Solution of Coupled Thermoelasticity Problem In Rotating Disks

by
Ayoob Entezari

Supervisors:
Prof. M. A. Kouchakzadeh ${ }^{1}$ and Prof. Erasmo Carrera ${ }^{2}$

Advisor:
Dr. Matteo Filippi ${ }^{2}$

${ }^{1}$ Sharif University of Technology
Department of Aerospace Engineering, Tehran, Iran

²MUL2 research group, Polytechnic University of Turin, Italy

${ }^{2}$ Polytechnic University of Turin, Department of Mechanical and Aerospace Engineering, Italy

Outlines

1. Introduction to rotating disks
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
6. Conclusion

Outlines

1. Introduction to rotating disks
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
6. Conclusion

Introduction to rotating disks

Applications

\checkmark Aerospace (aero-engines, turbo-pumps, turbo-chargers, etc.)
\checkmark Mechanical (spindles, flywheel, brake disks, etc.)
\checkmark Naval
\checkmark Power plant (steam and gas turbines, turbo-generators,)
\checkmark Chemical plant
\checkmark Electronics (electrical machines)

Introduction to rotating disks

Configurations

Introduction to rotating disks

Operating conditions

\square Main Loads
\checkmark Centrifugal forces
\checkmark Thermal loads.

Transient thermal load

start and stop cycles
I) start up,
II) shut down
\checkmark In some of applications, the disks may be exposed to sudden temperature changes in short periods of time (for Ex. start and stop cycles)
\checkmark These sudden changes in temperature can cause time dependent thermal stresses.
\checkmark Thermal stresses due to large temperature gradients are higher than the steady-state stresses.
\checkmark In such conditions, the disk should be designed with consideration of transient effects.

Introduction to rotating disks

Disk materials

\checkmark Metals: steels, super alloys
\checkmark Ceramic matrix composites (CMC)
\checkmark Functionally graded materials (FGMs)

ceramic-metal FGM

ceramic-metal FGM

Effective properties of FGMs

$$
P_{\mathrm{eff}}=\mathrm{V}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}}+\mathrm{V}_{\mathrm{C}} \mathrm{P}_{\mathrm{C}}=\mathrm{V}_{\mathrm{m}}\left(\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{C}}\right)+\mathrm{P}_{\mathrm{C}}
$$

P_{m} and P_{c} : properties of metal and ceramic
V_{m} and V_{C} : volume fractions of metal and ceramic $\mathrm{V}_{\mathrm{m}}=f(x, y, z)$

Introduction to rotating disks

FGM disk

power gradation law for metal volume fraction along the radius

$$
\mathrm{V}_{\mathrm{m}}=\left(\frac{b-r}{b-a}\right)^{n}
$$

Effective properties of FGMs

$$
P_{e f f}=V_{m} P_{m}+V_{c} P_{c}=V_{m}\left(P_{m}-P_{c}\right)+P_{c}
$$

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
6. Conclusion

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems


```
static steady-state problems
```


$$
\begin{aligned}
& \text { energy equation } \\
& \left(\kappa_{i j} T, j\right)_{, i}=R
\end{aligned}
$$

- $T \rightarrow$ temperature change
- $u_{i} \rightarrow$ displacements
- $\quad C_{i j k l} \rightarrow$ elastic coefficients
- $X_{i} \rightarrow$ body forces
- $\beta_{i j} \rightarrow$ thermoelastic moduli
- $\kappa_{i j} \rightarrow$ thermal conductivity
- $R \rightarrow$ internal heat source

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems


```
static steady-state problems
```

Under axisymmetric \& plane stress assumptions
equation of motion
$\frac{d}{d r}\left(r h \sigma_{r}\right)-h \sigma_{\theta}+\rho \omega^{2} h r^{2}=0$

$$
\begin{array}{|c|c}
\text { energy equation } \\
\hline T(r)=T_{a}+\frac{\left(T_{b}-T_{a}\right)}{\ln \left(r_{a} / r_{b}\right)} \ln \left(r / r_{b}\right)
\end{array}
$$

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Dynamic uncoupled problems

equation of motion
$\left(C_{i j k l} u_{k, l}\right)_{, j}-\left(\beta_{i j} T\right)_{, j}+X_{i}=\rho \ddot{u}_{i}$

energy equation

$$
\rho c \dot{T}-\left(\kappa_{i j} T_{, j}\right)_{, i}=R
$$

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Coupled thermoelasticity

\checkmark the time rate of strain is taken into account in the energy equation
\checkmark elasticity and energy equations are coupled.
\checkmark these coupled equations must be solved simultaneously.
equation of motion
energy equation
Mechanical and thermal BCs and ICs

$$
T\left(x_{i}, t\right), u_{i}\left(x_{i}, t\right)
$$

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Classical coupled problems

equation of motion
$\left(C_{i j k l} u_{k, l}\right)_{, j}-\left(\beta_{i j} T\right)_{, j}+X_{i}=\rho \ddot{u}_{i}$

energy equation
$\rho c \dot{T}-\left(\kappa_{i j} T{ }_{, j}\right)_{, i}+T_{0} \beta_{i j} \dot{u}_{i, j}=R$
$\checkmark T_{0} \rightarrow$ reference temperature
infinite propagation speed for the thermal disturbances !!!

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

Fundamentals of Linear Thermoelasticity

Classification of thermoelastic problems

$$
\left(C_{i j k l} u_{k, l}\right)_{, j}-\left(\beta_{i j} T\right)_{, j}+X_{i}=\rho \ddot{u}_{i}
$$

$$
\rho c t_{0} \ddot{T}+\rho c \dot{T}-\left(\kappa_{i j} T,_{j}\right)_{, i}
$$

$$
+t_{0} T_{0} \beta_{i j} \ddot{u}_{i, j}+T_{0} \beta_{i j} \dot{u}_{i, j}=R+t_{0} \dot{R}
$$

- $t_{0} \rightarrow$ LS relaxation time
$\left(C_{i j k l} u_{k, l}\right)_{, j}-\left(\beta_{i j} T\right)_{, j}-\left(t_{1} \beta_{i j} \dot{T}\right)_{, j}+X_{i}=\rho \ddot{u}_{i}$

$$
\begin{gathered}
\rho c t_{2} \ddot{T}+\rho c \dot{T}-2 \tilde{c}_{i} \dot{T}_{, i}-\left(\kappa_{i j} T_{, j}\right)_{, i} \\
+T_{0} \beta_{i j} \dot{u}_{i, j}=R
\end{gathered}
$$

- $t_{1}, t_{2} \rightarrow$ GL relaxation times
- $\kappa_{i j}{ }^{*} \rightarrow \mathrm{GN}$ material constants

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
6. Conclusion

Literature review \& present work

Conclusion of the literature review

$>$ Coupled thermoelasticity problems are still topics of active research.
$>$ Analytical solution of the these problems are mathematically difficult.
$>$ Number of papers on analytical solutions is limited.
$>$ Numerical methods are often used to solve these problems.
$>$ Numerical solutions of these problems have been presented in many articles.
$>$ Finite element method is still applied as a powerful numerical tool in such problems.
$>$ The major presented solutions are related to the basic problems (infinite medium, half-space, layer and axisymmetric problems).
$>$ Analytical and numerical solution of rotating disk problems has never before been presented.

Literature review \& present work

Present work

- Main purpose
> Study of coupled thermoelastic behavior in disks subjected to thermal shock loads
\checkmark based on the generalized and classic theories
\checkmark Disks with constant and variable thickness
\checkmark Made of FGM
- Implementation
> Analytical approach
> Numerical approach

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
> Solution method
> Numerical evaluation
5. Numerical approach
6. Conclusion

Analytical approach - Solution method

Governing equations

Consider

- An annular rotating disk with constant thickness,
- made of isotropic \& homogeneous material,
- Under axisymmetric thermal and mechanical shock loads.

Based on LS generalized coupled theory

Eq. of motion $\left(C_{i j k l} u_{k, l}\right)_{, j}-\left(\beta_{i j} T\right)_{, j}+X_{i}=\rho \ddot{u}_{i} \quad \square$

$$
\left\{\kappa\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right]-\rho c \frac{\partial}{\partial t}\left(1+t_{0} \frac{\partial}{\partial t}\right)\right\} T
$$

$$
-\tilde{\beta} T_{0}\left\{t_{0}\left[\frac{\partial^{3}}{\partial r \partial t^{2}}+\frac{1}{r} \frac{\partial^{2}}{\partial t^{2}}\right]+\frac{\partial^{2}}{\partial r \partial t}+\frac{1}{r} \frac{\partial}{\partial t}\right\} u=0
$$

$$
\begin{equation*}
\rho c t_{0} \ddot{T}+\rho c \dot{T}-\left(\kappa_{i j} T_{, j}\right)_{, i} \tag{II}
\end{equation*}
$$

energy Eq. $+t_{0} T_{0} \beta_{i j} \ddot{u}_{i, j}+T_{0} \beta_{i j} \dot{u}_{i, j}=R+t_{0} \dot{R}$
$\rightleftarrows\left\{(\tilde{\lambda}+2 \mu)\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}}\right]-\rho \frac{\partial^{2}}{\partial t^{2}}\right\} u-\tilde{\beta} \frac{\partial T}{\partial r}=-\rho r \omega^{2}$

$$
\tilde{\lambda}=\frac{2 \mu}{\lambda+2 \mu} \lambda \quad \tilde{\beta}=\frac{2 \mu}{\lambda+2 \mu}(3 \lambda+2 \mu) \alpha
$$

