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Introduction to rotating disks

Applications

v' Aerospace (aero-engines, turbo-pumps, turbo-chargers, etc.)
v' Mechanical (spindles, flywheel, brake disks, etc.)

v" Naval

v' Power plant (steam and gas turbines, turbo-generators, )

v" Chemical plant

v' Electronics (electrical machines)



Introduction to rotating disks

Configurations




Introduction to rotating disks

Operating conditions

O Main Loads
v Centrifugal forces start and stop cycles
v Thermal loads. ||)I)ssﬁt3trtdli)?/\’m

 Transient thermal load

v In some of applications, the disks may be exposed to sudden temperature changes in short
periods of time (for Ex. start and stop cycles)

v' These sudden changes in temperature can cause time dependent thermal stresses.
v' Thermal stresses due to large temperature gradients are higher than the steady-state stresses.

v In such conditions, the disk should be designed with consideration of transient effects.

)



Introduction to rotating disks

Disk materials

v' Metals: steels, super alloys
v' Ceramic matrix composites (CMC)

v Functionally graded materials (FGMs)

ceramic-metal FGM

Effective properties of FGMs

Peff = Vm Pm +VC PC :Vm (Pm_PC)+PC

Pm and P¢ : properties of metal and ceramic
Vm and V¢ : volume fractions of metal and ceramic

ceramic-metal FGM Vm =fxy,2)



Introduction to rotating disks

FGM disk

metal volume fraction

power gradation law for metal volume fraction along the radius

Effective properties of FGMs

Potf = VmPm +Ve Pc =Vm (Pm~—P¢)+Pc

— radius [——




Outlines

1. Introduction to rotating disk

2. Fundamentals of Linear Thermoelasticity

3. Literature review & present work

4. Analytical approach

5. Numerical approach

6. Conclusion



Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

v Inertia effects
» static problems
» dynamic problems

v’ displacement and temperature fields interaction
e uncoupled problems
e coupled problems




Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

static steady-state problems

equation of motion

(Cijrittie,),j—(Bi;T) j+Xi = 0

energy equation
(ki;T,j)i=R

T— temperature change
u; — displacements

Ciji — elastic coefficients
X; — body forces

pi; — thermoelastic moduli
k;; — thermal conductivity
R — internal heat source



Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

static steady-state problems

Under axisymmetric & plane stress assumptions

equation of motion

d
- (rho,) — hoy + pw?hr? =0

energy equation

— (Tb Ta)
T(r)y=T, + nr7rs) ——=—In(r /1)




Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Quasi-static problems

equation of motion

(Cijrittie,),j—(Bi;T) j+Xi = 0

energy equation
pCT — (KijT’j ),i =R

* p— density
¢ — specific heat



Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Dynamic uncoupled problems

equation of motion

(Cijiaui,),j—(By;T),j+X; = pii

energy equation
pCT — (KijT’j ),i =R




Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Dynamic uncoupled problems

Considering mechanical damping

equation of motion
(Cijiauk,),j—(By;T) j+X; = pi; + (u;

energy equation
pCT — (KijT’j ),i =R

{ — mechanical damping coefficient of material

()



Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Coupled thermoelasticity

v" the time rate of strain is taken into account in
the energy equation

v’ elasticity and energy equations are coupled.

v’ these coupled equations must be solved
simultaneously.

equation of motion

— | energy equation

Mechanical and thermal BCs and ICs

T (x;,t), u;(x;, t)



Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Classical coupled problems

equation of motion

(Cijraui,),j—(By;T),j+X; = pii

energy equation

pCT — (KijT’j ),i + Toﬁijui’j =R

T, — reference temperature



Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Classical coupled problems

equation of motion
(Cijraui,),j—(By;T),j+X; = pii

energy equation
pCT — (KijT’j ),i + Toﬁijui’j =R

v T, — reference temperature




Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

» in the classical thermoelasticity

v heat conduction equation is of a parabolic
type.

v Predicting infinite speed for heat
propagation

v The prediction is not physically
acceptable.

v thermal wave disturbances are not
detectable.

» generalized theories of thermoelasticity

v" non-classical theories with the finite
speed of the thermal wave.



Fundamentals of Linear Thermoelasticity

(Cijraur,) j—(By;T),j+X; = pii;

pctoT + pcT — (kiT,;);
+tOT0,Bijui,j + Toﬁijui’j = R + tOR

to — LS relaxation time

Classification of thermoelastic problems

(Cijraur,) j—(Bi;T) j—(t18:;T) j+X; = pily

pct, T + peT — 26T — (kT ) 4
+ToBiju; = R

* t;,t, — GL relaxation times
¢; — GL material constants

without energy dissipation

(Cijriuk,),j—(Bi;T),j+X; = pii;

pCT' — (Kij*T'j )i + TOﬁijui,j =R

* k;;" — GN material constants
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Literature review & present work

Conclusion of the literature review

» Coupled thermoelasticity problems are still topics of active research.

» Analytical solution of the these problems are mathematically difficult.

» Number of papers on analytical solutions is limited.

» Numerical methods are often used to solve these problems.

» Numerical solutions of these problems have been presented in many articles.

» Finite element method is still applied as a powerful numerical tool in such problems.

» The major presented solutions are related to the basic problems (infinite medium, half-space, layer and
axisymmetric problems).

» Analytical and numerical solution of rotating disk problems has never before been presented.



Literature review & present work

Present work
« Main purpose

» Study of coupled thermoelastic behavior in disks subjected to thermal shock loads
v’ based on the generalized and classic theories
v' Disks with constant and variable thickness

v' Made of FGM

 Implementation

» Analytical approach

» Numerical approach
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Ana

lytical approach - Solution method

Governing equations

Consider

e An

* made of isotropic & homogeneous material,

annular rotating disk with constant thickness,

« Under axisymmetric thermal and mechanical shock loads.

Based on LS generalized coupled theory

Eq. of motion

d d
{ [ﬁi‘;g pCa<1+t0E>}T @

energy Eq.

