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cui le esperienze di San Diego e di Lausanne) arricchendomi umanamente e confrontandomi
con ambienti differenti da quello del mitico gruppo MUL2. La sua lungimiranza, la sua mai
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linfa vitale. Vi voglio un bene dell’anima. Grazie di tutto.
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Abstract

The aim of this work is the development of a refined reduced order model suitable for
numerical applications in solid and fluid mechanics with a remarkable reduction in compu-
tational cost. Nowadays, numerical reduced order models are widely exploited in many
areas, such as aerospace, mechanical and biomechanical engineering for structural analysis,
fluid dynamic analysis and coupled (aeroelastic) fluid-structure interaction analysis.
One-dimensional (1D) structural models, commonly known as beams, are for instance
used in many applications to analyze the structural behavior of slender bodies, such as
columns, arches, blades, aircraft wings, bridges, skyscrapers, rotor and wind turbine blades.
One-dimensional structural elements are simpler and computationally more efficient than
2D (plate/shell) and 3D (solid) elements. This feature makes beam theories still very
attractive for the static, dynamic response, free vibration and aeroelastic analyses, despite
the approximations which they introduce in the simulation.
Recently, 1D models are intensively exploited for the simulation of the human cardiovascular
system under either physiological or pathological conditions. As it is easily comprehensible,
fluid flows in pipes, channel, capillaries or even arteries are particularly suitable for the
application of one-dimensional models also to fluid dynamics. Typically, one-dimensional
models for fluid dynamics and fluid-structure interaction (FSI) problems are again remark-
ably more efficient than three-dimensional methods in terms of computational cost.
A key point for reduced order models is the capability in simulating in an accurate way the
investigated physical problem. For instance, in last decades the growing use of advanced
composite and sandwich materials in thin-walled beam-like structures has revealed that 1D
theories have to be refined in order to predict the behavior of such complex structures with
high fidelity. For this purpose, a higher-order one-dimensional method is introduced in this
work and its capabilities are highlighted and discussed. The present work is subdivided into
three fundamental parts corresponding to the physical fields the proposed refined model is
applied to.
Firstly, a structural part presents the formulation of a displacement-based higher-order
one-dimensional model for the analysis of beam-like structures. Classical beam theories
(Euler-Bernoulli and Timoshenko) have intrinsic limitations which preclude their appli-
cations for the analysis of a wide class of engineering problems. The Carrera Unified
Formulation (CUF) is employed to introduce a hierarchical modeling with a variable order
of expansion for the displacement unknowns over the beam cross-section. The finite element
method (FEM) is used to handle arbitrary geometries and loading conditions. The influence
of higher-order effects over the cross-section deformation, not detectable by classical and
low-order beam theories, on the static, free vibration and time-dependent response of
several structures with arbitrary cross-section geometries and made of arbitrary materials
is remarked through the numerical results presented.
Secondly, an aeroelastic part describes the extension of the refined structural model to the
static aeroelastic analysis of lifting surfaces made of metallic and composite materials. A
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Abstract

coupled aeroelastic computational model based on the Vortex Lattice aerodynamic Method
and the finite element method (FEM) is formulated. A refined aeroelastic approach is also
presented by replacing the Vortex Lattice aerodynamic Method with the more powerful 3D
Panel Method. Comparison with results obtained by existing plate/shell aeroelastic models
shows that the present 1D model could result less expensive from the computational point
of view with respect to shell cases with same accuracy. The effect of the cross-section
deformation on the aeroelastic static response and on the critical wing divergence velocity
is evaluated for different wing configurations. The beneficial effects of aeroelastic tailoring
in the case of wings made of composite anisotropic materials are also confirmed by using
the present model.
Finally, a third part concerning the use of the refined one-dimensional CUF model for
fluid dynamic problems is presented. The basic partial differential equations (PDEs) of
fluid mechanics (Navier-Stokes and Stokes equations) are faced and 1D refined models
with variable velocity-pressure accuracy are presented on the basis of the one-dimensional
Carrera Unified Formulation and the finite element method. The application of these
higher-order models to describe the three-dimensional fluid flow evolution on a compu-
tational domain is formulated for the Stokes problem. The present approach reveals its
capabilities in predicting accurately, with a reduced computational cost with respect to
more consuming two-dimensional or three-dimensional methods, nonclassical and complex
fluid flows. Moreover, the numerical results show the promising potentiality of such an
approach to the future extension of fluid-structure CUF-CUF models, i.e. the coupling of
CUF models used for both structural and fluid dynamic analyses.

Keywords: one-dimensional refined models, higher-order terms, Carrera Unified For-
mulation, Finite Element Method, Vortex Lattice Method, 3D Panel Method, structural
dynamics, fluid dynamics, aeroelasticity, composite materials.

VI



Sommario

Questa tesi di dottorato ha come obiettivo lo sviluppo di avanzati modelli di ordine ridotto
per applicazioni numeriche di meccanica dei solidi e dei fluidi caratterizzati da un contenuto
costo computazionale. Oggigiorno, numerosi modelli numerici di ordine ridotto sono
ampiamente sfruttati in svariati campi dell’ingegneria, come per esempio quella aerospaziale,
meccanica e biomedica, per effettuare analisi strutturali, analisi fluidodinamiche e analisi
accoppiate (aeroelastiche) di iterazioni fluido-struttura.

Modelli strutturali unidimensionali (1D), comunemente noti come travi, sono ad esempio
impiegati per valutare il comportamento strutturale di corpi allungati, quali palette di
turbina, ali di aereo, pale eoliche, travi da costruzione edile, ponti e grattacieli. La
particolarità vantaggiosa di questi modelli strutturali unidimensionali è individuata nella
loro semplicità e nel ridotto costo computazionale se confrontati con modelli bidimensionali
(2D), denominati tipicamente piastre e gusci, o tridimensionali (3D), i cosiddetti solidi.
Questa caratteristica rende le teorie trave molto appetibili per l’analisi statica, aeroelastica,
vibrazionale senza forzante e di risposta dinamica, nonostante le approssimazioni che esse
introducono nella simulazione.

Recentemente, modelli 1D sono addirittura impiegati nella simulazione del sistema
cardiovascolare umano sottoposto a condizioni fisiologiche o patologiche. Come è facile
immaginare, flussi di fluidi in condotti, canali, capillari o anche arterie rappresentano
applicazioni particolarmente adatte all’uso di modelli unidimensionali nel campo della
fluidodinamica. Anche nei problemi di questo campo come in quelli di iterazione fluido-
struttura (FSI), dove è studiato l’accoppiamento tra fenomeni strutturali e fluidinamici,
i modelli ridotti 1D risultano più efficienti in termini di costo computazionale rispetto a
soluzioni tridimensionali.

Uno dei punti chiave per i modelli di ordine ridotto è la capacità di simulare corret-
tamente il problema fisico investigato. Giusto per citare un caso di esempio, negli ultimi
decenni l’uso crescente di materiali compositi e di tipo sandwich in strutture a parete sottile
di tipo beam-like (allungate) ha rivelato che le teorie 1D devono essere sufficientemente
accurate in modo da predirre con precisione il comportamento di strutture complesse. A
questo scopo, un metodo unidimensionale di ordine superiore è introdotto in questa tesi di
dottorato e le sue vantaggiose peculiarità sono evidenziate e discusse durante l’esposizione
dell’elaborato. Il presente lavoro è suddiviso in tre parti distinte, corrispondenti ai campi
di studio nei quali il suddetto modello avanzato è stato applicato.

In primo luogo, una parte strutturale espone la formulazione di un modello unidimen-
sionale di ordine superiore basato agli spostamenti per l’analisi di strutture beam-like. Le
teorie delle travi classiche (come quelle di Eulero-Bernoulli e Timoshenko) hanno limitazioni
intrinseche che precludono la loro applicazione per una gran varietà di problemi ingegneri-
stici. La Carrera Unified Formulation (CUF) è impiegata per introdurre una modellazione
numerica di tipo gerarchico, la cui caratteristica è la possibilità di avere un variabile ordine
di espansione per le incognite di spostamento lungo la sezione trasversale (cross-section).
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Si fa uso del metodo agli elementi finiti (FEM) per gestire geometrie e condizioni di carico
arbitrarie. L’influenza degli effetti di ordine superiore sulla deformazione della sezione
trasversale, non percettibile dalle teorie classiche, per risposta statica, vibrazionale senza
forzante e dinamica nel tempo di una vasta gamma di strutture con arbitrarie geometrie di
sezione e materiali arbitrari è messa in risalto dai risultati numerici presentati.

Una seconda parte aeroelastica descrive l’estensione del modello strutturale all’analisi
aeroelastica statica di superfici portanti realizzate in materiale metallico e composito. La
formulazione di un modello computazionale aeroelastico accoppiato basato sul metodo
aerodinamico Vortex Lattice Method e sul metodo agli elementi finiti (FEM) è qui esposta.
Un avanzato approccio aeroelastico viene inoltre presentato sostituendo il più sofisticato
3D Panel Method al metodo aerodinamico Vortex Lattice Method. Confronti con risultati
ottenuti da modelli aeroelastici commerciali esistenti (di tipo plate/shell) mostrano che il
modello 1D proposto può risultare meno oneroso dal punto di vista di costo computazionale
a parità di accuratezza. L’effetto della deformazione della sezione trasversale non solo sulla
risposta aeroelastica statica ma anche sulla velocità critica di divergenza caratteristica
dell’ala è studiato per svariate configurazioni alari. Gli effetti benefici del tailoring aeroe-
lastico nel caso di ali realizzate in materiale composito sono inoltre rilevati e confermati
dall’uso del qui proposto modello unidimensionale.

Per finire, una terza ed ultima parte della tesi discute l’uso dell’avanzato modello
unidimensionale CUF nel campo della fluidodinamica. Sono qui affrontate le tipiche
equazioni alle derivate parziali (PDEs) della meccanica dei fluidi (equazioni di Navier-
Stokes ed equazioni di Stokes) e modelli 1D di ordine superiore con un accuratezza variabile
sulle incognite di velocità e pressione vengono presentati sulla base della Carrera Unified
Formulation e del metodo agli elementi finiti. L’applicazione di questi modelli gerarchici
per descrivere l’evoluzione tridimensionale del flusso di fluido all’interno di un dominio
computazionale è formulata per il problema di Stokes. L’approccio proposto evidenzia le
sue vantaggiose peculiarità per predirre accuratamente, e con un costo computazionale
limitato rispetto a più dispendiosi metodi bidimensionali o tridimensionali, flussi di fluido
non classici e complessi. Inoltre, i risultati numerici mostrano le promettenti potenzialità
di questo approccio per l’estensione futura a modelli fluido-struttura di tipo CUF-CUF,
ovvero l’accoppiamento di modelli CUF utilizzati sia per l’analisi strutturale sia per quella
fluidodinamica.

Parole chiave: modelli unidimensionali avanzati, termini di ordine superiore, Carrera
Unified Formulation, metodo agli elementi finiti, Vortex Lattice Method, 3D Panel Method,
dinamica strutturale, fluidodinamica, aeroelsticità, materiali compositi.
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Chapter 1

Introduction

1.1 Present outline

Civil transport and cargo traffic are expected to significantly increase in the next decade,
especially along medium and long large routes world-wide. The study of programs for
the realization of aircrafts which will know how to improve efficiency and cost reduction
performances in consideration of always increasing dimensions, is needed for the future
prospects of aerial transport development.

The report “A Vision for 2020”, emitted by Advisory Council for Aeronautic Research
in Europe in 2002, sets up a list of five challenges for aircraft industry to meet at the
horizon 2020: quality and affordability, environment, safety, security and air transport
system efficiency. The ambitious targets for the next generation air transport system could
be summarized in the following points:

• 30 % Reduction of DOCs (Direct Operative Costs);

• Cutting of noise and cabin noise level;

• 80 % Reduction of pollution in the atmosphere and noxious emissions by propulsors;

• More available space and confort for passengers;

• 10-12 % Time reduction for boarding and debarkation of passengers and luggage;

• Improvement of cargo capacity;

• Possibility of operating from present runways and airports;

• Improvement of the operative life;

• Cut of initial investment and maintenance costs;

• Mach 0.85 as minimum cruise speed;

• Increased level of survivability to accidents in takeoff and landing (design against
crash and fire, fuel tanks, new materials, evacuation system, etc.);

• Approach and landing wake vortex turbulence separations smaller than the present
one.

The problem of reducing DOCs, noise and emissions can be faced by using technology
advancements (new materials for structures and engines, reduction of production and
maintenance costs, etc...). These advancements can produce only long term benefits and
the trend says that a reduction of 30 % or more will not be practicable in the next decade.
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Chapter 1. Introduction

Increasing aircraft capacity is another way to reduce unit costs, but on short routes this
solution is not applicable and, on long routes, airport rules limit to an 80× 80 m horizontal
square the largest area that an aircraft can fill. So the advantage of increasing dimensions
came to its end with the A380 aircraft.

Concerning to emissions and consumption reduction problems, a solution could be
find out in a more accurate aerodynamic study. In fact a 1 % reduction of drag for a
large transport aircraft could save about 400000 liters of fuel and, consequently, 5000 kg
of noxious emissions per year [4]. All the future requirements listed will not be satisfied
without a significant improvement of aerodynamic design against drag. The improvement
of the low speed aerodynamic efficiency is also a challange for reducing noise and noxious
emissions close to airport areas.

In a large transport aircraft during cruise flight, friction and induced drags have
almost the same influence but the induced drag depends on the lift distribution along
wing span, whereas friction drag is proportional to the scale factor of the aircraft. Since
the lift distribution of today civil transport aircraft is so optimized that any further
significant reduction of induced drag cannot be easily obtained, a possible jump forward in
air transportation will come from the introduction of completely new, non-conventional
aircrafts.

1.2 Non-conventional wing architectures

Several non-conventional wing solutions are summarized in Fig. 1.1.

e = induced drag efficiency factor

e = 1,36
Biplane

e = 1,33
X-wing

e = 1,32
Branched

wing tips

(pfeathers)

e = 1,46
Box wing

(biplane w/end

plates)

e = 1,38
End plates

e = 1,05
Joined wing

e = 1,45
C-wing

e = 1,20
Tip-plated

winglets

e = 1,03
Dihedral

(large)

e = 1,41
Winglets

End view ( front or  rear )

Figure 1.1: Drag efficiency factors for various wing concepts [1].

1.2.1 The joined wing

The joined-wing airplane may be defined as an airplane that incorporates tandem wings
arranged to form diamond shapes in both plan and front views. This general concept can
take different forms, but common characteristic is the presence of a positive sweep angle
for the front wing and a negative one for the rear wing, that is connected to the superior
part of the fuselage on the vertical empennage level. In fact, all the models obtain the
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desired diamond shaped front view by locating the root of the rear wing at or close to the
top of the vertical tail as shown in Fig. 1.2.

Figure 1.2: An example of joined wing plane.

Different configurations are allowed: sometimes the wing-joining members are small
bodies, but it is also possible to join the wings using twin fins to support the center section
of the front wing [5]. Two joined wing solutions are shown in Fig. 1.3.

a

Solution (a)
b

Solution (b)

Figure 1.3: Typical Joined wing configurations.

Structural and aerodynamic advantages claimed for joined wing configuration are:
reduced weight, high stiffness, good transonic area distribution, high trimmed CLmax,
reduced wetted area and parasite drag, direct lift control capability, direct sideforce control
capability, good stability and control in flight. With regard to weight saving, the (b)
solution in Fig. 1.3 assures a more contained structural weight than other alternative
configurations, even if it is subordinated to the reorganization of wing resistant sections to
adeguate themselves to a loaded configuration substantially different from the one with a
conventional wing.

According to the studies of Shyu and Miura it is possible to get joined wing configurations
with weight included between 65 % and 78 % of the equivalent conventional wing [6]. Weight
saving is also due to the geometrical peculiarities of the joined wing configuration adopted
and especially to the fact that the rear wing, working as a wind bracing, contributes to
reduce stresses in the front wing internal portion thanks to the junction.

Another positive feature is that the joined wings create a structure with high torsional
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stiffness, since the torsion on one of the two semi-wings can be beared by the bending of the
other one. A growing efficacy of the aileron is established and a global improvement of the
aeroelastic behaviour of the building solution is supposed. Like all the closed wing designs,
joined wings are the maximum expression of wingtip devices, which aim to eliminate the
influence of the wingtip vortices that occur at the tips of conventional wings. These vortices,
which are a major component of wake turbulence, are associated with induced drag and
then negatively affect the aerodynamic performance in most regimes. The elimination of
the aircraft’s wingtips, and thus the great reduction or total elimination of wingtip drag,
has great implications for the improvement of fuel efficiency in the airline industry.

Furthermore, this is not the only aerodynamical feature that makes joined-wing config-
uration adoption profitable. With regard to aircraft controllability, the downwash effect of
the front wing on the rear one makes possible the fact that this rear wing is still lifting
even in case of stall of the first one, amending such a critical situation. The compensation
of the opposite effects of the positive and negative sweep allows to avoid the dihedral effect
increase as the lift coefficient raises. It is also foreseen a reduction of acoustic pollution
thanks to the increased lift-to-drag ratio during takeoff and landing.

At the moment the joined wing configuration is under consideration even for military
applications. In recent years there has been a push towards the design and development of
unmanned aerial vehicles (UAVs), designed for various missions, including atmospheric
sensing, border monitoring, military patrol and combat. One example of unconventional
mission is the “sensocraft”, designed for long-range, high-altitude, intelligence, surveillance
and reconnaissance.

Targeting, tracking and foliage penetration require large antennas and demand of
360 degree coverage. Among the several configurations currently being considered for
Sensorcraft mission (see Fig. 1.4), the joined-wing design, while possibly providing weight
saving and improved aerodynamic performances over a conventional vehicle, lends itself a
continuous 360-degree coverage.

Figure 1.4: Sensorcraft wing system.

1.2.2 The Boxplane

In the 70s Luis Miranda of Lockheed Corporation proposed the project of a transport
aircraft with big dimensions which made use of a biplanar wing referable to the joined
wing concept. The most important difference was the presence of two vertical fins to join
front and rear wings. In frontal projection the wing structure so obtained looked like a
rectangular box, see Fig. 1.5. The main property of the box wing shape is the research of
the maximum possible reduction of induced drag. This research project was deserted when
simulations in wind tunnel showed the poor aerolastic features of the proposed model.
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Figure 1.5: Typical example of boxplane.

1.2.3 The PrandtlPlane

The Prandtlplane is a new aircraft configuration with a low induced drag, whose study
started from an intuition by the German scientist Ludwig Prandtl. Among all the possible
wing systems generating a given lift with a given wingspan, the one who minimize the
induced drag is a box-like wing called by Prof. Prandtl: “Best Wing System” (BWS) [7].
The BWS is a biplane where the horizontal wing tips are connected together by two vertical
wings (bulkheads). The lift distribution over the two horizontal wings, under optimum
conditions, results from the superposition of a constant and an elliptical part, and it is
equal. Total lift over them is also the same, while a butterfly shaped lift distribution is
generated on the bulkheads. When the condition of minimum drag occurs, the velocity
induced by the free vortices is constant along the two horizontal wings and identically zero
on the vertical side wings (lift distribution on vertical fins symmetrical with respect to
their horizontal symmetrical axis, so that their resulting lift force results to be equal to
zero). The efficiency of this system grows as the non dimensional gap between the wings
increases, because of induced drag decreasing.