- $\quad \lambda \& \mu \rightarrow$ Lame constants
- $\alpha \rightarrow$ coefficient of linear thermal expansion

Analytical approach - Solution method

Governing equations

Coupled System Of Equations

$$
\left\{(\tilde{\lambda}+2 \mu)\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}}\right]-\rho \frac{\partial^{2}}{\partial t^{2}}\right\} u-\tilde{\beta} \frac{\partial T}{\partial r}=-\rho r \omega^{2}
$$

thermal BCs. \& ICs

$\left.k_{11} \frac{\partial T}{\partial r}\right|_{r=r_{i}}+k_{12} T\left(r_{i}, t\right)=f_{1}(t)$
$\left.k_{21} \frac{\partial T}{\partial r}\right|_{r=r_{o}}+k_{22} T\left(r_{o}, t\right)=f_{2}(t)$

$$
\begin{aligned}
& \left.k_{31} \frac{\partial u}{\partial r}\right|_{r=r_{i}}+k_{32} u\left(r_{i}, t\right)=f_{3}(t) \\
& \left.k_{41} \frac{\partial u}{\partial r}\right|_{r=r_{o}}+k_{42} u\left(r_{o}, t\right)=f_{4}(t)
\end{aligned}
$$

$$
\begin{gathered}
T(r, 0)=g_{1}(r), \\
\dot{T}(r, 0)=g_{2}(r)
\end{gathered}
$$

$$
\begin{gathered}
u(r, 0)=g_{3}(r), \\
\dot{u}(r, 0)=g_{4}(r)
\end{gathered}
$$

r_{i}
r_{o}
$f_{1}(t)-f_{4}(t)$

Inner radius of the disk
Outer radius of the disk time dependent known functions

Analytical approach - Solution method

Governing equations in Non-dimensional form

Non-dimensional parameters

$$
\begin{array}{cc}
\hat{r}=\frac{r}{l}, & \hat{t}=\frac{t V_{e}}{l}, \quad \hat{t}_{0}=\frac{t_{0} V_{e}}{l} \\
\hat{\sigma}_{r r}=\frac{\sigma_{r r}}{\tilde{\beta} T_{0}}, \quad \hat{\sigma}_{\theta \theta}=\frac{\sigma_{\theta \theta}}{\tilde{\beta} T_{0}}, \quad \hat{T}=\frac{T}{T_{0}} \\
\hat{u}=\frac{(\tilde{\lambda}+2 \mu) u}{l \tilde{\beta} T_{0}}, \quad \widehat{\omega}=\sqrt{\frac{\rho l^{2}}{\tilde{\beta} T_{0}}} \omega &
\end{array}
$$

$$
V_{e}=\sqrt{(\tilde{\lambda}+2 \mu) / \rho}
$$

```
unit length
```

$$
l=k / \rho c V_{e}
$$

Analytical approach - Solution method

Governing equations in Non-dimensional form

Coupled System Of Equations

$$
\left\{\begin{array}{c}
\left\{\frac{\partial^{2}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}-\frac{1}{\hat{r}^{2}}-\frac{\partial^{2}}{\partial \hat{t}^{2}}\right\} \hat{u}-\frac{\partial \hat{T}}{\partial \hat{r}}=-\hat{r} \widehat{\omega}^{2} \\
\left\{\frac{\partial^{2}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}-\frac{\partial}{\partial \hat{t}}\left(1+\hat{t}_{0} \frac{\partial}{\partial \hat{t}}\right)\right\} \hat{T}-\frac{t_{0}}{\left.-\hat{t}_{0}\left[\frac{\partial^{3}}{\partial \hat{r} \partial \hat{t}^{2}}+\frac{1}{\hat{r}} \frac{\partial^{2}}{\partial \hat{t}^{2}}\right]+\frac{\partial^{2}}{\partial \hat{r} \partial \hat{t}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{t}}\right\} \hat{u},}=0
\end{array}\right.
$$

where

$$
C=\frac{T_{0} \tilde{\beta}^{2}}{\rho c(\tilde{\lambda}+2 \mu)} \quad \text { Thermoelastic damping or coupling parameter }
$$

- Non-dimensional propagation speed of thermal wave $\rightarrow \hat{V}_{T}=\sqrt{1 / \hat{t}_{0}}$
- Non-dimensional propagation speed of elastic longitudinal wave $\rightarrow \widehat{V}_{e}=1$

Analytical approach - Solution method

Solution of non-dimensional equations

Coupled System Of Equations

$$
\left\{\begin{array}{c}
\left\{\frac{\partial^{2}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}-\frac{1}{\hat{r}^{2}}-\frac{\partial^{2}}{\partial \hat{t}^{2}}\right\} \hat{u}-\frac{\partial \hat{T}}{\partial \hat{r}}=-\hat{r} \widehat{\omega}^{2} \\
\left\{\frac{\partial^{2}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}-\frac{\partial}{\partial \hat{t}}\left(1+\hat{t}_{0} \frac{\partial}{\partial \hat{t}}\right)\right\} \hat{T}-C\left\{\hat{t}_{0}\left[\frac{\partial^{3}}{\partial \hat{r} \partial \hat{t}^{2}}+\frac{1}{\hat{r}} \frac{\partial^{2}}{\partial \hat{t}^{2}}\right]+\frac{\partial^{2}}{\partial \hat{r} \partial \hat{t}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{t}}\right\} \hat{u}=0
\end{array}\right.
$$

Thermal and mechanical BCs. \& ICs

$$
\begin{aligned}
\left.\hat{k}_{11} \frac{\partial \hat{T}}{\partial \hat{r}}\right|_{\hat{r}=a}+\hat{k}_{12} \hat{T}(a, t) & =\hat{f}_{1}(\hat{t}) & \left.\hat{k}_{21} \frac{\partial \hat{T}}{\partial \hat{r}}\right|_{\hat{r}=b}+\hat{k}_{22} \hat{T}(b, t)=\hat{f}_{2}(\hat{t}) \\
\left.\hat{k}_{31} \frac{\partial \hat{u}}{\partial \hat{r}}\right|_{\hat{r}=a}+\hat{k}_{32} \hat{u}(a, t) & =\hat{f}_{3}(\hat{t}) & \left.\hat{k}_{41} \frac{\partial \hat{u}}{\partial \hat{r}}\right|_{\hat{r}=b}+\hat{k}_{42} \hat{u}(b, t)=\hat{f}_{4}(\hat{t}) \\
\hat{T}(\hat{r}, 0) & =\hat{g}_{1}(\hat{r}), & \dot{\hat{T}}(\hat{r}, 0)=\hat{g}_{2}(\hat{r}) \\
\hat{u}(\hat{r}, 0) & =\hat{g}_{3}(\hat{r}), & \dot{\hat{u}}(\hat{r}, 0)=\hat{g}_{4}(\hat{r})
\end{aligned}
$$

Analytical approach - Solution method

Solution of non-dimensional equations

$$
\left\{\frac{\partial^{2}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}-\frac{\partial}{\partial \hat{t}}\left(1+\hat{t}_{0} \frac{\partial}{\partial \hat{t}}\right)\right\} \hat{T}-C\left\{\hat{t}_{0}\left[\frac{\partial^{3}}{\partial \hat{r} \partial \hat{t}^{2}}+\frac{1}{\hat{r}} \frac{\partial^{2}}{\partial \hat{t}^{2}}\right]+\frac{\partial^{2}}{\partial \hat{r} \partial \hat{t}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{t}}\right\} \hat{u}=0
$$

Analytical approach - Solution method

Solution of non-dimensional equations

$$
\left\{\frac{\partial^{2}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}-\frac{1}{\hat{r}^{2}}-\frac{\partial^{2}}{\partial \hat{t}^{2}}\right\} \hat{u}-\frac{\partial \hat{T}}{\partial \hat{r}}=-\hat{r} \widehat{\omega}^{2}
$$

Eq. of motion

Analytical approach - Solution method

Solution of non-dimensional equations

$$
\left\{\frac{\partial^{2}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}-\frac{1}{\hat{r}^{2}}-\frac{\partial^{2}}{\partial \hat{t}^{2}}\right\} \hat{u}-\frac{\partial \hat{T}}{\partial \hat{r}}=-\hat{r} \widehat{\omega}^{2} \quad \text { Eq. of motion }
$$

Bessel equation and can be
separately solved using finite Hankel transform

Analytical approach - Solution method

Solution of non-dimensional equations

Finite Hankel transform

$$
\begin{aligned}
& \mathcal{H}\left[T_{1}(r, t)\right]=\bar{T}_{1}\left(t, \xi_{m}\right)=\int_{a}^{b} r T_{1}(r, t) K_{0}\left(r, \xi_{m}\right) d r \\
& \mathcal{H}\left[u_{1}(r, t)\right]=\bar{u}_{1}\left(t, \eta_{n}\right)=\int_{a}^{b} r u_{1}(r, t) K_{1}\left(r, \eta_{n}\right) d r
\end{aligned}
$$

