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 Aerospace (aero-engines, turbo-pumps, turbo-chargers, etc.)

 Mechanical (spindles, flywheel, brake disks, etc.)

 Naval

 Power plant (steam and gas turbines, turbo-generators, )

 Chemical plant

 Electronics (electrical machines)

Applications

Introduction to rotating disks
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Introduction to rotating disks
Configurations



6

 Transient thermal load

 In some of applications, the disks may be exposed to sudden temperature changes in short 
periods of time (for Ex. start and stop cycles)

 These sudden changes in temperature can cause time dependent thermal stresses. 

 Thermal stresses due to large temperature gradients are higher than the steady-state stresses.

 In such conditions, the disk should be designed with consideration of transient effects.

start and stop cycles
I) start up, 

II) shut down

Introduction to rotating disks
Operating conditions

 Main Loads

 Centrifugal forces

 Thermal loads.
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Effective properties of FGMs

ceramic-metal FGM

 Metals: steels, super alloys

 Ceramic matrix composites (CMC)

 Functionally graded materials (FGMs)

Introduction to rotating disks
Disk materials

Peff	= VmPm +Vc Pc =Vm (Pm−Pc)+Pc

ceramic-metal FGM

Pm and Pc :  properties of metal and ceramic
Vm and Vc : volume fractions of metal and ceramic
Vm = ( , , )
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Introduction to rotating disks
FGM disk

power gradation law for metal volume fraction along the radius

Vm = −−

m
et

al
 v

ol
um

e 
fra

ct
io

n 

radius

Effective properties of FGMs

Peff	= VmPm +Vc Pc =Vm (Pm−Pc)+Pc
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Fundamentals of Linear Thermoelasticity

 Inertia effects
• static problems
• dynamic problems

 displacement and temperature fields interaction
• uncoupled problems
• coupled problems

Classification of thermoelastic problems
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( , ), −( ), + = 0equation of motion

energy equation( , ), =

Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

static steady-state problems

• → temperature change
• → displacements
• → elastic coefficients
• → body forces
• → thermoelastic moduli
• → thermal conductivity
• → internal heat source
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Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

Under axisymmetric & plane stress assumptions

( ) = + ( ⁄ ) ln( ⁄ )

ℎ − ℎ + ℎ = 0

static steady-state problems

equation of motion

energy equation



13

− , , =

Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

Quasi-static problems

( , ), −( ), + = 0equation of motion

energy equation

• 	→ density
• → specific heat
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( , ), −( ), + =
− , , =

Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

equation of motion

energy equation

Dynamic uncoupled problems
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( , ), −( ), + = +
− , , =

Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

equation of motion

energy equation

Dynamic uncoupled problems

Considering mechanical damping

• 	→ mechanical damping coefficient of material
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Fundamentals of Linear Thermoelasticity

Coupled thermoelasticity 

 the time rate of strain is taken into account  in 
the energy equation

 elasticity and energy equations are coupled. 

 these coupled equations must be solved 
simultaneously.

Classification of thermoelastic problems

equation of motion

energy equation

Mechanical and thermal BCs and ICs

( , ), ( , )
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( , ), −( ), + =
− , , + , =

Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

equation of motion

energy equation

Classical coupled problems

• 	→ reference temperature
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( , ), −( ), + =
− , , + , =

Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

equation of motion

energy equation

Classical coupled problems

 	→ reference temperature

infinite propagation speed for the thermal disturbances !!!
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Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

 in the classical thermoelasticity

 heat conduction equation is of a parabolic
type.

 Predicting infinite speed for heat 
propagation

 The prediction is not physically 
acceptable.

 thermal wave disturbances are not 
detectable.

 generalized theories of thermoelasticity

 non-classical theories with the finite 
speed of the thermal wave.
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( , ), −( ), + =
+ − ( , ),+ , + , = +

( , ), −( ), −( ), + =
+ − 2 ̃ , − ( , ),+ , =

( , ), −( ), + =
− ∗ , , + , =

without energy dissipation

Fundamentals of Linear Thermoelasticity
Classification of thermoelastic problems

• 	→ LS relaxation time • 	, 	→ GL relaxation times
• ̃ → GL material constants

• ∗	→ GN material constants
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 Coupled thermoelasticity problems are still topics of active research.

 Analytical solution of the these problems are mathematically difficult.

 Number of papers on analytical solutions is limited.

 Numerical methods are often used to solve these problems.

 Numerical solutions of these problems have been presented in many articles.

 Finite element method is still applied as a powerful numerical tool in such problems.

 The major presented solutions are related to the basic problems (infinite medium, half-space, layer and 
axisymmetric problems).

 Analytical and numerical solution of rotating disk problems has never before been presented.