In the hypothesis of gap/span ratio between 0.1 and 0.2, a PrandtlPlane can offer
a significative induced drag reduction in comparison with a monoplane with identical
wingspan and same lift. Reminding the lift distribution on the horizontal and vertical
wings, according to Munk’s theorems, the induced drag is independent of sweep angles of
the wings, so Prandtl’s concept can be applied also to transonic and supersonic aircraft.
PrandtlPlane configuration (see Fig. 1.6) can be used to design a complete family of
aircraft, ranging from small to very wide bodies (even larger than Airbus A380), fully
compatible with present airports. In fact, in the case of an aircraft larger than e.g. A380,
the higher efficiency of the configuration could be used to reduce the wingspan inside 80 m,
without drag penalty with respect to conventional aircraft. The possibility of improving
the PrandtlPlane capacities beyond the largest possible conventional aircraft is one of the
probable advantages for reducing drag.

In 2002 five Italian Universities, starting from BWS principle studies and thanks to
governmental funds, carried out an innovative project for a very large non conventional
transport aircraft(600 seats), giving birth to the first Prandtlplane concept application.

An important result of the research was the solution of the initial conflict between
aerodynamic efficiency and stability of flight, obtained with the development of a new
configuration. The fusolage is enlarged horizontally, with a single desk for passengers and
the bottom one for good and luggage, and the rear wing is positioned over the fusolage
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and connected to it by two fins. The aircraft is stable in cruise flight, due to the high
aerodynamic efficiency of the rear wing, the margin of stability can be controlled and
modified by a proper variation of chords together with sweep and twist angles along the
span of both the wings.

Figure 1.6: The PrandtlPlane configuration.

Researches continued at University of Pisa as long as a flying scale model of a ULM ver-
sion of the Prandtlplane was built and tested in 2006, while a study based on PrandtlPlane
concept for a 250-300 seat civil transport aircraft was completed for Airbus Deutschland in
2007. Furthermore, a static model of a PrandtlPlane designed for Bauhaus Luftfahrt has
been presented during the Berlin Air Show in May 2008 .

Thanks to its maximum aerodynamic efficiency, its stability in flight and high standard
qualities, more quickly and easier ground operations, simpler engine integrations and
great adaptability to different dimensional ranging of aircraft, the PrandtlPlane represents
a significative alternative for aircrafts conceived in order to fulfil the new requirements
contained in “European Aeronautics: a vision for 2020” in matter of efficiency, safety,
environment, quality and affordability.

1.3 Introduction to Aeroelasticity

1.3.1 Aeroelastic phenomena and Flutter

Nowadays, in many engineering fields the coupled analysis of all the disciplines involved in
the design process plays a more and more fundamental role. Evidently this multidisciplinary
approach counts even for the Aerospace Engineering, being itself the combination of many
matters itself. The presented non-conventional configurations therefore need such an
approach in order to accurately predict their behavior and performance. For that reason
the study of aeroelasticity becomes important.

Aeroelasticity could be defined as a science which studies the mutual interaction between
aerodynamics and elastic forces, and the influence of this interaction on structural design.
Many important aeroelastic phenomena involve inertial forces as well as aerodynamics
and elastic forces. In aeroelastic phenomena air flow is completely modified by structural
deflection. Problems in aeroelasticity in structural engineering field could be divided into
two large categories: static aeroelastic problems like torsional divergence, phenomena of
control reversal (aerospace engineering) and dynamic aeroelastic problems such as lock-in,
vortex shedding (von Karman vortices separation), flutter, buffeting and galloping.
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Flutter is a self-feeding and potentially destructive vibration where aerodynamic forces
on an object couple with one or more structure’s natural modes of vibration to produce
rapid periodic motion. It can happen in any object within a strong fluid flow, under the
conditions that a positive feedback occurs between the structure’s natural vibration and
the aerodynamic forces. In other words, the vibrational movement of the object increases
an aerodynamic load which in turn drives the object to move further. If the energy inflow
during the period of aerodynamic excitation is larger than the natural damping of the
system, the level of vibration will increase. Therefore, flutter is connected to aerodynamic
forces variations due to the different orientation that the parts of the structure, because of
their own oscillations, assume with regard to the direction of relative wind-flow.

The flutter phenomenon can occur in aeronautical field, in flexible structures of civil
engineering and in industrial or mechanical applications: rotating systems, helicopter rotors,
airfoils, propellers, turbomachinery blades, rotor blades, axis instability of a pipe crossed
by a fluid, turbines (especially the recent ones with high aspect ratio). The classical type
of flutter is associated with potential flow and usually involves the coupling of two or more
degrees of freedom, while stall flutter (or nonclassical flutter) can be defined as any flutter
of a lifting surface in which the airfoil sections are in stalled flow during at least part of
each cycle of oscillation. In aircrafts flutter can be prevented by using an automatic control
system to limit structural vibration. As said, flutter can also occur on structures other
than aircraft. One famous example of flutter phenomenon is the collapse of the original
Tacoma Narrows Bridge.

1.3.2 Tacoma Narrow Bridge collapse

In civil field, the importance of aeroelastic phenomena increased when, from structures
almost exclusively composed by stones, bricks and concrete, constructors passed to others
with bigger dimensions, built with a large use of steel. Lower damping associated to
higher deformability and to aerodynamic instable sections (skyscrapers, television towers,
suspension bridges, cooling towers in thermic power plants, off-shore platforms etc...) were
collapse causes of structures which traditional analyses had considered safe. In particular,
phenomena strictly related to wing flutter could occur for suspension bridges.

The first Tacoma Narrows Bridge, opened on July 1, 1940, was revolutionary in its
design and historic in its collapse on November 7 of the same year. From the beginning
this suspension bridge was known as “galloping gentle” because of its considerable vertical
oscillations, as depicted in Fig. 1.7. Several strategies were used to reduce the motion of
the bridge, such as attachment of tie-down cables to the plate girders and the addition of a
pair of inclined cable stays (that connected the main cables to the bridge deck at mid-span).
Furthermore, the structure was equipped with hydraulic buffers installed between the
towers and the floor system of the deck in order to damp longitudinal motion of the main
span. Unfortunately, many of them were ineffective on November 7.

The wind-induced collapse was due to torsional oscillations not enlarged by mechanical
resonance but by the aeroelastic instability connected to a stall flutter phenomenon.
Aeroelastic instability determined Tacoma Narrows bridge collapse: the wind, whose
statical effects were yet foreseen and tolerable, steady at 42 miles per hour (68 km/h),
blowed for hours, inducing growing torsional oscillations on the central span. Torsional
rotation of the floor system gained twist angle higher than 45° with respect to undeformed
configuration, causing the breaking of a cable and immediately modifying the dynamic
configuration of the structure, leading to the collapse.

At that time nobody was worried about studying the interactions of aerodynamic forces
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Figure 1.7: The galloping gentle.

over the bridge, thinking that they would not have damaged the impressive structure of
Tacoma Narrows Bridge. Even if correctly designed with regard to static effects, the bridge
was too much deformable to bending and torsional stresses, and also too sensible to wind
action and generally to (aero)dynamic effects.

1.4 Refined structural and aeroelastic models: state-of-the-
art

1.4.1 Advances in aeroelastic modeling of composite wings

Composite materials are widely used nowadays in a large variety of applications and
engineering fields. The advantages related to their spread are becoming so significant
that composites are by now a must for state-of-the-art manufacturing technology. The
requirements of weight saving and structural efficiency for aerospace systems such as aircraft
wings, helicopter rotor blades, and turbine blades are leading to a wide use of structures in
the form of composite thin-walled beams. Furthermore, the forthcoming employment of
composite materials in next-generation aircraft configurations will be certainly valuable,
as proved by the last few years design studies. Among the possible future applications,
High-Altitude Long-Endurance aircraft (HALE) [8], strut-braced wings [9], truss-braced
wings [10], and C-wing configurations [11] are worth mentioning.

With the advent of composites, the accurate evaluation of the response of deformable
lifting bodies (LBs) when subjected to steady and unsteady aerodynamic loadings is an
even more challenging issue for the aeroelastic design of aerospace vehicles [12]. The
successful construction of the Grumman X-29 forward-swept wing experimental aircraft was
the best example of the exceptional interest afforded to this issue [13]. In last decades, a
considerable amount of research activity devoted to the aeroelastic analysis and optimization
was undertaken since the idea of aeroelastic tailoring to avoid divergence instability of
forward-swept wing was suggested many years ago [14]. Valuable contributions have been
made by Weisshaar who considered aeroelastic problems of forward-swept wings including
spanwise lift redistribution and aileron effectiveness [15, 16]. A discussion on the various
techniques adopted in literature to introduce a bending-twist coupling parameter to be
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used in tailoring was also carried out by the same author [17]. Housner and Stein [18]
investigated the flutter characteristic of box-beam structures with cross-ply symmetrically
laminated skins and variable stiffness properties. This parametric study included the effect
of filament orientation upon the flutter speed for wings with various sweep, mass ratios,
and skin thickness.

A thin-walled anisotropic beam model incorporating non-classical effects was introduced
by Librescu and Song [19] to analyze the sub-critical static aeroelastic response and the
divergence instability of swept-forward wing structures. A review was carried out by
Patil [20], who investigated the variation of aeroelastic critical speeds with composite ply
lay-up of box beams via the unsteady Theodorsen’s theory. The 2D cross-section was
structurally modeled using an asymptotically correct cross-sectional analysis. Qin and
Librescu [21] developed an aeroelastic model to investigate the influence of directionally
property of composite materials and non-classical effects such as transverse shear and
warping restraint on the aeroelastic instability of thin-walled aircraft wings featuring
circumferentially asymmetric stiffness lay-up. Among the several composite rotor blades
applications, the work done by Jeon et al.[22, 23] concerning the steady equilibrium
deflections and aeroelastic modal damping via a large deflection type beam theory with
small strains is worth mentioning. A recent investigation on the minimum weight design of
composite plate wings subjected to the constraints on flutter and divergence speeds has
been conducted by Kameyama and Fukunaga [24] by using a genetic algorithm and a finite
element approach. An interesting aeroelastic design optimization of a slender, thin-walled,
isotropic unswept wing against divergence has been carried out by Librescu and Maalawi
[25].

Detailed structural and aeroelastic models are essential to fully exploit non-classical
effects in design of composite beam-like structures due to the properties characterizing
advanced composite materials, such as anisotropy, heterogeneity, transverse shear flexibility
[26, 27] and torsional warping [28]. As well as the accuracy, the computational cost
of a refined model becomes also important especially for aeroelastic analysis where the
fluid-structure coupling is addressed. Beam-like components can be analyzed by means of
one-dimensional formulations and one main advantage is that 1D models require a lower
computational cost compared with 2D plate and shell or 3D solid models. A detailed review
of the recent development of refined beam models can be found in [29]. A considerable
amount of work was done in trying to improve the global response of classical beam
theories [30, 31] using appropriate shear correction factors, as described by Timoshenko
[31]. El Fatmi [32, 33] improved the displacement field over the beam cross-section by
introducing a warping function to refine the description of normal and shear stress of the
beam. Generalized beam theories (GBT) originated with Schardt’s work [34] and improved
classical theories by using a piecewise beam description of thin-walled sections [35, 36].
An asymptotic type expansion in conjunction with variational methods was proposed
by Berdichevsky et al.[37], where a commendable review of prior works on beam theory
development was given. An alternative approach in formulating refined beam theories
based on asymptotic variational methods (VABS) has led to an extensive contribution in
last decade by Volovoi, Hodges, Popescu [38, 39], Yu and co-workers [40, 41].

1.4.2 Advances in one-dimensional higher-order models

Nowadays different kinds of slender structures are involved in many areas such as aerospace,
civil and biomechanical engineering. There are many examples of these one-dimensional
(1D) structures such as rotor and wind blades, aircraft wings, bridges and towers, and even
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veins. Such beam-like components can be analyzed by means of 1D formulations and one
main advantage is that 1D models require a lower computational cost compared with 2D
plate and shell or 3D solid models [42].

The 1D models used in early studies of slender structures were based on classical
theories. Euler-Bernoulli theory [30] neglected the transverse shear deformation completely.
The first shear deformation theory of Timoshenko [43] assumed a constant shear strain
across the cross-section. The growing use of advanced composite and sandwich materials in
thin-walled beam-like structures has revealed that 1D theories have to be refined in order
to predict the behavior of such complex structures in an accurate way. Moreover, refined
1D theories are necessary to cope with arbitrary cross-section geometries, short beams,
non-homogenous sections and curved shapes by taking into account effects such as warping
and in-plane cross-section deformation. In the past, many theoretical and computational
approaches were taken to address these issues. Recently, refined theories such as those
based on the 1D Carrera Unified Formulation (CUF) [44, 45] and variational asymptotic
methods (VABS) [40] as well as the Generalized Beam Theory (GBT) [35] have presented
remarkable advances in static, buckling, and free vibration analysis.

Most beam-like structural systems in physical applications are actually subjected to
dynamic loadings of all kinds, for instance, blood flow in veins [46]; lifting systems under
the action of unsteady aerodynamic pressures [47]; blast and sonic-boom loadings [48];
interaction between bridges and moving vehicles [49]; impulsive loadings by missile launch
or impact on aircraft wings [50]; and the effect of seismic waves on buildings [51]. Hence,
an accurate understanding of the dynamic characteristics of a large number of structures
is crucial in engineering. The importance of refined 1D models is even more relevant for
accurate prediction of the time-dependent response of thin-walled slender structures [52].

A detailed review of several theories for vibrations and wave propagation was presented
by Kapania and Raciti [27]. A brief, though not exhaustive, review of refined 1D models
introduced in recent decades for the dynamic analysis of beams is here presented. A
second-order theory with cross-sectional warping was proposed by Stephen and Levinson
[53]. Heyliger and Reddy [54] and Soldatos and Elishakoff [55] proposed a third-order
theory with a quadratic variation of the shear strain accross the cross-section. Early fourth-
order beam theories were formulated by Levinson [56], Rychter [57] and were extended by
Bickford [58] to the dynamic analysis. Kant and Gupta [59] proposed a refined FE higher-
order model with quadratic transverse shear strain that was applied to the free vibration
analysis of angle-ply laminated, deep sandwich and composite beams [60, 61]. Kant et al.
[62] provided an analytical solution to the natural frequency analysis of thick and thin
composite beams by accurately describing the cross-section warping. The formulation of
two higher-order shear deformation theories by Subramanian [63] satisfied the traction-free
surface conditions at the top and bottom beam surfaces. A higher-order FE model based
on classical laminated theory presented higher-frequencies analysis capabilities for the
vibration response of laminated tapered beams [64, 65]. Recently, Şimşek and Kocatürk
[66] highlighted that a third-order shear deformation theory gives significantly better results
than classical theories in the case of short beams and high mode numbers.

As far as the dynamic response is concerned, many shear deformable models have been
introduced in last decades. Tong et al. [67] offered an analytical solution for free and forced
vibrations of stepped generally non-uniform Timoshenko beams. A higher-order shear
deformation theory was used by Rao and Ganesan [68] to evaluate the harmonic response
of tapered composite wings. Marur and Kant extended their work [60] to the transient
dynamic analysis of symmetric and unsymmetric sandwich and composite structures [52].
The efficacy of higher-order terms in predicting displacements and stress resultants in time
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was clearly brought out. By involving the action of a moving dynamic load, the importance
of third-order shear deformation effect in the strength analysis of cross-ply and angle-ply
laminated beams was highlighted even when the slender ratio is not very low [69].

Librescu and Na [70] used a nonclassical beam model which includes transverse shear,
secondary warping and heterogeneity to control the bending oscillations of cantilevers
subjected to time-dependent excitations. The same authors [71] studied nonuniform
anisotropic thin-walled beams incorporating adaptive capabilities through a beam model
with transverse shear and warping inhibition which was formulated in [48]. Piovan and
Cort́ınez [72] developed a new theoretical model for the generalized linear analysis of
composite thin-walled curved beams with open and closed arbitrary cross-sections, by
showing the influence of shear deformability on the mechanics of such complex structures.
As a particular case of dynamic response, the third-order shear deformation theory used
by Şimşek [73] indicated the importance of higher-order terms in correctly predicting
the dynamic behavior of functionally graded beams and thus in tailoring FG material
properties.

1.4.3 Review on refined thin and thick shell models

In many fields such as aerospace, mechanical, civil and biomechanical engineering different
kinds of thin- and thick-walled slender structures are involved nowadays. Typical examples
are rotor and wind blades, aircraft wings, pipes, bridges and towers, and even blood vessels.

Most structures in physical applications are actually subjected to dynamic loadings
of all kinds, for instance, unsteady aerodynamic pressures on lifting systems [47]; blast
and sonic-boom loadings [48]; blood flow in arteries [46]; interaction between bridges and
moving vehicles [49]; impulsive loadings by missile launch or impact on aircraft wings
[50]; and the effect of seismic waves on buildings [51]. As a consequence, an accurate
understanding of the dynamic characteristics of a large number of structures is crucial in
engineering. The importance of refined models to discretize thin- and thick-walled slender
structures is even more relevant for a proper prediction of the time-dependent response [52].
Typically two-dimensional (2D) plate and shell or three-dimensional (3D) solid models
are used for accurately modeling this kind of structures. Nonetheless, these approaches
often reveal the disadvantage of a large number of degrees of freedom and hence a high
computational cost.

In last decades, a considerable amount of research activity devoted to the dynamic
analysis of shells was undertaken since the first classical theories for thin elastic isotropic
shells were formulated by Flügge [74], Lur’e [75], Byrne [76], Love [77] and Sanders [78]. An
exhaustive review of the recent research advances on the dynamic analysis of homogeneous
and composite shells can be found in the works by Qatu and co-workers [79, 80, 81].
Valuable contributions were made by Herrmann and Mirsky, who investigated the axially
and nonaxially symmetric motions in a hollow circular cylinder of finite length [82, 83].
Based on the analysis developed in [84], Armenàkas et al. [85] obtained closed form
solutions of the governing three-dimensional (3D) elasticity equations for cylindrical shells
in terms of Bessel functions as well as in [82, 86].

As far as three-dimensional (3D) analyses of cylindrical shells are concerned, a detailed
review of the literature was presented by Soldatos [87]. An iterative approach based on the
introduction of fictitious layers along the shell thickness to solve the governing equations of
3D linear elasticity was used in [88]. Bhimaraddi [89] developed a two-dimensional (2D)
higher-order shell theory for free vibration response of isotropic circular cylindrical shells.
Timarci and Soldatos [90] analyzed the vibrations of angle-ply laminated circular cylindrical

11
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shells with different edge boundary conditions by using the Love-type version of the unified
shear-deformable shell theory developed by the same authors [91]. Utilizing the infinite
circular cylinders solution based on the technique of variables separation, Mofakhami et
al. [92] developed a general solution to analyze the vibration of finite isotropic circular
cylinders with different end boundary conditions. Toorani and Lakis [93] analyzed the
free vibrations of nonuniform composite cylindrical shells via a semi-analytical approach
which combined hybrid finite elements with a shearable shell theory. More recently, a
closed-form formulation of 3D refined higher-order shear deformation theory for the free
vibration analysis of isotropic cylindrical shells was presented in [94] by taking into account
transverse normal and shear strains as well as in-plane and rotary inertia effects.
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Structural Formulation





Chapter 2

Preliminaries

This chapter is dedicated to introduce the notation, the beam geometry and to define the
displacement, stress, and strain vectors which will be used in the following chapters. The
geometrical strain-displacement relations as well as the material constitutive equations are
addressed herein in accordance to the adopted notation.

