made of isotropic FGMs
 - ✓ Example 8. variable thickness disk made of isotropic FGMs

6. Conclusion

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method
- Evaluations and results
 - o Static structural analysis
 - ✓ Example 1. Rotating variable thickness disk
 - ✓ Example 2. Rotating variable thickness disk subjected thermal load
 - ✓ Example 3. Complex rotor
 - o Static structural-thermal analysis Example 4. simple beam
 - o Quasi-static structural-thermal analysis Example 5. simple beam
 - o Dynamic coupled structural-thermal analysis
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials
 - ✓ Example 7. Constant thickness disk made of isotropic FGMs
 - ✓ Example 8. variable thickness disk made of isotropic FGMs
- 6. Conclusion

Static structural analysis

Example 1. Rotating variable thickness disk

Material properties				
Young's modulus <i>E</i>	207 GPa			
Poisson's ratio ν	0.28			
density ($ ho$)	7860 kg/m ³			

annular disk with hyperbolic profile					
$r_{\rm in} = 0.05 \ { m m}$ $r_{ m o} = 0.2 \ { m m}$	$h_{\rm in} = 0.06 \ {\rm m}$ $h_{\rm o} = 0.03 \ {\rm m}$				
h(r) = 0.013	$4 r^{-0.5}$				

- $\omega = 2000 \text{ rad/s}$
- hub is assumed to be fully fixed

Static structural analysis

Example 1. Rotating variable thickness disk

1D FE-CUF modeling

	Different 1D F	E-CUF models of the disk	
Model		Discretizing	- DOF
woder	Along the axis	Over the corss sections	DOF
(1)	8 B2, 3 CS*	$(2/6/8) \times 32$ L4	6240
(2)	8 B2, 4 CS	(2/4/6/8) × 32 L4	5472
(3)	10 B2, 4 CS	$(2/4/6/8) \times 32$ L4	7200
(4)	12 B2, 5 CS	$(1/2/4/6/8) \times 32$ L4	7584
(5)	14 B2, 6 CS	$(1/2/3/4/6/8) \times 32$ L4	8352
(6)	16 B2, 7 CS	(1/2/3/4/5/6/8) × 32 L4	9504
(7)	18 B2, 8 CS	(1/2/3/4/5/6/7/8) × 32 L4	11040
(8)	22 B2, 8 CS	(1/2/3/4/5/6/7/8) × 32 L4	14496
* 3 types	s of cross section	(CS) with different radii	

discretization along the axis

Static structural analysis

Example 1. Rotating variable thickness disk

verification of results

Radial displacement

Model	DOF	Radial displacement $u_r(\mu m)$			
woder	DOF	At mid-radius		At oute	er radius
Analytical	1	119.01		157.57	
1D CUF- FE					
(1)	6240	120.32	(1.10)	156.00	(1.00)
(2)	5472	118.36	(0.54)	157.00	(0.36)
(3)	7200	118.36	(0.54)	156.42	(0.73)
(4)	7584	118.75	(0.22)	157.15	(0.27)
(5)	8352	119.50	(0.41)	158.08	(0.32)
(6)	9504	118.50	(0.43)	157.93	(0.23)
(7)	11040	117.26	(1.47)	154.92	(1.68)
(8)	14496	117.06	(1.64)	155.00	(1.63)
3D ANSYS	14400	119.00	(0.01)	157.10	(0.30)
⁽⁾ : % difference with respect to the analytical solution.					

Static structural analysis

Example 1. Rotating variable thickness disk

verification of results

Radial displacement

Model	DOF	Radia	cement u_{η}	ement $u_r(\mu m)$	
woder	DOF	At mid-radius		At outer radius	
Analytical	1	119.01		157.57	
1D CUF- FE					
(1)	6240	120.32	(1.10)	156.00	(1.00)
(2)	5472	118.36	(0.54)	157.00	(0.36)
(3)	7200	118.36	(0.54)	156.42	(0.73)
(4)	7584	118.75	(0.22)	157.15	(0.27)
(5)	8352	119.50	(0.41)	158.08	(0.32)
(6)	9504	118.50	(0.43)	157.93	(0.23)
(7)	11040	117.26	(1.47)	154.92	(1.68)
(8)	14496	117.06	(1.64)	155.00	(1.63)
3D ANSYS	14400	119.00	(0.01)	157.10	(0.30)
⁽⁾ : % difference with respect to the analytical solution.					