Literature review & present work

Conclusion of the literature review
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Literature review & present work

Present work

 Study of coupled thermoelastic behavior in disks subjected to thermal shock loads

 based on the generalized and classic theories

 Disks with constant and variable thickness

 Made of FGM

• Main purpose 

• Implementation

 Analytical approach

 Numerical approach
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Consider
• An annular rotating disk with constant thickness,  
• made of isotropic & homogeneous material, 
• Under axisymmetric thermal and mechanical shock loads.

Analytical approach - Solution method

Governing equations

( , ), −( ), + =
+ − ( , ),+ , + , = +

+ 1 − 1 +
− + 1 + + 1 = 0 

( + 2 ) + 1 − 1 − − = −

Based on LS generalized coupled theory

Eq. of motion

energy Eq.

= 2+ 2             = 2+ 2 3 + 2 • &	 	 → Lame constants
• → coefficient of linear thermal expansion

I

II
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Analytical approach - Solution method

Governing equations

+ − 1 +
 

− + + + = 0
( + 2 ) + 1 − 1 − − = −

Inner radius of the disk

Outer radius of the disk

- time dependent known functions

constant parameters − known functions of 
, 0 = ,( , 0) = ( )

, 0 = ,( , 0) = ( )

| + , =| + ( , ) = ( )

| + ( , ) = ( )| + ( , ) = ( )

thermal BCs. & ICs Mechanical BCs. & ICs

Coupled System Of Equations

I

II
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propagation speed  of elastic longitudinal wave

Analytical approach - Solution method

Governing equations in Non-dimensional form

Non-dimensional parameters

unit length 

= + 2 )⁄
= ⁄

̂ = , ̂ = , ̂ == , = , =
= + 2 ) , =
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Thermoelastic damping or coupling parameter 

where 

Analytical approach - Solution method

Governing equations in Non-dimensional form

Coupled System Of Equations

I

II

̂ + 1̂ ̂ − 1̂ − ̂ − ̂ = − ̂
̂ + 1̂ ̂ − ̂ 1 + ̂ ̂ − ̂ ̂ ̂ + 1̂ ̂ + ̂ ̂ + 1̂ ̂ = 0

= ( + 2
• Non-dimensional propagation speed  of thermal wave → = 1 ̂⁄
• Non-dimensional propagation speed  of elastic longitudinal wave → = 1



29

Analytical approach - Solution method

Solution of non-dimensional equations

Coupled System Of Equations

I

II

̂ + 1̂ ̂ − 1̂ − ̂ − ̂ = − ̂
̂ + 1̂ ̂ − ̂ 1 + ̂ ̂ − ̂ ̂ ̂ + 1̂ ̂ + ̂ ̂ + 1̂ ̂ = 0

̂ | ̂ + ( , ) = ( ̂)        ̂ | ̂ + ( , ) = ( ̂)
̂ | ̂ + ( , ) = ( ̂)           ̂ | ̂ + ( , ) = ( ̂)( ̂ , 0) = ( ̂), ( ̂ , 0) = ( ̂)( ̂ , 0) = ( ̂), ( ̂ , 0) = ( ̂)

Thermal and mechanical BCs. & ICs



30

Analytical approach - Solution method

̂ + 1̂ ̂ − ̂ 1 + ̂ ̂ − ̂ ̂ ̂ + 1̂ ̂ + ̂ ̂ + 1̂ ̂ = 0
Solution of non-dimensional equations

energy Eq.

+ 1 − − = 0
| + ( , ) = ( )      | + ( , ) = ( )( , 0) = 0    ,      ( , 0) = 0

+ 1 − − = , + + , +
| + ( , ) = 0   | + ( , ) = 0( , 0) = ( )    ,       ( , 0) = ( )

( , ) = ( , ) + ( , )principle of superposition

decomposition
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Analytical approach - Solution method

Solution of non-dimensional equations

principle of superposition

decomposition

( , ) = ( , ) + ( , )

̂ + 1̂ ̂ − 1̂ − ̂ − ̂ = − ̂ Eq. of motion

+ 1 − − = 0
| + ( , ) = ( )       | + ( , ) = ( )( , 0) = 0    ,       ( , 0) = 0

+ 1 − − = , −
| + ( , ) = 0    
̂ | + ( , ) = 0( , 0) = ( )   ,     ( , 0) = ( )
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Analytical approach - Solution method

Solution of non-dimensional equations

Bessel equation and can be
separately solved using finite Hankel transform

decomposition

̂ + 1̂ ̂ − 1̂ − ̂ − ̂ = − ̂ Eq. of motion

+ 1 − − = 0
| + ( , ) = ( )       | + ( , ) = ( )( , 0) = 0    ,       ( , 0) = 0