(Cijriuk,),j—(Bi;T),j+X; = piy; —> o 53 1 52 2 19
—BT. __ —— =
Ao [aratz Ty | Tarac Ty at}” 0

pctoT + pcT — (T, ),

(02 10 1 ik - 0T
+tOT0:Bl]ul] + TO:Bl]ul] =R+ tOR :> {(’1 +20) |55t oan _] } ,BE = —pra)z @

A & u — Lame constants
a — coefficient of linear thermal expansion




Analytical approach - Solution method

Governing equations

Coupled System

Of Equations

19 1
r2

o
)

ror

{(/1 +2p) [arz

—

thermal BCs. & ICs

oT

ki1 3 lr=r; + k12T (13, t) = f1(t)
oT

ko1 ™ lr=r, + k22T (15, ) = f2(t)

T(r,0) = g:(r),
T(r,0) = g2(r)

0 0
{ et il e (1o

T T, feo [+ 22] 4+ 2
)} BTo to 6r6t2+r6t2 +6r6t

0° 0T ,
TPt TP T e

Mechanical BCs. & ICs

ou
k31 ar lr=r, + ksou(r;, t) = f5(t)

d
ka1 lr=r, + Ka2t(1o,£) = fu(2)

u(r,0) = gs(r),
u(r,0) = gu(r)

g1(r) — ga(r)

10
+ g =0
T Inner radius of the disk
7, Outer radius of the disk
f1(t) -f4(t) time dependent known functions
ki constant parameters

known functions of r




Analytical approach - Solution method

Governing equations in Non-dimensional form

Non-dimensional parameters

T e
F=7 t==7» b=
~ _ Orr A Op6 .
Oy = IB~T ) Opp = B’_T' T =
0 0
_(Z+2u)u oo ﬁ

propagation speed of elastic longitudinal wave

Ve = \/(/T+2u)/p

unit length

l=k/pcV,




Analytical approach - Solution method

Governing equations in Non-dimensional form

Coupled System Of Equations

( 02+1a 1 9%). oT
or2 " For 72 otz|“ ar ¢

o
@ < at e

« Non-dimensional propagation speed of thermal wave — V; = /1/%,

« Non-dimensional propagation speed of elastic longitudinal wave — ¥, = 1



Analytical approach - Solution method

Solution of non-dimensional equations

Coupled System Of Equations

af2  fof 7?2  0t?

( {az 10 1 aZ}A oT ,

o
)

<
92 1a al+£a PO 93 +102+02
72 Y797 5% 09t Olorotz ' 7ofz|  ofot

Thermal and mechanical BCs. & ICs

A~ A~

~ 0T -~ . A n -~ 0T . a
k14 a7 lt=a + k12T (a,t) = f1(t) ko a7 lt=p + k22T (b, t) = f,(t)
_ o o . o o .
k3q 37 lp=aq + k321i(a, t) = f3(t) k44 37 lp=p + kaoli(b, t) = f4(t)
T(7,0) = g, (), T(ﬁ 0) = g2(7)

u(r,0) = gs(#), u(#0)=ga(r)



Analytical approach - Solution method

Solution of non-dimensi

onal equations

62+1a 0 1+¢ 0 T—CAt o +1a2 + o +1a =0 |energyE
972 " 797 ot 0 5% o570tz " For2| T 970t T FoE|t T i

l decomposition l_

S S g e T T TTETTITEITTTA
/ 0T, 10T, . \ 4 0T, 10T, .. A U
I arz ;W — Tl — tOTl = I I arz + - ar Tz toTz =C to u’r + » + u’r + " I
| | l I
| oT, 1 oT
| R o lr=a + k12T1(a, t) = f1(¢) I I k11 0_7'2 lr=a + k12T2(a,t) =0 :
| 0T, I oT, |
I k21ﬁ lr=b + k22T1(D, ) = f2(¢) I I kzl? lr=p + k22T2(b,t) =0 |
I\ Ty(r,0) =0 , Ty(r,0)=0 ,I ‘ T,(r,0) = g,(r) , Ty(r,0)=g,(r) !

N o e e e e e e o Em e o o = = ’ N ~ - /

principle of superposition

T(r,t) =Ty(r,t) + T,(r,t)




Analytical approach - Solution method

Solution of non-dimensional equations

0> 10 1 9*)_  oT .
S — i — = —70O Eg. of motion
T

af2 ' Fof 2 9t2 o
|
l decomposition _1
’ 0%u; 10u; u; S 7 0%u, 10u, u, ,
il e S Vo 2 2 =T, —rw
or2 r or 12 I I or? r or r? ’

| l

aul I auz

k31— lr=a + k32us(a,t) = f3(t) I k31 ——lr=q + k3auy(a,t) =0

ar I I or
| l
| ]

aul auz
k41 W |T'=b + k42u1 (b, t) — f4(t) k41 % |T'=b + k42u’2 (b’ t) =0

\ u(r,0)=0 , u(r,0)=0 / \ uz(r,0) = g3(r) , up(r,0) = ga(r)

_______ Selet- ERRE R R
!

principle of superposition u(r,t) = u(r, t) + uy(r, t)




Analytical approach - Solution method

Solution of non-dimensional equations

{02 10 1 aZ}A or .
S — i — = —70O Eg. of motion
T

ot

072 ' FOF P2 9F2
|
l decomposition
4 0%u; 10u; uy R 7

du,
k3q F lr=a + k32uy(a, t) = f3(t)

- s s e s s

aul
k41 F lr=p + Ka2uq1 (b, t) = fo4(t)

\ w(r,00)=0 , u(r,0)=0 / \

Bessel equation and can be
separately solved using finite Hankel transform

auZ
k34 B lr=q + k32uz(a,t) =0

auZ
k4q ¥y lr=p + kapu,(b,t) =0
2% (T, 0) = 93 (7") ) uz (T, 0) = g4(T')



Analytical approach - Solution method

Solution of non-dimensional equations

Finite Hankel transform -
K O1 = Ti(66m) = [ 11200 Ko, m)dr

b
Hlua(r, 0] = T (600) = [ 10 Ko )l

- -1 kernel functions |----------------------------------- - - -

Yy (&, 0Jo($m
Ko(r,ém) = Jo(&mT) <k21 Og—ir) lr=p + k22Y0(€mb)) — Yo (Emr) <k21 %TT) lr=p + k22]0(€mb>)

aYi(mn d n
Ka(r 1) = Jy () <k41 W01+ kot (nnb>> ~ Y3 (1) <k41 BT+ kel (nnb>)