✓ Error < 0.6%

✓ 2.6 times less DOFs of the 3D ANSYS model !!

Static structural analysis

Example 1. Rotating variable thickness disk

1D FE-CUF modeling

Mesh refinement over the cross-sections

model	1D FE-CUF Model	DOF
1	8 B2, (1/2/3/4) × 32 L4	3168
2	8 B2, (2/4/6/8) × 32 L4	5472
3	8 B2, (5/7/9/14) × 32 L4	8928
4	8 B2, (4/8/12/16) × 32 L4	10080
5	8 B2, (10/12/14/20) × 32 L4	13536

Static structural analysis

Example 1. Rotating variable thickness disk

verification of results

Radial displacement

Model	DOF	Radial displacement $u_r(\mu m)$			
Iviodel	DOF	At mid-radius		At outer radius	
Analytical	1	119.01		157.57	
1D CUF FE					
8 B2, (1/2/3/4) × 32 L4	3168	114.50	(3.79)	154.00	(2.27)
8 B2, (2/4/6/8) × 32 L4	5472	118.36	(0.54)	157.00	(0.36)
8 B2, (5/7/9/14) × 32 L4	8928	119.00	(0.01)	157.00	(0.36)
8 B2, (4/8/12/16) × 32 L4	10080	119.00	(0.01)	158.00	(0.27)
8 B2, (10/12/14/20) × 32 L4	13536	119.00	(0.01)	157.00	(0.36)
3D FE (ANSYS)	14400	119.00	(0.01)	157.10	(0.30)
⁽⁾ Absolute percentage difference with respect to the analytical solution.					

✓ Converged solution

with 1.6 times less DOFs of the 3D ANSYS model !!

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method
- Evaluations and results
 - o Static structural analysis
 - ✓ Example 1. Rotating variable thickness disk
 - ✓ Example 2. Rotating variable thickness disk subjected thermal load
 - ✓ Example 3. Complex rotor
 - o Static structural-thermal analysis Example 4. simple beam
 - o Quasi-static structural-thermal analysis Example 5. simple beam
 - o Dynamic coupled structural-thermal analysis
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials
 - ✓ Example 7. Constant thickness disk made of isotropic FGMs
 - ✓ Example 8. variable thickness disk made of isotropic FGMs
- 6. Conclusion

Static structural analysis

Example 2. Rotating variable thickness disk subjected thermal load

- The disk is subjected to radial temperature gradient.
- hub is assumed to be axially fixed.

Static structural analysis

Example 2. Rotating variable thickness disk subjected thermal load

77

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method
- Evaluations and results
 - o Static structural analysis
 - ✓ Example 1. Rotating variable thickness disk
 - ✓ Example 2. Rotating variable thickness disk subjected thermal load

✓ Example 3. Complex rotor

- o Static structural-thermal analysis Example 4. simple beam
- o Quasi-static structural-thermal analysis Example 5. simple beam
- o Dynamic coupled structural-thermal analysis
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials
 - ✓ Example 7. Constant thickness disk made of isotropic FGMs
 - ✓ Example 8. variable thickness disk made of isotropic FGMs
- 6. Conclusion

Static structural analysis

Example 3. Complex rotor

3D model of a complex rotor

- The profile hyperbolic for the turbine disk
- web-type profile for the compressor disks
- Both ends of the shaft are fully fixed.

Static structural analysis

Example 3. Complex rotor

1D FE-CUF modeling

Lagrange mesh over the cross-section with the largest radius

Static structural analysis

Example 3. Complex rotor

1D FE-CUF modeling

Converged model

refined 17×32 L4

computational model, DOF=27072

Static structural analysis

Radius (m)

Static structural analysis

Example 3. Complex rotor

verification of results

Radial and circumferential stresses

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method

Evaluations and results

- \circ <u>Static</u> structural analysis
 - ✓ Example 1. Rotating variable thickness disk
 - ✓ Example 2. Rotating variable thickness disk subjected thermal load
 - ✓ Example 3. Complex rotor

○ <u>Static</u> structural-thermal analysis – Example 4. simple beam

- o Quasi-static structural-thermal analysis Example 5. simple beam
- o Dynamic coupled structural-thermal analysis
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials
 - ✓ Example 7. Constant thickness disk made of isotropic FGMs
 - ✓ Example 8. variable thickness disk made of isotropic FGMs