+ 1 − − = , −
| + ( , ) = 0    
̂ | + ( , ) = 0( , 0) = ( )   ,     ( , 0) = ( )
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and are positive roots of the following equations

Analytical approach - Solution method

Finite Hankel transform

Solution of non-dimensional equations

kernel functions 

ℋ[ ( , )] = ( , ) = ( , ) ( , )
ℋ[ ( , )] = ( , ) = ( , ) ( , )

( , ) = ( ) ( ) | + ( − ( ) ( ) | + (
( , ) = ( ) ( ) | + ( − ( ) ( ) | + (

( ) | + ( ( ) | + ( − ( ) | + ( ( ) | + (= 0( ) | + ( ( ) | + ( − ( ) | + ( ( ) | + ( = 0
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Taking the finite Hankel transform 

Analytical approach - Solution method

Uncoupled sub-IBVPs (Bessel equations)

Solution of non-dimensional equations

Solving ODEs

1( , )nu t h 1( , )mT t x
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Analytical approach - Solution method

Uncoupled sub-IBVPs (Bessel equations)

Solution of non-dimensional equations

Solving ODEs

1( , )nu t h 1( , )mT t x

Inverse finite Hankel transforms  

= 1‖ ( , )‖      ,      = 1‖ ( , )‖      

( , ) = ( , ) ( , ( , ) = ( , ) ( , )
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Analytical approach - Solution method

Solution of non-dimensional equations

( , ) = ( ) ( , )     ,         ( , ) = ( ) ( , )

decomposition

̂ + 1̂ ̂ − 1̂ − ̂ − ̂ = − ̂ Eq. of motion

+ 1 − − = 0
| + ( , ) = ( )       | + ( , ) = ( )( , 0) = 0    ,       ( , 0) = 0

+ 1 − − = , −
| + ( , ) = 0    
̂ | + ( , ) = 0( , 0) = ( )   ,     ( , 0) = ( )
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Analytical approach - Solution method

Solution of non-dimensional equations

Coupled System Of Equations

I

II

̂ + 1̂ ̂ − 1̂ − ̂ − ̂ = − ̂
̂ + 1̂ ̂ − ̂ 1 + ̂ ̂ − ̂ ̂ ̂ + 1̂ ̂ + ̂ ̂ + 1̂ ̂ = 0

( , )  = ( , ) ( , ) + ( ) ( , )
( , )  = ( , ) ( , + ( ) ( , )
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Analytical approach - Numerical evaluation

material properties

geometry

Specifications of numerical example

= 1= 2
= 40.4 GPa= 27 GPa= 23 × 10  K= 2707 kg/m3= 204 W/m ⋅ K= 903 J/kg ⋅ K

( ) = 0     ̂ 01      ̂ 0

Boundary conditions

at   ̂ = → − ̂ = ( )= 0
at		 ̂ = → = 0= 0
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Time history of the non-dimensional solution at mid-radius

Analytical approach - Numerical evaluation

Based on classical theory of coupled thermoelasticity

Temperature Radial displacement

mid-radius

Nondimensional Time (t)
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Time history of the non-dimensional solution at mid-radius

Analytical approach - Numerical evaluation

Nondimensional Time (t)
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Temperature Radial displacement

mid-radius

Based on LS generalized theory of coupled thermoelasticity
Validation
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Analytical approach - Numerical evaluation

Nondimensional Radius(r)
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temperature change radial stress circumferential stressradial displacement

radius radius radius radius

Based on LS generalized theory of coupled thermoelasticity

Radial distribution for different values of the time.

Results and discussion
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 Analytical solutions are limited to those of a disk with simple geometry and boundary conditions.

 FE method is more widely used for this class of problems.

 1D and 2D FE models are not able to provide all the desired information.

 3D FE modeling techniques may be required for a detailed coupled thermoelastic analysis. 

 3D FE models still impose large computational costs, specially, in a time-consuming transient solution.

 There is a growing interest in the development of refined FE models with lower computational efforts.

 A refined FE approach was developed by Prof. Carrera et al.

 They formulated the FE methods on the basis of a class of theories of structures.

Numerical approach

Motivations
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Numerical approach
Main characteristics of FE models refined by Carrera

 3D capabilities

 lower computational costs

 ability to analyze multi-field problems and multi-layered structures
MUL2 research group,
Polytechnic University,

Turin, Italy
www.mul2.polito.it
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Approaches to FE modeling

Numerical approach - Development of method

 Variational approach

 Weighted residual methods

 Weighted residual method based on Galerkin technique

 Efficient, high rate of convergence

 most common method to obtain a weak formulation of the problem
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  Governing equations

, , ,, ,
Equation of motion Energy equation

Numerical approach - Development of method

)
Hooke’s law

 For anisotropic and nonhomogeneous materials.