2.1 Displacement, Stress, and Strain Vectors

In structural dynamics, a slender structure is often considered and studied as a beam.
Indeed, a beam is a structure whose longitudinal axial length L is predominant with respect
to the two other orthogonal dimensions. Hence, let the beam longitudinal axis to be defined
as the centroidal one. The intersection of the beam with a plane which is perpendicular to
its longitudinal axis usually identifies the so-called beam cross-section Ω. As depicted in
Fig. 2.1, a cartesian coordinate system composed of x and z axes parallel to the cross-section
plane is defined, whereas y represents the out-of-plane coordinate. Nonetheless, the y axis
is not necessarily the beam centroidal axis in the hereinafter described formulation. In fact,
Fig. 2.1(b) shows that the origin O of the coordinate system can lie outside the contour of
the cross-section, which is considered to be constant along the beam axis.

(a) Origin within the cross-section (b) Origin outside the cross-section

Figure 2.1: Beam cross-section geometry and coordinate system.

More in general, the hereinafter described formulation can take into account a beam
arbitrarily oriented in the three-dimensional space. In other words, a beam can be the
result of a geometrical extrusion of its cross-section along a direction arbitrarily oriented
and in general no more perpendicular with respect to the cross-section-plane, as shown in
Fig. 2.2. In the case this direction is not perpendicular, x and z axes are defined parallel to

15



Chapter 2. Preliminaries

the cross-section plane, but the y axis is no more parallel to the longitudinal (centroidal)
axis in order to respect the definition of a cartesian coordinate system. Otherwise, in the
case the direction is perpendicular, the y axis is parallel to the longitudinal (centroidal)
axis and the beam is bounded such that 0 ≤ y ≤ L. The choice of the cross-section is
arbitrary, since it does not affect the following theoretical formulation. This gives high
versatility to the present structural beam model. From now on the longitudinal (centroidal)
beam axis will be simply referred as the beam axis.

Centroidal axis

Figure 2.2: Example of an arbitrarily oriented beam.

The notation for the displacement field is:

u (x, y, z; t) =


ux (x, y, z; t)
uy (x, y, z; t)
uz (x, y, z; t)

 (2.1)

where ux, uy, and uz are the displacement components along x, y, and z axes respectively.
In general they are functions of the spatial coordinates and of time t. Stress σ and strain
ε vectors contain the components shown in Fig. 2.3, which are:

σ =
{
σyy σxx σzz σxz σyz σxy

}T
ε =

{
εyy εxx εzz 2 εxz 2 εyz 2 εxy

}T (2.2)

where superscript T respresents the transposition operator. The stress components to be
considered are six instead of nine thanks to the fact the moment equilibrium (balance of
angular moment) yields symmetry of stress given by:

σij = σji i /= j (2.3)

Similarly, the strain components are symmetric as will be clarified afterwards by the
strain-displacement relations:

εij = εji i /= j (2.4)

The stress and strain components are split into terms σp, εp related to the beam cross-
section Ω:

σp =
{
σzz σxx σxz

}T
εp =

{
εzz εxx 2 εxz

}T
=
{
εzz εxx γxz

}T (2.5)

and terms σn, εn related to the out-of-plane direction:

σn =
{
σyz σxy σyy

}T
εn =

{
2 εyz 2 εxy εyy

}T
=
{
γyz γxy εyy

}T (2.6)
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where the ‘engineering’ shear strains are introduced:

γij = 2 εji i /= j (2.7)

(a) (b)

Figure 2.3: Stress (a) and strain (b) components.

2.2 Geometrical Relations

In the case of small displacement with respect to the length L, the linear relations between
strain and displacement components hold. According to Eqs. 2.5 and 2.6, the following
relations hold:

εp =


εzz = uz,z
εxx = ux,x
γxz = 2 εxz = ux,z + uz,x


εn =


γyz = 2 εyz = uy,z + uz,y
γxy = 2 εxy = ux,y + uy,x
εyy = uy,y


(2.8)

Derivatives with respect to the spatial coordinates are represented via a subscript in which
comma precedes the spatial coordinate. A compact vectorial notation can be adopted:{

εp = Dp u

εn = Dn u = Dnp u + Dny u
(2.9)

where Dp, Dnp and Dny are differential matrix operators:

Dp =



0 0
∂

∂z

∂

∂x
0 0

∂

∂z
0

∂

∂x


, Dnp =


0

∂

∂z
0

0
∂

∂x
0

0 0 0

 , Dny =



0 0
∂

∂y

∂

∂y
0 0

0
∂

∂y
0


(2.10)
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2.3 Constitutive Equations

Let a material coordinate system (1, 2, 3) to be defined as shown in Fig. 2.4. In general,
this coordinate system is different from the physical coordinate system (x, y, z). Similarly
to the strain and stress vectors σ and ε, which are defined in Eq. 2.2 and depicted in
Fig. 2.3 in the physical coordinate system, the material strain and stress vectors σm and
εm are introduced in the material coordinate system:

σm =
{
σ33 σ22 σ11 σ21 σ31 σ23

}T
εm =

{
ε33 ε22 ε11 2 ε21 2 ε31 2 ε23

}T (2.11)

x

z 1

2

3

y

Figure 2.4: Physical and material coordinate systems.

Under the hypothesis of linear elastic behaviour of the material beam is made of, the
generalized Hooke’s law holds. Its compact vectorial form is:

σm = Cm εm (2.12)

where Cm is the 6×6 material stiffness matrix of elastic coefficients. When these coefficients
are functions of position the material is heterogeneous, whereas when they are constant
throughout the material it is homogeneous. In this chapter from here on, the case of
homogeneous materials is addressed; the nonhomogeneous (heterogeneous) materials case
will be introduced in section 3.4.1. The thirty-six coefficients of Cm are not all independent
each other. The number of indipendent constants depends on the material constitutions.
First of all, there are only 21 independent elastic coefficients for anisotropic materials due
to the symmetry of the material stiffness matrix:

Cmij = Cmji i, j = 1, . . . , 6 (2.13)

For the sake of completeness, it is important to clarify that a material is anisotropic
when it exhibits material properties that are directionally dependent, i.e. a given material
property can have different values in different directions. On the contrary, a material is
isotropic if all its material properties at a point are independent of the direction. Some
anisotropic materials, such as monoclinic or orthotropic, may possess material symmetries
and their constitutive behavior can be described with fewer than 21 constants. In this
section, orthotropic and isotropic materials are considered, disregarding the monoclinic
materials case.
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2.3. Constitutive Equations

2.3.1 Orthotropic Material

If a material has three mutually perpendicular planes of elastic symmetry is referred as
orthotropic material. In this case, the number of coefficients can be reduced to 9. In fact,
Hooke’s law (Eq. 2.12) becomes:

σm = Cm εm

σ33

σ22

σ11

σ21

σ31

σ23


=



C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε33

ε22

ε11

2 ε21

2 ε31

2 ε23


(2.14)

Coefficients Cmij are defined as follows (see [95, 96]):

C11 =
E1 (1− ν23ν32)

∆
; C12 =

E1 (ν21 + ν23ν31)

∆
; C13 =

E1 (ν31 + ν21ν32)

∆
;

C22 =
E2 (1− ν13ν31)

∆
; C23 =

E2 (ν32 + ν12ν31)

∆
; C33 =

E3 (1− ν12ν21)

∆
;

C44 = G21; C55 = G31; C66 = G23;

(2.15)

where:
∆ = 1 − ν12 ν21 − ν13 ν31 − ν23 ν32 − ν12 ν23 ν31 − ν13 ν21 ν32 (2.16)

Terms {Ei : i = 1, 2, 3} are Young’s moduli, {νij : i, j = 1, 2, 3} are Poisson’s ratios and
{Gij : i = 2, 3; j = 1,3} are the shear moduli in the material coordinate system. Poisson’s
ratios are defined as:

νij = − εjj
εii

i, j = 1, 2, 3 i /= j (2.17)

The symmetry of the material stiffness matrix, expressed by Eq. 2.13, is verified in Eq. 2.18
and ensured by the relations between Young’s moduli and Poisson’s ratios, see Eq. 2.19.

C21 =
E2 (ν12 + ν13 ν32)

∆
= C12

C32 =
E3 (ν23 + ν13 ν21)

∆
= C23

C31 =
E3 (ν13 + ν12 ν23)

∆
= C13

(2.18)

νij
Ei

=
νji
Ej

i, j = 1, 2, 3 i /= j (2.19)

So far, the material stiffness matrix has been referred to the material coordinate system.
For the orthotropic material case, Fig. 2.4 shows that this reference system is supposed to
be aligned with the fibers in a unidirectionally reinforced lamina which lies in the 2− 3
plane. In other words, axis 2 is the fiber longitudinal direction L, axis 3 is aligned with the
fiber transversal in-plane direction T (in the plane of the lamina) and 1 is the transversal
out-of-plane direction Z. According to Fig. 2.4, material axes 2 and 3 are rotated by a
positive counterclockwise angle θ about the z axis, coincident to axis 1, from physical x
and y axes. As a consequence, coordinate transformation equations are employed to obtain
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the stress vector σ in physical coordinates in terms of the stress vector σm in material
coordinates. Exploiting a vectorial notation:

σ = Tσm (2.20)

where T is the 6× 6 transformation matrix:

T =



cos2 θ sin2 θ 0 0 0 sin 2θ
sin2 θ cos2 θ 0 0 0 − sin 2θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− sin θ cos θ sin θ cos θ 0 0 0 cos2 θ − sin2 θ

 (2.21)

Similarly, in Eq. 2.22 it is possible to relate the components of the strain vector referred to
the material system in terms of its components referred to the physical system:

εm = TT ε (2.22)

where TT is the transpose of matrix T. For the sake of brevity, more details about the
derivation of Eqs. 2.20 and 2.22 are not reported here, but can be found in appendix A.
Substituting Eqs. 2.12 and 2.22 into Eq. 2.20, a transformed material stiffness matrix is
therefore introduced and referred as C̃:

σ = Tσm = T Cm εm = T Cm TT ε = C̃ ε (2.23)

The transformed material stiffness matrix contains the elastic coefficients referred to the
physical coordinate system:

C̃ = T Cm TT (2.24)

In general, Eq. 2.24 is valid for an arbitrary constitutive matrix Cm (i.e. for orthotropic as
well as anisotropic). Of course, T is the matrix based on the particular transformation
depicted in Fig. 2.4 (rotation about a transverse nornal to the lamina).

The stress-strain relations of Eq. 2.23 referred to the physical coordinate system can be
written in a vectorial notation as follows [cf. Eq. 2.14 for the material coordinate system]:



σyy
σxx
σzz
σxz
σyz
σxy


=



C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃16

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(2.25)

For the sake of completeness, in Eq. 2.25 it is interesting to note that the transformed
material stiffness matrix C̃, obtained here for orthotropic materials, has a structure formally
analogous to the material stiffness matrix corresponding to monoclinic materials with plane
2− 3 of elastic symmetry. Indeed, a monoclinic material is a material with only one plane
of elastic symmetry and so the number of independent elastic coefficients is 13. In an
analogous way, the physical x− y plane (parallel to the 2− 3 plane) is a plane of elastic
symmetry for the orthotropic material in Fig. 2.4, whereaes planes y − z and x− z are not
(when in general θ /= 0).
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Carrying out the matrix multiplications in Eq. 2.24 for the orthotropic case, the elastic
coefficients of the transformed material stiffness matrix C̃ are expressed as a function of
the coefficients of the material stiffness matrix C and the angle θ:

C̃33 = C33 cos4 θ + 2 (C23 + 2C66) sin2 θ cos2 θ + C22 sin4 θ

C̃23 = C23

(
sin4 θ + cos4 θ

)
+ (C33 + C22 − 4C66) sin2 θ cos2 θ

C̃13 = C13 cos2 θ + C12 sin2 θ

C̃36 = (−C33 + C23 + 2C66) sin θ cos3 θ + (C22 − C23 − 2C66) sin3 θ cos θ

C̃22 = C22 cos4 θ + 2 (C23 + 2C66) sin2 θ cos2 θ + C33 sin4 θ

C̃12 = C12 cos2 θ + C13 sin2 θ

C̃26 = (−C33 + C23 + 2C66) sin3 θ cos θ + (C22 − C23 − 2C66) sin θ cos3 θ

C̃11 = C11

C̃16 = (C12 − C13) sin θ cos θ

C̃44 = C44 cos2 θ + C55 sin2 θ

C̃45 = (C44 − C55) sin θ cos θ

C̃55 = C55 cos2 θ + C44 sin2 θ

C̃66 = (C33 + C22 − 2C23 − 2C66) sin2 θ cos2 θ + C66

(
sin4 θ + cos4 θ

)

(2.26)

According to the splitting carried out for strain and stress vectors in Eqs. 2.5 and 2.6,
Hooke’s law of Eq. 2.23 referred to the physical coordinate system can be rewritten as
follows: {

σp = C̃pp εp + C̃pn εn

σn = C̃np εp + C̃nn εn
(2.27)

where matrices C̃pp, C̃pn, C̃np, and C̃nn derive from matrix C̃:

C̃pp =

 C̃11 C̃12 0

C̃12 C̃22 0

0 0 C̃44

 ; C̃pn =

 0 C̃16 C̃13

0 C̃26 C̃23

C̃45 0 0

 ;

C̃np = C̃T
pn =

 0 0 C̃45

C̃16 C̃26 0

C̃13 C̃23 0

 ; C̃nn =

 C̃55 0 0

0 C̃66 C̃36

0 C̃36 C̃33


(2.28)

In the case of classical theories (i.e. Euler-Bernoulli and Timoshenko beam theories) and
first-order approximation model, the transformed elastic coefficients C̃ij in Eq. 2.28 have to
be corrected by the procedure addressed in appendix B in order to contrast the Poisson’s
locking effect.

2.3.2 Isotropic Material

As previously explained, the material properties of an isotropic material are independent of
the direction. As a consequence, there are an infinite number of planes of elastic symmetry
(or no preferred directions) and the material properties can be described in terms of only
two elastic coefficients. Moreover, there is no need for introducing any material coordinate
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system. Hence, Hooke’s law for an isotropic material is:

σyy
σxx
σzz
σxz
σyz
σxy


=



C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(2.29)

Let the material stiffness matrix C to be introduced from Eq. 2.29:

σ = C ε (2.30)

The elastic coefficients in Eq. 2.29 depend only on Young’s modulus E and Poisson’s ratio
ν:

C11 = C22 = C33 =
(1− ν)E

(1 + ν) (1− 2 ν)
= λ+ 2µ

C12 = C13 = C23 =
νE

(1 + ν) (1− 2 ν)
= λ

C44 = C55 = C66 =
E

2 (1 + ν)
= G = µ

(2.31)

where λ and µ are the Lamé parameters and G is the shear modulus. Retrieving the stress
and strain vectors defined in Eqs. 2.5 and 2.6, Hooke’s law for an isotropic material in
Eq. 2.30 can be reformulated in an expression similar to Eq. 2.27:{

σp = Cpp εp + Cpn εn

σn = Cnp εp + Cnn εn
(2.32)

where matrices Cpp, Cpn, Cnp, and Cnn derive from matrix C:

Cpp =

 C11 C12 0
C12 C22 0
0 0 C44

 ; Cpn =

 0 0 C13

0 0 C23

0 0 0

 ;

Cnp = CT
pn =

 0 0 0
0 0 0
C13 C23 0

 ; Cnn =

 C55 0 0
0 C66 0
0 0 C33


(2.33)

As indicated for orthotropic materials, in the case of classical theories (i.e. Euler-Bernoulli
and Timoshenko beam theories) and first-order approximation model, the elastic coefficients
in Eq. 2.33 have to be corrected by the procedure addressed in appendix B in order to
contrast the Poisson’s locking effect.

2.4 Variable Kinematic 1D models

Since the dimensions of the cross-section are typically negligible with respect to the beam
longitudinal axis, in typical structural beam modeling the variation of the main unknowns
of the structural model with respect to the directions lying on the cross-section Ω can be
approximated. According to the framework of Carrera Unified Formulation (CUF), the

22



2.4. Variable Kinematic 1D models

displacement field is assumed to be an expansion of a certain class of functions Fτ , which
depend on the cross-section coordinates x and z:

u (x, y, z; t) = Fτ (x, z) uτ (y; t) τ = 1, . . . , Nu = Nu (N) (2.34)

The compact expression is based on Einstein’s notation: repeated subscript τ indicates
summation. The vector uτ is the τ th generalized displacement unknowns vector which
contains the components {uxτ uyτ uzτ}T . The vector uτ depends on time t and on the
single spatial coordinate y and so Eq. 2.34 represents the key formulation of the one-
dimensional (1D) displacement-based CUF model. The number of expansion terms Nu

depends on the expansion order N , which is a free parameter of the formulation. The
expansion order depends directly on the choice of the cross-section functions Fτ , which is
arbitrary. Thanks to the hierarchical CUF approach, different higher-order theories with
a variable order of expansion for the displacement unknowns and hence with a variable
accuracy can be easily developed. In general, Eq. 2.34 describes the three-dimensional
behavior of a structure and the accuracy of the axiomatic model in Eq. 2.34 can be freely
increased. This implies that the present method can be used also for relatively small aspect
ratio structures unlike classical beam theories.

CUF was initially proposed by Carrera for two-dimensional (2D) plate and shell models
[97, 98, 99, 100], where it was exploited to describe the displacement field as an expansion
in the thickness direction by means of thickness functions Fτ . Hence, for plate and shell
models these functions depend only on the thickness coordinate z whereas the generalized
displacement unknowns uτ depend on the reference surface coordinates x and y. The
equivalent approach for the one-dimensional modeling (Eq. 2.34) which is described in this
doctoral work considers multivariate (2D) polynomial functions, depending on the beam
cross-section coordinates, as approximation of the cross-section deformation.

As far as the approximation type is concerned, the choice of cross-sections functions Fτ
determines the class of the 1D CUF model adopted. Several multivariate (depending on
x and z coordinates) polynomial functions can be assumed for Fτ . For instance, refined
models based on Maclaurin and Lagrange polynomials are herein proposed and addressed.

2.4.1 Maclaurin polynomials

The choice of Maclaurin polynomials to approximate the cross-section behavior is inspired
straightforwardly by the classical beam models. In this case, the generic τ th cross-section
function is a multivariate Maclaurin polynomial given by the multiplication of a monomial
in x by a monomial in z as described in Eq. 2.35:

Fτ (x, z) = xh zk h, k = 0, . . . , N τ = 1, . . . , Nu =
(N + 1) (N + 2)

2
(2.35)

The relation between indices τ , h, and k in Eq. 2.35 is presented in Table 2.1.
With the kinematic assumptions in Eq. 2.35, most displacement-based beam theories

can be formulated on the basis of the generic kinematic field of Eq. 2.34. Higher-order
one-dimensional theories can be described assuming an expansion order N higher than 1.
For instance, when N = 2, the second-order axiomatic displacement field is given by:

ux = ux1 + ux2 x + ux3 z + ux4 x
2 + ux5 xz + ux6 z

2

uy = uy1 + uy2 x + uy3 z + uy4 x
2 + uy5 xz + uy6 z

2

uz = uz1 + uz2 x + uz3 z + uz4 x
2 + uz5 xz + uz6 z

2
(2.36)

Subsequently, the classical beam models such as Euler-Bernoulli’s (EBBM) [30] and
Timoshenko’s (TBM) [43] are easily derived from the first-order approximation model
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Table 2.1: Relation between indices τ , h and k for different values of the expansion order N .
Maclaurin polynomials case.