6. Conclusion

Static structural-thermal analysis

Example 4. simple beam

Static structural-thermal analysis

 Temperature change

 109-15
 103
 217
 226
 435
 643
 852
 761
 87
 978
 109

		Location along the y-axis in mm (y_i)						
Nr. elements		0.0	0.1	0.2	0.3	0.4	0.5	
5-B2	uy	0.0	0.319	0.473	0.597	0.670	0.696	
	T	105.5	84.38	63.28	42.19	21.09	0.0	
10-B2	uy	0.0	0.263	0.435	0.556	0.629	0.654	
	T	105.5	84.38	63.28	42.19	21.09	0.0	
20-B2	u _y	0.0	0.245	0.416	0.537	0.611	0.635	
	T	105.5	84.38	63.28	42.19	21.09	0.0	
30-B2	u _y	0.0	0.240	0.410	0.532	0.605	0.630	
	T	105.5	84.38	63.28	42.19	21.09	0.0	
50-B2	u _y	0.0	0.236	0.407	0.529	0.602	0.626	
	T	105.5	84.38	63.28	42.19	21.09	0.0	
100-B2	uy T	0.0 105.5	0.235 84.38	0.406 63.28	0.527 42.19	0.601 21.09	0.625	

Example 4. simple beam

results

Static structural-thermal analysis

Example 4. simple beam

results

Location along the y-axis in mm (y_i)

0.3

0.531

42.19

0.526

42.19

0.524

42.19

0.524

42.19

0.4

0.604

21.09

0.598

21.09

0.597

21.09

0.597

21.09

0.5

0.629

0.0

0.623

0.0

0.621

0.0

0.621

0.0

0.2

0.409

63.28

0.404

63.28

0.402

63.28

0.402

63.28

			I	Location along t	he y-axis in mm	(y _i)	
Nr. elements		0.0	0.1	0.2	0.3	0.4	0.5
5-B4	uy	0.0	0.242	0.409	0.531	0.604	0.629
5-04	Ť	105.5	84.38	63.28	42.19	21.09	0.0
10.04	uy T	0.0	0.233	0.404	0.526	0.601	0.623
10-B4	Ť	105.5	84.38	63.28	42.19	21.09	0.0
20.04	uy T	0.0	0.232	0.403	0.525	0.599	0.622
20-B4	Ť	105.5	84.38	63.28	42.19	21.09	0.0
30-B4	uy T	0.0	0.232	0.403	0.525	0.598	0.622
30-D4	Ť	105.5	84.38	63.28	42.19	21.09	0.0
50-B4	uy T	0.0	0.232	0.403	0.525	0.598	0.622
50-B4	Ť	105.5	84.38	63.28	42.19	21.09	0.0
100 B4	uy	0.0	0.232	0.403	0.525	0.598	0.622
100-B4	Ť	105.5	84.38	63.28	42.19	21.09	0.0

0.1

0.242

84.38

0.233

84.38

0.231

84.38

0.231

84.38

0.0

105.5

uy T

> Uy T

Uy Uy

Ť

uy T 0.0

0.0

0.0

0.0

105.5

105.5

105.5

•			-•	
•	lacksquare	lacksquare	•	
	-	-	-	

Nr. elements

5-B4

10-B4

20-B4

100-B4

1 L16 over the cross-section

Static structural-thermal analysis

1

Example 4. simple beam

verification of results

Does heat conduction equation satisfy?

$$q_{cond} = k A \frac{\Delta T}{l}$$

$$W_{l} = k \left((398.49 - 293) K \right)$$

$$q_{cond} = \left(237 \frac{W}{mK}\right) \left(0.002 \,\mathrm{m}^2\right) \left(\frac{(398.49 - 293) \,\mathrm{K}}{0.5 \,\mathrm{m}}\right) = 100 \,\mathrm{W}$$

Static structural-thermal analysis

Example 4. simple beam

verification of results

Check free thermal expansion !