 Including LS, GL and classical theories of thermoelasticity.

 Considering mechanical damping effect.

 = = = ̃ = 0 → classical theory

 = = ̃ = 0	→ LS theory

 = 0→ GL theory.
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( , , , ) = ( , , ) ( )( , , , ) = ( , , ) ( )
• = 1,⋯ ,
• 	= number of nodal points in a element

Numerical approach - Development of method

FE formulation through Galerkin technique

• In 3D conventional FE method
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, + − − = 0 ( + ) + − 2 ̃ , − , ,																									+ , + , − − = 0
Equation of motion energy equation

Weighting function

Numerical approach - Development of method

FE formulation through Galerkin technique

( , , )
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( ) + ( ) + ( T σ)
= ( ) + ( )

( βT ) + ) + )
+ ( βT ) + ) − (2 T∇ )

+ (∇T κ∇ ) = ( T ) + ( ) + )

Eq. of motion 

energy Eq.

Numerical approach - Development of method

FE formulation through Galerkin technique
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Numerical approach - Development of method

Refined 1D FE model through Carrera unified formulation 

= ( )= ( )

1D FE3D beam-type structures

• = 1,⋯ ,
• = number of bar nodes
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• = 1,⋯ ,
• = number of terms of the expansion.

Carrera unified formulation (CUF)

( , ) = ( , ) ( )( , ) = ( , )Θ ( )

Numerical approach - Development of method

Refined 1D FE model through Carrera unified formulation 

• = 1,⋯ ,
• = number of bar nodes

= ( )= ( )

1D FE3D beam-type structures
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= ( )= ( )
1D FE CUF( , ) = ( , ) ( )( , ) = ( , )Θ ( ) ( , , , ) = ( , , ) ( )( , , , ) = ( , , ) Θ ( )	

1D FE-CUF

3D 8-nodes elementrefined 1D 2-nodes element

Numerical approach - Development of method

Refined 1D FE model through CUF

weighting function in 1D FE-CUF → ( , , )= ( ) ( , )
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Numerical approach - Development of method

Refined 1D FE model through CUF

( , , , ) = ( ) ( , ) ( )( , , , ) = ( ) ( , ) Θ ( )	1D FE-CUF

1D FE modeling elements and shape functions in 1D FE modeling

B2 linear

element

B2 quadratic

B4 cubic



57

  

 selection of ( , ) and ( = 1,⋯ , )  is arbitrary.

 various kinds of basic functions such as polynomials, harmonics and exponentials of any-order.

 For instance, different classes of polynomials such as Taylor, Legendre and Lagrange polynomials.

 In Carrera unified formulation

Numerical approach - Development of method

Refined 1D FE model through CUF

( , , , ) = ( ) ( , ) ( )( , , , ) = ( ) ( , ) Θ ( )	1D FE-CUF
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( , ) → bi-dimensional Lagrange functions

 cross-sections can be discretized using Lagrange elements 

• linear three-point (L3)
• quadratic six-point (L6) 
• bilinear four-point (L4) 

Numerical approach - Development of method

Refined 1D FE model through CUF

( , , , ) = ( ) ( , ) ( )( , , , ) = ( ) ( , ) Θ ( )	1D FE-CUF

• biquadratic nine-point (L9) 
• bi-cubic sixteen-point (L16)
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Substituting

into the weak forms of equation of motion and energy equation gives

lm s ls lm s ls lm s ls mt t t t+ =+M G K p d d d

• , and → 4×4 fundamental nuclei (FNs)of 
the mass, damping, and stiffness matrices

• → 4×1 FN of the load vector

• δ → 4×1 FN of the unknowns vector

Numerical approach - Development of method

FE equations in CUF form

( , , , ) = ( ) ( , ) ( )( , , , ) = ( ) ( , ) Θ ( )	1D FE-CUF ( , , )= ( ) ( , )weighting function
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Rayleigh damping model

→ structural damping effect

or

Numerical approach - Development of method

0 + + 0 =

= +

lm s ls lm s ls lm s ls mt t t t+ =+M G K p d d d

FE equations in CUF form

Different theories of thermoelasticity through the 1D FE-CUF
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+ + =M G K P D D D
for whole structure

assembly procedure of FNsfor each element
lm s ls lm s ls lm s ls mt t t t=+ +M G K pd d d 

2 L4

3 B4

Numerical approach - Development of method

total degrees of freedom

DOF = 4 ×
a model with 3 B4 / 2 L4, DOF=240

Assembly procedure via Fundamental Nuclei
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taking Laplace