N Nu τ h k

0 1 1 0 0

1 3
2
3

1
0

0
1

2 6
4
5
6

2
1
0

0
1
2

3 10

7
8
9
10

3
2
1
0

0
1
2
3

...
...

...
...

...

(N = 1). In fact, it is noteworthy that the model N = 1 is more accurate than the classical
beam models mentioned above (EBBM and TBM), since it takes into account a first-order
approximation of all the three components of the displacement field. In other words,
for N = 1 the displacement components ux and uz are approximated via a first-order
approximation instead of a constant approximation for classical beam theories.

According to Table 2.1, the cross-section functions Fτ depend on N as presented in
the scheme of Table 2.2, which reminds Pascal’s triangle, also called Tartaglia’s triangle.
Its particular triangular shape is highlighted in Fig. 2.5, which depicts the multivariate
Maclaurin polynomials considered for the approximation of the beam cross-section defor-
mation as the expansion order N increases. For the sake of simplicity, the polynomials
in Fig. 2.5 refer to a rectangular domain with dimensions equal to a and b along x and z
axes, respectively.

Table 2.2: Cross-section functions Fτ and number of expansion terms Nu as functions of the
expansion order N . Maclaurin polynomials case.

N Nu Fτ

0 1 F1 = 1

1 3 F2 = x F3 = z

2 6 F4 = x2 F5 = xz F6 = z2

3 10 F7 = x3 F8 = x2z F9 = xz2 F10 = z3

...
...

...

N (N+1)(N+2)
2 F (N2+N+2)

2

= xN F (N2+N+4)
2

= xN−1z . . . FN(N+3)
2

= xzN−1 F (N+1)(N+2)
2

= zN

The structural, aeroelastic, and fluid dynamics formulations developed during this
doctoral research are described in the following chapters precisely on the basis of the choice
of Maclaurin polynomials as Fτ for the one-dimensional CUF model. For the sake of
completeness, it is important to note that from here on this kind of expansion is denoted
also as Taylor or Taylor-like expansion.
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N = 0

N = 1

N = 2

N = 3

N = 4

N = 5

Figure 2.5: Higher-order Maclaurin polynomials for different values of the expansion order N .

2.4.2 Lagrange Polynomials

In structural dynamics, different classes of polynomials are widely used as approximation
funtions in numerical modeling. The case of Taylor-like expansion for classical and higher-
order beam models has been presented in the previous section. A prime example of the
use of a different polynomial class is the layer-wise approach used in plate and shell (2D)
modeling to describe the mechanical behavior of a laminate structure [101]. In layer-wise
plate and shell models, 1D Legendre polynomials approximate the structural unknonws
(displacement field for displacement-based models or displacement and stress fields for
mixed models) along the thickness and thus they depend only on the thickness coordinate.

Lagrange polynomials are an other important class of functions broadly employed in
numerical modeling. In particular, they have been fundamental to develop the finite element
method in solid mechanics and fluid dynamics in the last decades. Hence, the choice of
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multivariate (2D) Lagrange polynomials can be an appropriate example of approximation
of the cross-section deformation for one-dimensional modeling and thus is here faced.

Lagrange polynomials are typically expressed in a natural coordinate system. Hence,
for the sake of convenience, the introduction of multivariate Lagrange polynomials herein
refers to the natural coordinates (r, s). Let the natural coordinate system to be ranged in
a square so that −1 ≤ r ≤ 1 and −1 ≤ s ≤ 1. In general, the coordinate transformation
from an arbitrary rectangular cross-section referred to (x, z) coordinates to the natural
square (r, s) is trivial and more details can be found in [42, 102].

With multivariate Lagrange polynomials, it is necessary to introduce a lattice of
Lagrange points, also called Lagrange nodes, over the natural domain (r, s). Let (Nh + 1)
to be the number of Lagrange points along the r axis, whereas (Nk + 1) is the number of
Lagrange points along the s axis. Two sample schemes of Lagrange points distribution are
illustrated in Fig.2.6 for the simple case Nh = Nk.

r

s

(-1, -1) (1, -1)

(1, 1)(-1, 1)

1 2

34

(a) 4 Lagrange points (Nh = Nk = 1)

9
r

s

(-1, -1) (0, -1) (1, -1)

(1, 0)

(1, 1)(0, 1)(-1, 1)

(-1, 0)
(0, 0)

1 2 3

4

567

8 9

(b) 9 Lagrange points (Nh = Nk = 2)

Figure 2.6: Sample schemes of Lagrange points distibution over the natural coordinate system (r, s)
for two different values of Nh = Nk.

In the natural domain, the generic τ th cross-section function to be used in Eq. 2.34 is a
multivariate Lagrange polynomial given by the multiplication of a 1D Lagrange polynomial
in r by a 1D Lagrange polynomial in s as described in Eq. 2.37:

Fτ (r, s) = Fh (r) Fk (s)
h = 0, . . . , Nh

k = 0, . . . , Nk
τ = 1, . . . , Nu = (Nh + 1) (Nk + 1)

(2.37)
where:

Fh (r) =

Nh∏
ξ=0, ξ /=h

(r − rξ)
(rh − rξ)

(2.38)

Fk (s) =

Nk∏
ζ=0, ζ /=k

(s− sζ)
(sk − sζ)

(2.39)

The relation between indices τ , h, and k in Eq. 2.37 is presented in Table 2.3, where the
natural coordinates of the generic τ th Lagrange point (rh, sk) , i.e. (rτ , sτ ), are summarized.
Nh represents the order of the 1D Lagrange polynomial Fh (r) whereas Nk represents the
order of the 1D Lagrange polynomial Fk (s), see Eqs. 2.38 and 2.39. It is noteworthy that
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2.4. Variable Kinematic 1D models

the number of Lagrange points (Nh + 1)× (Nk + 1) is the number of Lagrange polynomials
involved and therefore the number of expansion terms Nu.

Table 2.3: Relation between indices τ , h and k for different values of the expansion order N .
Lagrange polynomials case with Nh = Nk = N .

N Nu τ h k rh sk

1 4

1
2
3
4

0
1
1
0

0
0
1
1

-1
1
1
-1

-1
-1
1
1

2 9

1
2
3
4
5
6
7
8
9

0
1
2
2
2
1
0
0
1

0
0
0
1
2
2
2
1
1

-1
0
1
1
1
0
-1
-1
0

-1
-1
-1
0
1
1
1
0
0

...
...

...
...

...
...

...

Lagrange polynomials have the feature to be equal to 1 on the corresponding Lagrange
point and to be equal to 0 on the other Lagrange points:

Fτ (rλ, sλ) =

{
1 λ = τ

0 λ /= τ
(2.40)

Thank to this feature, the generalized displacement unknown vector uτ in Eq. 2.34 is
the actual three-dimensional displacement of the Lagrange point with natural coordinates
(rτ , sτ ). In other words, Lagrange polynomials do not involve the derivatives of the problem
unknowns as degree of freedom in the governing equations. Thus, they are particularly
suited to be assumed in case of approximation above the cross-section subdomain, since
congruency and equilibrium conditions can be easily satisfied.

For the sake of simplicity, the case Nh = Nk = N is here considered and N is referred
as the expansion order of the model. It means that the lattice of Lagrange points over
the natural coordinate system is equally distributed along the coordinates r and s. This
assumption simplifies Eq. 2.37 as follows:

Fτ (r, s) = Fh (r) Fk (s) h, k = 0, . . . , N τ = 1, . . . , Nu = (N + 1)2 (2.41)

According to Table 2.3, in the case N = 1 four Lagrange points in the natural coordinate
system are taken into account and coincident to the square corner points as shown in
Fig. 2.6(a). Lagrange polynomials of Eq. 2.41 become:

Fτ (r, s) =
1

4
(1 + r rτ ) (1 + s sτ ) τ = 1, 2, 3, 4 (2.42)

As can be shown in Fig.2.7, for N = 1 the cross-section functions Fτ have first-order
approximation with respect to r and first-order of approximation to s.
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Figure 2.7: Higher-order Lagrange polynomials for Nh = Nk = N = 1.

Figure 2.8: Higher-order Lagrange polynomials for Nh = Nk = N = 2.

When the expansion order N increses, higher-order Lagrange polynomials are considered
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2.4. Variable Kinematic 1D models

to describe the cross-section deformation. In the sample case of N = 2 model, the cross-
section functions of Eq. 2.41 become:

Fτ (r, s) =
1

4

(
r2 + r rτ

) (
s2 + s sτ

)
τ = 1, 3, 5, 7

Fτ (r, s) =
1

2
r2
τ

(
r2 + r rτ

) (
1− s2

)
+

1

2
s2
τ

(
1− r2

) (
s2 + s sτ

)
τ = 2, 4, 6, 8

Fτ (r, s) =
(
1 − r2

) (
1 − s2

)
τ = 9

(2.43)
where the natural coordinates (rτ , sτ ) of the τ th Lagrange point refers to the coordinates
rh and sk presented in Table 2.3. For N = 2, the axiomatic structural model (Eq. 2.34)
interpolates the cross-section deformation as a linear combination of the polynomial
functions depicted in Fig. 2.8 and the coefficients (weights) of this combination are the
unknown values of displacement at the nine Lagrange points in Fig. 2.6(b).

The present discussion about the choice of Lagrange polynomials as cross-section
functions has been reported here for the sake of completeness. In fact, the structural,
aeroelastic, and fluid dynamics formulations described in the following chapters base on
Maclaurin polynomials instead of Lagrange polynomials. Nonetheless, these formulations
can be easily extended to the Lagrange polynomials case and more details about their use
for one-dimensional CUF approximation can be found in [103].
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Chapter 3

1D CUF Finite Element
Formulation

This chapter focuses on the solution of the mathematical equations governing the structural
problem and obtained by means of the Principle of Virtual Displacements (PVD), which is
a widely used variational statement in solid mechanics.

In past research works, closed form analytical solutions of the structural problem
introduced in this chapter were obtained and more details about these exact solutions can
be found in [44]. Unfortunately, analytical solutions are only possible for a few particular
cases which frequently represent coarse simplifications of reality. For this reason, in the
present work a numerical method is employed in order to provide a solution, in form
of a set of numbers, to the mathematical governing equations. The aim is to transform
the mathematical expressions into a set of algebraic equations which depend on a finite
set of parameters. In particular, the Finite Element Method (FEM) is described in this
chapter and the typical finite element matrices are computed according to Carrera Unified
Formulation (CUF) introduced in section 2.4.

3.1 The Finite Element Method for 1D CUF

A finite element can be visualized as a small portion of a continuum. The term “finite”
distinguishes such a portion from the infinitesimal elements of differential calculus. The
geometry of the continuum is considered to be represented by the assembly of a collection
of non-overlapping domains with simple geometry referred as finite elements. It is usually
said that a mesh of finite elements discretizes the continuum [104].

The principal idea of the displacement-based finite element formulation is to express the
element displacements at any point as a combination of the element nodal displacements
through the use of interpolation functions (also called shape functions). Moreover, as
reported in [42], the interpolation of the element coordinates and element displacements
using the same shape functions, which are defined in a natural coordinate system, is the
basis of the isoparametric finite element displacement-based formulation.

In the present doctoral research, isoparametric one-dimensional (1D) finite elements
are developed in order to approximate the displacement field along the direction out of
the cross-section plane (uτ (y; t) in Eq. 2.34). Let the generic 1D finite element to be
introduced in Fig. 3.1. The number of nodes of the finite element NN can be arbitrary and
defines the type of the 1D element. For any type of 1D finite element here developed, Node
1 lies on the left-hand terminal point of the element, whereas Node 2 lies on the right-hand
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Chapter 3. 1D CUF Finite Element Formulation

terminal point, exactly as depicted in Fig. 3.1.

r-1

1 2

-1/3 1/3 10-2/3 2/3

yy
1

y
2

3 NN

Figure 3.1: Natural coordinate system for the generic one-dimensional finite element.

Let the natural axis r to be ranged so that −1 ≤ r ≤ 1, see Fig. 3.1. The coordinate
transformation from the physical coordinate y along the finite element to the natural
coordinate r is:

r =
(y − y1) + (y − y2)

(y2 − y1)
=

2 (y − y1) − LEL

LEL
(3.1)

where y1 and y2 are the physical coordinate of Nodes 1 and 2 of the finite element,
respectively. The length of the element LEL is equal to (y2 − y1). For an arbitrary number
of nodes NN , let the natural and physical coordinates of the generic ith node to be indicated
as ri and yi, respectively.

In finite element modeling, the physical coordinate at any point of the element is
interpolated as a linear combination of the physical coordinates of the NN element nodes
through the shape functions Ni:

y = Ni (r) yi i = 1, . . . , NN (3.2)

where repeated subscript i indicates summation based on Einstein’s notation. As mentioned
before, the shape functions are defined in the natural coordinate system r and this fact is
highlighted in Eq. 3.2. In order to be consistent with the fact that Eq. 3.2 has to become
y = yi when y = yi, the ith shape function Ni must have the feature to be equal to 1 on
the corresponding ith node and equal to 0 on all the other nodes:

Ni (rλ) =

{
1 λ = i

0 λ /= i
(3.3)

As far as the choice of shape functions is concerned, a rather natural class of functions
to be used for approximating element displacements are polynomials because they are
commonly employed to approximate unknown functions, and the higher the degree of the
polynomial, the better the approximation that is expected. In addition, polynomials are
easy to differentiate; i.e., if the polynomials approximate the displacements of the structure,
the strains can be evaluated with relative ease. For this reason, in this case the class of 1D
Lagrange polynomials represents an appropriate candidate as shape functions since they
satisfy the condition in Eq. 3.3. Hence:

Ni (r) =

NN∏
ξ=1, ξ /=i

(r − rξ)
(ri − rξ)

(3.4)

Equation 3.4 is consistent with Eq. 2.38, which has been introduced to define multivariate
Lagrange polynomials. The natural coordinates of 1D element nodes thus coincide with
the natural coordinates of 1D Lagrange points, according to the discussion in section 2.4.2.
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3.1. The Finite Element Method for 1D CUF

As mentioned, in general the number of nodes NN is arbitrary and defines the type of
the element. In fact, the order of the shape functions of an element is equal to (NN − 1).
In the present dissertation, finite elements with a number of nodes NN equal to 2, 3, and 4
are formulated in the present chapter and named B2, B3, and B4, respectively. The values
of the natural coordinates ri are reported in Table 3.1 for these types of finite elements.
The 1D Lagrange polynomials used as shape functions for B2, B3, and B4 elements are
separately computed in the following sections.

Table 3.1: Natural coordinates of nodes for B2, B3, and B4 one-dimensional finite elements.

Element type NN i ri

B2 2
1
2

-1
1

B3 3
1
2
3

-1
0
1

B4 4

1
2
3
4

-1
-1/3
1/3

1

3.1.1 B2 Element

The 1D finite element with two nodes (NN = 2) is referred as B2 element, see Fig. 3.2. The
order of each shape function is therefore (NN − 1) = 1. Here it is proved that first-order
Lagrange polynomials (based on two Lagrange points) are precisely the class of first-order
polynomials which satisfy the fundamental conditions for shape functions in Eq. 3.3.

r-1

1 2

-1/3 1/3 10-2/3 2/3

Figure 3.2: B2 element (2 nodes) in the natural coordinate system.

In order to satisfy the second condition of Eq. 3.3 (Ni (rλ) = 0 for λ /= i), the shape
functions for B2 element are:

N1 = c21 (r − 1)

N2 = c22 (r + 1)
(3.5)

where c21 and c22 can be arbitrary coefficients. In order to satisfy also the first condition
of Eq. 3.3 (Ni (rλ) = 1 for λ = i), it can be easily verified that these two coefficients must
be as follows:

c21 = − 1

2
c22 = +

1

2
(3.6)

Finally, substituting Eq. 3.6 into Eq. 3.5, the shape functions for B2 element exactly
correspond to Lagrange polynomials obtained by Eq. 3.4 for NN = 2 and are depicted in
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Fig. 3.3:

N1 = − 1

2
r +

1

2

N2 = +
1

2
r +

1

2

(3.7)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -2/3 -1/3 0 1/3 2/3 1

N
i

r

N1 (r) N2 (r)

Figure 3.3: 1D Lagrange polynomials as shape functions of B2 element.

3.1.2 B3 Element

The 1D finite element with three nodes (NN = 3) is referred as B3 element, see Fig. 3.4.
The order of each shape function is therefore (NN − 1) = 2. Here it is proved that second-
order Lagrange polynomials (based on three Lagrange points) are precisely the class of
second-order polynomials which satisfy the fundamental conditions for shape functions in
Eq. 3.3.

r-1

1 23

-1/3 1/3 10-2/3 2/3

Figure 3.4: B3 element (3 nodes) in the natural coordinate system.

In order to satisfy the second condition of Eq. 3.3 (Ni (rλ) = 0 for λ /= i), the shape
functions for B3 element are:

N1 = c31 r (r − 1)

N2 = c32 r (r + 1)

N3 = c33 (r + 1) (r − 1)

(3.8)

where c31, c32, and c33 can be arbitrary coefficients. In order to satisfy also the first
condition of Eq. 3.3 (Ni (rλ) = 1 for λ = i), it can be easily verified that these three
coefficients must be as follows:

c31 =
1

2
c32 =

1

2
c33 = − 1 (3.9)
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Finally, substituting Eq. 3.9 into Eq. 3.8, the shape functions for B3 element exactly
correspond to Lagrange polynomials obtained by Eq. 3.4 for NN = 3 and are depicted in
Fig. 3.5:

N1 = +
1

2
r2 − 1

2
r

N2 = +
1

2
r2 +

1

2
r

N3 = − r2 + 1

(3.10)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -2/3 -1/3 0 1/3 2/3 1

N
i

r

N1 (r) N2 (r) N3 (r)

Figure 3.5: 1D Lagrange polynomials as shape functions of B3 element.

3.1.3 B4 Element

The 1D finite element with four nodes (NN = 4) is referred as B4 element, see Fig. 3.6. The
order of each shape function is therefore (NN − 1) = 3. Here it is proved that third-order
Lagrange polynomials (based on four Lagrange points) are precisely the class of third-order
polynomials which satisfy the fundamental conditions for shape functions in Eq. 3.3.

r-1

1 23 4

-1/3 1/3 10-2/3 2/3

Figure 3.6: B4 element (4 nodes) in the natural coordinate system.