&y and n,, are positive roots of the following equations

<k11 aYO (fmr)

d m Yo (ém 0 .
ar lr=a + klzyo(fma>> <k21%rr) lr=p + kzz]o(fmb)> — <k21 0(§m™) Jo(EmT)

3y lr=p + kzzyo(fmb)> <k11 —ar lr=a + k12]o(s§ma>>

=0

Y, (Ny1) 0J1(Mn1) Y, (My1) dJ1(Mn1)
<k31 % lr=q + k32Y1(nna)> <k41 16—: lr=p + Ka2J1 (b | | — | kaq % lr=p + ka2Y1(Mnb k3q 16—: lr=aq + k32/1(Mpa ] ) =0




Analytical approach - Solution method

Solution of non-dimensional equations

Uncoupled sub-IBVPs (Bessel equations)

R L Lt =
kgl%l o+ hm(at) = A0 kn% o+ RTe) = A)
k4l%T:b + kyu (b,t) = f,(1) ly %r_b + Ky T (b, 1) = f,(1)
u(r,0) =0 , (r,0) =0 Ty(r,0) =0 , T,(r,0) =0

[ ‘ Taking the finite Hankel transform ’
iy + o = 2[fil(lt)—d—“fg(t)J LT+ T + 2T = z[f(zs) b ¢y

T d3 01 1 m1 |2 d, 1
[ ‘ Solving ODEs ‘
uy (t,m,) T,(t:€,,)




Analytical approach - Solution method

Solution of non-dimensional equations

Uncoupled sub-IBVPs (Bessel equations)

Solving ODEs

Inverse finite Hankel transforms

(0]

(1, 6) = ) Butls (6, 1)K (7, 1) Ty 6) = ) anTy(t, Em)KoCr Em)
n=1 m=1
1 1

A, = , B =
Ko (r &I b K ()l




Analytical approach - Solution method

Solution of non-dimensional equations

92 +1 g 1 92)_  oT O e —
—— = ——=— . of motion
97z "For 72 op2|t T @ |H
|
l decomposition _1
r” T . T T om0 T" RN ) T
d 10 d 10 \
l e e P T 24l 2 =T, — rw? ,
| or2 r or r2 I I or?2 r or r? ’
|
: aul | : auz I
: k31 S lr=q + k32uq(a, t) = f3(t) : : k31 B lr=aq + k32uz(a,t) =0 ]
I du, l I ou, I
: k44 F lr=p + kaui (b, t) = fa(t) : | k41 o7 lr=p + kau,(b,t) =0 [
\ u(r,0) =0 , u;(r,0)=0 /A up(r,0) = g3(r) , Up(r,0) = ga(r) '
N o o o o e e e e e e o e e - R e e — \l/ ——————————— -
Ty(r,t) = Zan(t)KO(r» Em) ) Uy (r, t) = 2 Zsmn(t)Kl(rr nn)
g i




Analytical approach - Solution method

Solution of non-dimensional equations

Coupled System Of Equations

( 02+1a 1 9%  or
or2 " For 72 otz|“ ar ¢

GNPy POV VS PN IRl B S 8

\
T8 = ) anTi(tEmKoT i) + ) ) Qma(®OKo(r, Em)
m=1 n=1
m=1

u(r,t) = Egnl_h (t, ) Ky (7, 77n) + z Smn () Ky (1, 17)
n=1
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Analytical approach - Numerical evaluation

Specifications of numerical example

geometry

a=1
b=2

Boundary conditions

material properties

A =40.4GPa
u =27 GPa
a=23x10"°K™?
p = 2707 kg/m3
k =204W/m-K
c =903J/kg-K

u=0
atr=b—>{AT=O
Orr =
. t - A_
G ={0 150




Analytical approach - Numerical evaluation

Validation

A

Nondimensional Temperature (T)

0.48

0.4

0.32

0.24

0.16

0.08

Based on classical theory of coupled thermoelasticity

Temperature

C =0.02, » =0, f =1.5

Numerical Solution (Bagri & Eslami, 2004)
Exact Solution

2

4

6 8 10 12 14
Nondimensional Time (t)

Nondimensional Radial Displacement ()

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Radial displacement

C=0.02, ®=0, f=1.5
Exact Solution

Numerical Solution (Bagri & Eslami, 2004)

2

4

6 8 10
Nondimensional Time (t)

Time history of the non-dimensional solution at mid-radius

mid-radius



Analytical approach - Numerical evaluation

Temperature
05

:_ 09}
045 £ =0.64, C =0.02, & =0, F=15 i
o4 i S 08F
1S 5 o7}
qs_:'; 0.35 - % 06 B
E oo 5 |

o SN =
B A 05F
GE-’ [ = -
E oo 5 04f
g g |
‘2 02F s 03
GE) i Exact Solution 8 -
S o150 20 Tttt Numerical (Bagri & Eslami, 2004) § 0.2 -
5 i E o1}
& 01| g -

i =z
0.05 ? _0.1 :
i e 1 N -

00 4 6 8 10 12 14 02

Based on LS generalized theory of coupled thermoelasticity

Nondimensional Time (f)

Radial displacement

t, =0.64, C =0.02, ® =0, f =1.5

Exact Solution
---------- Numerical (Bagri & Eslami, 2004)

Nondimensional Time (f)

Time history of the non-dimensional solution at mid-radius

mid-radius



A,

Nondimensional Temperature (T)

0.8

0.7

0.6

05

04

03

0.2

01

-0.1

Analytical approach - Numerical evaluation

Results and discussion

temperature change

TT T T

/

N T,=293K, £,=0.64, =001

———— steady state

.. . 3
~ ~ N
O'Sx . So

F =025 ~.
g ~. \\
I ~o .
[ .. NN
B g‘\“ \.\‘ N
. ~—rt- e =
! 12 1.4 16 1.8 T

Nondimensional Radius(f)

radius —

Based on LS generalized theory of coupled thermoelasticity

Nondimensional Radial Displacement (0)

0.7

0.6

radial displacement

T;=293K, £;=0.64, & =0.01

———— steady state
£=0.25

10/*—*

Nondimensional Radius (r)

radius —

Nondimensional Radial Stress (s,,)

-0.4

-0.5

-0.6

-0.7

radial stress

T,=293K, £,=0.64, & =0.01

———— steady state

£=0.25

Nondimensional Radius (f)

radius

Radial distribution for different values of the time.