- - kernel functions

$$
\begin{aligned}
K_{0}\left(r, \xi_{m}\right) & =J_{0}\left(\xi_{m} r\right)\left(\left.k_{21} \frac{\partial Y_{0}\left(\xi_{m} r\right)}{\partial r}\right|_{r=b}+k_{22} Y_{0}\left(\xi_{m} b\right)\right)-Y_{0}\left(\xi_{m} r\right)\left(\left.k_{21} \frac{\partial J_{0}\left(\xi_{m} r\right)}{\partial r}\right|_{r=b}+k_{22} J_{0}\left(\xi_{m} b\right)\right) \\
K_{1}\left(r, \eta_{n}\right) & =J_{1}\left(\eta_{n} r\right)\left(\left.k_{41} \frac{\partial Y_{1}\left(\eta_{n} r\right)}{\partial r}\right|_{r=b}+k_{42} Y_{1}\left(\eta_{n} b\right)\right)-Y_{1}\left(\eta_{n} r\right)\left(\left.k_{41} \frac{\partial J_{1}\left(\eta_{n} r\right)}{\partial r}\right|_{r=b}+k_{42} J_{1}\left(\eta_{n} b\right)\right)
\end{aligned}
$$

ξ_{m} and η_{n} are positive roots of the following equations

$$
\left(\left.k_{11} \frac{\partial Y_{0}\left(\xi_{m} r\right)}{\partial r}\right|_{r=a}+k_{12} Y_{0}\left(\xi_{m} a\right)\right)\left(\left.k_{21} \frac{\partial J_{0}\left(\xi_{m} r\right)}{\partial r}\right|_{r=b}+k_{22} J_{0}\left(\xi_{m} b\right)\right)-\left(\left.k_{21} \frac{\partial Y_{0}\left(\xi_{m} r\right)}{\partial r}\right|_{r=b}+k_{22} Y_{0}\left(\xi_{m} b\right)\right)\left(\left.k_{11} \frac{\partial J_{0}\left(\xi_{m} r\right)}{\partial r}\right|_{r=a}+k_{12} J_{0}\left(\xi_{m} a\right)\right)
$$

$$
\left(\left.k_{31} \frac{\partial Y_{1}\left(\eta_{n} r\right)}{\partial r}\right|_{r=a}+k_{32} Y_{1}\left(\eta_{n} a\right)\right)\left(\left.k_{41} \frac{\partial J_{1}\left(\eta_{n} r\right)}{\partial r}\right|_{r=b}+k_{42} J_{1}\left(\eta_{n} b\right)\right)-\left(\left.k_{41} \frac{\partial Y_{1}\left(\eta_{n} r\right)}{\partial r}\right|_{r=b}+k_{42} Y_{1}\left(\eta_{n} b\right)\right)\left(\left.k_{31} \frac{\partial J_{1}\left(\eta_{n} r\right)}{\partial r}\right|_{r=a}+k_{32} J_{1}\left(\eta_{n} a\right)\right)=0
$$

Analytical approach - Solution method

Solution of non-dimensional equations

Uncoupled sub-IBVPs (Bessel equations)

$$
\begin{array}{|l|}
\hline \frac{\partial^{2} u_{1}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{1}}{\partial r}-\frac{u_{1}}{r^{2}}-\ddot{u}_{1}=0 \\
\left.k_{31} \frac{\partial u_{1}}{\partial r}\right|_{r=a}+k_{32} u_{1}(a, t)=f_{3}(t) \\
\left.k_{41} \frac{\partial u_{1}}{\partial r}\right|_{r=b}+k_{42} u_{1}(b, t)=f_{4}(t) \\
u_{1}(r, 0)=0 \quad, \quad u_{1}(r, 0)=0
\end{array} \quad\left[\begin{array}{l}
\frac{\partial^{2} T_{1}}{\partial r^{2}}+\frac{1}{r} \frac{\partial T_{1}}{\partial r}-\dot{T}_{1}-t_{0} \ddot{T}_{1}=0 \\
\left.k_{11} \frac{\partial T_{1}}{\partial r}\right|_{r=a}+k_{12} T_{1}(a, t)=f_{1}(t) \\
\left.k_{21} \frac{\partial T_{1}}{\partial r}\right|_{r=b}+k_{22} T_{1}(b, t)=f_{2}(t) \\
T_{1}(r, 0) \stackrel{0}{=}, \dot{T}_{1}(r, 0)=0 \\
\hline
\end{array}\right.
$$

Taking the finite Hankel transform

$$
\bar{u}_{1}+\eta_{n}^{2} \bar{u}_{1}=\frac{2}{\pi}\left(f_{4}(t)-\frac{d_{4}}{d_{3}} f_{3}(t)\right) \quad t_{0} \overline{\widetilde{T}}_{1}+\overline{\dot{T}}_{1}+\xi_{m}^{2} \bar{T}_{1}=\frac{2}{\pi}\left(f_{2}(t)-\frac{d_{2}}{d_{1}} f_{1}(t)\right)
$$

$$
\bar{u}_{1}\left(t, \eta_{n}\right)
$$

$$
\overline{T_{1}}\left(t, \xi_{m}\right)
$$

Analytical approach - Solution method

Solution of non-dimensional equations

Uncoupled sub-IBVPs (Bessel equations)

$$
\begin{gathered}
\overline{\ddot{u}}_{1}+\eta_{n}^{2} \bar{u}_{1}=\frac{2}{\pi}\left(f_{4}(t)-\frac{d_{4}}{d_{3}} f_{3}(t)\right) \\
\bar{u}_{1}\left(t, \eta_{n}\right) \\
\text { Solving ODEs } \\
t_{0} \overline{\dddot{T}}_{1}+\overline{\dot{T}}_{1}+\xi_{m}^{2} \bar{T}_{1}=\frac{2}{\pi}\left(f_{2}(t)-\frac{d_{2}}{d_{1}} f_{1}(t)\right) \\
\hline \text { Inverse finite Hankel transforms } \\
\hline
\end{gathered}
$$

$$
u_{1}(r, t)=\sum_{n=1}^{\infty} \tilde{b}_{n} \bar{u}_{1}\left(t, \eta_{n}\right) K_{1}\left(r, \eta_{n}\right) \quad T_{1}(r, t)=\sum_{m=1}^{\infty} \tilde{a}_{m} \bar{T}_{1}\left(t, \xi_{m}\right) K_{0}\left(r, \xi_{m}\right)
$$

$$
\tilde{a}_{m}=\frac{1}{\left\|K_{0}\left(r, \xi_{m}\right)\right\|^{2}} \quad, \quad \tilde{b}_{n}=\frac{1}{\left\|K_{1}\left(r, \eta_{n}\right)\right\|^{2}}
$$

Analytical approach - Solution method

Solution of non-dimensional equations

$$
\left\{\frac{\partial^{2}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial}{\partial \hat{r}}-\frac{1}{\hat{r}^{2}}-\frac{\partial^{2}}{\partial \hat{t}^{2}}\right\} \hat{u}-\frac{\partial \hat{T}}{\partial \hat{r}}=-\hat{r} \widehat{\omega}^{2} \quad \text { Eq. of motion }
$$

decomposition

$$
T_{2}(r, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Q_{m n}(t) K_{0}\left(r, \xi_{m}\right), \quad u_{2}(r, t)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} S_{m n}(t) K_{1}\left(r, \eta_{n}\right)
$$

Analytical approach - Solution method

Solution of non-dimensional equations

Coupled System Of Equations

$$
\begin{aligned}
& T(r, t)=\sum_{m=1}^{\infty} \tilde{a}_{m} \bar{T}_{1}\left(t, \xi_{m}\right) K_{0}\left(r, \xi_{m}\right)+\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Q_{m n}(t) K_{0}\left(r, \xi_{m}\right) \\
& u(r, t)=\sum_{n=1}^{\infty} \tilde{b}_{n} \bar{u}_{1}\left(t, \eta_{n}\right) K_{1}\left(r, \eta_{n}\right)+\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} S_{m n}(t) K_{1}\left(r, \eta_{n}\right)
\end{aligned}
$$

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
> Solution method
> Numerical evaluation
5. Numerical approach
6. Conclusion

Analytical approach - Numerical evaluation

Specifications of numerical example

geometry

$$
\begin{aligned}
& a=1 \\
& b=2
\end{aligned}
$$

material properties

$$
\begin{gathered}
\lambda=40.4 \mathrm{GPa} \\
\mu=27 \mathrm{GPa} \\
\alpha=23 \times 10^{-6} \mathrm{~K}^{-1} \\
\rho=2707 \mathrm{~kg} / \mathrm{m}^{3} \\
k=204 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K} \\
c=903 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}
\end{gathered}
$$

Boundary conditions

$$
\begin{aligned}
& \text { at } \hat{r}=a \rightarrow\left\{\begin{array}{c}
-\frac{\partial \hat{T}}{\partial \hat{r}}=\hat{q}_{\text {in }}(t) \\
\hat{u}=0
\end{array}\right. \\
& \text { at } \hat{r}=b \rightarrow\left\{\begin{array}{c}
\hat{T}=0 \\
\hat{\sigma}_{r r}=0
\end{array}\right. \\
& \hat{q}_{\text {in }}(t)= \begin{cases}0 & \hat{t} \leq 0 \\
1 & \hat{t}>0\end{cases}
\end{aligned}
$$

Analytical approach - Numerical evaluation

Validation

Based on classical theory of coupled thermoelasticity

Analytical approach - Numerical evaluation

Validation
Based on LS generalized theory of coupled thermoelasticity

Temperature

Radial displacement

Analytical approach - Numerical evaluation

Results and discussion

Based on LS generalized theory of coupled thermoelasticity

radial displacement

Nondimensional Radius (\mathfrak{r})

radial stress

circumferential stress

Nondimensional Radius (\hat{r})

Radial distribution for different values of the time.