Transfinite element technique

2[ ]
lm s
eq

lm s lm s lm s ls ms s
t

t t t t* *
+ + =

K

M G pK  d

numerical 
inversion

Numerical approach - Development of method

Time history analysis

lm s ls lm s ls lm s ls mt t t t=+ +M G K pd d d 

eq
* *=K PD

Assembling 	& ∗ for whole structure

solution in Laplace domain Δ∗
solve

solution in time domain (Δ( ))

• ̃ 	→	the Laplace variable
• →  FN of the equivalent stiffness matrix
• ∗ denotes Laplace transform of the terms.
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diffusivity velocity of elastic longitudinal wave unit length 

Numerical approach - Development of method

Non-dimensional Equation for isotropic FGMs

Non-dimensional parameters
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Numerical approach - Development of method
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Numerical approach - Development of method

Non-dimensional FNs for isotropic FGMs based on LS theory
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Example 1. Rotating variable thickness disk

Young’s modulus	 207	GPa
Poisson’s ratio 0.28
density ( ) 7860	kg/m

• = 2000		rad/s
• hub is assumed to be fully fixed = 0.05	m= 0.2	m ℎ = 0.06	m

ℎ = 0.0134	 . 	ℎ = 0.03	m

Material properties

Static structural analysis

Numerical approach - Evaluations and  results

annular disk with hyperbolic profile
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Numerical approach - Evaluations and  results

Static structural analysis
Example 1. Rotating variable thickness disk

DOFDiscretizingModel Over the corss sectionsAlong the axis
6240 (2/6/8) × 32	L48 B2, 3 CS*(1)
5472 (2/4/6/8) × 32	L48 B2, 4 CS (2)
7200 (2/4/6/8) × 32	L410 B2, 4 CS(3)
7584 (1/2/4/6/8) × 32	L412 B2, 5 CS(4)
8352 (1/2/3/4/6/8) × 32	L414 B2, 6 CS(5)
9504 (1/2/3/4/5/6/8) × 32	L416 B2, 7 CS(6)
11040(1/2/3/4/5/6/7/8) × 32	L418 B2, 8 CS(7)
14496(1/2/3/4/5/6/7/8) × 32	L422 B2, 8 CS(8)

* 3 types of cross section (CS) with different radii

1D FE-CUF modeling

Different 1D FE-CUF models of the disk

discretization along the axis
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Analytical Solution
model (1): DOF=6240
model (2): DOF=5472
model (3): DOF=7200
model (4): DOF=7584
model (5): DOF=8352
model (6): DOF=9504
model (7): DOF=11040
model (8): DOF=14496
ANSYS: DOF=14400

X

Radial displacement (μm)DOFModel At outer radiusAt mid-radius
157.57119.011Analytical

1D CUF- FE
(1.00)156.00(1.10)120.326240 (1)
(0.36)157.00(0.54)118.365472 (2)
(0.73)156.42(0.54)118.367200 (3)
(0.27)157.15(0.22)118.757584 (4)
(0.32)158.08(0.41)119.508352 (5)
(0.23)157.93(0.43)118.509504 (6)
(1.68)154.92(1.47)117.2611040(7)
(1.63)155.00(1.64)117.0614496(8)
(0.30)157.10(0.01)119.00144003D ANSYS

( ): % difference with respect to the analytical solution.

Radial displacement

Numerical approach - Evaluations and  results

Static structural analysis
Example 1. Rotating variable thickness disk verification of results
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Radial displacement (μm)DOFModel At outer radiusAt mid-radius
157.57119.011Analytical

1D CUF- FE
(1.00)156.00(1.10)120.326240 (1)
(0.36)157.00(0.54)118.365472 (2)
(0.73)156.42(0.54)118.367200 (3)
(0.27)157.15(0.22)118.757584 (4)
(0.32)158.08(0.41)119.508352 (5)
(0.23)157.93(0.43)118.509504 (6)
(1.68)154.92(1.47)117.2611040(7)
(1.63)155.00(1.64)117.0614496(8)
(0.30)157.10(0.01)119.00144003D ANSYS

( ): % difference with respect to the analytical solution.