Nondimensional Tangential Stress (G,,)

0.2

01

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

circumferential stress

T,=293 K, £=0.64, & =0.01

T

\

T RT T

Nondimensional Radius (f)

radius
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Numerical approach

Motivations

O Analytical solutions are limited to those of a disk with simple geometry and boundary conditions.

O FE method is more widely used for this class of problems.

0 1D and 2D FE models are not able to provide all the desired information.

0 3D FE modeling techniques may be required for a detailed coupled thermoelastic analysis.

0 3D FE models still impose large computational costs, specially, in a time-consuming transient solution.
O There is a growing interest in the development of refined FE models with lower computational efforts.
O Arefined FE approach was developed by Prof. Carrera et al.

O They formulated the FE methods on the basis of a class of theories of structures.



Numerical approach

Main characteristics of FE models refined by Carrera

v 3D capabilities
v’ lower computational costs

v’ ability to analyze multi-field problems and multi-layered structures

MUL2 research group,
Polytechnic University,
Turin, Italy
www.mul2.polito.it
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Numerical approach - Development of method

Approaches to FE modeling

» Variational approach

» Weighted residual methods

s Weighted residual method based on Galerkin technique

v’ Efficient, high rate of convergence

v" most common method to obtain a weak formulation of the problem



Numerical approach - Development of method

Governing equations

v' For anisotropic and nonhomogeneous materials.

v Including LS, GL and classical theories of thermoelasticity.

v Considering mechanical damping effect.

Equation of motion

O-ij,j +Xi = pul ~+ (Ul

Energy equation

pc(ty + t,)T + pcT — ch — (ki;T,j )i
+tOTO,Bl-jul-’j + Toﬁijui’j =R+ tOR

Hooke’s law

0ij = Cijpaepq — Bij(T + t:T)

v oty =t =t, =¢ =0 — classical theory
v t; =t, =¢ =0 — LS theory
v to = 0 — GL theory.




Numerical approach - Development of method

FE formulation through Galerkin technique

 |n 3D conventional FE method

u®(x,v,2,t) = pm(x, v, 2)UM(t)
T©(x,7,2,t) = ¢ (x,y,2)0™(t)

° m:l)...’r

* r =number of nodal points in a element



Numerical approach - Development of method

FE formulation through Galerkin technique

Weighting function

Gm(x,Y,2)

Equation of motion energy equation

f (pC(tO + tZ)T + pCT — Zng,L — (KijT'j i

| (613 + Xi = s = Gt)pm v = 0 A

(e) .. : :
v +tOTO,Bl-jui,j + Toﬁijui,j — R — tOR)¢de =0

()



Numerical approach - Development of method

FE formulation through Galerkin technique

f (piig,,)dV + j (Qag,,)dV + j (D' ¢, a)dV

ve v(e v(e

- j Xpp)dV + j (tpn)dS

v(e s(e)

Eq. of motion

j (toToB ' Diigp,,)dV + j (topcTprm)dV + j (tapcTpr)dV

v 14Q, 146,
T . _ ~Tor
energy Eq. + (f)(TOﬁ’ Dug,,)dV + (j)(pcrcpm)dv (f)(zC VT¢,)aV
vie y e y(e

+ j (VI TiV, )dV = j (q"ne,)ds + f (Rp,,)dV + j (toRp)dV

v s(e) v v



Numerical approach - Development of method

Refined 1D FE model through Carrera unified formulation

3D beam-type structures 1D FE

u= Nm(y)um
T = Ny ()T™

e Mm = 1, ’M
e M = number of bar nodes




Numerical approach - Development of method

Refined 1D FE model through Carrera unified formulation

3D beam-type structures

1D FE Carrera unified formulation (CUF)
u = Nm(y)um um(x’ Z) — F‘L‘(x' Z)Umr(t)
T =N, (y)T™ T™(x,z) = F(x,2)0™ (¢)

° m:]_,...’M ° T:l’--o’NCUF

M = number of bar nodes

Ncyrp = number of terms of the expansion.




Numerical approach - Development of method

Refined 1D FE model through CUF

1D FE CUF 1D FE-CUF
u = Ny, (y)u™ u™(x,z) = F(x,2)U™(t) u(x,y,z,t) = om(x,y,z) UM (t)
T = Ny ()T™ T™(x,z) = F(x,2)0™ (¢t) T(x,y,2,t) = ¢pm(x,y,2) O™ (8)

weighting function in 1D FE-CUF — ¢,,,(x, y, z)=N,,(y)E;(x, z)

refined 1D 2-nodes element 3D 8-nodes element



Numerical approach - Development of method

Refined 1D FE model through CUF

1D FE-CUF

u(x,y,z,t) = Np(y)FE(x,2) U™ (1)
T(x,y,2,t) = Nin (V) Er (x,2) 0™ (1)

1D FE modeling

elements and shape functions in 1D FE modeling

element N,,(y)
B2 linear
B2 guadratic
B4 cubic




Numerical approach - Development of method

Refined 1D FE model through CUF

1D FE-CUF

u(x,y,z,t) = Npy(¥)F; (x, 2) U™ (2)
T(x,y,2,t) = N () Fr (x,2) 0™ (L)

> In Carrera unified formulation

v' selection of F,(x,z) and Ncyg (Tt = 1,-++, Ncyg) IS arbitrary.

v" various kinds of basic functions such as polynomials, harmonics and exponentials of any-order.

v’ For instance, different classes of polynomials such as Taylor, Legendre and Lagrange polynomials.



Numerical approach - Development of method

Refined 1D FE model through CUF

1D FE-CUF

u(x,y,z,t) = Npy(¥)F; (x, 2) U™ (2)
T(x,y,2,t) = N () Fr (x,2) 0™ (L)

F.(x,z) — bi-dimensional Lagrange functions

» Cross-sections can be discretized using Lagrange elements

* linear three-point (L3) « biquadratic nine-point (L9)
* quadratic six-point (L6) « bi-cubic sixteen-point (L16)
* bilinear four-point (L4)

e

L.