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
6. Conclusion

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
6. Conclusion

Numerical approach

Motivations

\square Analytical solutions are limited to those of a disk with simple geometry and boundary conditions.
\square FE method is more widely used for this class of problems.
\square 1D and 2D FE models are not able to provide all the desired information.
\square 3D FE modeling techniques may be required for a detailed coupled thermoelastic analysis.
\square 3D FE models still impose large computational costs, specially, in a time-consuming transient solution.

There is a growing interest in the development of refined FE models with lower computational efforts.
\square A refined FE approach was developed by Prof. Carrera et al.
They formulated the FE methods on the basis of a class of theories of structures.

Numerical approach

Main characteristics of FE models refined by Carrera
\checkmark 3D capabilities
\checkmark lower computational costs
\checkmark ability to analyze multi-field problems and multi-layered structures

mue

MUL2 research group, Polytechnic University, Turin, Italy www.mul2.polito.it

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
$>$ Evaluations and results
6. Conclusion

Numerical approach - Development of method

Approaches to FE modeling

> Variational approach
> Weighted residual methods

* Weighted residual method based on Galerkin technique
\checkmark Efficient, high rate of convergence
\checkmark most common method to obtain a weak formulation of the problem

Numerical approach - Development of method

Governing equations

\checkmark For anisotropic and nonhomogeneous materials.
\checkmark Including LS, GL and classical theories of thermoelasticity.
\checkmark Considering mechanical damping effect.

Equation of motion
$\sigma_{i j, j}+X_{i}=\rho \ddot{u}_{i}+\zeta \dot{u}_{i}$

Energy equation
$\rho c\left(t_{0}+t_{2}\right) \ddot{T}+\rho c \dot{T}-2 \tilde{c}_{i} \dot{T}_{, i}-\left(\kappa_{i j} T{ }_{, j}\right)_{, i}$
$+t_{0} T_{0} \beta_{i j} \ddot{u}_{i, j}+T_{0} \beta_{i j} \dot{u}_{i, j}=R+t_{0} \dot{R}$

Hooke's law
$\sigma_{i j}=C_{i j p q} \varepsilon_{p q}-\beta_{i j}\left(T+t_{1} \dot{T}\right)$

$$
\begin{aligned}
& \checkmark t_{0}=t_{1}=t_{2}=\tilde{c}_{i}=0 \rightarrow \text { classical theory } \\
& \checkmark \quad t_{1}=t_{2}=\tilde{c}_{i}=0 \rightarrow \text { LS theory } \\
& \checkmark \quad t_{0}=0 \rightarrow \text { GL theory. }
\end{aligned}
$$

Numerical approach - Development of method

FE formulation through Galerkin technique

- In 3D conventional FE method

$$
\begin{aligned}
& u_{i}^{(e)}(x, y, z, t)=\phi_{m}(x, y, z) U_{i}^{m}(t) \\
& T^{(e)}(x, y, z, t)=\phi_{m}(x, y, z) \Theta^{m}(t)
\end{aligned}
$$

- $m=1, \cdots, r$
- $r=$ number of nodal points in a element

Numerical approach - Development of method

FE formulation through Galerkin technique

> Weighting function

$$
\phi_{m}(x, y, z)
$$

Equation of motion
$\int_{V^{(e)}}\left(\sigma_{i j, j}+X_{i}-\rho \ddot{u}_{i}-\zeta \dot{u}_{i}\right) \phi_{m} d V=0$
energy equation

$$
\begin{aligned}
& \int_{V^{(e)}}\left(\rho c\left(t_{0}+t_{2}\right) \ddot{T}+\rho c \dot{T}-2 \tilde{c}_{i} \dot{T}_{, i}-\left(\kappa_{i j} T_{, j}\right)_{, i}\right. \\
& \left.\quad+t_{0} T_{0} \beta_{i j} \ddot{u}_{i, j}+T_{0} \beta_{i j} \dot{u}_{i, j}-R-t_{0} \dot{R}\right) \phi_{m} d V=0
\end{aligned}
$$

Numerical approach - Development of method

FE formulation through Galerkin technique

Eq. of motion

$$
\begin{gathered}
\int_{V^{(e)}}\left(\rho \ddot{\mathbf{u}} \phi_{m}\right) d V+\int_{V^{(e)}}\left(\zeta \dot{\mathbf{u}} \phi_{m}\right) d V+\int_{V^{(e)}}\left(\mathbf{D}^{\mathrm{T}} \phi_{m} \boldsymbol{\sigma}\right) d V \\
=\int_{V^{(e)}}\left(\mathbf{X} \phi_{m}\right) d V+\int_{s^{(e)}}\left(\mathbf{t} \phi_{m}\right) d S
\end{gathered}
$$

energy Eq.

$$
\begin{gathered}
\int_{V^{(e)}}\left(t_{0} T_{0} \boldsymbol{\beta}^{\mathrm{T}} \mathbf{D} \ddot{\mathbf{u}} \phi_{m}\right) d V+\int_{V^{(e)}}\left(t_{0} \rho c \ddot{T} \phi_{m}\right) d V+\int_{V^{(e)}}\left(t_{2} \rho c \ddot{T} \phi_{m}\right) d V \\
+\int_{V^{(e)}}\left(T_{0} \boldsymbol{\beta}^{\mathrm{T}} \mathbf{D} \dot{\mathbf{u}} \phi_{m}\right) d V+\int_{V^{(e)}}\left(\rho c \dot{T} \phi_{m}\right) d V-\int_{V^{(e)}}\left(2 \widetilde{\mathbf{c}}^{\mathrm{T}} \nabla \dot{T} \phi_{m}\right) d V \\
+\int_{V^{(e)}}\left(\nabla^{\mathrm{T}} T \boldsymbol{\kappa} \nabla \phi_{m}\right) d V=\int_{S^{(e)}}\left(\mathbf{q}^{\mathrm{T}} \mathbf{n} \phi_{m}\right) d S+\int_{V^{(e)}}\left(R \phi_{m}\right) d V+\int_{V^{(e)}}\left(t_{0} \dot{R} \phi_{m}\right) d V
\end{gathered}
$$

Numerical approach - Development of method

Refined 1D FE model through Carrera unified formulation

3D beam-type structures

1D FE

$$
\begin{aligned}
& \mathbf{u}=N_{m}(y) \mathbf{u}^{m} \\
& T=N_{m}(y) T^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \quad m=1, \cdots, M \\
& \text { - } \quad M=\text { number of bar nodes }
\end{aligned}
$$

Numerical approach - Development of method

Refined 1D FE model through Carrera unified formulation

3D beam-type structures

1D FE
Carrera unified formulation (CUF)

$$
\begin{aligned}
\mathbf{u} & =N_{m}(y) \mathbf{u}^{m} \\
T & =N_{m}(y) T^{m}
\end{aligned}
$$

- $m=1, \cdots, M$
- M = number of bar nodes
- $\tau=1, \cdots, N_{\mathrm{CUF}}$
- $N_{\text {CUF }}=$ number of terms of the expansion.

Numerical approach - Development of method

Refined 1D FE model through CUF

1D FE

CUF
1D FE-CUF

$$
\begin{aligned}
\mathbf{u} & =N_{m}(y) \mathbf{u}^{m} \\
T & =N_{m}(y) T^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{u}^{m}(x, z)=F_{\tau}(x, z) \mathbf{U}^{m \tau}(t) \\
& T^{m}(x, z)=F_{\tau}(x, z) \Theta^{m \tau}(t)
\end{aligned}
$$

$$
\mathbf{u}(x, y, z, t)=\phi_{m}(x, y, z) \mathbf{U}^{m \tau}(t)
$$

$$
T(x, y, z, t)=\phi_{m}(x, y, z) \Theta^{m \tau}(t)
$$

weighting function in 1D FE-CUF $\rightarrow \phi_{m}(x, y, z)=N_{m}(y) F_{\tau}(x, z)$

Numerical approach - Development of method

Refined 1D FE model through CUF

1D FE-CUF
$\mathbf{u}(x, y, z, t)=N_{m}(y) F_{\tau}(x, z) \mathbf{U}^{m \tau}(t)$ $T(x, y, z, t)=N_{m}(y) F_{\tau}(x, z) \Theta^{m \tau}(t)$

1D FE modeling

56

Numerical approach - Development of method

Refined 1D FE model through CUF

1D FE-CUF

$\mathbf{u}(x, y, z, t)=N_{m}(y) F_{\tau}(x, z) \mathbf{U}^{m \tau}(t)$
$T(x, y, z, t)=N_{m}(y) F_{\tau}(x, z) \Theta^{m \tau}(t)$

$>$ In Carrera unified formulation
\checkmark selection of $F_{\tau}(x, z)$ and $N_{\text {CUF }}\left(\tau=1, \cdots, N_{\text {CUF }}\right)$ is arbitrary.
\checkmark various kinds of basic functions such as polynomials, harmonics and exponentials of any-order.
\checkmark For instance, different classes of polynomials such as Taylor, Legendre and Lagrange polynomials.