Radial displacement

Numerical approach - Evaluations and  results

Static structural analysis
Example 1. Rotating variable thickness disk verification of results

Model (2)

 Error < 0.6%

 2.6 times less DOFs of the 3D ANSYS model !!
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Mesh refinement over the cross-sections

Numerical approach - Evaluations and  results

Static structural analysis
Example 1. Rotating variable thickness disk 1D FE-CUF modeling

DOF1D FE-CUF Modelmodel
31688	B2, (1/2/3/4) × 32	L41
54728	B2, (2/4/6/8) × 32	L42
89288	B2, (5/7/9/14) × 32	L43
100808	B2, (4/8/12/16) × 32	L44
135368	B2, (10/12/14/20) × 32	L45
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Analytical Solution
8 B2, (1/2/3/4)32 L4, DOF=3168
8 B2, (2/4/6/8)32 L4, DOF=5472
8 B2, (5/7/9/14)32 L4, DOF=8928
8 B2, (4/8/12/16)32 L4, DOF=10080
8 B2, (10/12/14/20)32 L4, DOF=13536
ANSYS, DOF= 14400

X

Radial displacement

Numerical approach - Evaluations and  results

Static structural analysis
Example 1. Rotating variable thickness disk verification of results

effect of enriching the radial discretization Radial displacement (μm)
DOFModel

At outer radiusAt mid-radius
157.57119.011Analytical

1D CUF FE
(2.27)154.00(3.79)114.503168 8	B2, (1/2/3/4) × 32	L4
(0.36)157.00(0.54)118.365472 8	B2, (2/4/6/8) × 32	L4
(0.36)157.00(0.01)119.008928 8	B2, (5/7/9/14) × 32	L4
(0.27)158.00(0.01)119.00100808	B2, (4/8/12/16) × 32	L4
(0.36)157.00(0.01)119.00135368	B2, (10/12/14/20) × 32	L4
(0.30)157.10(0.01)119.00144003D FE (ANSYS)

( ) Absolute percentage difference with respect to the analytical solution.

 Converged solution 

with 1.6 times less DOFs of  the 3D ANSYS model !!
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• The disk is subjected to radial temperature gradient.
• hub is assumed to be axially fixed.

Numerical approach - Evaluations and  results

Static structural analysis

Example 2. Rotating variable thickness disk subjected thermal load
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radial displacement Radial and circumferential stresses

Numerical approach - Evaluations and  results

0.5 1 1.5 2

ur(mm)

Max=1.94

Min=0.55

50 150 250

rr(MPa)

Max=238

Min=0

150 350 550

(MPa)

Max=541

Min=0

radius radius

Static structural analysis

Example 2. Rotating variable thickness disk subjected thermal load

radial
stress 

circumferential
stress 



1. Introduction to rotating disk
2. Fundamentals of Linear Thermoelasticity
3. Literature review & present work
4. Analytical approach
5. Numerical approach
 Motivation
 Development of method
 Evaluations and  results

o Static structural analysis
Example 1. Rotating variable thickness disk
Example 2. Rotating variable thickness disk subjected thermal load
Example 3. Complex rotor

o Static structural-thermal analysis – Example 4. simple beam

o Quasi-static structural-thermal analysis – Example 5. simple beam

o Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials
Example 7. Constant thickness disk made of isotropic FGMs 
Example 8. variable thickness disk made of isotropic FGMs 

6. Conclusion

Outlines



79

  

3D model of a complex rotor

 The profile hyperbolic for the turbine disk

 web-type profile for the compressor disks

 Both ends of the shaft are fully fixed.

Numerical approach - Evaluations and  results

Static structural analysis

Example 3. Complex rotor
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40 Beam Elements

28 B2

uniform 12 × 32 L4

Lagrange mesh over the cross-section with the largest radius

refined 17 × 32 L4

32 B2 40 B2

discretizing along the axis

Numerical approach - Evaluations and  results

Static structural analysis

Example 3. Complex rotor 1D FE-CUF modeling
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32 Beam Elements

refined 17 × 32	L4	32 B2 along the axis

Converged model

computational model, DOF=27072

Numerical approach - Evaluations and  results

Static structural analysis

Example 3. Complex rotor 1D FE-CUF modeling
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Numerical approach - Evaluations and  results

Static structural analysis

Example 3. Complex rotor verification of results
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1D FE-CUF solution
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3D FE ANSYS
DOFs=44,280
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x

1D FE-CUF solution

Radial displacement

 with 1.6 times less DOFs 

of  the 3D ANSYS model !!
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Numerical approach - Evaluations and  results
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rr(MPa)
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Static structural analysis

Example 3. Complex rotor verification of results

Radial and circumferential stresses

Circumferential stress

Radial stress
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  Static structural-thermal analysis

Numerical approach - Evaluations and  results

Example 4. simple beam

Lagrange elements 
over the cross-section

discretizing along the axis

1D FE-CUF modeling



86

  

Numerical approach - Evaluations and  results

Static structural-thermal analysis

Example 4. simple beam

Temperature change

Axial displacement

results

1 L4 over the cross-section
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Numerical approach - Evaluations and  results

Static structural-thermal analysis

Example 4. simple beam results

1 L9 over the cross-section

1 L16 over the cross-section
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Yes!!

Does heat conduction equation satisfy? 