In order to satisfy the second condition of Eq. 3.3 (Ni (rλ) = 0 for λ /= i), the shape
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functions for B4 element are:

N1 = c41

(
r +

1

3

)(
r − 1

3

)
(r − 1)

N2 = c42 (r + 1)

(
r +

1

3

)(
r − 1

3

)
N3 = c43 (r + 1)

(
r − 1

3

)
(r − 1)

N4 = c44 (r + 1)

(
r +

1

3

)
(r − 1)

(3.11)

where c41, c42, c43, and c44 can be arbitrary coefficients. In order to satisfy also the first
condition of Eq. 3.3 (Ni (rλ) = 1 for λ = i), it can be easily verified that these four
coefficients must be as follows:

c41 = − 9

16
c42 = +

9

16
c43 = +

27

16
c44 = − 27

16
(3.12)

Finally, substituting Eq. 3.12 into Eq. 3.11, the shape functions for B4 element exactly
correspond to Lagrange polynomials obtained by Eq. 3.4 for NN = 4 and are depicted in
Fig. 3.7:

N1 = − 9

16
r3 +

9

16
r2 +

1

16
r − 1

16

N2 = +
9

16
r3 +

9

16
r2 − 1

16
r − 1

16

N3 = +
27

16
r3 − 9

16
r2 − 27

16
r +

9

16

N4 = − 27

16
r3 − 9

16
r2 +

27

16
r +

9

16

(3.13)
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Figure 3.7: 1D Lagrange polynomials as shape functions of B4 element.

3.1.4 Variable kinematic 1D CUF FE model

As previously mentioned, the basic procedure in the isoparametric finite element displacement-
based formulation is to express both the element coordinates and the element displacements
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3.1. The Finite Element Method for 1D CUF

in the form of interpolations (shape functions) using the natural coordinate system of the
element. The same shape functions Ni introduced in the previous section for the element
coordinate interpolation are therefore used to approximate the displacement unknowns.
According to CUF formulation in Eq. 2.34 and finite element coordinates approximation in
Eq. 3.2, generic displacements uτ lying on the beam axis are expressed as:

uτ (y; t) = Ni (y) q τi (t) i = 1, . . . , NN (3.14)

where again repeated subscript i indicates summation based on Einstein’s notation. The
generic nodal displacement vector q τi contains the degrees of freedom of the generic τ th

expansion term corresponding to the ith element node. The dimensions of this vector are
3× 1 and its components are:

q τi (t) =


qux τi (t)
quy τi (t)
quz τi (t)

 (3.15)

Although the finite element formulation for displacements in Eq. 3.14 contains the term
Ni (y), i.e. shape functions referred to the physical coordinate y, these shape functions are
exactly the same as those (Ni (r)) used for element coordinates and referred to the natural
coordinate r, according to the isoparametric FE formulation. A coordinate transformation
is required. In fact:

Ni (y) = Ni (y (r)) ⇒ Ni (r) (3.16)

where the coordinate transformation from the natural coordinate r to the physical coordinate
y is computed inverting Eq. 3.1:

y =
y1

2
(1− r) +

y2

2
(1 + r) = y1 +

LEL

2
(1 + r) (3.17)

On the contrary:

Ni (r) = Ni (r (y)) ⇒ Ni (y) (3.18)

where the relation between r and y is here retrieved (see Eq. 3.1):

r =
(y − y1) + (y − y2)

(y2 − y1)
=

2 (y − y1) − LEL

LEL
(3.19)

The expression of shape functions Ni (y) in terms of the physical coordinate y can be easily
obtained combining Eqs. 3.4 and 3.19. Nonetheless, this procedure is here disregarder for
the sake of brevity. As it will be clear in appendix C, the above coordinate transformations
have to be taken into account in the integration of shape functions over the finite element
domain.

Combining the finite element approximation in Eq. 3.14 and CUF formulation in
Eq. 2.34, the displacement field described by the present one-dimensional models becomes:

u (x, y, z; t) = Fτ (x, z)Ni (y) q τi (t)
τ = 1, . . . , Nu = Nu (N)

i = 1, . . . , NN
(3.20)

Thanks to the hierarchical CUF approach, by means of Eq. 3.20 different higher-order 1D
CUF finite element models with variable accuracy can be developed and employed to solve
the structural problem which will be derived afterwards. In fact, the accuracy of the model
is a free parameter of the analysis and depends directly on the expansion order N and the
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Chapter 3. 1D CUF Finite Element Formulation

type of finite elements, i.e. NN , selected. In this sense, the term variable kinematic model
is adopted to define the present one-dimensional formulation.

At first, let a single finite element to be considered. Later, the typical finite element
assembly procedure will be considered. Nu generic nodal displacement vectors q τi corre-
spond to the generic ith node. Since the single element has NN nodes, thus (Nu × NN )
generic nodal displacement vectors q τi correspond to a single element. The number of
degrees of freedom related to the single element is referred as DOFsEL and its numerical
value is:

DOFsEL = 3NuNN (3.21)

since q τi contains three components, see Eq. 3.15.

Following the standard finite element method, the structural domain is discretized
by a mesh, which constitutes a series of connected (non-overlapping) one-dimensional
finite elements. An example of two B3 elements assembled is illustrated in Fig. 3.8. The
connection of the finite elements is verified by the fact that Node 2EL 1 of Element 1
and Node 1EL 2 of Element 2 are coincident. The numerical method which achieves this
connection is the typical finite element assembly procedure, which is described in details in
section 3.4.

1 23

yy
1

EL 1 EL 1 EL 1

1
EL 2

2
EL 2

3
EL 2

EL 1

EL 2

y
2

y
1

y
2

EL 1 EL 1

EL 2 EL 2

Figure 3.8: Example of two B3 finite elements assembled (Node 2EL1 ≡ Node 1EL2).

The number of finite elements the mesh is made of is indicated as NEL. Given a mesh
of NEL connected elements with NN nodes per element, the total number of nodes NN TOT

of the FE mesh is computed as:

NN TOT = (NN − 1)NEL + 1 (3.22)

This formula takes into account the fact that two connected finite elements share the same
node. From Eq. 3.22 it is easily verified that NN TOT is equal to 5 for the sample case
of two connected B3 elements depicted in Fig. 3.8, where (NN = 2, NEL = 2). All the
Nu generic nodal displacement vectors q τi for each of the NN TOT nodes of the mesh will
be collected in the nodal displacement vector q for all values of τ (τ = 1, . . . , Nu) and i
(i = 1, . . . , NN ) of each element, see section 3.3. As a consequence, vector q contains all
the nodal degrees of freedom of the present structural model, which are commonly referred
as DOFs. Its dimensions are (3NuNN TOT)× 1, therefore:

DOFs = DOFsN NN TOT = 3NuNN TOT (3.23)

where DOFsN is the number of degrees of freedom related to the single element node. It
is reminded that the number of expansion terms Nu depends on the class of polynomial
functions chosen as cross-section functions Fτ , as discussed in section 2.4. In particular,
Nu depends directly on the expansion order N according to Eq. 2.35 for Maclaurin
polynomials and Eq. 2.37 for Lagrange polynomials. As mentioned at the end of section 2.4.2,
the formulation developed in the present dissertation bases on the choice of Maclaurin
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3.2. Principle of Virtual Displacements for 1D CUF

polynomials instead of Lagrange polynomials. Hence, the total number of degrees of
freedom of the model, in case of Maclaurin polynomials, is:

DOFs = 3NuNN TOT = 3
(N + 1) (N + 2)

2

[
(NN − 1)NEL + 1

]
(3.24)

In conclusion, it is important to note that DOFs depend on the expansion order N , the
finite element type used in the discretization (NN ), and the number of finite elements in
the mesh used for the model discretization.

From here on, Maclaurin polynomials will considered as cross-section functions Fτ .
As far as the number of DOFs is concerned, some example are presented for the sake of
completeness. N = 1 model involves 3 unknowns for each displacement component ux, uy,
uz and then 9 degrees of freedom per node DOFsN , since:

DOFsN = 3Nu = 3
(N + 1) (N + 2)

2
(3.25)

Following Eq. 3.25, the fourth-order model involves 15 unknowns per displacement compo-
nent and hence 45 DOFs per node. This is in consistent with Table 2.2 and Fig. 2.5. As a
consequence, for the sample case of two connected B3 elements (NN TOT = 5) depicted in
Fig. 3.8 the number of degrees of freedom DOFs is equal to 9 × 5 = 45 for N = 1 and
45× 5 = 225 for N = 4.

Using 1D CUF FE approximation in Eq. 3.20, the strain vectors, which in Eq. 2.9 are
expressed in a compact vectorial notation in terms of the displacement unknowns, can be
directly related to the nodal displacement vector q τi:{

εn =
(
Dnp Fτ I

)
Ni q τi + Fτ

(
DnyNi I

)
q τi

εp =
(
Dp Fτ I

)
Ni q τi

(3.26)

where I is the identity matrix. Parentheses are introduced to highlight the effect of the
differential matrix operators. Cross-section functions Fτ are independent of y coordinate
and shape functions Ni do not depend on x and z coordinates. As a consequence, the
differential matrix operators Dp and Dnp have effect only on Fτ , whereas Dny has effect
only on Ni.

3.2 Principle of Virtual Displacements for 1D CUF

In order to introduce the governing equations of the elasticity problem, a brief overview on
the three alternative forms of a mathematical model is here presented. For more details,
a very clear and comprehensive introduction to variational problems is made by Felippa
[105] and Bathe [42].

3.2.1 Strong, weak and variational forms in elasticity

A mathematical model can be described in three alternative forms.

The strong form (SF) of a mathematical problem is presented as a system of ordinary or
partial differential equations in space and/or time, complemented by appropriate boundary
conditions. Occasionally this form may be presented in integro-differential form, or reduce
to algebraic equations.

The weak form (WF) is presented as a weighted integral equation that “relaxes” the
strong form into a domain-averaging statement.
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The variational form (VF) is presented as a functional whose stationary conditions
generate the weak and strong forms.

It is important to note that the above three forms of the analysis problem are totally
equivalent. Standard Variational Calculus (SVC) and Extended Variational Calculus (EVC)
comprise a set of rules and techniques by which it is possible to pass from one of these
forms to another.

From the strong form, several weak forms can be obtained by selectively “weakening”
strong connections. As a consequence, the space of functions used for the solution of the
weak form is larger than the space of functions used for the solution of the strong form.
In the weak form, a residual function associated with the strong form is introduced. For
the exact solution of the governing problem, the residual function is equal to zero. The
weighted residual form is obtained multiplying the residual function by weight functions,
integrating over the mathematical domain and taking into account the contributions of
the boundary conditions. If the weighted functions are written as variations of arbitrary
functions called test functions, a variational statement is obtained from the weighted
residual form. The concept of variation is described afterwards. Homogenizating the
variations of the variational statement and through a further integration, the variational
form is achieved and the transformation from the weak form to the variational form of the
mathematical model is completed. Similarly, it is possible to pass from the weak form to
the strong form enforcing all relations pointwise [105].

As far as the analysis of solids and structures is concerned, several functional have
been defined in literature during the last century of research. Among the others, the
Total Potential Energy Π is introduced as functional of the variational formulation. The
definition of Π is:

Π = U − W (3.27)

where U is the total internal energy and W is the external energy due to applied mechanical
loads. The Total Potential Energy depends only on the displacement u, which in variational
calculus is called the primary variable of the functional. It is noteworthy that only
the primary variable(s) of a functional may be varied. Since the concept of variation
is fundamental in variational calculus, it is introduced here and referred with symbol
δ. Suppose that u (x, y, z; t) is changed to u (x, y, z; t) + δu (x, y, z; t). The variation
δu (x, y, z; t) should not be confused with the ordinary differential du (x, y, z; t) since on
taking the variation the independent variables (x, y, z; t) are frozen; that is, δx = 0, δy = 0,
δz = 0, δt = 0. The functional changes from Π to Π + δΠ. A displacement variation
δu (x, y, z; t) is said to be admissible when both u (x, y, z; t) and u (x, y, z; t)+δu (x, y, z; t)
are kinematically admissible. A kinematically displacement is admissible when it is
continuous and satisfies any displacement boundary condition.

Once the functional Total Potential Energy Π has been defined as functional, the
Mimimum Potential Energy principle of classical elasticity states that the actual displace-
ment solution u? (x, y, z; t) that satisfies the governing equations is that which makes Π
stationary:

δΠ = δU − δW = 0 if and only if u = u? (3.28)

with respect to admissible variations u = u? + δu of the exact displacement field u?. This
stationary equation leads to the Principle of Virtual Displacements (PVD) (also called
Principle of Virtual Work), which is the weak form of the Minimum Potential Energy
principle. In particular, PVD is the variational statement where the weight functions have
the meaning of “virtual” variations of displacement δu (x, y, z; t), also known as virtual
displacements. The Principle of Virtual Displacements states that the equilibrium of the
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body requires that for any admissible virtual displacements imposed on the body in its
state of equilibrium, the internal virtual work is equal to the external virtual work [42]:

δLint = δLext (3.29)

where Lint is the internal work (also called strain energy) and Lext is the external work
due to external loads. The external work can be split into the contributions of the work
carried out by the point loadings LP , the work carried out by line loadings Ll, the work
carried out by surface loadings Ls and the work carried out by volume loadings LV . These
four terms constitute the work of applied loadings Lal. In addition to these terms, using
the d’Alembert principle, the inertia forces can be simply included as part of the body
forces [42]. The contribution of virtual work of inertial loadings Line is thus taken into
account in the external virtual work, in addition to Lal. Eq. 3.29 becomes:

δLint = δLal − δLine = δLP + δLl + δLs + δLV − δLine (3.30)

The Principle of Virtual Displacements (Eqs. 3.29 and 3.30) is equivalent to the Mimimum
Potential Energy principle and, referring to Eq. 3.28, establishes that any displacement
allowed by the equilibrium configuration causes an increment of the system’s Total Potential
Energy. In fact, homogenizing the variations and integrating the PVD, the Total Potential
Energy functional can be obtained. The Principle of Virtual Displacements can be also
derived from the differential equations of equilibrium (strong form), see Washitzu [106]
and Felippa [107].

For the sake of completeness, alternative weak forms of the structural problem could
be derived by defining functionals different from the Total Potential Energy. For instance,
this is the case of Hellinger-Reissner (HR) stress-displacement functional. The weak
form of the Hellinger-Reissner principle of classical elasticity is often used for mixed
formulations, whereas the Principle of Virtual Displacements is suitable for displacement-
based formulations. Several other functionals have been developed in classical linear
elastostatics literature such as Complementalry Energy (CE), Strain-Displacement Reissner
(SDR), or Hu-Washitzu (HW) functionals. These functionals are defined as canonical
functionals according to Oden and Reddy [108, 109].

The element matrices corresponding to the required degrees of freedom of the structural
problem are directly obtained through the Principle of Virtual Displacements in Eq. 3.30.
The contribution of each term to the governing equations is separately considered in the
following sections leading to the construction of the Structural Stiffness Matrix, the Mass
Matrix and the Vector of Equivalent Nodal Forces. It is important to note that, for the sake
of simplicity, the formulation of matrices and vectors here presented corresponds to the local
degrees of freedom of the single finite element, since Eq. 3.20 (1D CUF FE approximation)
refers to the single finite element. Additional considerations will be necessary in the finite
element assembly procedure (see sections 3.4.1, 3.4.2 and 3.4.3) and when the elements are
arbitrarily oriented in the three-dimensional space, as will be clear in section 9.3.

3.2.2 Strain Energy

The first term of Eq. 3.30 is the virtual strain energy δLint (also known as internal virtual
work). Following the classical procedure in [106] or [107] to obtain Principle of Virtual
Displacements starting from the equilibrium differential equations, the expression of δLint

depends on stress and virtual strain components:

δLint =

∫
V

(
δεxx σxx + δεyy σyy + δεzz σzz + δγxy σxy + δγxz σxz + δγyz σyz

)
dV (3.31)
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where the virtual strains corresponds to the components of virtual displacements as follows:

δεxx =
∂ δux
∂x

δγxy = 2 δεxy =
∂ δux
∂y

+
∂ δuy
∂x

δεyy =
∂ δuy
∂y

δγxz = 2 δεxz =
∂ δux
∂z

+
∂ δuz
∂x

(3.32)

δεzz =
∂ δuz
∂z

δγyz = 2 δεyz =
∂ δuy
∂z

+
∂ δuz
∂y

The components of stress vectors in Eq. 3.31 represent stresses in equilibrium with the
applied loads which contribute to the external virtual work term. In other words, these
stress components are the unique stresses that exacty balance the applied loads. Referring
to the stress and strain vectors defined in Eqs. 2.5 and 2.6, the virtual strain energy can be
considered as the summation of two contributes:

δLint =

∫
V

(
δεTn σn + δεTp σp

)
dV =

∫
l

∫
Ω

(
δεTn σn + δεTp σp

)
dΩ dy (3.33)

As mentioned in the previous section, it is reminded that the present procedure has to be
followed to obtain the finite element matrices related to a single finite element; i.e. here the
assembly procedure is not yet considered. As a consequence, the integration in Eq. 3.33
is performed over the volume corresponding to the domain of a single finite element. By
definition, the cross-section related to the single one-dimensional finite element is considered
to be constant over the element length. Therefore, the integral over the volume in Eq. 3.33
and in the following equations is split into the integral over the cross-section and the
integral along the axis of the one-dimensional finite element, which has length LEL. For
the sake of completeness, it is notified that the integration in Eq. 3.31 is performed over
the original volume of the body, unaffected by the imposed virtual displacements.

By means of PVD, the governing equations are obtained in terms of the displacement
vector components and their derivatives. The aim of the finite element method is to
express the governing equations in terms of nodal displacement unknowns. For this purpose,
constitutive equations are involved to express the stress components in terms of strain
components and then geometrical relations are considered in order to express strains (and
virtual strains) in terms of displacements (and virtual displacements).

The relation between the vectors of virtual strains and the vector of virtual nodal
displacements for 1D CUF FE model is computed introducing the virtual variation δ in
Eq. 3.26: {

δεn =
(
Dnp Fτ I

)
Ni δq τi + Fτ

(
DnyNi I

)
δq τi

δεp =
(
Dp Fτ I

)
Ni δq τi

(3.34)

For the sake generality, the procedure is presented here for an orthotropic material. The
constitutive equations and material stiffness matrices described in Eqs. 2.27 and 2.28 (see
section 2.3.1) are thus involved here. The isotropic material case can be easily derived by
involving Eqs. 2.32 and 2.33 of section 2.3.2. In fact, as can be seen comparing the material
stiffness matrices of orthotropic and isotropic cases, isotropic matrices can be seen as a
particular case of the orthotropic ones. Substituting Eq. 3.34 into Eq. 3.33, and employing
the property of transponse for the product of matrices (the factors reverse):[(

Dnp Fτ I
)
Ni δq τi

]T
= δqTτiNi

(
IT DT

np Fτ
)

= δqTτiNi

(
DT
np Fτ I

)
(3.35)[

Fτ
(
DnyNi I

)
δq τi

]T
= δqTτi

(
IT DT

nyNi

)
Fτ = δqTτi

(
DT
nyNi I

)
Fτ (3.36)
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[(
Dp Fτ I

)
Ni δq τi

]T
= δqTτiNi

(
IT DT

p Fτ
)

= δqTτiNi

(
DT
p Fτ I

)
(3.37)

the two terms of the virtual strain energy become:

δLint = δqTτi

∫
l

∫
Ω

{[
Ni

(
DT
np Fτ I

)
+
(
DT
nyNi I

)
Fτ

][
C̃np

(
Dp Fs I

)
Nj +

C̃nn

(
Dnp Fs I

)
Nj + C̃nn Fs

(
DnyNj I

) ]
+

Ni

(
DT
p Fτ I

) [
C̃pp

(
Dp Fs I

)
Nj + C̃pn

(
Dnp Fs I

)
Nj +

C̃pn Fs
(
DnyNj I

) ]}
dΩ dy qsj

(3.38)

The dependence of the virtual strain energy on the nodal displacement unknowns is clear in
Eq. 3.38. The generic virtual nodal displacement vector δq τi contains the virtual degrees
of freedom of the generic τ th expansion term corresponding to the ith element node. So
indices τ and i are used for the terms coming from the virtual strain vectors in Eq. 3.33.
For the sake of clarity, different indices s and j are instead used for the terms coming from
the stress vectors in Eq. 3.33, which are the actual stresses in equilibrium with the applied
loads. In fact, the generic nodal displacement vector qsj contains the actual degrees of
freedom of the generic sth expansion term corresponding to the jth element node.