Numerical approach - Development of method

Refined 1D FE model through CUF

1D FE-CUF

$\mathbf{u}(x, y, z, t)=N_{m}(y) F_{\tau}(x, z) \mathbf{U}^{m \tau}(t)$
$T(x, y, z, t)=N_{m}(y) F_{\tau}(x, z) \Theta^{m \tau}(t)$

$$
F_{\tau}(x, z) \rightarrow \text { bi-dimensional Lagrange functions }
$$

> cross-sections can be discretized using Lagrange elements

- linear three-point (L3)
- quadratic six-point (L6)
- bilinear four-point (L4)
- biquadratic nine-point (L9)
- bi-cubic sixteen-point (L16)

Numerical approach - Development of method

FE equations in CUF form

Substituting

1D FE-CUF
$\mathbf{u}(x, y, z, t)=N_{m}(y) F_{\tau}(x, z) \mathbf{U}^{m \tau}(t)$
$T(x, y, z, t)=N_{m}(y) F_{\tau}(x, z) \Theta^{m \tau}(t)$

$$
\begin{array}{|c|}
\hline \text { weighting function } \\
\hline \phi_{m}(x, y, z)=N_{m}(y) F_{\tau}(x, z) \\
\hline
\end{array}
$$

into the weak forms of equation of motion and energy equation gives

$$
\mathbf{M}^{l m \tau s} \ddot{\boldsymbol{\delta}}^{l s}+\mathbf{G}^{l m \tau s} \dot{\boldsymbol{\delta}}^{l s}+\mathbf{K}^{l m \tau s} \boldsymbol{\delta}^{l s}=\mathbf{p}^{m \tau}
$$

- $\mathbf{M}^{l m \tau s}, \mathbf{G}^{l m \tau s}$ and $\mathbf{K}^{l m \tau s} \rightarrow 4 \times 4$ fundamental nuclei (FNs) of the mass, damping, and stiffness matrices
- $\mathbf{p}^{m \tau} \rightarrow 4 \times 1 \mathrm{FN}$ of the load vector
- $\boldsymbol{\delta}^{l s} \rightarrow 4 \times 1$ FN of the unknowns vector

Numerical approach - Development of method

FE equations in CUF form

$$
\mathbf{M}^{l m \tau s} \ddot{\boldsymbol{\delta}}^{l s}+\mathbf{G}^{l m \tau s} \dot{\boldsymbol{\delta}}^{l s}+\mathbf{K}^{l m \tau s} \boldsymbol{\delta}^{l s}=\mathbf{p}^{m \tau}
$$

or

$$
\left[\begin{array}{lc}
\mathbf{M}_{U U}^{l m \tau s} & 0 \\
\mathbf{M}_{\Theta U}^{l m \tau s} & \mathbf{M}_{\Theta \Theta}^{l m \tau s}
\end{array}\right]\left\{\begin{array}{c}
\ddot{\mathbf{U}}^{l s} \\
\ddot{\Theta}^{l s}
\end{array}\right\}+\left[\begin{array}{cc}
\mathbf{G}_{U U}^{l m \tau s} & \mathbf{G}_{U \Theta}^{l m \tau s} \\
\mathbf{G}_{\Theta U}^{l m \tau s} & \mathbf{G}_{\theta \Theta}^{l m \tau s}
\end{array}\right]\left\{\begin{array}{l}
\dot{\mathbf{U}}^{l s} \\
\dot{\Theta}^{l s}
\end{array}\right\}+\left[\begin{array}{cc}
\mathbf{K}_{U U}^{l m \tau s} & \mathbf{K}_{U \Theta}^{l m \tau s} \\
0 & \mathbf{K}_{\theta \Theta}^{l m \tau s}
\end{array}\right]\left\{\begin{array}{c}
\mathbf{U}^{l s} \\
\Theta^{l s}
\end{array}\right\}=\left\{\begin{array}{l}
\mathbf{F}^{m \tau} \\
Q^{m \tau}
\end{array}\right\}
$$

```
G
```

Rayleigh damping model
$\mathbf{G}_{U U}^{l m \tau s}=\zeta_{1} \mathbf{M}_{U U}^{l m \tau s}+\zeta_{2} \mathbf{K}_{U U}^{l m \tau s}$

Different theories of thermoelasticity through the 1D FE-CUF			
	Conditions		Theory
	$t_{0}=0$		Generalized, GL
Dynamic coupled	$t_{1}=t_{2}=\tilde{\mathbf{c}}=0$		Generalized, LS
	$\begin{aligned} & t_{0}=0 \\ & t_{1}=t_{2}=\tilde{\mathbf{c}}=0 \end{aligned}$		Classical
		$\mathbf{G}_{\Theta U}^{\text {Im }}$ S $=0$	Dynamic
Uncoupled	$\begin{gathered} t_{0}=0 \\ t_{1}=t_{2}=\tilde{\mathbf{c}}=0 \end{gathered}$	$\begin{aligned} & \mathbf{M}_{U U S}^{I m \tau s}=0 \\ & \mathbf{G}_{\Theta U}^{I m \tau S}=0 \end{aligned}$	Quasi-static
		$\begin{aligned} & \mathbf{M}_{U U S}^{I m \tau s}=0 \\ & \mathbf{G}_{\Theta \tau U}^{I m \tau S}=0 \\ & \mathbf{G}_{\Theta \Theta \Theta}^{I m \tau s}=0 \end{aligned}$	Static

Numerical approach - Development of method

Assembly procedure via Fundamental Nuclei

for whole structure
$\mathbf{M} \ddot{\boldsymbol{\Delta}}+\mathbf{G} \dot{\boldsymbol{\Delta}}+\mathbf{K} \boldsymbol{\Delta}=\mathbf{P}$

total degrees of freedom
DOF $=\sum_{i=1}^{N_{B N}}\left(4 \times N_{L N}^{i}\right)$

Numerical approach - Development of method

Time history analysis

Transfinite element technique
$\mathbf{M}^{l m \tau s} \ddot{\boldsymbol{\delta}}^{l s}+\mathbf{G}^{l m \tau s} \dot{\boldsymbol{\delta}}^{l s}+\mathbf{K}^{l m \tau s} \boldsymbol{\delta}^{l s}=\mathbf{p}^{m \tau}$

Numerical approach - Development of method

Non-dimensional Equation for isotropic FGMs

\[

\]

velocity of elastic longitudinal wave

$$
V_{e_{\mathrm{m}}}=\sqrt{\left(\lambda_{\mathrm{m}}+2 \mu_{\mathrm{m}}\right) / \rho_{\mathrm{m}}}
$$

diffusivity
$D_{\mathrm{m}}=\kappa_{\mathrm{m}} / c_{\mathrm{m}} \rho_{\mathrm{m}}$

$$
l_{\mathrm{m}}=D_{\mathrm{m}} / V_{e_{\mathrm{m}}}
$$

Numerical approach - Development of method

Non-dimensional FNs for isotropic FGMs based on LS theory

$$
\begin{aligned}
& p_{1}^{m \tau^{*}}=\int_{S^{(e)}}^{--} \hat{\mathrm{t}}_{x}^{n^{*}} F_{\tau} N_{m} d S+\int_{V^{(e)}} \hat{X}_{x}^{*} F_{\tau} N_{m} d V \\
& p_{2}^{m \tau^{*}}=\int_{S^{(e)}} \hat{\mathrm{t}}_{y}^{n^{*}} F_{\tau} N_{m} d S+\int_{V^{(e)}} \hat{X}_{y}^{*} F_{\tau} N_{m} d V \\
& p_{3}^{m \tau^{*}}=\int_{S^{(e)}} \hat{\mathrm{t}}_{z}^{n^{*}} F_{\tau} N_{m} d S+\int_{V^{(e)}} \hat{X}_{z}^{*} F_{\tau} N_{m} d V \\
& p_{4}^{m \tau^{*}}=\int_{V(e)}^{S}\left[\left(\hat{t}_{0} s+1\right) \hat{R}^{*}\right] F_{\tau} N_{m} d V+\int_{S^{(e)}}\left(\hat{q}_{i}^{*} n_{i}\right) F_{\tau} N_{m} d S
\end{aligned}
$$

Numerical approach - Development of method

Non-dimensional FNs for isotropic FGMs based on LS theory

$$
\triangleleft \cdots \triangleright=\int_{A^{(e)}}(\cdots) d A
$$

$$
\begin{array}{|l|l|l|l|}
\hline I_{L}^{m l} & I_{L}^{m, l y} & I_{L}^{m l_{, y}} \mid I_{L}^{m, y, y}=\int_{L^{(e)}}\left(N_{m} N_{l}\left|N_{m_{, y}} N_{l}\right| N_{m} N_{l_{y, y}} \mid N_{m_{, y}} N_{l_{, y}}\right) d y \\
\hline
\end{array}
$$

$$
\hat{C}_{\rho}=\frac{\rho}{\rho_{\mathrm{m}}}, \hat{C}_{\beta}=\frac{\beta}{\beta_{\mathrm{m}}}, \hat{C}_{\kappa}=\frac{\kappa}{\kappa_{\mathrm{m}}}, \hat{C}_{c}=\frac{c}{c_{\mathrm{m}}}
$$

$$
\begin{aligned}
& \hat{C}_{11}=\hat{C}_{22}=\hat{C}_{33}=\frac{(2 \mu+\lambda)}{\left(\lambda_{\mathrm{m}}+2 \mu_{\mathrm{m}}\right)} \\
& \hat{C}_{44}=\hat{C}_{55}=\hat{C}_{66}=\frac{\mu}{\left(\lambda_{\mathrm{m}}+2 \mu_{\mathrm{m}}\right)} \\
& \hat{C}_{12}=\hat{C}_{13}=\hat{C}_{23}=\frac{\lambda}{\left(\lambda_{\mathrm{m}}+2 \mu_{\mathrm{m}}\right)}
\end{aligned}
$$

$$
\text { thermoelastic coupling parameter } \rightarrow C=\frac{T_{0} \beta_{\mathrm{m}}^{2}}{c_{\mathrm{m}} \rho_{\mathrm{m}}\left(\lambda_{\mathrm{m}}+\mu_{\mathrm{m}}\right)}
$$