Elongation = $L\alpha T_{average}$

At
$$y = 0.1 \rightarrow u_y = (0.1)(23.1 \times 10^{-6}) \frac{(84.38 + 105.5)}{2} = 0.219 \text{ mm}$$

At
$$y = 0.5 \rightarrow u_y = (0.5)(23.1 \times 10^{-6}) \frac{(0+105.5)}{2} = 0.6092 \text{ mm}$$

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method

Evaluations and results

- \circ <u>Static</u> structural analysis
 - ✓ Example 1. Rotating variable thickness disk
 - ✓ Example 2. Rotating variable thickness disk subjected thermal load
 - ✓ Example 3. Complex rotor
- o Static structural-thermal analysis Example 4. simple beam

o **Quasi-static structural-thermal analysis – Example 5. simple beam**

- o Dynamic coupled structural-thermal analysis
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials
 - ✓ Example 7. Constant thickness disk made of isotropic FGMs
 - ✓ Example 8. variable thickness disk made of isotropic FGMs

6. Conclusion

Quasi-static structural-thermal analysis

Example 5. simple beam

Quasi-static structural-thermal analysis

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method

Evaluations and results

- \circ Static structural analysis
 - ✓ Example 1. Rotating variable thickness disk
 - ✓ Example 2. Rotating variable thickness disk subjected thermal load
 - ✓ Example 3. Complex rotor
- o Static structural-thermal analysis Example 4. simple beam
- o Quasi-static structural-thermal analysis Example 5. simple beam
- o Dynamic coupled structural-thermal analysis
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials
 - ✓ Example 7. Constant thickness disk made of isotropic FGMs
 - \checkmark Example 8. variable thickness disk made of isotropic FGMs

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials

Material properties	
Lame'constant λ	40.4 GPa
Lame' constant µ	27 GPa
coefficient of linear thermal expansion (α)	$23 \times 10^{-6} \text{ K}^{-1}$
density (p)	2707 kg/m ³
thermal conductivity (κ)	204 W/m · K
specific heat (c)	903 J/kg · K

Boundary conditions

$$\hat{r} = a \rightarrow \begin{cases} -\frac{\partial \hat{T}}{\partial \hat{r}} = \hat{q}_{in}(t) \\ \hat{u} = 0 \end{cases}$$

$$\hat{r} = b \rightarrow \begin{cases} \hat{T} = 0 \\ \hat{\sigma}_{rr} = 0 \end{cases}$$
where

$$\hat{q}_{in}(t) = \begin{cases} 0 & \hat{t} \leq 0 \\ 1 & \hat{t} > 0 \end{cases}$$

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials

1D FE-CUF modeling

Different 1D	Different 1D FE-CUF models for the constant thickness disk					
Model	Discr	DOF				
woder	Along the axis	corss sections	DOF			
(1)	1 B2		1680			
(2)	1 B3	(6 × 30) L4	2520			
(3)	1 B4		3360			
(4)		(3 × 15) L9	1680			
(5)	1 B2	(2×10) L16	1080			
(6)		(6 × 18) L9	3744			

Lagrange mesh over the cross-section with the largest radius

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials

verification of results

Time history of solution at mid-radius of the disk.

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials

verification of results

Time history of solution at mid-radius of the disk.

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method

Evaluations and results

- \circ <u>Static</u> structural analysis
 - ✓ Example 1. Rotating variable thickness disk
 - ✓ Example 2. Rotating variable thickness disk subjected thermal load
 - ✓ Example 3. Complex rotor
- o Static structural-thermal analysis Example 4. simple beam
- o Quasi-static structural-thermal analysis Example 5. simple beam
- o **Dynamic coupled structural-thermal analysis**
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials

✓ Example 7. Constant thickness disk made of isotropic FGM

✓ Example 8. variable thickness disk made of isotropic FGMs

6. Conclusion

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

Geometry and material

Material properties Metal-Ceramic FGM					
	Metal: Aluminum	Ceramic: Alumina			
Lame'constant λ	40.4 GPa	219.2 GPa			
shear modulus μ	27.0 GPa	146.2 GPa			
density (ρ)	2707 kg/m ³	3800 kg/m ³			
coefficient of linear thermal expansion (α)	23.0×10 ⁻⁶ K ⁻¹	7.4×10 ^{−6} K ^{−1}			
thermal conductivity (κ)	204 W/m⋅K	28.0 W/m·K			
specific heat (c)	903 J/kg∙K	760 J/kg∙K			
dimensionless relaxation time (\hat{t}_0) 0.64 1.5625					

effective properties

$$P=V_mP_m+V_c P_c =V_m (P_m-P_c)+P_c$$

metal volume fraction
$$V_{\rm m} = \left(\frac{b - \hat{r}}{b - a}\right)^n$$

$$geometry$$

$$a = 1$$

$$b = 2$$
Thickness = 0.1

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

Operational, boundary & initial conditions

 $T_0 = 293 \text{ K}, \ \widehat{\omega} = 0.01$ at $t = 0 \rightarrow T = \dot{\mathbf{u}} = \dot{T} = \mathbf{u} = 0$ T(t)Free Adiabatic Fixed ► v