It is important to remind that the shape functions of the present one-dimensional finite
element model are independent of cross-section coordinates x and z, see Eq. 3.20. Hence,
they can be taken out of the integral over the cross-section Ω. Separating the single terms
of Eq. 3.38, the virtual strain energy is split into nine contributions:

δLint = δqTτi

{∫
l
Ni

[ ∫
Ω

(
DT
np Fτ I

)
C̃np

(
Dp Fs I

)
dΩ

]
Nj dy +∫

l
Ni

[ ∫
Ω

(
DT
np Fτ I

)
C̃nn

(
Dnp Fs I

)
dΩ

]
Nj dy +∫

l
Ni

[ ∫
Ω

(
DT
np Fτ I

)
C̃nn Fs dΩ

]
IΩyNj,y dy +∫

l
Ni,y ITΩy

[ ∫
Ω
Fτ C̃np

(
Dp Fs I

)
dΩ

]
Nj dy +∫

l
Ni,y ITΩy

[ ∫
Ω
Fτ C̃nn

(
Dnp Fs I

)
dΩ

]
Nj dy +∫

l
Ni,y ITΩy

[ ∫
Ω
Fτ C̃nn Fs dΩ

]
IΩyNj,y dy +∫

l
Ni

[ ∫
Ω

(
DT
p Fτ I

)
C̃pp

(
Dp Fs I

)
dΩ

]
Nj dy +∫

l
Ni

[ ∫
Ω

(
DT
p Fτ I

)
C̃pn

(
Dnp Fs I

)
dΩ

]
Nj dy +∫

l
Ni

[ ∫
Ω

(
DT
p Fτ I

)
C̃pn Fs dΩ

]
IΩyNj,y dy

}
qsj

(3.39)

where matrices I Ω y and ITΩy are introduced according to matrices Dny and DT
ny:

I Ω y =

 0 0 1
1 0 0
0 1 0

 ITΩy =

 0 1 0
0 0 1
1 0 0

 (3.40)

43



Chapter 3. 1D CUF Finite Element Formulation

As far as the material properties are concerned (stress components depend of course
on material properties, see Eqs. 2.27 and 2.32 for orthotropic and isotropic materials,
respectively), the material stiffness matrices expressed in Eqs. 2.28 and 2.33 are considered
to be constant along the single finite element axis. This is a typical assumption used in
finite element modeling. In case of possible variation of the material properties along
the longitudinal axis of the structure, a refined mesh would be employed and, practically
speaking, the material properties variation would be approximated as a piecewise constant
function, with constant material properties in the single finite element domain.

By definition in Eq. 2.34, cross-section functions Fτ depend only on the cross-section
coordinates. Their derivatives, through the differential matrix operators Dp and Dnp, can
be therefore taken out of the integral along the element length, as well as the material
stiffeness matrices. For the reasons elucidated above, it is possible to split the integral
along the element length and the integral over the element cross-section into two different
contributions to be multiplied:

δLint = δqTτi

{∫
l
NiNj dy

∫
Ω

(
DT
np Fτ I

)
C̃np

(
Dp Fs I

)
dΩ +∫

l
NiNj dy

∫
Ω

(
DT
np Fτ I

)
C̃nn

(
Dnp Fs I

)
dΩ +∫

l
NiNj,y dy

∫
Ω

(
DT
np Fτ I

)
C̃nn Fs dΩ IΩy +∫

l
Ni,yNj dy ITΩy

∫
Ω
Fτ C̃np

(
Dp Fs I

)
dΩ +∫

l
Ni,yNj dy ITΩy

∫
Ω
Fτ C̃nn

(
Dnp Fs I

)
dΩ +∫

l
Ni,yNj,y dy ITΩy

∫
Ω
Fτ C̃nn Fs dΩ IΩy +∫

l
NiNj dy

∫
Ω

(
DT
p Fτ I

)
C̃pp

(
Dp Fs I

)
dΩ +∫

l
NiNj dy

∫
Ω

(
DT
p Fτ I

)
C̃pn

(
Dnp Fs I

)
dΩ +∫

l
NiNj,y dy

∫
Ω

(
DT
p Fτ I

)
C̃pn Fs dΩ IΩy

}
qsj

(3.41)

The expression in curly brackets in Eq. 3.41 represents a matrix which is pre-multiplied
by the transposed virtual nodal displacement vector δqTτi and multiplied by the nodal
displacement vector qsj . The virtual strain energy can be rewritten in a compact vectorial
notation:

δLint = δqTτi Kτ sij qsj (3.42)

where Kτ sij is the fundamental nucleus of the Structural Stiffness Matrix of the 1D CUF
FE model. This nucleus is a matrix with dimensions 3× 3 and, in some sense, it can be
seen as the stiffness of the system in equilibrium with the applied loads for the generic
τ th expansion term of CUF formulation corresponding to the ith node of the single finite
element, see Eq. 3.20. The fundamental nucleus will be expanded with respect to the
indices τ , s, i, and j in order to build the Structural Stiffness Matrix of the single finite
element. The expression of the fundamental nucleus of the Structural Stiffness Matrix can
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be rewritten in a more compact form:

Kτ sij = E i
j /

(
DT
np Fτ I

)[
C̃np

(
Dp Fs I

)
+ C̃nn

(
Dnp Fs I

)]
+(

DT
p Fτ I

)[
C̃pp

(
Dp Fs I

)
+ C̃pn

(
Dnp Fs I

)]
. Ω +

E i
j,y /

[ (
DT
np Fτ I

)
C̃nn +

(
DT
p Fτ I

)
C̃pn

]
Fs . Ω IΩy +

E i,y
j ITΩy / Fτ

[
C̃np

(
Dp Fs I

)
+ C̃nn

(
Dnp Fs I

)]
. Ω +

E i,y
j,y ITΩy / Fτ C̃nn Fs . Ω IΩy

(3.43)

where the integrals of the products of shape functions along the element length in Eq. 3.41
are collected in the following terms:

E i
j =

∫
l
NiNj dy E i

j,y =

∫
l
NiNj,y dy

E i,y
j =

∫
l
Ni,yNj dy E i,y

j,y =

∫
l
Ni,yNj,y dy

(3.44)

These integrals along the element length can be performed through full, reduced or selective
integration. More details can be found in appendix C. The symbol / . . . . Ω in Eq. 3.43
indicates integration over the cross-section and is introduced for the sake of simplicity of
notation:

/ . . . . Ω =

∫
Ω
. . . dΩ (3.45)

In general, the integration over Ω can be performed numerically over an arbitrary cross-
section. For classical cross-sections such as rectangular or circular sections, the integration
can be performed analytically. For the sake of brevity, more details are not reported here,
but can be found in [45]. Moreover, the same analytical procedure can be followed for
cross-sections composed of rectangular or circular subsections, such as for instance T-shape,
C-shape or layered circular sections.

The expressions of the components of Kτ sij will be explicitly computed in section 3.4.1.
In that section, the fundamental nucleus will lead to the construction of the Structural
Stiffness Matrix.

3.2.3 Work of Inertial Loadings

In this section, the virtual variation of the work of inertial loadings term δLine in the
Principle of Virtual Displacements (Eq. 3.30) is addressed. The expression of the virtual
variation of the work of inertial loadings, typically abbreviated as virtual work of inertial
loadings, is:

δLine =

∫
V
δuTρ ü dV =

∫
l

∫
Ω
δuTρ ü dΩ dy (3.46)

where ρ is the material density and ü is the acceleration vector. As can be seen in Eq. 3.46,
δLine is directly written in terms of the virtual displacement unknowns δu. As done for
the strain energy (Eq. 3.33), the integration in Eq. 3.46 is performed over the volume
corresponding to the domain of a single finite element. Assuming again the cross-section
of the single one-dimensional finite element to be constant over the element length, the
integral over the volume in Eq. 3.46 is split into the integral over the cross-section and the
integral along the axis of the one-dimensional finite element, which has length LEL.
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Retrieving the 1D CUF FE approximation of the displacement field (Eq. 3.20), the
virtual displacement unknowns δu can be written in terms of the vector of virtual nodal
displacements δq τi:

δu (x, y, z; t) = Fτ (x, z)Ni (y) δq τi (t)
τ = 1, . . . , Nu = Nu (N)

i = 1, . . . , NN
(3.47)

According to the definition of variation, the independent variables (x, y, z; t) are frozen; that
is, δx = 0, δy = 0, δz = 0, δt = 0. Assuming that the accelerations are approximated in the
same way as the displacements, the 1D CUF FE approximation (Eq. 3.20) is considered
also to model the acceleration vector:

ü (x, y, z; t) = Fτ (x, z)Ni (y) q̈ τi (t)
τ = 1, . . . , Nu = Nu (N)

i = 1, . . . , NN
(3.48)

where the generic nodal acceleration vector q̈ τi contains the acceleration components
related to the generic τ th expansion term corresponding to the ith element node. Substi-
tuting Eqs. 3.47 and 3.48 into Eq. 3.46, δLine can be rewritten in terms of virtual nodal
displacements and nodal accelerations as follows:

δLine = δqTτi

{∫
l
Ni

[ ∫
Ω
ρFτ Fs dΩ I

]
Nj dy

}
q̈sj (3.49)

where the 3× 3 identity matrix I is introduced in order to build later a 3× 3 matrix to
be considered as CUF nucleus. According to the procedure followed for the strain energy,
indices τ and i are used for the displacement unknowns in Eq. 3.33. Different indices s
and j are instead used for the acceleration unknowns. It is important to remind that the
shape functions of the present one-dimensional finite element model are independent of
cross-section coordinates x and z, see Eq. 3.20. Hence, in Eq. 3.49 the shape functions are
taken out of the integral over the cross-section Ω.

Coherently with the procedure in section 3.2.2, the material properties, are assumed to
be constant along the single finite element axis. By definition in Eq. 2.34, cross-section
functions Fτ depend only on the cross-section coordinates. Hence, the material density
ρ can be integrated only over Ω. As a consequence, it is possible to split the integral
along the element length and the integral over the element cross-section into two different
contributions to be multiplied:

δLine = δqTτi

{∫
l
NiNj dy

∫
Ω
ρFτ Fs dΩ I

}
q̈sj (3.50)

The expression in curly brackets in Eq. 3.50 represents a matrix which is pre-multiplied
by the transposed virtual nodal displacement vector δqTτi and multiplied by the nodal
acceleration vector q̈sj . The virtual strain energy can be rewritten in a compact vectorial
notation:

δLine = δqTτi Mτ sij q̈sj (3.51)

where Mτ sij is the fundamental nucleus of the Mass Matrix of the 1D CUF FE model.
This nucleus is a matrix with dimensions 3× 3 and model the inertial properties of the
structure, which is modeled throug FEM, for the generic τ th expansion term of CUF
formulation corresponding to the ith node of the single finite element, see Eq. 3.20. The
fundamental nucleus will be expanded with respect to the indices τ , s, i, and j in order
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to build the Mass Matrix of the single finite element. The expression of the fundamental
nucleus of the Mass Matrix can be rewritten in a more compact form:

Mτ sij = E i
j / ρ Fτ Fs . Ω I (3.52)

where the term E i
j has been already defined in Eq. 3.44:

E i
j =

∫
l
NiNj dy (3.53)

Equation 3.52 shows that the fundamental nucleus of the Mass Matrix is a diagonal matrix.
Once again, the symbol / . . . . Ω indicates integration over the cross-section. The discussion
about the numerical or analytical method to perform this integration is not repeated here,
but more details can be found in [45].

The expressions of the components of Mτ sij will be explicitly computed in section 3.4.2.
In that section, the fundamental nucleus will lead to the construction of the Mass Matrix.

3.2.4 Work of Applied Loadings

In this section, the virtual variation of the work of applied loadings term Lal in the
Principle of Virtual Displacements (Eq. 3.30) is addressed on the basis of the 1D CUF
FE approximation (Eq. 3.20). As mentioned in section 3.2.1, it is the sum of four terms
corresponding to point loadings, line loadings, surface loadings, and volume loadings:

δLal = δLP + δLl + δLs + δLV (3.54)

The contributions of each term are separately considered in the following sections, where
fundamental nuclei of the vector of nodal forces are introduced, and then added together.
The expressions of the components of these nuclei and the procedure to build the Vector of
Equivalent Nodal Forces will be addressed in section 3.4.3.

Point Loadings

Point loads can be applied to the structure at any point of the three-dimensional do-
main. This section focuses on the expression of the virtual work of a single point loading
based on the present 1D CUF FE model. In case of more point loads applied, the
same procedure has to be followed for each of the point loads. Let the generic point load

P =
{
Pux Puy Puz

}T
acting on the load application point

(
xP , yP , zP

)
to be considered.

Using Eq. 3.20, the expression of the virtual work of point loadings, due to a single
point load, is:

δLP = δuT P = δqTτi Ni (yP ) Fτ (xP , zP ) P = δqTτi FP
τi (3.55)

where it is explicitly indicated that Fτ is evaluated in (xP , zP ) and Ni is computed in
yP . As a consequence, terms Fτ and Ni in Eq. 3.55 are known coefficients, as well as the
components of the point load vector P. In Eq. 3.55 the term FP

τi has been introduced. In
fact, the virtual work of point loadings can be rewritten in a compact vectorial notation in
terms of the transposed virtual nodal displacement vector δqTτi:

δLP = δqTτi FP
τi (3.56)

where FP
τi is the fundamental nucleus of the vector of nodal forces equivalent to the point

loadings of the 1D CUF FE model. This nucleus is a vector with dimensions 3× 1 and, in
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some sense, it can be seen as the vector of point loadings applied to the element nodes
which are energetically equivalent (consistent with the 1D FE discretization) to the actual
point loadings. According to Eq. 3.55, the nucleus is:

FP
τi =


FPxτi = Ni (yP ) Fτ (xP , zP ) Pux

FPy τi = Ni (yP ) Fτ (xP , zP ) Puy

FPz τi = Ni (yP ) Fτ (xP , zP ) Puz

 (3.57)

Line Loadings

The work of line loadings is obvioulsy due to line loadings applied along lines lying on
the external surface of the structure. For the sake of simplicity, let a structure with a
rectangular cross-section to be considered. For this sample scheme, the line loadings can
be applied along lines lying on the top, bottom, left, and right sides of the structure, as
sketched in Fig. 3.9. For the sake of simplicity, these lines are parallel to the longitudinal
axis. For instance, a point lying on the line on the top of the structure has coordinates
(x+
z , y, z

+
z ), where x+

z and z+
z are known quantities. The same consideration counts for

the other lines along which the line loadings are applied.
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Figure 3.9: Line loadings.

Using Eq. 3.20, the expression of the virtual work of line loadings is:

δLl = δLp
l±
xx

l + δL
p l±xy
l + Lp

l±
xz

l + δLp
l±
zx

l + δL
p l±zy
l + δLp

l±
zz

l (3.58)

Each term of Eq. 3.58 can be computed according to the lines along which the loadings are
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applied in Fig. 3.9:

δLp
l±
xx

l =

∫
L±x

δux p
l±
xx dy = δqux τi

∫
L±x

Ni p
l±
xx dy Fτ

(
x±x , z

±
x

)
= δqux τi F

p l±xx
xτi

δL
p l±xy
l =

∫
L±x

δuy p
l±
xy dy = δquy τi

∫
L±x

Ni p
l±
xy dy Fτ

(
x±x , z

±
x

)
= δquy τi F

p l±xy
y τi

δLp
l±
xz

l =

∫
L±x

δuz p
l±
xz dy = δquz τi

∫
L±x

Ni p
l±
xz dy Fτ

(
x±x , z

±
x

)
= δquz τi F

p l±xz
z τi

δLp
l±
zx

l =

∫
L±z

δux p
l±
zx dy = δqux τi

∫
L±z

Ni p
l±
zx dy Fτ

(
x±z , z

±
z

)
= δqux τi F

p l±zx
xτi

δL
p l±zy
l =

∫
L±z

δuy p
l±
zy dy = δquy τi

∫
L±z

Ni p
l±
zy dy Fτ

(
x±z , z

±
z

)
= δquy τi F

p l±zy
y τi

δLp
l±
zz

l =

∫
L±z

δuz p
l±
zz dy = δquz τi

∫
L±z

Ni p
l±
zz dy Fτ

(
x±z , z

±
z

)
= δquz τi F

p l±zz
z τi

(3.59)

It is important to remind that the cross-section functions Fτ of the present 1D CUF
model depends on cross-section coordinates x and z. Since the lines along which the line
loadings are applied are assumed to be parallel to the longitudinal axis, the values of Fτ
at coordinates (x±x , z

±
x ) and (x±z , z

±
z ) are thus known coefficients, which can be taken out

of the integral. In Eq. 3.59 the terms F p l±xx
xτi , F

p l±xy
y τi , F p l±xz

z τi , F p l±zx
xτi , F

p l±zy
y τi , F p l±zz

z τi have been
introduced. In fact, the virtual work of line loadings can be rewritten in a compact vectorial
notation in terms of the transposed virtual nodal displacement vector δqTτi:

δLl = δqTτi F l
τ i (3.60)

where F l
τ i is the fundamental nucleus of the vector of nodal forces equivalent to the line

loadings of the 1D CUF FE model. This nucleus is a vector with dimensions 3× 1 and, in
some sense, it can be seen as the vector of line loadings energetically consistent to the FE
discretization. According to Eq. 3.59, the nucleus is:

F l
τ i =


F l
xτi = F p l±xx

xτi + F p l±zx
xτi

F l
y τi = F

p l±xy
y τi + F

p l±zy
y τi

F l
z τi = F p l±xz

z τi + F p l±zz
z τi

 (3.61)

For the sake of completeness, the case of line loadings constant along the single finite
element lenght LEL is here considered. In this case, it is possible to take the line loading
out of the integral along L±x or L±z , which becomes the integral along the single element
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length. Hence:

δLp
l±
xx

l = δqux τi

∫
l
Ni dy Fτ

(
x±x , z

±
x

)
p l±xx = E i Fτ

(
x±x , z

±
x

)
p l±xx = δqux τi F

p l±xx
xτi

δL
p l±xy
l = δquy τi

∫
l
Ni dy Fτ

(
x±x , z

±
x

)
p l±xy = E i Fτ

(
x±x , z

±
x

)
p l±xy = δquy τi F

p l±xy
y τi

δLp
l±
xz

l = δquz τi

∫
l
Ni dy Fτ

(
x±x , z

±
x

)
p l±xz = E i Fτ

(
x±x , z

±
x

)
p l±xz = δquz τi F

p l±xz
z τi

δLp
l±
zx

l = δqux τi

∫
l
Ni dy Fτ

(
x±z , z

±
z

)
p l±zx = E i Fτ

(
x±z , z

±
z

)
p l±zx = δqux τi F

p l±zx
xτi

δL
p l±zy
l = δquy τi

∫
l
Ni dy Fτ

(
x±z , z

±
z

)
p l±zy = E i Fτ

(
x±z , z

±
z

)
p l±zy = δquy τi F

p l±zy
y τi

δLp
l±
zz

l = δquz τi

∫
l
Ni dy Fτ

(
x±z , z

±
z

)
p l±zz = E i Fτ

(
x±z , z

±
z

)
p l±zz = δquz τi F

p l±zz
z τi

(3.62)
where:

E i =

∫
l
Ni dy (3.63)

Surface Loadings

The work of surface loadings is obvioulsy due to pressure loadings applied on the external
surface of the structure. For the sake of simplicity, let a structure with a rectangular
cross-section to be considered. For this sample scheme, the pressure loads can be applied
on surfaces lying on the top, bottom, left, and right sides of the structure, as sketched in
Fig. 3.10.
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Figure 3.10: Surface loadings.