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
$>$ Evaluations and results
6. Conclusion

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGMs
\checkmark Example 8. variable thickness disk made of isotropic FGMs

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGMs
\checkmark Example 8. variable thickness disk made of isotropic FGMs

Numerical approach - Evaluations and results

Static structural analysis

Example 1. Rotating variable thickness disk

Material properties	
Young's modulus E	207 GPa
Poisson's ratio v	0.28
density (ρ)	$7860 \mathrm{~kg} / \mathrm{m}^{3}$

annular disk with hyperbolic profile	
$r_{\mathrm{in}}=0.05 \mathrm{~m}$	$h_{\mathrm{in}}=0.06 \mathrm{~m}$
$r_{\mathrm{o}}=0.2 \mathrm{~m}$	$h_{\mathrm{o}}=0.03 \mathrm{~m}$
$h(r)=0.0134 r^{-0.5}$	

- $\omega=2000 \mathrm{rad} / \mathrm{s}$
- hub is assumed to be fully fixed

Numerical approach - Evaluations and results

Static structural analysis

Example 1. Rotating variable thickness disk
1D FE-CUF modeling

Different 1D FE-CUF models of the disk			
Model	Discretizing		
	Along the axis	Over the corss sections	
(1)	$8 \mathrm{~B} 2,3 \mathrm{CS}$		
(2)	$8 \mathrm{~B} 2,4 \mathrm{CS}$	$(2 / 6 / 8) \times 32 \mathrm{~L} 4$	6240
(3)	$10 \mathrm{~B} 2,4 \mathrm{CS}$	$(2 / 4 / 6 / 8) \times 32 \mathrm{~L} 4$	5472
(4)	$12 \mathrm{~B} 2,5 \mathrm{CS}$	$(1 / 2 / 4 / 8) \times 32 \mathrm{~L} 4$	7200
(5)	$14 \mathrm{~B} 2,6 \mathrm{CS}$	$(1 / 2 / 3 / 4 / 6) \times 32 \mathrm{L4}$	7584
(6)	$16 \mathrm{~B} 2,7 \mathrm{CS}$	$(1 / 2 / 3 / 4 / 5 / 6 / 8) \times 32 \mathrm{~L} 4$	8352
(7)	$18 \mathrm{~B} 2,8 \mathrm{CS}$	$(1 / 2 / 3 / 4 / 5 / 6 / 7 / 8) \times 32 \mathrm{~L} 4$	11040
(8)	$22 \mathrm{~B} 2,8 \mathrm{CS}$	$(1 / 2 / 3 / 4 / 5 / 6 / 7 / 8) \times 32 \mathrm{~L} 4$	14496
${ }^{*}$ 3 types of cross section (CS) with different radii			

Numerical approach - Evaluations and results

Static structural analysis

Example 1. Rotating variable thickness disk
verification of results

Radial displacement

Model	DOF	Radial displacement $u_{r}(\mu \mathrm{~m})$			
		At mid-radius	At outer radius		
Analytical	1	119.01			157.57
1D CUF- FE					
(1)	6240	120.32	(1.10)	156.00	(1.00)
(2)	5472	118.36	(0.54)	157.00	(0.36)
(3)	7200	118.36	(0.54)	156.42	(0.73)
(4)	7584	118.75	(0.22)	157.15	(0.27)
(5)	8352	119.50	(0.41)	158.08	(0.32)
(6)	9504	118.50	(0.43)	157.93	(0.23)
(7)	11040	117.26	(1.47)	154.92	(1.68)
(8)	14496	117.06	(1.64)	155.00	(1.63)
3D ANSYS	14400	119.00	(0.01)	157.10	(0.30)

(): \% difference with respect to the analytical solution.

Numerical approach - Evaluations and results

Static structural analysis

Example 1. Rotating variable thickness disk

Model	DOF	Radial displacement $u_{r}(\mu \mathrm{~m})$			
		At mid-radius		At outer radius	
Analytical	1	119.01		157.57	
1D CUF- FE					
(1)	6240	120.32	(1.10)	156.00	(1.00)
(2)	5472	118.36	(0.54)	157.00	(0.36)
(3)	7200	118.36	(0.54)	156.42	(0.73)
(4)	7584	118.75	(0.22)	157.15	(0.27)
(5)	8352	119.50	(0.41)	158.08	(0.32)
(6)	9504	118.50	(0.43)	157.93	(0.23)
(7)	11040	117.26	(1.47)	154.92	(1.68)
(8)	14496	117.06	(1.64)	155.00	(1.63)
3D ANSYS	14400	119.00	(0.01)	157.10	(0.30)

Model (2)
(): \% difference with respect to the analytical solution.

Numerical approach - Evaluations and results

Static structural analysis

Example 1. Rotating variable thickness disk
1D FE-CUF modeling

Mesh refinement over the cross-sections

model	1D FE-CUF Model	DOF
1	8 B2, $(1 / 2 / 3 / 4) \times 32 \mathrm{~L} 4$	3168
2	$8 \mathrm{~B} 2,(2 / 4 / 6 / 8) \times 32 \mathrm{~L} 4$	5472
3	$8 \mathrm{~B} 2,(5 / 7 / 9 / 14) \times 32 \mathrm{~L} 4$	8928
4	$8 \mathrm{~B} 2,(4 / 8 / 12 / 16) \times 32 \mathrm{~L} 4$	10080
5	$8 \mathrm{~B} 2,(10 / 12 / 14 / 20) \times 32 \mathrm{~L} 4$	13536

Numerical approach - Evaluations and results

Static structural analysis

Example 1. Rotating variable thickness disk

Radial displacement

Model	DOF	Radial displacement $u_{r}(\mu \mathrm{~m})$			
		At mid-radius		At outer radius	
Analytical	1	119.01		157.57	
1D CUF FE					
$8 \mathrm{~B} 2,(1 / 2 / 3 / 4) \times 32 \mathrm{~L} 4$	3168	114.50	(3.79)	154.00	(2.27)
$8 \mathrm{~B} 2,(2 / 4 / 6 / 8) \times 32 \mathrm{~L} 4$	5472	118.36	(0.54)	157.00	(0.36)
$8 \mathrm{~B} 2,(5 / 7 / 9 / 14) \times 32 \mathrm{~L} 4$	8928	119.00	(0.01)	157.00	(0.36)
$8 \mathrm{~B} 2,(4 / 8 / 12 / 16) \times 32 \mathrm{~L} 4$	10080	119.00	(0.01)	158.00	(0.27)
$8 \mathrm{~B} 2,(10 / 12 / 14 / 20) \times 32 \mathrm{~L} 4$	13536	119.00	(0.01)	157.00	(0.36)
3D FE (ANSYS)	14400	119.00	(0.01)	157.10	(0.30)

${ }^{\text {() }}$ Absolute percentage difference with respect to the analytical solution.

```
\checkmark ~ C o n v e r g e d ~ s o l u t i o n
    with 1.6 times less DOFs of the 3D ANSYS model !!
```


Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGMs
\checkmark Example 8. variable thickness disk made of isotropic FGMs
6. Conclusion

Numerical approach - Evaluations and results

Static structural analysis

Example 2. Rotating variable thickness disk subjected thermal load

- The disk is subjected to radial temperature gradient.
- hub is assumed to be axially fixed.

Numerical approach - Evaluations and results

Static structural analysis

Example 2. Rotating variable thickness disk subjected thermal load

Radial and circumferential stresses

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGMs
\checkmark Example 8. variable thickness disk made of isotropic FGMs
6. Conclusion

Numerical approach - Evaluations and results

Static structural analysis

- The profile hyperbolic for the turbine disk
- web-type profile for the compressor disks
- Both ends of the shaft are fully fixed.

Numerical approach - Evaluations and results

Static structural analysis

Example 3. Complex rotor

1D FE-CUF modeling

Lagrange mesh over the cross-section with the largest radius

Numerical approach - Evaluations and results

Static structural analysis

Converged model

32 B 2 along the axis

refined 17×32 L4

computational model, DOF=27072

Numerical approach - Evaluations and results

Static structural analysis

Example 3. Complex rotor

verification of results

Numerical approach - Evaluations and results

Static structural analysis

Example 3. Complex rotor

verification of results
Radial and circumferential stresses

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGMs
\checkmark Example 8. variable thickness disk made of isotropic FGMs
6. Conclusion

Numerical approach - Evaluations and results

Static structural-thermal analysis
Example 4. simple beam

- Conduction from wall and constant temperature at end of beam.