Numerical approach - Evaluations and  results

Static structural-thermal analysis

Example 4. simple beam verification of results
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At = 0.1→ = (0.1 )(23.1 × 10 ) . . = 0.219 mm

At = 0.5→ = (0.5 )(23.1 × 10 ) . = 0.6092 mm

Elongation =

Numerical approach - Evaluations and  results

Static structural-thermal analysis

Example 4. simple beam verification of results

Check free thermal expansion !
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Numerical approach - Evaluations and  results

Example 5. simple beam

Quasi-static structural-thermal analysis

Transient heat flux 
(thermal load)
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Numerical approach - Evaluations and  results

Example 5. simple beam

Quasi-static structural-thermal analysis

results

Temperature changeAxial displacement

10B4/1L4 model

Axial displacement Temperature change
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Lame’constant λ 40.4	GPa
Lame’ constant μ 27	GPa
coefficient of linear thermal expansion (α) 23 × 10 	K
density (ρ) 2707	kg/m
thermal conductivity (κ) 204	W/m ∙ K
specific heat (c) 903	J/kg ∙ K

Material properties

Dynamic coupled structural-thermal analysis

Numerical approach - Evaluations and  results

Example 6. Constant thickness disk made of isotropic homogeneous materials

geometry= 1= 2
Thickness = 0.1

Boundary conditions

  ̂ = → − ̂ = ( )= 0
̂ = → = 0= 0

where ( ) = 0     ̂ 01      ̂ 0
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials 1D FE-CUF modeling

DOFDiscretizingModel corss sectionsAlong the axis
1680(6 × 30)	L41 B2(1)
25201 B3(2)
33601 B4(3)

16803 × 15 	L9
1 B2

(4) 2 × 10 	L16(5)
37446 × 18 	L9(6)

Lagrange mesh over the cross-section with the largest radius

discretizing along the axis Different 1D FE-CUF models for the constant thickness disk
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials verification of results

Based on the LS theory
of thermoelasticity

Time history of solution at mid-radius of the disk.

Temperature change Radial displacement

1B2 / 6 × 18 	L9
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 6. Constant thickness disk made of isotropic homogeneous materials verification of results

Based on the LS theory
of thermoelasticity

Time history of solution at mid-radius of the disk.
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Metal: Aluminum Ceramic: Alumina
Lame’constant λ 40.4 GPa 219.2 GPa
shear modulus μ 27.0 GPa 146.2 GPa
density (ρ) 2707 kg/m3 3800 kg/m3

coefficient of linear thermal expansion (α) 23.0106 K1 7.4106 K1

thermal conductivity (κ) 204 W/mK 28.0 W/mK
specific heat (c) 903 J/kgK 760 J/kgK
dimensionless relaxation time ( ̂ ) 0.64 1.5625

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM 

Material properties Metal-Ceramic FGM

geometry= 1= 2
Thickness = 0.1

Geometry and material

effective properties 

P=VmPm +Vc Pc =Vm (Pm−Pc)+Pc

metal volume fraction

Vm = − ̂−
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z

x
Fixed

Free

y

z

Adiabatic

T(t)
Non-dimensional form

= 293 K,  =0.01

at   = 0 → = = = = 0

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM Operational, boundary & initial conditions

( ) = (1 − [1 + 100 m
m
] m m⁄ )

( ̂) = 1 − (1 + 100 ̂)
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Time history

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results

 the material properties linearly 
change through the radius ( = 1)

 Based on the LS theory of 
thermoelasticity

Temperature change

Radial displacement
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Axial deformation

Numerical approach - Evaluations and  results

Deformations of disk profile

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results

Radial displacement radial deformation

Time history

 the material properties linearly 
change through the radius ( = 1)

 Based on the LS theory of 
thermoelasticity
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results Speed range of the thermal wave 

 the material properties linearly 
change through the radius ( = 1)

 Based on the LS theory of 
thermoelasticity
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results Speed range of the thermal wave 

 the material properties linearly 
change through the radius ( = 1)

 Based on the LS theory of 
thermoelasticity

wave reflection	 ≃ 1/1.5 = 0.6
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1 1.25⁄ ̂ 1 0.27⁄0.8 ̂ 3.7

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results

c = c m⁄ 1 ̂ c⁄ = 0.27
m = 1 ̂ m⁄ = 1.25

Thermal wave propagation 

m
, , − m m

̂ + − ̂ , + ,+ ̂ + = 0
Non-dimensional form of energy equation

 the material properties linearly 
change through the radius ( = 1)