Using Eq. 3.20, the expression of the virtual work of surface loadings is:

δLs = δLp
±
xx
s + δL

p±xy
s + Lp

±
xz
s + δLp

±
zx
s + δL

p±zy
s + δLp

±
zz
s (3.64)

Each term of Eq. 3.64 can be computed according to the surfaces on which the pressures

50



3.2. Principle of Virtual Displacements for 1D CUF

are applied in Fig. 3.10:

δLp
±
xx
s =

∫
S±x

δux p
±
xx dz dy = δqux τi

∫
l
Ni

[ ∫
b±
Fτ p

±
xx dz

]
dy = δqux τi F

p±xx
xτi

δL
p±xy
s =

∫
S±x

δuy p
±
xy dz dy = δquy τi

∫
l
Ni

[ ∫
b±
Fτ p

±
xy dz

]
dy = δquy τi F

p±xy
y τi

δLp
±
xz
s =

∫
S±x

δuz p
±
xz dz dy = δquz τi

∫
l
Ni

[ ∫
b±
Fτ p

±
xz dz

]
dy = δquz τi F

p±xz
z τi

δLp
±
zx
s =

∫
S±z

δux p
±
zx dx dy = δqux τi

∫
l
Ni

[ ∫
a±
Fτ p

±
zx dx

]
dy = δqux τi F

p±zx
xτi

δL
p±zy
s =

∫
S±z

δuy p
±
zy dx dy = δquy τi

∫
l
Ni

[ ∫
a±
Fτ p

±
zy dx

]
dy = δquy τi F

p±zy
y τi

δLp
±
zz
s =

∫
S±z

δuz p
±
zz dx dy = δquz τi

∫
l
Ni

[ ∫
a±
Fτ p

±
zz dx

]
dy = δquz τi F

p±zz
z τi

(3.65)

where it is reminded that the shape functions Ni of the present one-dimensional finite
element model are independent of cross-section coordinates x and z. In Eq. 3.65 the terms

F p±xx
xτi , F

p±xy
y τi , F p±xz

z τi , F p±zx
xτi , F

p±zy
y τi , F p±zz

z τi have been introduced. In fact, the virtual work of
surface loadings can be rewritten in a compact vectorial notation in terms of the transposed
virtual nodal displacement vector δqTτi:

δLs = δqTτi Fs
τi (3.66)

where Fs
τi is the fundamental nucleus of the vector of nodal forces equivalent to the surface

loadings of the 1D CUF FE model. This nucleus is a vector with dimensions 3× 1 and, in
some sense, it can be seen as the vector of surface loadings energetically consistent to the
FE discretization. According to Eq. 3.65, the nucleus is:

Fs
τi =


F s
xτi = F p±xx

xτi + F p±zx
xτi

F s
y τi = F

p±xy
y τi + F

p±zy
y τi

F s
z τi = F p±xz

z τi + F p±zz
z τi

 (3.67)

For the sake of completeness, the case of pressures constant along the single finite element
lenght LEL is here considered. In this case, it is possible to split the integral along the
element length and the integral along the perpendicular direction (x or z) into two different
contributions to be multiplied. Hence:

δLp
±
xx
s = δqux τi

∫
l
Ni dy

∫
b±
Fτ p

±
xx dz = δqux τiE

i I p
±
xx

τ = δqux τi F
p±xx
xτi

δL
p±xy
s = δquy τi

∫
l
Ni dy

∫
b±
Fτ p

±
xy dz = δquy τiE

i I
p±xy
τ = δquy τi F

p±xy
y τi

δLp
±
xz
s = δquz τi

∫
l
Ni dy

∫
b±
Fτ p

±
xz dz = δquz τiE

i I p
±
xz

τ = δquz τi F
p±xz
z τi

δLp
±
zx
s = δqux τi

∫
l
Ni dy

∫
a±
Fτ p

±
zx dx = δqux τiE

i I p
±
zx

τ = δqux τi F
p±zx
xτi

δL
p±zy
s = δquy τi

∫
l
Ni dy

∫
a±
Fτ p

±
zy dx = δquy τiE

i I
p±zy
τ = δquy τi F

p±zy
y τi

δLp
±
zz
s = δquz τi

∫
l
Ni dy

∫
a±
Fτ p

±
zz dx = δquz τiE

i I p
±
zz

τ = δquz τi F
p±zz
z τi

(3.68)
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where the term E i has already been defined in Eq. 3.63::

E i =

∫
l
Ni dy (3.69)

and the terms I
p±xh
τ and I

p±zh
τ are defined as:

I
p±xh
τ =

∫
b±
Fτ p

±
xh dy h = x, y, z (3.70)

I
p±zh
τ =

∫
a±
Fτ p

±
zh dy h = x, y, z (3.71)

Volume Loadings

The work of volume loadings is obvioulsy due to loadings applied either on part of the
three-dimensional domain of the structure or on its whole domain. For the sake of brevity,

a volume loading pV =
{
pVx pVy pVz

}T
applied to the whole domain is here considered.

Using Eq. 3.20, the expression of the virtual work of volume loadings is:

δLV =

∫
V
δuTpV dV =

∫
l

∫
Ω
δuTpV dΩ dy = δqTτi

∫
l
Ni

[ ∫
Ω
Fτ pV dΩ

]
dy (3.72)

where it is reminded that the shape functions Ni of the present one-dimensional finite
element model are independent of cross-section coordinates x and z and then the term Ni

can be taken out of the integral over Ω.
The virtual work of volume loadings can be rewritten in a compact vectorial notation

in terms of the transposed virtual nodal displacement vector δqTτi:

δLV = δqTτi FV
τi (3.73)

where FV
τi is the fundamental nucleus of the vector of nodal forces equivalent to the volume

loadings of the 1D CUF FE model. This nucleus is a vector with dimensions 3× 1 and, in
some sense, it can be seen as the vector of volume loadings energetically consistent to the
FE discretization. According to Eq. 3.72, the nucleus is:

FV
τi =



F V
xτi =

∫
l
Ni

[ ∫
Ω
Fτ p

V
x dΩ

]
dy

F V
y τi =

∫
l
Ni

[ ∫
Ω
Fτ p

V
y dΩ

]
dy

F V
z τi =

∫
l
Ni

[ ∫
Ω
Fτ p

V
z dΩ

]
dy


(3.74)

For the sake of completeness, the case of volume loadings constant along the single finite
element lenght LEL is here considered. In this case, it is possible to split the integral along
the element length and the integral over the cross-section Ω into two different contributions
to be multiplied. Hence:

δLV = δqTτi

∫
l
Ni dy

∫
Ω
Fτ pV dΩ = δqTτi E

i Ip
V

τ = δqTτi FV
τi (3.75)

where the term E i has already been defined in Eq. 3.63:

E i =

∫
l
Ni dy (3.76)
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and the term Ip
V

τ is defined as:

Ip
V

τ =

∫
Ω
Fτ pV dΩ (3.77)

Applied Loadings: point, line, surface, and volume loadings

Fundamental nuclei of the vector of nodal forces equivalent to point loadings FP
τi, line

loadings F l
τ i, surface loadings Fs

τi, and volume loadings FV
τi on the basis of the 1D CUF

FE model have been introduced in Eqs. 3.56, 3.60, 3.66, and 3.73, respectively. In these
equations each contribution to the virtual work of applied loadings is expressed in terms of
the generic transposed virtual nodal displacement vector δqTτi. According to Eq. 3.30, the
virtual work of applied loadings can be written in terms of this vector as follows:

δLal = δqTτi Fτi (3.78)

where Fτi is the fundamental nucleus of the Vector of Equivalent Nodal Forces of the 1D
CUF FE model. This nucleus is a vector with dimensions 3× 1 and, in some sense, it can
be seen as the vector of all applied loadings energetically consistent to the FE discretization.
Substituting Eqs. 3.56, 3.60, 3.66, and 3.73 into Eq. 3.30, the fundamental nucleus is the
sum of the four fundamental nuclei:

Fτi = FP
τi + F l

τ i + Fs
τi + FV

τi (3.79)

3.3 Governing equations

As discussed in section 3.2.1, the Principle of Virtual Displacements (PVD) is the variational
statement used for the present formulation. Referring to Eqs. 3.29 and 3.30, the expression
of PVD is here proposed again:

δLint = δLal − δLine (3.80)

Sections 3.2.2, 3.2.3, and 3.2.4 have addressed each of the virtual work terms in Eq. 3.80
introducing the fundamental nuclei of the Structural Stiffness Matrix, of the Mass Matrix
and of the Vector of Equivalent Nodal forces. Substituting Eqs. 3.42, 3.51, and 3.78 into
Eq. 3.80 (i.e. Eq. 3.30), it is obtained:

δqTτi Mτ sij q̈sj + δqTτi Kτ sij qsj = δqTτi Fτi
τ, s = 1, . . . , Nu

i, j = 1, . . . , NN
(3.81)

This is the PVD in terms of the generic transposed virtual nodal displacement vector δqTτi,
the generic nodal displacement vector qsj and the generic nodal acceleration vector q̈sj .
For the sake of completeness, it is reminded that the formulation so far described is based
on Einstein’s notation for indices τ , s, i, and j, see Eq. 3.20. In fact, in Eq. 3.81 it is
reminded that the terms have to be summed up as the values of these indices increase.
However, it is important to note that so far the formulation has been written for the single
finite element. Hence, the values of indices i and j have been considered only from 1 to NN .
Following the standard finite element method, the structural domain is discretized by a
mesh, where the total number of nodes is equal to NN TOT, see section 3.1.4. Consistently
with the finite element mesh, Eq. 3.81 has to be expanded over the NN TOT nodes:

δqTτi Mτ sij q̈sj + δqTτi Kτ sij qsj = δqTτi Fτi
τ, s = 1, . . . , Nu

i, j = 1, . . . , NN TOT
(3.82)
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Equation 3.81 can be rewritten in the following form:

δqTτi

[
Mτ sij q̈sj + Kτ sij qsj − Fτi

]
= δqTτi 0

τ, s = 1, . . . , Nu

i, j = 1, . . . , NN TOT
(3.83)

where the term 0 is a 3× 1 vector of zeros. Hence, Eq. 3.83 can be seen as:

δqTτi

{
Mτ sij q̈sj + Kτ sij qsj − Fτi = 0

} τ, s = 1, . . . , Nu

i, j = 1, . . . , NN TOT
(3.84)

Equation 3.84 states that the equilibrium configuration (given by qsj and q̈sj) satisfies the
equation in curly brackets for any admissible virtual nodal displacement vector δq τi. Thus,
the Principle of Virtual Displacements leads to the following governing equation written in
a compact vectorial notation:

Mτ sij q̈sj + Kτ sij qsj = Fτi
s = 1, . . . , Nu

j = 1, . . . , NN TOT

∀ τ = 1, . . . , Nu ∀ i = 1, . . . , NN TOT

(3.85)

where repeated subscripts s and j indicate summation based on Einstein’s notation. The
governing equation in Eq. 3.85 has therefore to be expanded with respect to the indices τ ,
s, i, and j in order to obtain the governing equations of the elasticity problem:

M q̈ + K q = F (3.86)

where the Structural Stiffness Matrix K, the Mass Matrix M, the Vector of Equivalent
Nodal Forces F, the nodal displacement vector q, and the nodal acceleration vector q̈ are
involved. As mentioned in section 3.1.4 the nodal displacement vector q contains all the
nodal degrees of freedom of the present structural model, which are commonly referred
as DOFs. In particular, q contains all the Nu generic nodal displacement vectors q τi for
each of the NN TOT nodes (for all values of τ (τ = 1, . . . , Nu) and i (i = 1, . . . , NN ) of each
element). The expansion of q on indices τ and i is consistent with the assembly procedure
followed in section 3.4 to build the finite element matrices K, M and vector F.

It should be noted that no assumptions on the expansion order have been made so far.
Therefore, it is possible to obtain refined variable kinematic 1D models without changing
the formal expression of the nuclei components. Thanks to the CUF, the present model is
invariant with respect to the order of the beam theory and the type of element used in
the finite element axial discretization. CUF is therefore the ideal tool to easily compare
different higher-order theories. In fact, the expansion order of the model, i.e. its accuracy,
is a free parameter of the analysis by exploiting a systematic procedure that leads to
governing FE matrices whose form does not depend on the order of expansion used for the
displacement unknowns over the cross-section.

The governing equations of the elasticity problem expressed in Eq. 3.86 are now
separately considered for static, free vibration and dynamic response analysis.

3.3.1 Static analysis

When the structural static analysis is performed, the contribution of the virtual work of
inertial loadings δLine is neglected in the Principle of Virtual Displacements (Eq. 3.30):

δLint = δLal (3.87)
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As a result, for the static analysis the equation of motion in a compact vectorial form is:

Kτ sij qsj = Fτi
s = 1, . . . , Nu

j = 1, . . . , NN TOT

∀ τ = 1, . . . , Nu ∀ i = 1, . . . , NN TOT

(3.88)

By expanding Eq. 3.88 on indices τ , s, i, and j, the governing equations for the static
analysis become:

K q = F (3.89)

which are the equations obtained from Eq. 3.86 by neglecting the contribution of the Mass
Matrix derived from the work of inertial loadings.

Solution

As far as the numerical method used in the present doctoral research to solve the system
in Eq. 3.89 is concerned, a direct solution is performed using an algorithm based on Gauss
elimination. The basic procedure of the Gauss elimination solution is to reduce the system
to an upper triangular coefficient matrix from which the unknown nodal displacement
vector q can be calculated by a back-substitution. Since the Structural Stiffness Matrix K
is symmetric (by definition, see section 3.4.1), a factorization of K is performed:

K = L D LT (3.90)

where L is a lower unit triangular matrix (product of permutation and unit lower triangular
matrices) and D is a diagonal matrix. In general L D LT is a symmetric indefinite
factorization. For the sake of completeness, the routine used in this work to perform this
factorization is the routine DSYTRF contained in the freely available software package
LAPACK (Linear Algebra PACKage) [110]. The algorithm in DSYTRF uses the Bunch-
Kaufman diagonal pivoting method. More details can be found in [111]. After imposition
of constraints (i.e. boundary conditions, see appendix D) on the Structural Stiffness Matrix
K, it becomes a non-singular matrix. In particular, K is a positive definite matrix. Hence,
the terms of the diagonal matrix D are positive: dii > 0 ; i = 1, . . . ,DOFs.

The L D LT factorization can be used effectively to obtain the solution of Eq. 3.89 in
the following two steps by means of the auxiliary vector v:

L v = P (3.91)

D LT q = v (3.92)

The solution of the system is performed by means of the routine DSYTRS of package
LAPACK [110]. More details are not reported here, but can be found in [42].

3.3.2 Free vibration analysis

When the free vibration analysis is performed, the contribution of the virtual work of
applied loadings δLal is neglected in the Principle of Virtual Displacements (Eq. 3.30):

δLint = − δLine (3.93)

As a result, the governing equations in a compact vectorial form are:

Mτ sij q̈sj + Kτ sij qsj = 0
s = 1, . . . , Nu

j = 1, . . . , NN TOT

∀ τ = 1, . . . , Nu ∀ i = 1, . . . , NN TOT

(3.94)
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By expanding Eq. 3.94 on indices τ , s, i, and j, the governing equations for the free
vibration analysis become the homogeneous case of Eq. 3.86 by neglecting the contribution
of F:

M q̈ + K q = 0 (3.95)

Introducing harmonic solutions, it is possible to compute the natural angular frequencies
ωh and the natural frequencies fh by solving an eigenvalue problem:[

−ω2
h M + K

]
qh = 0 (3.96)

where qh is the hth eigenvector.

Solution

In the present doctoral research, the numerical solution of the eigenvalue problem in
Eq. 3.96 has been provided by a mathematical tool based upon an algorithmic variant of
the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM) [112]. Since
for the present case matrices K and M are symmetric, the mathematical method IRAM
reduces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method
(IRLM) [113]. For the sake of completeness, these variants may be viewed as a synthesis of
the Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for
large scale problems. The routines of the freely available software package ARPACK have
been used in the present doctoral work. More details are not reported here, but can be
found in [114].

3.3.3 Dynamic response analysis

The dynamic response analysis takes into account all the terms of the governing equations
of the elasticity problem in Eq. 3.86. Hence, the equation of motion to be solved for the
dynamic response analysis is precisely:

M q̈ (t) + K q (t) = F (t) (3.97)

where the dependence of nodal displacements, nodal accelerations and equivalent nodal
forces on time t has been highlighted for the sake of completeness. The quantities q̈ and q
describe the time-dependent response of the system to time-dependent applied loadings.
In general, any kind of dynamic loadings such as point, line, surface, volume (traveling
and nontraveling) loads with arbitrary time-dependence can be taken into account by the
present formulation.

It is important to note that so far the damping contribution to the governing equations
has not been considered in the formulation. Nonetheless, the formulation easily permits
the introduction of a damping matrix C in Eq. 3.97. For example a Rayleigh damping can
be assumed:

C = γM + βK (3.98)

where γ and β are Rayleigh coefficients. If the damping contribution is considered in the
equation of motion, Eq. 3.97 for the dynamic response analysis becomes:

M q̈ (t) + C q̇ (t) + K q (t) = F (t) (3.99)

where q̇ is the nodal velocity vector.
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Solution: Newmark time integration method

In the present work, the solution of the equation of motion is carried out through a direct
time integration method. In particular, the Newmark method, widely used in structural
dynamics, is implemented. In direct integration the governing equations are integrated
using a numerical step-by-step procedure. The term “direct” means that prior to the
numerical integration, no transformation of the equations into a different form is carried
out. Instead of trying to satisfy Eq. 3.97 (or Eq. 3.99) at any time t, direct numerical
integration is aimed to satisfy Eq. 3.97 (or Eq. 3.99) only at discrete time intervals ∆t
apart. This means that, basically, the equilibrium, which includes the effect of inertia (and
damping) forces, is sought at discrete time points within the interval solution. The time
interval T over which the response of the system is evaluated is therefore subdivided into
NT equal time steps ∆t (i.e. ∆t = T/NT ). Referring to Eq. 3.97, the undamped equation
of motion at time t+ ∆t is then:

M q̈ t+∆t + K q t+∆t = Ft+∆t (3.100)

For the sake of generality, the damping is now taken into account. Referring to Eq. 3.99,
the equation of motion at time t+ ∆t is therefore:

M q̈ t+∆t + C q̇ t+∆t + K q t+∆t = Ft+∆t (3.101)

In time integration methods a variation of displacements, velocities, and accelerations within
each time step ∆t is assumed. The form of the assumption on this variation determines the
accuracy, stability, and cost of the solution procedure. More details can be found in [42].