Numerical approach - Evaluations and results

Static structural-thermal analysis

Nr. elements		Location along the y-axis in $\mathrm{mm}\left(y_{i}\right)$					
		0.0	0.1	0.2	0.3	0.4	0.5
5-B2	u_{y}	0.0	0.319	0.473	0.597	0.670	0.696
	T	105.5	84.38	63.28	42.19	21.09	0.0
10-B2	u_{y}	0.0	0.263	0.435	0.556	0.629	0.654
	T	105.5	84.38	63.28	42.19	21.09	0.0
20-B2	u_{y}	0.0	0.245	0.416	0.537	0.611	0.635
	T	105.5	84.38	63.28	42.19	21.09	0.0
30-B2	u_{y}	0.0	0.240	0.410	0.532	0.605	0.630
	T	105.5	84.38	63.28	42.19	21.09	0.0
50-B2	u_{y}	0.0	0.236	0.407	0.529	0.602	0.626
	T	105.5	84.38	63.28	42.19	21.09	0.0
100-B2	u_{y}	0.0	0.235	0.406	0.527	0.601	0.625
	T	105.5	84.38	63.28	42.19	21.09	0.0

Numerical approach - Evaluations and results

Static structural-thermal analysis

> Example 4. simple beam
results

Nr . elements		Location along the y-axis in $\mathrm{mm}\left(y_{i}\right)$					
		0.0	0.1	0.2	0.3	0.4	0.5
5-B4	u_{y}	0.0	0.242	0.409	0.531	0.604	0.629
	T	105.5	84.38	63.28	42.19	21.09	0.0
10-B4	uy	0.0	0.233	0.404	0.526	0.601	0.623
	T	105.5	84.38	63.28	42.19	21.09	0.0
20-B4	u_{y}	0.0	0.232	0.403	0.525	0.599	0.622
	T	105.5	84.38	63.28	42.19	21.09	0.0
30-B4	u_{y}	0.0	0.232	0.403	0.525	0.598	0.622
	t	105.5	84.38	63.28	42.19	21.09	0.0
50-B4	u_{y}	0.0	0.232	0.403	0.525	0.598	0.622
	T	105.5	84.38	63.28	42.19	21.09	0.0
100-B4	u_{y}	0.0	0.232	0.403	0.525	0.598	0.622
	T	105.5	84.38	63.28	42.19	21.09	0.0

Nr . elements		Location along the y-axis in $\mathrm{mm}\left(y_{i}\right)$					
		0.0	0.1	0.2	0.3	0.4	0.5
5-B4	u_{y}	0.0	0.242	0.409	0.531	0.604	0.629
	T	105.5	84.38	63.28	42.19	21.09	0.0
10-B4	u_{y}	0.0	0.233	0.404	0.526	0.598	0.623
	T	105.5	84.38	63.28	42.19	21.09	0.0
20-B4	u_{y}	0.0	0.231	0.402	0.524	0.597	0.621
	T	105.5	84.38	63.28	42.19	21.09	0.0
$100-B 4$	u_{y}	0.0	0.231	0.402	0.524	0.597	0.621
	t	105.5	84.38	63.28	42.19	21.09	0.0

Numerical approach - Evaluations and results

Static structural-thermal analysis
Example 4. simple beam
verification of results

Does heat conduction equation satisfy?

$$
\begin{gathered}
q_{\text {cond }}=k A \frac{\Delta T}{l} \\
q_{\text {cond }}=\left(237 \frac{\mathrm{~W}}{\mathrm{mK}}\right)\left(0.002 \mathrm{~m}^{2}\right)\left(\frac{(398.49-293) \mathrm{K}}{0.5 \mathrm{~m}}\right)=100 \mathrm{~W}
\end{gathered}
$$

Yes!!

Numerical approach - Evaluations and results

Static structural-thermal analysis

$$
\begin{gathered}
\begin{array}{c}
\text { Example 4. simple beam } \\
\text { Check free thermal expansion ! verification of results } \\
\text { Elongation }=L \alpha T_{\text {average }} \\
\text { At } y=0.1 \rightarrow u_{y}=(0.1)\left(23.1 \times 10^{-6}\right) \frac{(84.38+105.5)}{2}=0.219 \mathrm{~mm} \\
\text { At } y=0.5 \rightarrow u_{y}=(0.5)\left(23.1 \times 10^{-6}\right) \frac{(0+105.5)}{2}=0.6092 \mathrm{~mm}
\end{array}
\end{gathered}
$$

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGMs
\checkmark Example 8. variable thickness disk made of isotropic FGMs

Numerical approach - Evaluations and results

Quasi-static structural-thermal analysis
Example 5. simple beam

Numerical approach - Evaluations and results

Quasi-i-static structural-thermal analysis

Example 5. simple beam
results
10B4/1L4 model

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGMs
\checkmark Example 8. variable thickness disk made of isotropic FGMs

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials

Material properties	
Lame'constant λ	40.4 GPa
Lame' constant μ	27 GPa
coefficient of linear thermal expansion (α)	$23 \times 10^{-6} \mathrm{~K}^{-1}$
density (ρ)	$2707 \mathrm{~kg} / \mathrm{m}^{3}$
thermal conductivity (κ)	$204 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$
specific heat (c)	$903 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$

Boundary conditions
$\hat{r}=a \rightarrow\left\{\begin{array}{c}-\frac{\partial \hat{T}}{\partial \hat{r}}=\hat{q}_{\text {in }}(t) \\ \hat{u}=0\end{array}\right.$
$\hat{r}=b \rightarrow\left\{\begin{array}{l}\hat{T}=0 \\ \hat{\sigma}_{r r}=0\end{array}\right.$
where
$\hat{q}_{\text {in }}(t)= \begin{cases}0 & \hat{t} \leq 0 \\ 1 & \hat{t}>0\end{cases}$

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials

Different 1D FE-CUF models for the constant thickness disk			
Model	Discretizing		DOF
	Along the axis	corss sections	
(1)	1 B2		1680
(2)	1 B3	$(6 \times 30) \mathrm{L} 4$	2520
(3)	1 B4		3360
(4)		(3×15) L9	1680
(5)	1 B2	(2×10) L16	
(6)		$(6 \times 18) \mathrm{L} 9$	3744

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials

verification of results

Based on the LS theory
of thermoelasticity

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials

verification of results

Based on the LS theory of thermoelasticity

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGM
\checkmark Example 8. variable thickness disk made of isotropic FGMs

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

```
Example 7. Constant thickness disk made of isotropic FGM
```

Material properties Metal-Ceramic FGM			
	Metal: Aluminum	Ceramic: Alumina	
	40.4 GPa	219.2 GPa	
Lame'constant λ	27.0 GPa	146.2 GPa	
shear modulus μ	$2707 \mathrm{~kg} / \mathrm{m}^{3}$	$3800 \mathrm{~kg} / \mathrm{m}^{3}$	
density (ρ)	$23.0 \times 10^{-6} \mathrm{~K}^{-1}$	$7.4 \times 10^{-6} \mathrm{~K}^{-1}$	
coefficient of linear thermal expansion (α)	$204 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$	$28.0 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$	
thermal conductivity (κ)	$903 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$	$760 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$	
specific heat (c)	0.64	1.5625	

effective properties
$\mathrm{P}=\mathrm{V}_{\mathrm{m}} \mathrm{P}_{\mathrm{m}}+\mathrm{V}_{\mathrm{C}} \mathrm{P}_{\mathrm{C}}=\mathrm{V}_{\mathrm{m}}\left(\mathrm{P}_{\mathrm{m}}-\mathrm{P}_{\mathrm{C}}\right)+\mathrm{P}_{\mathrm{C}}$

$$
\begin{aligned}
& \text { metal volume fraction } \\
& \mathrm{V}_{\mathrm{m}}=\left(\frac{b-\hat{r}}{b-a}\right)^{n}
\end{aligned}
$$

$$
\begin{gathered}
\text { geometry } \\
\hline \begin{array}{c}
a=1 \\
b=2
\end{array}
\end{gathered}
$$

Thickness $=0.1$

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

Operational, boundary \& initial conditions

$$
\begin{gathered}
T_{0}=293 \mathrm{~K}, \widehat{\omega}=0.01 \\
\text { at } t=0 \rightarrow T=\dot{\mathbf{u}}=\dot{T}=\mathbf{u}=0
\end{gathered}
$$

$$
T(t)=T_{d}\left(1-\left[1+100 \frac{t V_{e}^{2}}{D_{\mathrm{m}}}\right] e^{-100 t V_{\mathrm{e}}^{2}} /{ }^{D \mathrm{~m}}\right)
$$

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM
\checkmark the material properties linearly change through the radius ($n=1$)
\checkmark Based on the LS theory of thermoelasticity

results
Time history

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

```
Example 7. Constant thickness disk made of isotropic FGM
```

\checkmark the material properties linearly
change through the radius ($n=1$)
\checkmark Based on the LS theory of
thermoelasticity

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

Speed range of the thermal wave

\checkmark	the material properties linearly
change through the radius $(n=1)$	
\checkmark	Based on the LS theory of
thermoelasticity	

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM
results
Speed range of the thermal wave
\checkmark the material properties linearly change through the radius $(n=1)$
\checkmark Based on the LS theory of thermoelasticity

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM
results
Thermal wave propagation
\checkmark the material properties linearly change through the radius ($n=1$)
\checkmark Based on the LS theory of thermoelasticity

$$
\begin{aligned}
& \text { Non-dimensional form of energy equation } \\
& \begin{array}{c}
\left(\frac{\kappa}{\kappa_{\mathrm{m}}} \widehat{T}_{, i}\right)_{, i}-\frac{\rho c}{c_{\mathrm{m}} \rho_{\mathrm{m}}}\left(\hat{t}_{0} \hat{T}+\hat{T}\right)-C \frac{\beta}{\beta_{\mathrm{m}}}\left(\hat{t}_{0} \hat{u}_{i, i}+\hat{\dot{u}}_{i, i}\right) \\
+\left(\hat{t}_{0} \hat{\hat{R}}+\hat{R}\right)=0
\end{array}
\end{aligned}
$$