Numerical approach - Development of method

FE equations in CUF form

Substituting

1D FE-CUF

u(x,y,z,t) = Ny () E(x,2) U™ (¢)
T(x,y,2,t) = Npw(Y)E(x,2) 0™ (¢)

weighting function
P (X, Y, 2)=Nim (V) E: (%, 2)

into the weak forms of equation of motion and energy eguation gives

Mlst('s'ls 4+ Glst('sls 4+ KlmTS(SlS _ me

o MM GIMTS gnd KM® — 4x4 fundamental nuclei (FNs)of
the mass, damping, and stiffness matrices

« p™* — 4x1 FN of the load vector

e 0 — 4x1 FN of the unknowns vector



Numerical approach - Development of method

FE equations in CUF form

Mlst('s'ls 4+ Glst('sls 1+ Klst(sls _ me

or

Mlm’rs 0 Ijls Glmrs Glmrs Uls Klmrs Klmrs Uls B Fmt
Mlmrs Mlm'cs {@ls}-l_ Glmrs Glmrs {@'ls}_l_ 0 Klmrs {@ls}_{QmT}

Different theories of thermoelasticity through the 1D FE-CUF

GiM™ — structural damping effect

Rayleigh damping model
Glmrs — (1Mlmrs + (ZKlmrs




Numerical approach - Development of method

Assembly procedure via Fundamental Nuclei

for each element assembly procedure of FNs

Mlst 515 4+ Glst 5[8 i Klst 5ls _ me 3 B4

for whole structure
MA +GA + KA =P

total degrees of freedom

Npn

DOF = Z (4 x Niy)
=1

a model with 3 B4 / 2 L4, DOF=240

214




Numerical approach - Development of method

Time history analysis

Transfinite element technique

Mlst Sls i Glst 513 i Klst 5[5 _ me
taking Laplace
\ 4
[Mlst §2 + Glst 5+ Klst] 515* _ me*

\ J

Y
Klst

eq

Assembling KQ},”S & p™* for whole structure

v
Kqu’: =P
solve

v

solution in Laplace domain (A*)

numerical
inversion

 § —the Laplace variable
« KU — FN of the equivalent stiffness matrix

. " denotes Laplace transform of the terms.

solution in time domain (A(t))




Numerical approach - Development of method

Non-dimensional Equation for

isotropic FGMs

Non-dimensional parameters
N X, A Ve
r,=— ; t=—"t
lm lm
LT (A, F2 .V
T=— ; ui:(m—i_ 'um)uZ ; by =—"1t
Td Zmﬁde lm
i = 1 ; .1 A
i CdelOmVe i | ? ﬁde v
. [ A D
i = 1 ? R = =
T,6.. c, T,(A, +2pn,)

velocity of elastic longitudinal wave

unit length

V, =0 +20,.)/ P

m

lm:Dm/Ve

diffusivity




Numerical approach - Development of method

Non-dimensional FNs for isotropic FGMs based on LS theory

Transfinite element equation
K‘leznsals =pmr
or e
K™ KE™ KE™ K™ (UEY (e
bm— —prrstm — prskm— —stir * l *
K™ K™ Kiz™ K3 <U365>:.<p£"‘f>
KE™ kg™ kg™ KR us () emr
lRZf””' R T KB KE™ ot ;Lpi"ﬂ
T T T T T T T T T s ST T T
Ol = [t FN,ds + [ XF. N, dV
I (e) (e)
| mr* n* o ¥
" P [ trpN,ds + [ X F.N, dV
I g (e) y (e)
I mt* — n > ¥
" b [ PN, as+ [ XIF.N, dV
I g (e) X v (e)
Loy = [ l(gs + DRTIF.N dV + [ (¢;n,)F, N dS
v (e) g(e)

’ . . S
I K" =3<C F F>I"+<C,F F I""
+<aC, F F>I""+<C, F _F _>I"

K" =<0, F

447 1,2

Fsml>‘[£nl+<]éZIFTszzl>Izll

|

|

|

: A l A l
Tslm __ m, ml,

: Kl? =< CGGFT Fs,ac > [L T+ d 023F77x Fs > [L ’

|

|

|

Kim=—<C,F_ F> I} /

N _’

JKm =034, +3)<C,F. F, > 1" \|
1

TSIm ~27 e A mlJ I

: K" =C(8t,+35)C,F F 1| |

~ ~ 1

| K =0(8%,+3)<C F F, > I} !

I

1 " A oA

| K" =(8%,+38)<C C F F>1I"+ !
1

: + < CHFT,LE FS,J} D Izll—i_ q CF&FT FS D [;/n’ylyy :

A [

~ ! ’ 7’



Numerical approach - Development of method

Non-dimensional FNs for isotropic FGMs based on LS theory

<G e D> = fA(e)(...)dA
ml m,yl ml,y m,yl,y_
it |t = (NN N, N NN, N, N dy
qzﬁw%:ﬁ,qzi,qzi
. A A (2,LL+)\)
n = Y2 = 33:m
S B N S
O 2,
" A
Cp =0y = 5 = 20
T

thermoelastic coupling parameter — (' =

CnPonAn T )

’
/

Tslm __ %2 A ml A ml
K $AC F F>1"+<C,,F F >I]

A m,, L., A m
+<CF F > 1" +<C F F I}

KITQSlm =< CﬁGFT Fs,ac > ]zn’yl_'_ < 023FT7.T Fs > ]znl’y

\

K™ =<C,F. F >I"+<C,F F I
Km=—<C,F._F>I}" /

N e e e ’/
SR =C@ 4990, F o1
i Kpm=0(3%,+8)<C,F F 1" !
| K =0(3%,+38)90,F F > 1" :
| K= (3%, +8)<C CFF.> I} + E
i +<C . F F oIM+<C F F>IM"
‘\ +<CF _F I /

N , .