 Based on the LS theory of 
thermoelasticity

Speed range of the thermal wave 0.27 ,FGM 1.25
wave reflection	 ≃ 1/1.5 = 0.6
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results Elastic wave propagation 

 the material properties linearly 
change through the radius ( = 1)

 Based on the LS theory of 
thermoelasticity

wave 
reflection
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results Elastic wave propagation 

 the material properties linearly 
change through the radius ( = 1)

 Based on the LS theory of 
thermoelasticity

wave 
reflectionNon-dimensional form of equation of motion

m + 2 m
, + +

m + 2 m
, + 1

m + 2 m
, ,+ 1

m + 2 m
, ( , + , ) −

m
− 1

m
, + , + = 0 c = 1.96

m = 1 →	1 FGM 1.96 0.51 1
Speed range of elastic wave 
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Time history based on the LS theory at mid-radius of the disk

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results

Temperature change Radial displacement

mid-radius

effects of power law index ( )

metal volume fraction

Vm = − ̂−
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Time history based on the LS theory at mid-radius of the disk

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results
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Time history based on the LS theory at mid-radius of the disk (n =1)

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results

mid-radius

effects of reference temperature ( )
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Radial displacementTemperature change = m
m m( m + m)

coupling parameter 
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Time history based on the LS theory at mid-radius of the disk (n =1)

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 7. Constant thickness disk made of isotropic FGM results
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h = 0.42 r-0.5

r



Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM Geometry and material

Metal: Aluminum Ceramic: Alumina
Lame’constant λ 40.4 GPa 219.2 GPa
shear modulus μ 27.0 GPa 146.2 GPa
density (ρ) 2707 kg/m3 3800 kg/m3

coefficient of linear thermal expansion (α) 23.0106 K1 7.4106 K1

thermal conductivity (κ) 204 W/mK 28.0 W/mK
specific heat (c) 903 J/kgK 760 J/kgK
dimensionless relaxation time ( ̂ ) 0.64 1.5625

Material properties Metal-Ceramic FGM

geometrŷ = = 0.5̂ = 	 = 2ℎ = 0.6ℎ = 0.3
effective properties 

P=VmPm +Vc Pc =Vm (Pm−Pc)+Pc

metal volume fraction

Vm = − ̂−
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= 293 K,  =0.05

at   = 0 → = = = = 0

Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Operational, boundary & initial conditionsExample 8. variable thickness disk made of isotropic FGM

Non-dimensional form

( ) = (1 − m⁄ )

( ̂) = 1 −
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM Results for = 0
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM Results for = 0 based LS theory
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Numerical approach - Evaluations and  results

Dynamic coupled structural-thermal analysis

Example 8. variable thickness disk made of isotropic FGM

R
ad

ia
ld

is
pl

ac
em

en
t

A
xi

al
 d

is
pl

ac
em

en
t

Results for = 0 based LS theory



118

Outlines

1. Introduction to rotating disks

2. Fundamentals of Linear Thermoelasticity

3. Literature review & present work

4. Analytical approach

5. Numerical approach

6. Conclusion



119

  Some results obtained from coupled thermoelasticity solution

Conclusion - Summary of results

 Transient deformations and stresses may be higher than those of a steady-state condition.

 Time history of temperature is damped faster than time history of displacements.

 Deformations and stresses oscillate along the time in a harmonic form.

 Under the propagating longitudinal elastic waves along the radius, thickness of the disk also expands and

contracts, due to the Poisson effect.

 When the coupling parameter takes a greater value, the amplitudes of oscillations of temperature

increase.

 Lord–Shulman generalized coupled thermoelasticity predicts larger temperature and stresses compared

to the classical theories.

 A functionally graded disk may be used as thermal barrier to reduce the thermal shock effects.
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Conclusion - Summary of results

Some general points on the 1D FE-CUF modeling of disks 
 The 1D FE method refined by the CUF can be effectively employed to analyze disks reduce the

computational cost of 3D FE analysis without affecting the accuracy.

 the models provides a unified formulation that can easily consider different higher-order theories where
large bending loads are involved in the problem.

 Increasing 1D elements along the axis of disks may not have significant effect on accuracy of results
and only leads to more DOFs.

 A proper distribution of the Lagrange elements and type of element used over the cross sections may
lead to a reduction in computational costs and the convergence of results.

 Making use of higher-order Lagrange elements (like L9 and L16) can reduce DOFs, while preserving
the accuracy.

 increase of number of elements along the radial direction, compared to circumferential direction, is
more effective in improving the results.
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Conclusion - Future works

 Nonlinear thermoelasticity problems 

 Dynamic analysis of rotors subjected to transient thermal pre-stresses.

 Study of thermoelastic damping effect on dynamic behaviors of rotors.

It is of interests to extend the study to
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