Non-dimensional form of energy equation
$\left(\frac{\kappa}{\kappa_{\mathrm{m}}} \widehat{T}_{\mathrm{T}_{i,}}\right)_{, i}-\frac{\rho c}{c_{\mathrm{m}} \rho_{\mathrm{m}}}\left(\hat{t}_{0} \hat{\tilde{T}}+\hat{\tilde{T}}\right)-C \frac{\beta}{\beta_{\mathrm{m}}}\left(\hat{t}_{0} \hat{\ddot{u}}_{i, i}+\hat{\dot{u}}_{i, i}\right)$ $+\left(\hat{t}_{0} \hat{\dot{R}}+\hat{R}\right)=0$

\(\left.\begin{array}{c}\hat{V}_{T_{\mathrm{C}}}=\sqrt{D_{\mathrm{C}} / D_{\mathrm{m}}} \sqrt{1 / \hat{t}_{0_{\mathrm{C}}}}=0.27

\hat{V}_{T_{\mathrm{m}}}=\sqrt{1 / \hat{t}_{0_{\mathrm{m}}}}=1.25\end{array}\right\} \quad \longrightarrow\)| Speed range of the thermal wave |
| :---: |
| $0.27 \leq \hat{V}_{T, \mathrm{FGM}} \leq 1.25$ |

$$
\begin{aligned}
1 / 1.25 & \leq \hat{t}_{\text {reff }} \leq 1 / 0.27 \\
0.8 & \leq \hat{t}_{\text {reff }} \leq 3.7
\end{aligned}
$$

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM
results
Elastic wave propagation
\checkmark the material properties linearly change through the radius ($n=1$)
\checkmark Based on the LS theory of thermoelasticity

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM
results
Elastic wave propagation
\checkmark the material properties linearly
change through the radius $(n=1)$
\checkmark Based on the LS theory of
thermoelasticity

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

results
effects of power law index (n)

metal volume fraction

$$
\mathrm{V}_{\mathrm{m}}=\left(\frac{b-\hat{r}}{b-a}\right)^{n}
$$

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

Radial stress

Circumferential stress

metal volume fraction

$$
\mathrm{V}_{\mathrm{m}}=\left(\frac{b-\hat{r}}{b-a}\right)^{n}
$$

Time history based on the LS theory at mid-radius of the disk

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM
results
effects of reference temperature $\left(T_{0}\right)$

Time history based on the LS theory at mid-radius of the disk ($n=1$)

Numerical approach - Evaluations and results

Dynamic_coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM

effects of reference temperature $\left(T_{0}\right)$

Time history based on the LS theory at mid-radius of the disk ($n=1$)

Outlines

1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
> Motivation
> Development of method
> Evaluations and results
o Static structural analysis
\checkmark Example 1. Rotating variable thickness disk
\checkmark Example 2. Rotating variable thickness disk subjected thermal load
\checkmark Example 3. Complex rotor
o Static structural-thermal analysis - Example 4. simple beam
o Quasi-static structural-thermal analysis - Example 5. simple beam
o Dynamic coupled structural-thermal analysis
\checkmark Example 6. Constant thickness disk made of isotropic homogeneous materials
\checkmark Example 7. Constant thickness disk made of isotropic FGM
\checkmark Example 8. variable thickness disk made of isotropic FGM
6. Conclusion

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

```
Example 8. variable thickness disk made of isotropic FGM
```

Material properties Metal-Ceramic FGM		
	Metal: Aluminum	Ceramic: Alumina
Lame'constant λ	40.4 GPa	219.2 GPa
shear modulus μ	27.0 GPa	146.2 GPa
density (ρ)	$2707 \mathrm{~kg} / \mathrm{m}^{3}$	$3800 \mathrm{~kg} / \mathrm{m}^{3}$
coefficient of linear thermal expansion (α)	$23.0 \times 10^{-6} \mathrm{~K}^{-1}$	$7.4 \times 10^{-6} \mathrm{~K}^{-1}$
thermal conductivity (κ)	$204 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$	$28.0 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$
specific heat (c)	$903 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$	$760 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
dimensionless relaxation time $\left(\hat{t}_{0}\right)$	0.64	1.5625

$$
\begin{array}{|c}
\hline \text { geometry } \\
\hline \hat{r}_{\text {inner }}=a=0.5 \\
\hat{r}_{\text {outer }}=b=2 \\
\hat{h}_{\text {inner }}=0.6 \\
\hat{h}_{\text {outer }}=0.3 \\
\hline
\end{array}
$$

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM

$$
T_{0}=293 \mathrm{~K}, \widehat{\omega}=0.05
$$

$$
\text { at } t=0 \rightarrow T=\dot{\mathbf{u}}=\dot{T}=\mathbf{u}=0
$$

Operational, boundary \& initial conditions

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM

Results for $n=0$

Radial stress

Nondimensional time

Nondimensional time

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis
Example 8. variable thickness disk made of isotropic FGM
Results for $n=0$ based LS theory

Numerical approach - Evaluations and results

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM

Results for $n=0$ based LS theory

Outlines

1. Introduction to rotating disks
2. Fundamentals of Linear Thermoelasticity
3. Literature review \& present work
4. Analytical approach
5. Numerical approach
6. Conclusion

Conclusion - Summary of results

Some results obtained from coupled thermoelasticity solution

\checkmark Transient deformations and stresses may be higher than those of a steady-state condition.
\checkmark Time history of temperature is damped faster than time history of displacements.
\checkmark Deformations and stresses oscillate along the time in a harmonic form.
\checkmark Under the propagating longitudinal elastic waves along the radius, thickness of the disk also expands and contracts, due to the Poisson effect.
\checkmark When the coupling parameter takes a greater value, the amplitudes of oscillations of temperature increase.

Lord-Shulman generalized coupled thermoelasticity predicts larger temperature and stresses compared to the classical theories.
\checkmark A functionally graded disk may be used as thermal barrier to reduce the thermal shock effects.

Conclusion - Summary of results

Some general points on the 1D FE-CUF modeling of disks

\checkmark The 1D FE method refined by the CUF can be effectively employed to analyze disks reduce the computational cost of 3D FE analysis without affecting the accuracy.
\checkmark the models provides a unified formulation that can easily consider different higher-order theories where large bending loads are involved in the problem.
\checkmark Increasing 1D elements along the axis of disks may not have significant effect on accuracy of results and only leads to more DOFs.
\checkmark A proper distribution of the Lagrange elements and type of element used over the cross sections may lead to a reduction in computational costs and the convergence of results.
\checkmark Making use of higher-order Lagrange elements (like L9 and L16) can reduce DOFs, while preserving the accuracy.
\checkmark increase of number of elements along the radial direction, compared to circumferential direction, is more effective in improving the results.

Conclusion - Future works

It is of interests to extend the study to
\checkmark Nonlinear thermoelasticity problems
\checkmark Dynamic analysis of rotors subjected to transient thermal pre-stresses.
\checkmark Study of thermoelastic damping effect on dynamic behaviors of rotors.

Publications in international Journals

1. Entezari A, Filippi M, Carrera E., Kouchakzadeh M A, 3D Dynamic Coupled Thermoelastic Solution For Constant Thickness Disks Using Refined 1D Finite Element Models. European Journal of Mechanics - A/Solids. (Under review).
2. Entezari A, Filippi M, Carrera E. Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures, part 1: Equations and formulation. Journal of Thermal Stresses. 2017:1-16.
3. Filippi M, Entezari A, Carrera E. Unified finite element approach for generalized coupled thermoelastic analysis of 3D beam-type structures, part 2: Numerical evaluations. Journal of Thermal Stresses. 2017:1-15.
4. Entezari A, Filippi M, Carrera E. On dynamic analysis of variable thickness disks and complex rotors subjected to thermal and mechanical prestresses. Journal of Sound and Vibration. 2017;405:68-85.
5. Kouchakzadeh MA, Entezari A, Carrera E. Exact Solutions for Dynamic and Quasi-Static Thermoelasticity Problems in Rotating Disks. Aerotecnica Missili \& Spazio. 2016;95:3-12.
6. Entezari A, Kouchakzadeh MA, Carrera E, Filippi M. A refined finite element method for stress analysis of rotors and rotating disks with variable thickness. Acta Mechanica. 2016:1-20.
7. Entezari A, Kouchakzadeh MA. Analytical solution of generalized coupled thermoelasticity problem in a rotating disk subjected to thermal and mechanical shock loads. Journal of Thermal Stresses. 2016:1-22.
8. Carrera E, Entezari A, Filippi M, Kouchakzadeh MA. 3D thermoelastic analysis of rotating disks having arbitrary profile based on a variable kinematic 1D finite element method. Journal of Thermal Stresses. 2016:1-16.
9. Kouchakzadeh MA, Entezari A. Analytical Solution of Classic Coupled Thermoelasticity Problem in a Rotating Disk. Journal of Thermal Stresses. 2015;38:1269-91.

Acknowledgements

\checkmark Professor M. A. Kouchakzadeh and Erasmo Carrera, my supervisors
\checkmark Dr. Matteo Filippi, my advisor and colleague in Italy.
\checkmark Professors Hassan Haddadpour and Ali Hosseini Kordkheili, my Iranian committee members
\checkmark Professors Maria Cinefra and Elvio Bonisoli, my Italian committee members

Thank you for your attention!

${ }^{1}$ Sharif University of Technology
Department of Aerospace Engineering, Tehran, Iran

²MUL2 research group,
Polytechnic University of Turin, Italy

${ }^{2}$ Polytechnic University of Turin,