O O O O . . S . . e e e e e e e
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Numerical approach - Evaluations and results

Example 1. Rotating variable thickness disk

Material properties

Young’s modulus E 207 GPa
Poisson’s ratio v 0.28
density (p) 7860 kg/m3

annular disk with hyperbolic profile

Tip = 0.05m hi, = 0.06 m
o, = 0.2m h, = 0.03m

h(r) = 0.0134 r~9>

e w= 2000 rad/s
* hub is assumed to be fully fixed




Numerical approach - Evaluations and results

Example 1. Rotating variable thickness disk 1D FE-CUF modeling

Different 1D FE-CUF models of the disk

Discretizing

Model Along the axis Over the corss sections DOF
(1) 8 B2,3CS’ (2/6/8) x 32 L4 6240
(2) 8B2,4CS (2/4/6/8) x 32 14 o472
(3) 10B2,4 CS (2/4/6/8) x 32 L4 7200
(4) 12B2,5CS (1/2/4/6/8) x 32 L4 7584
(5) 14 B2,6 CS (1/2/3/4/6/8) x 32 L4 8352

(6) 16B2,7CS  (1/2/3/4/5/6/8)x32L4 9504

(7)  18B2,8CS  (1/2/3/4/5/6/7/8) x32L4 1104
8 22B2,8CS  (1/2/3/4/5/6/7/8) x 32L4 14496

* 3 types of cross section (CS) with different radii

discretization along the axis




Numerical approach - Evaluations and results

Example 1. Rotating variable thickness disk

verification of results

Radial displacement

Model DOF Radial displacement u,.(um) S

At mid-radius At outer radius oF
Analytical 1 119.01 157.57 135F
1D CUF- FE T wf
(1) 6240 120.32 (10 15600 (1.00) e
(2) 5472 118.36 (0:54) 157.00 (0:36) S ok
(3) 7200 118.36 054 15642 (073) 5 |
(4) 7584 118.75 (022 15715 (027) g f
(5) 8352 119.50 (041 158,08 (0:32) s O
(6) 9504 11850 (43 15793 (023 g s
(7) 11040  117.26 (147 15497 (1.68) w0
(8) 14496  117.06 (164 15500 (1.63) sk

3D ANSYS 14400 119.00 (0.01) 157.10 (0-30) AR

8.05 0.075 0.1

——=—— Analytical Solution
--------- model (1): DOF=6240 -
——— maodel (2): DOF=5472 ]
—mmmmm model (3): DOF=7200  J
........................... model (4): DOF=7584 1
— — — — model (5): DOF=8352 ]
———e — model (6): DOF=9504 ]
— = model (7): DOF=11040 -
—— model (8): DOF=14496
———o—— ANSYS: DOF=14400

@ (): % difference with respect to the analytical solution.

TN S T R T I T T N AN SN
0.125 0.15 0.175 0.2

Radius (m)



Numerical approach - Evaluations and results

Example 1. Rotating variable thickness disk

verification of results

Radial displacement

Radial displacement u,.(um)

Model DOF At mid-radius At outer radius
Analytical 1 119.01 157.57
1D CUF- FE
(1) 6240 120.32 (110 15600 (1.00)
(2 5472 11836 @ 15700 (30
(3) 7200 118.36 (054) 156.42 (0.73)
(4) 7584 118.75 (0220 15715 (027)
(5) 8352 119.50 (041) 158.08 (032)
(6) 9504 118.50 (043) 157.93 (0.23)
(7) 11040 117.26 (147) 154.92 (1.68)
(8) 14496 11786 155.00 (1.63)
3D ANSYS 14400 119.00 (001 157,10 (030)

(): % difference with respect to the analytical solution.

L

Model (2)

v Error < 0.6%

v’ 2.6 times less DOFs of the 3D ANSYS model !!




Numerical approach - Evaluations and results

Example 1. Rotating variable thickness disk

1D FE-CUF modeling

Mesh refinement over the cross-sections

model 1D FE-CUF Model DOF
1 8B2,(1/2/3/4) x 32 L4 3168
2 8B2,(2/4/6/8) x 32 L4 5472




Numerical approach - Evaluations and results

Radial Displacement, u_ (um)

150

135

120

105

90

75

60

45

30

15

Example 1. Rotating variable thickness disk

verification of results

effect of enriching the radial discretization
165 [T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
- ——a—— Analytical Solution :
8 B2, (1/2/3/4)x32 L4, DOF=3168
--------- 8 B2, (2/4/6/8)x32 L4, DOF=5472
- — === 8 B2, (5/7/9/14)x32 L4, DOF=8928
— —o—— 8B2, (4/8/12/16)x32 L4, DOF=10080 1
a e — 8B2, (10/12/14/20)x32 L4, DOF=13536 7
———o—— ANSYS, DOF= 14400 .
TN T YT SN YT T AN YT YT S S TN T A S T N TR N N N R
.05 0.075 0.1 0.125 0.15 0.175 0.2
Radius (m)

Radial displacement

Model DOF

Radial displacement u,.(pm)

At mid-radius At outer radius
Analytical 1 119.01 157.57
1D CUF FE
8B2,(1/2/3/4) x 3214 3168 114.50 379 154,00 (227
8B2,(2/4/6/8) x 32 L4 5472 118.36 (054 157.00 (0-36)
8B2,(5/7/9/14) x 32 L4 8928  119.00 0V 157,00 (036
8B2,(4/8/12/16) x 32 L4 10080  119.00 (001 158,00 (027
8B2,(10/12/14/20) x 32 L4 13536  119.00 (®0Y 157.00 (0-36)
3D FE (ANSYS) 14400  119.00 (000 157,10 (030)

() Absolute percentage difference with respect to the analytical solution.

v" Converged solution

with 1.6 times less DOFs of the 3D ANSYS model !l
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Numerical approach - Evaluations and results

Example 2. Rotating variable thickness disk subjected thermal load

» The disk is subjected to radial temperature gradient.
* hub is assumed to be axially fixed.