100

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

results Time history

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

results Time history

✓ the material properties linearly change through the radius (n = 1)

 ✓ Based on the LS theory of thermoelasticity

Dynamic coupled structural-thermal analysis

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

wave reflection

 $\hat{V}_T \simeq 1/1.5 = 0.6$

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

effects of power law index (n)

Time history based on the LS theory at mid-radius of the disk

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results

Time history based on the LS theory at mid-radius of the disk

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

results effects of reference temperature (T_0)

Time history based on the LS theory at mid-radius of the disk (n = 1)

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

results

effects of reference temperature (T_0)

Time history based on the LS theory at mid-radius of the disk (n = 1)

Outlines

- 1. Introduction to rotating disk
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach

5. Numerical approach

- Motivation
- Development of method

Evaluations and results

- \circ Static structural analysis
 - ✓ Example 1. Rotating variable thickness disk
 - ✓ Example 2. Rotating variable thickness disk subjected thermal load
 - ✓ Example 3. Complex rotor
- o Static structural-thermal analysis Example 4. simple beam
- o Quasi-static structural-thermal analysis Example 5. simple beam
- o **Dynamic coupled structural-thermal analysis**
 - ✓ Example 6. Constant thickness disk made of isotropic homogeneous materials
 - ✓ Example 7. Constant thickness disk made of isotropic FGM
 - ✓ Example 8. variable thickness disk made of isotropic FGM

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM

Geometry and material

Material properties Metal-Ceramic FGM		
	Metal: Aluminum	Ceramic: Alumina
Lame'constant λ	40.4 GPa	219.2 GPa
shear modulus μ	27.0 GPa	146.2 GPa
density (ρ)	2707 kg/m ³	3800 kg/m ³
coefficient of linear thermal expansion (α)	23.0×10 ⁻⁶ K ⁻¹	7.4×10 ⁻⁶ K ⁻¹
thermal conductivity (κ)	204 W/m⋅K	28.0 W/m⋅K
specific heat (c)	903 J/kg∙K	760 J/kg∙K
dimensionless relaxation time (\hat{t}_0)	0.64	1.5625

effective properties

$$P=V_mP_m+V_c P_c =V_m (P_m-P_c)+P_c$$

metal volume fraction
$$V_{\rm m} = \left(\frac{b-\hat{r}}{b-a}\right)^n$$

geometry

$$\hat{r}_{inner} = a = 0.5$$

 $\hat{r}_{outer} = b = 2$
 $\hat{h}_{inner} = 0.6$
 $\hat{h}_{outer} = 0.3$

Dynamic coupled structural-thermal analysis

 $T_0 = 293 \text{ K}, \ \widehat{\omega} = 0.05$

114

Example 8. variable thickness disk made of isotropic FGM

Operational, boundary & initial conditions

at $t = 0 \rightarrow T = \dot{\mathbf{u}} = \dot{T} = \mathbf{u} = 0$ T = T(t)Free traction Adiabatic T = 0 or adiabatic Fixed

Dynamic coupled structural-thermal analysis

115

Example 8. variable thickness disk made of isotropic FGM Results for n = 0

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM

Results for n = 0 based LS theory

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM **Results** for n = 0 based **LS** theory

Outlines

- 1. Introduction to rotating disks
- 2. Fundamentals of Linear Thermoelasticity
- 3. Literature review & present work
- 4. Analytical approach
- 5. Numerical approach

6. Conclusion

Conclusion - Summary of results

Some results obtained from coupled thermoelasticity solution

- ✓ Transient deformations and stresses may be higher than those of a steady-state condition.
- \checkmark Time history of temperature is damped faster than time history of displacements.
- ✓ Deformations and stresses oscillate along the time in a harmonic form.