600 —————
590 [
580 |
570 |
560 |
550 |
540 |
530 |
520 |
510 |

500 i . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1
0.05 0.075 0.1 0.125 0.15 0.175 0.2

Radius (m)

Temprature change (°C)

radial steady-state temperature distribution




Numerical approach - Evaluations and results

Example 2. Rotating variable thickness disk subjected thermal load

radial displacement Radial and circumferential stresses
u (mm) c,(MPa) G,,(MPa)
e BT a BT
05 115 2 50 150 250 150 350 550

Max=1.94

Min=0 - Min=0 -

I
INNNN
{ Faxzss
Min=0.55 Max=541
S radial |- circumferential
) stress stress )
—_— radius e  —— radius -
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Numerical approach - Evaluations and results

Example 3. Complex rotor

3D model of a complex rotor

= The profile hyperbolic for the turbine disk

= web-type profile for the compressor disks

= Both ends of the shaft are fully fixed.




Numerical approach - Evaluations and results

Example 3. Complex rotor 1D FE-CUF modeling
discretizing along the axis
1l e Mﬂﬂ nm ! ﬂ
o ___Jlﬁg{“. -l | el
:U.j 4[_ J‘ 28 Beam Elements ﬂ%} WF \:Oj 4[_ J‘ “ ‘. 32 B‘eaé Elemer:ts '\[- H— T \:Oj 4‘—[_ J‘ " -‘ " ‘. ;OB ./ E|- l' " ﬂ%} H- T ‘

uniform 12 x 32 L4 refined 17 x 32 L4




Numerical approach - Evaluations and results

0.2

Example 3. Complex rotor

1D FE-CUF modeling

Converged model

0.1

z(m)

02

]

]

s

|
7
[/

-0.1

/

32 Beam Elements

03 0.4

y (m)

32 B2 along the axis

refined 17 x 32 L4

computational model, DOF=27072




Numerical approach - Evaluations and results

Example 3. Complex rotor verification of results

Radial displacement

200 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
oor) NIl |
0 25 50 75 100 125 150 175 200 -
160 |
1D FE-CUF solution — -
DOFs= 27,072 £ wof
= i
A= - o 120
Q i
& 100
o i
B2 ,
O 80
. T i
1D FE-CUF solution T ook R
3D FE ANSYS ad . i
v"  with 1.6 times less DOFs DOFs=44,280 a0k ——x—-= Turbine disk in the rotor (3D ANSYS result)
i Turbine disk in the rotor (1D CUF result)
of the 3D ANSYS model !! 20 F ———— Comp. Disk 1 in the rotor R
- s Comp. Disk 2 in the rotor ]
T RN SRR RSN RN R RS
8.05 0.075 0.1 0.125 0.15 0.175 0.2

Radius (m)



Numerical approach - Evaluations and results

Example 3. Complex rotor

verification of results

Radial and circumferential stresses

Radial stress

550 ———
o(vee) [N [
50 100 150 200 250 300 350 400 450 500 550 600 650 700 .
s 450 [

.

——l

400 -
l 350 |
% ‘© -
o B
S 300}
0 -
o(MPa) [T | [ 2 20
— 50 100 150 200 250 300 350 400 450 500 550 ) - .-
200
Circumferential stress 150 F

Turbine disk in the rotor
--------- Single Turbine disk with rigid hub

0.05

0.075 0.1 0.125 0.15 0.175 0.2
Radius (m)
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Numerical approach - Evaluations and results

Example 4. simple beam

1D FE-CUF modeling

discretizing along the axis Lagrange elements
over the cross-section




Numerical approach - Evaluations and results

Example 4. simple beam results

Temperature change

Axial displacement

Z
y & X I:l 1 L4 over the cross-section



Numerical approach - Evaluations and results

Example 4. simple beam results

1 L9 over the cross-section

1 L16 over the cross-section




Numerical approach - Evaluations and results

Example 4. simple beam verification of results

Does heat conduction equation satisfy?

Yes!!



Numerical approach - Evaluations and results

Example 4. simple beam verification of results

Check free thermal expansion !

Elongation = LaT,yerqge

(84:38+105.5) _ 0.219 mm

Aty = 0.1 - u, = (0.1)(23.1 x 107°)

(0+105.5)
2

Aty = 0.5 — u, = (0.5)(23.1 x 1076) = 0.6092 mm
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Numerical approach - Evaluations and results

Example 5. simple beam

’—-_,__———.—___~
-~
- ~

~
~ -~ o _—’
_———————_—



Numerical approach - Evaluations and results

Axial displacement
0.7 _———
06l
osh bbb IbbbE bbb
~ 04}
g
=)
S~
S A
= 03
02F
——=—— y=00m
- ——— y=0.Im
1' —— y=02m ]
0.1 —+—— y=03m ]
———— y=04m
——— y=05m
0 - " o4 aldo oo " o F Y B " das
0 2000 4000 6000

Time (sec.)

T (°C)

120

100

80
60
40 |

207/

Example 5. simple beam

results

Temperature change

T

yé().()m
y=0.1m
| ——— y=02m
| —>—— y=03m
—<—— y=04m
[ ——— y=05m_

10B4/1L4 model

Axial displacement

b e A

0 00001675 0.000315 0.0004726 0.00063

0 00001575 0000315 00004725 0.0006)

0 00001676 0000316 0.0004725 0.00083

~

0 QD001ETS 0000315 0.0004725 000063

t= 3000 sec.

Temperature change

1 . b . 4 1 b & 1 b
0 2000 4000

Time (sec.)

6000

t= 1600 sec. = 3000 sec.
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Numerical approach - Evaluations and results

Example 6. Constant thickness disk made of isotropic homogeneous materials

Material properties

Lame’constant A
Lame’ constant p

density (p)

thermal conductivity (k)
specific heat (c)

coefficient of linear thermal expansion («)

40.4 GPa
27 GPa
23 x 1076 K™1!
2707 kg/m3
204 W/m - K
903 J /kg - K

Boundary conditions

T
f=a- —af,=qm(t)
=0
A T=0
r—b—>{6w:0
where
~ t<0
. (t) = =
an® =12 L50

geometry
a=1
b=2

Thickness = 0.1




Numerical approach - Evaluations and results

Example 6. Constant thickness disk made of isotropic homogeneous materials 1D FE-CUF modeling

discretizing along the axis

Different 1D FE-CUF models for the constant thickness disk
Discretizing

Model Along the axis  corss sections DOF
(1) 1 B2 1680
(2) 1B3 (6 x 30) L4 2520
(3) 1 B4 3360
(4) (3 x 15) L9
(5) 182 (2 x 10) L16 1680
(6) (6 x 18) L9 3744

Lagrange mesh over the cross-section with the largest radius




Numerical approach - Evaluations and results

Example 6. Constant thickness disk made of isotropic homogeneous materials | | verification of results

Based on the LS theory
of thermoelasticity

Nondimensional Temperature (TA)

1B2/ (6 x 18) L9

0.5

0.45
0.35
0.25
0.15

0.05 |

Temperature change

04F
0.3F
0.2}

0.1F
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Numerical approach - Evaluations and results

Example 7. Constant thickness disk made of isotropic FGM Geometry and material

Material properties Metal-Ceramic FGM
Metal: Aluminum Ceramic: Alumina
| Lame’constant A 40.4 GPa 218 GP4
shear modulus p 27.0 GPa 146.2 GPa
density (p) 2707 kg/m3 3800 kg/m3
coefficient of linear thermal expansion () 23.0x10°° K1 7.4x1070 K1
| thermal conductivity (k) 204 W/m-K 28.0 W/m-K
specific heat (c) 903 J/kg-K 760 J/kg-K
| dimensionless relaxation time Ll 0.64 1.5625

metal volume fraction geometry

effective properties

b—7\" a=1
P=VmPm +V¢ Pc =Vm (Pm—Pc)+P¢ Vm = (b a) b=2
_ Thickness = 0.1




Numerical approach - Evaluations and results

Example 7. Constant thickness disk made of isotropic FGM
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Example 7. Constant thickness disk made of isotropic FGM results

Time history
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Example 7. Constant thickness disk made of isotropic FGM

results | | Time history
v' the material properties linearly
change through the radius (n = 1)
v' Based on the LS theory of
thermoelasticity
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Numerical approach - Evaluations and results

Example 7. Constant thickness disk made of isotropic FGM results | | Speed range of the thermal wave

v' the material properties linearly
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v' Based on the LS theory of
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Numerical approach - Evaluations and results

Example 7. Constant thickness disk made of isotropic FGM

results

Speed range of the thermal wave
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Numerical approach - Evaluations and results

Example 7. Constant thickness disk made of isotropic FGM results

Thermal wave propagation

v' the material properties linearly
change through the radius (n = 1)

v' Based on the LS theory of
thermoelasticity
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Example 7. Constant thickness disk made of isotropic FGM

results

Elastic wave propagation
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Example 7. Constant thickness disk made of isotropic FGM results | | Elastic wave propagation
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Numerical approach - Evaluations and results

Example 7. Constant thickness disk made of isotropic FGM

results | | effects of power law index (n)
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Example 7. Constant thickness disk made of isotropic FGM

results

effects of power law index (n)
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Example 7. Constant thickness disk made of isotropic FGM

results

effects of reference temperature (7,)
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Example 7. Constant thickness disk made of isotropic FGM results | | effects of reference temperature (7))
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Numerical approach - Evaluations and results

Example 8. variable thickness disk made of isotropic FGM Geometry and material

= 0.3+

Material properties Metal-Ceramic FGM
Metal: Aluminum Ceramic: Alumina
| Lame’constant A 40.4 GPa 219.2 GPa
shear modulus p 27.0 GPa 146.2 GPa
density (p) 2707 kg/m?3 3800 kg/m3
coefficient of linear thermal expansion (a) 23.0x10°° K1 7.4x10°% K1
| thermal conductivity (k) 204 W/m-K 28.0 W/m-K
specific heat (c) 903 J/kg-K 760 J/kg-K
| dimensionless relaxation time () 0.64 1.5625
geometry
effective properties metal volume fraction Piner = @ = 0.5
P=VmPm +Vc Pc =Vim (Pm—Pc)+P b— )" fouter = b = 2
mFm *VcFc =Vm \"m~Fc¢)Trc Vm = b a Rinner = 0.6
houter = 0.3
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Numerical approach - Evaluations and results

Example 8. variable thickness disk made of isotropic FGM

T, = 293 K, ®=0.05
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Example 8. variable thickness disk made of isotropic FGM

Results forn =0
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Numerical approach - Evaluations and results

Example 8. variable thickness disk made of isotropic FGM

Results for n = 0 based LS theory




Numerical approach - Evaluations and results

Example 8. variable thickness disk made of isotropic FGM

Results for n = 0 based LS theory

Radial displacement

Axial displacement
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Conclusion - Summary of results

Some results obtained from coupled thermoelasticity solution

v’ Transient deformations and stresses may be higher than those of a steady-state condition.
v Time history of temperature is damped faster than time history of displacements.
v Deformations and stresses oscillate along the time in a harmonic form.

v Under the propagating longitudinal elastic waves along the radius, thickness of the disk also expands and

contracts, due to the Poisson effect.

v When the coupling parameter takes a greater value, the amplitudes of oscillations of temperature

Increase.

v Lord—Shulman generalized coupled thermoelasticity predicts larger temperature and stresses compared

to the classical theories.

v" A functionally graded disk may be used as thermal barrier to reduce the thermal shock effects.



Conclusion - Summary of results

Some general points on the 1D FE-CUF modeling of disks

v The 1D FE method refined by the CUF can be effectively employed to analyze disks reduce the
computational cost of 3D FE analysis without affecting the accuracy.

v the models provides a unified formulation that can easily consider different higher-order theories where
large bending loads are involved in the problem.

v Increasing 1D elements along the axis of disks may not have significant effect on accuracy of results
and only leads to more DOFs.

v A proper distribution of the Lagrange elements and type of element used over the cross sections may
lead to a reduction in computational costs and the convergence of results.

v Making use of higher-order Lagrange elements (like L9 and L16) can reduce DOFs, while preserving
the accuracy.

v’ increase of number of elements along the radial direction, compared to circumferential direction, is
more effective in improving the results.



Conclusion - Future works

It is of interests to extend the study to
v Nonlinear thermoelasticity problems
v" Dynamic analysis of rotors subjected to transient thermal pre-stresses.

v Study of thermoelastic damping effect on dynamic behaviors of rotors.
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