- ✓ Under the propagating longitudinal elastic waves along the radius, thickness of the disk also expands and contracts, due to the Poisson effect.
- ✓ When the coupling parameter takes a greater value, the amplitudes of oscillations of temperature increase.
- Lord–Shulman generalized coupled thermoelasticity predicts larger temperature and stresses compared to the classical theories.
- ✓ A functionally graded disk may be used as thermal barrier to reduce the thermal shock effects.

Conclusion - Summary of results

Some general points on the 1D FE-CUF modeling of disks

- ✓ The 1D FE method refined by the CUF can be effectively employed to analyze disks reduce the computational cost of 3D FE analysis without affecting the accuracy.
- ✓ the models provides a unified formulation that can easily consider different higher-order theories where large bending loads are involved in the problem.
- ✓ Increasing 1D elements along the axis of disks may not have significant effect on accuracy of results and only leads to more DOFs.
- ✓ A proper distribution of the Lagrange elements and type of element used over the cross sections may lead to a reduction in computational costs and the convergence of results.
- ✓ Making use of higher-order Lagrange elements (like L9 and L16) can reduce DOFs, while preserving the accuracy.
- ✓ increase of number of elements along the radial direction, compared to circumferential direction, is more effective in improving the results.

Conclusion - Future works

It is of interests to extend the study to

- ✓ Nonlinear thermoelasticity problems
- ✓ Dynamic analysis of rotors subjected to transient thermal pre-stresses.
- ✓ Study of thermoelastic damping effect on dynamic behaviors of rotors.

Publications in international Journals

- Entezari A, Filippi M, Carrera E., Kouchakzadeh M A, 3D Dynamic Coupled Thermoelastic Solution For Constant Thickness Disks Using Refined 1D Finite Element Models. European Journal of Mechanics - A/Solids. (Under review).
- 2. Entezari A, Filippi M, Carrera E. Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures, part 1: Equations and formulation. Journal of Thermal Stresses. 2017:1-16.
- 3. Filippi M, Entezari A, Carrera E. Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures, part 2: Numerical evaluations. Journal of Thermal Stresses. 2017:1-15.
- 4. Entezari A, Filippi M, Carrera E. On dynamic analysis of variable thickness disks and complex rotors subjected to thermal and mechanical prestresses. Journal of Sound and Vibration. 2017;405:68-85.
- 5. Kouchakzadeh MA, Entezari A, Carrera E. *Exact Solutions for Dynamic and Quasi-Static Thermoelasticity Problems in Rotating Disks*. Aerotecnica Missili & Spazio. 2016;95:3-12.
- 6. Entezari A, Kouchakzadeh MA, Carrera E, Filippi M. *A refined finite element method for stress analysis of rotors and rotating disks with variable thickness*. Acta Mechanica. 2016:1-20.
- 7. Entezari A, Kouchakzadeh MA. Analytical solution of generalized coupled thermoelasticity problem in a rotating disk subjected to thermal and mechanical shock loads. Journal of Thermal Stresses. 2016:1-22.
- 8. Carrera E, Entezari A, Filippi M, Kouchakzadeh MA. **3D thermoelastic analysis of rotating disks having arbitrary profile based on a variable kinematic 1D finite element method**. Journal of Thermal Stresses. 2016:1-16.
- 9. Kouchakzadeh MA, Entezari A. Analytical Solution of Classic Coupled Thermoelasticity Problem in a Rotating Disk. Journal of Thermal Stresses. 2015;38:1269-91.

Acknowledgements

- ✓ Professor M. A. Kouchakzadeh and Erasmo Carrera, my supervisors
- ✓ Dr. Matteo Filippi, my advisor and colleague in Italy.
- ✓ Professors Hassan Haddadpour and Ali Hosseini Kordkheili, my Iranian committee members
- ✓ Professors Maria Cinefra and Elvio Bonisoli, my Italian committee members

Cotutelle Doctoral Program

Doctoral Dissertation on

Solution of Coupled Thermoelasticity Problem In Rotating Disks

by Ayoob Entezari

Thank you for your attention!

¹Sharif University of Technology Department of Aerospace Engineering, Tehran, Iran

²MUL2 research group, Polytechnic University of Turin, Italy

²Polytechnic University of Turin, Department of Mechanical and Aerospace Engineering, Italy

26 September, 2017