The Newmark method [115] is an implicit time integration scheme. The term “implicit”
means that the displacement computed at time instant t+ ∆t depends on displacements,
velocities, accelerations computed at time instants previous to time instant t+ ∆t (known
quantities) and on velocities, accelerations computed at time instant t + ∆t (unknown
quantities). The Newmark time integration method can be seen as an extension of the
linear acceleration method. The following assumptions for displacements and displacements
within the time step ∆t are used:

q̇ t+∆t = q̇ t +
[
(1 − δ) q̈ t + δ q̈ t+∆t

]
∆t (3.102)

q t+∆t = q t + q̇ t ∆t +
[
(1/2 − α) q̈ t + α q̈ t+∆t

]
∆t2 (3.103)

where the values δ = 0.5 and α = 0.25 are employed for the related constants. Equation 3.103
proves to be an implicit time integration method. From Eq. 3.103:

q̈ t+∆t =
1

α∆t2
q t+∆t −

1

α∆t2
q t −

1

α∆t
q̇ t −

(1/2 − α)

α
q̈ t (3.104)

Equation 3.104 shows the dependence of the nodal accelerations at time instant t+ ∆t on
the other terms:

q̈ t+∆t = q̈ t+∆t (q̈ t, q̇ t,q t,q t+∆t) (3.105)

Substituting Eq. 3.104 into Eq. 3.102, the following expression can be derived:

q̇ t+∆t =

(
1 − δ

α

)
q̇ t +

(
1 − δ

2α

)
∆t q̈ t +

δ

α∆t
q t+∆t −

δ

α∆t
q t (3.106)

Equation 3.106 shows dependence of the nodal velocities at time instant t + ∆t on the
other terms:

q̇ t+∆t = q̇ t+∆t (q̈ t, q̇ t,q t,q t+∆t) (3.107)
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It is important to note that the only unknowns at time instant t+∆t the nodal accelerations
q̈ t+∆t and velocities q̇ t+∆t depend on in Eqs. 3.104 and 3.106 are displacements q t+∆t.
As a consequence, substituting Eqs. 3.104 and 3.106 into the equation of motion at time
t+ ∆t (Eq. 3.101) it is possible to obtain the following equation:

1

α∆t2
M q t+∆t −

1

α∆t2
M q t −

1

α∆t
M q̇ t +

(
1 − 1

2α

)
M q̈ t +

+

(
1 − δ

α

)
C q̇ t +

(
1 − δ

2α

)
∆tC q̈ t +

δ

α∆t
C q t+∆t −

δ

α∆t
C q t +

+ K q t+∆t = Ft+∆t

(3.108)

Collecting the terms multipling the unknown nodal displacement vector q t+∆t at time
t+ ∆t, Eq. 3.108 becomes:[

K +
1

α∆t2
M +

δ

α∆t
C

]
q t+∆t =

[
Ft+∆t +

1

α∆t2
M q t +

1

α∆t
M q̇ t +

+

(
1

2α
− 1

)
M q̈ t +

(
δ

α
− 1

)
C q̇ t +

(
δ

2α
− 1

)
∆tC q̈ t +

δ

α∆t
C q t

] (3.109)

Exploiting a compact vectorial notation, the following system has to be solved to compute
the dynamic response q t+∆t at time instant t+ ∆t :

K̄ q t+∆t = F̄t+∆t (3.110)

where K̄ is the effective Structural Stiffness Matrix and F̄t+∆t is the effective Vector of
Equivalent Nodal Forces at time instant t+ ∆t:

K̄ = K +
1

α∆t2
M +

δ

α∆t
C (3.111)

F̄t+∆t = Ft+∆t +
1

α∆t2
M q t +

1

α∆t
M q̇ t +

(
1

2α
− 1

)
M q̈ t +

+

(
δ

α
− 1

)
C q̇ t +

(
δ

2α
− 1

)
∆tC q̈ t +

δ

α∆t
C q t

(3.112)

The system to be solved in Eq. 3.110 is similar to the system to be solved for the static
analysis (see Eq. 3.89). The step-by-step solution of Eq. 3.110 using the Newmark integration
method is now faced. Firstly, it is required to initialize the values of nodal displacement,
velocity and acceleration vectors at time instant t = 0 which are referred as q 0, q̇ 0 and
q̈ 0, respectively. Once the value of the time step ∆t is selected, the effective Structural
Stiffness Matrix K̄ is computed via Eq. 3.111. At each time instant t+ ∆t, the effective
Vector of Equivalent Nodal Forces is computed via Eq. 3.112. The numerical solution
algorithm employed in static analysis based on L D LT factorization can basically be used
in direct time integration to compute the step-by-step solution of Eq. 3.110, obtaining:

K̄ = L D LT (3.113)

Once the nodal displacement vector q t+∆t is obtained from Eq. 3.111 at each time instant
t+ ∆t the nodal acceleration and velocity vectors are computed by means of Eqs. 3.104
and 3.106 previously derived from the assumptions of the Newmark method. In case of
undamped system (Eq. 3.100), the contribution of the damping matrix C in Eqs. 3.111
and 3.112 is neglected.
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3.4 Finite Element Matrices and Vectors

The previous sections 3.2.2, 3.2.3, and 3.2.4 have introduced the fundamental nucleus of the
Structural Stiffness Matrix Kτ sij , the fundamental nucleus of the Mass Matrix Mτ sij , and
the fundamental nuclei of the vector of nodal forces equivalent to point loadings FP

τi, line
loadings F l

τ i, surface loadings Fs
τi, and volume loadings FV

τi on the basis of the Principle of
Virtual Displacements and the finite element method. The expressions of the components
of these nuclei are here explicitly computed for orthotropic and isotropic materials and
then the procedure to build the finite element matrices and vectors is addressed.

3.4.1 Structural Stiffness Matrix

Equation 3.43 presents the expression of the fundamental nucleus of the Structural Stiffness
Matrix Kτ sij . As previously mentioned, the material properties are assumed to be constant
along the single finite element axis. This fact has allowed the contributions of the material
stiffness matrices to be taken out of the integral along the element length, see Eq. 3.41. As
far as the material properties over the cross-section are concerned, two kinds of lamination
can appear. Firstly, the cross-section might be homogeneous, i.e it presents a unique
material lamination. Otherwise, the cross-section might be nonhomogeneous, i.e it can be
subdivided into different subsections with their own different laminations. More details
about the latter case are given later.

Homogeneous cross-section case

When the material over the cross-section is homogeneous, the material stiffness matrices
can be taken out of the integral over Ω in Eq. 3.43. The nine integrals of the products of
cross-section functions and their derivatives over Ω are introduced:

J τs =

∫
Ω
Fτ Fs dΩ J τ,xs =

∫
Ω
Fτ,x Fs dΩ J τs,x =

∫
Ω
Fτ Fs,x dΩ

J τ,zs =

∫
Ω
Fτ,z Fs dΩ J τs,z =

∫
Ω
Fτ Fs,z dΩ J τ,xs,z =

∫
Ω
Fτ,x Fs,z dΩ

J τ,zs,x =

∫
Ω
Fτ,z Fs,x dΩ J τ,xs,x =

∫
Ω
Fτ,x Fs,x dΩ J τ,zs,z =

∫
Ω
Fτ,z Fs,z dΩ

(3.114)

It is noteworthy to highlight that the nine terms in Eq. 3.114 are scalar quantities as well as
the four terms in Eq. 3.44. As can be seen in Eqs. 3.41 and 3.43, the fundamental nucleus
of the Structural Stiffness Matrix is the result of the summation of nine terms. Each of
such terms is a 3 × 3 matrix and, in general, represents the integration over the single
element domain of the product of different quantities such as cross-section functions, shape
functions and material stiffness matrices. Of course, the result is again a 3 × 3 matrix,
whose nine components can be computed by performing explicitly all the multiplications
in Eq. 3.43.

For a cross-section made of homogeneous orthotropic material, the components of the
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fundamental nucleus Kτ sij are:

K τ sij
xx = C̃22E

i
j J

τ,x
s,x + C̃44E

i
j J

τ,z
s,z + C̃26E

i
j,y J

τ,x
s + C̃26E

i,y
j J τs,x + C̃66E

i,y
j,y J

τ
s

K τ sij
xy = C̃23E

i
j,y J

τ,x
s + C̃45E

i
j J

τ,z
s,z + C̃26E

i
j J

τ,x
s,x + C̃36E

i,y
j,y J

τ
s + C̃66E

i,y
j J τs,x

K τ sij
xz = C̃12E

i
j J

τ,x
s,z + C̃44E

i
j J

τ,z
s,x + C̃45E

i
j,y J

τ,z
s + C̃16E

i,y
j J τs,z

K τ sij
yx = C̃23E

i,y
j J τs,x + C̃45E

i
j J

τ,z
s,z + C̃26E

i
j J

τ,x
s,x + C̃36E

i,y
j,y J

τ
s + C̃66E

i
j,y J

τ,x
s

K τ sij
yy = C̃33E

i,y
j,y J

τ
s + C̃55E

i
j J

τ,z
s,z + C̃36E

i
j,y J

τ,x
s + C̃36E

i,y
j J τs,x + C̃66E

i
j J

τ,x
s,x

K τ sij
yz = C̃13E

i,y
j J τs,z + C̃55E

i
j,y J

τ,z
s + C̃45E

i
j J

τ,z
s,x + C̃16E

i
j J

τ,x
s,z

K τ sij
zx = C̃12E

i
j J

τ,z
s,x + C̃44E

i
j J

τ,x
s,z + C̃45E

i,y
j J τs,z + C̃16E

i
j,y J

τ,z
s

K τ sij
zy = C̃13E

i
j,y J

τ,z
s + C̃55E

i,y
j J τs,z + C̃45E

i
j J

τ,x
s,z + C̃16E

i
j J

τ,z
s,x

K τ sij
zz = C̃11E

i
j J

τ,z
s,z + C̃44E

i
j J

τ,x
s,x + C̃55E

i,y
j,y J

τ
s + C̃45E

i
j,y J

τ,x
s + C̃45E

i,y
j J τs,x

(3.115)
For a cross-section made of homogeneous isotropic material, the components of the funda-
mental nucleus Kτ sij present less terms than the ortotropic case:

K τ sij
xx = C22E

i
j J

τ,x
s,x + C44E

i
j J

τ,z
s,z + C66E

i,y
j,y J

τ
s

K τ sij
xy = C23E

i
j,y J

τ,x
s + C66E

i,y
j J τs,x

K τ sij
xz = C12E

i
j J

τ,x
s,z + C44E

i
j J

τ,z
s,x

K τ sij
yx = C23E

i,y
j J τs,x + C66E

i
j,y J

τ,x
s

K τ sij
yy = C33E

i,y
j,y J

τ
s + C55E

i
j J

τ,z
s,z + C66E

i
j J

τ,x
s,x

K τ sij
yz = C13E

i,y
j J τs,z + C55E

i
j,y J

τ,z
s

K τ sij
zx = C12E

i
j J

τ,z
s,x + C44E

i
j J

τ,x
s,z

K τ sij
zy = C13E

i
j,y J

τ,z
s + C55E

i,y
j J τs,z

K τ sij
zz = C11E

i
j J

τ,z
s,z + C44E

i
j J

τ,x
s,x + C55E

i,y
j,y J

τ
s

(3.116)

It is important to note the symmetry of the fundamental nucleus, which is preserved also
for the nonhomogeneous cross-section case. In fact:

Kτ sij = Ksτ ji T (3.117)

Nonhomogeneous cross-section case

When the lamination of the material over the cross-section of the structure is nonhomo-
geneous, the cross-section can be subdivided into different subsections with their own
different laminations. The shape of the cross-section is arbitrary as well as the shape
of each subsection the cross-section is made of. The sample case of three subsections is
depicted in Fig. 3.11. The number of subsections is referred as NS and the index k is
employed to refer to the kth subsection Ωk.
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x
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Figure 3.11: Example of a nonhomogeneous cross-section with three subsections (NS = 3).

In general, the material properties can be different for each subsection. It means that
different Young’s moduli, Poisson’s ratios, lamination angles or material densities can be
taken into account over the cross-section Ω. As addressed in section 2.3, orthotropic and
isotropic materials are here considered for the kth subsection. More details on the material
properties of orthotropic and isotropic materials can be found in sections 2.3.2 and 2.3.1,
respectively.

If the material of the kth subsection of the nonhomogeneous cross-section is orthotropic,
the corresponding kth Hooke’s law refers to Eq. 2.27:{

σ kp = C̃k
pp εp + C̃k

pn εn

σ kn = C̃k
np εp + C̃k

nn εn
(3.118)

where matrices C̃k
pp, C̃k

pn, C̃k
np, and C̃k

nn derive from the matrices in Eq. 2.28:

C̃k
pp =

 C̃ k
11 C̃ k

12 0

C̃ k
12 C̃ k

22 0

0 0 C̃ k
44

 ; C̃k
pn =

 0 C̃ k
16 C̃ k

13

0 C̃ k
26 C̃ k

23

C̃ k
45 0 0

 ;

C̃k
np = C̃k

pn
T

=

 0 0 C̃ k
45

C̃ k
16 C̃ k

26 0

C̃ k
13 C̃ k

23 0

 ; C̃k
nn =

 C̃ k
55 0 0

0 C̃ k
66 C̃ k

36

0 C̃ k
36 C̃ k

33


(3.119)

Hooke’s law for the kth subsection made of isotropic material refers instead to Eq. 2.32:{
σ kp = Ck

pp εp + Ck
pn εn

σ kn = Ck
np εp + Ck

nn εn
(3.120)

where matrices Ck
pp, Ck

pn, Ck
np, and Ck

nn derive from the matrices in Eq. 2.33:

Ck
pp =

 C k
11 C k

12 0
C k

12 C k
22 0

0 0 C k
44

 ; Ck
pn =

 0 0 C k
13

0 0 C k
23

0 0 0

 ;

Ck
np = Ck

pn
T

=

 0 0 0
0 0 0
C k

13 C k
23 0

 ; Ck
nn =

 C k
55 0 0
0 C k

66 0
0 0 C k

33


(3.121)

The formula of the fundamental nucleus of the Structural Stiffness Matrix in Eq. 3.43 is
still valid for the nonhomogeneous cross-section case, since this formula is general. However,
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the choice of a nonhomogeneous cross-section influences the integration over Ω indicated
by the symbol / . . . . Ω in Eq. 3.45. In fact, for nonhomogeneous sections the integral over
Ω includes the contributions corresponding to each of the NS subsections as expressed in
Eq. 3.122:

/ . . . . Ω =

∫
Ω
. . . dΩ =

NS∑
k=1

∫
Ωk

. . . dΩk (3.122)

where Ωk is the kth subsection. This method is consistent with the equivalent single-layer
approach widely used for layered structures, where a homogenization of the material
properties is conducted by summing the contributions of each layer in the stiffness matrix.
Each term in Eq. 3.43 has thus to be integrated following the formula in Eq. 3.122. For the
sake of completeness, a sample case is here presented. Let the sample cross-section with
three subsections depicted in Fig. 3.11 to be considered. These subsections are denoted
with indices 1, 2 and 3. For instance, the last integral term of Eq. 3.43 is computed via
three contributions as follows:

/ Fτ C̃nn Fs . Ω =

∫
Ω1

Fτ C̃1
nn Fs dΩ1 +

∫
Ω2

Fτ C̃2
nn Fs dΩ2 +

∫
Ω3

Fτ C̃3
nn Fs dΩ3 (3.123)

where Ω1, Ω2 and Ω3 are the areas of subsections 1, 2 and 3. In other words, for a
nonhomogeneous cross-section the material stiffness matrices cannot be taken out of the
integral over Ω, unlike the homogeneous case (Eq. 3.114).

For a cross-section made of nonhomogeneous orthotropic material, the components of
the fundamental nucleus Kτ sij are:

K τ sij
xx = E i

j / Fτ,x C̃22 Fs,x . Ω + E i
j / Fτ,z C̃44 Fs,z . Ω + E i

j,y / Fτ,x C̃26 Fs . Ω +

E i,y
j / Fτ C̃26 Fs,x . Ω + E i,y

j,y / Fτ C̃66 Fs . Ω

K τ sij
xy = E i

j,y / Fτ,x C̃23 Fs . Ω + E i
j / Fτ,z C̃45 Fs,z . Ω + E i

j / Fτ,x C̃26 Fs,x . Ω +

E i,y
j,y / Fτ C̃36 Fs . Ω + E i,y

j / Fτ C̃66 Fs,x . Ω

K τ sij
xz = E i

j / Fτ,x C̃12 Fs,z . Ω + E i
j / Fτ,z C̃44 Fs,x . Ω + E i

j,y / Fτ,z C̃45 Fs . Ω +

E i,y
j / Fτ C̃16 Fs,z . Ω

K τ sij
yx = E i,y

j / Fτ C̃23 Fs,x . Ω + E i
j / Fτ,z C̃45 Fs,z . Ω + E i

j / Fτ,x C̃26 Fs,x . Ω +

E i,y
j,y / Fτ C̃36 Fs . Ω + E i

j,y / Fτ,x C̃66 Fs . Ω

K τ sij
yy = E i,y

j,y / Fτ C̃33 Fs . Ω + E i
j / Fτ,z C̃55 Fs,z . Ω + E i

j,y / Fτ,x C̃36 Fs . Ω +

E i,y
j / Fτ C̃36 Fs,x . Ω + E i

j / Fτ,x C̃66 Fs,x . Ω
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K τ sij
yz = E i,y

j / Fτ C̃13 Fs,z . Ω + E i
j,y / Fτ,z C̃55 Fs . Ω + E i

j / Fτ,z C̃45 Fs,x . Ω +

E i
j / Fτ,x C̃16 Fs,z . Ω

K τ sij
zx = E i

j / Fτ,z C̃12 Fs,x . Ω + E i
j / Fτ,x C̃44 Fs,z . Ω + E i,y

j / Fτ C̃45 Fs,z . Ω +

E i
j,y / Fτ,z C̃16 Fs . Ω

K τ sij
zy = E i

j,y / Fτ,z C̃13 Fs . Ω + E i,y
j / Fτ C̃55 Fs,z . Ω + E i

j / Fτ,x C̃45 Fs,z . Ω +

E i
j / Fτ,z C̃16 Fs,x . Ω

K τ sij
zz = E i

j / Fτ,z C̃11 Fs,z . Ω + E i
j / Fτ,x C̃44 Fs,x . Ω + E i,y

j,y / Fτ C̃55 Fs . Ω +

E i
j,y / Fτ,x C̃45 Fs . Ω + E i,y

j / Fτ C̃45 Fs,x . Ω

(3.124)
For a cross-section made of nonhomogeneous isotropic material, the components of the
fundamental nucleus Kτ sij present less terms than the ortotropic case:

K τ sij
xx = E i

j / Fτ,xC22 Fs,x . Ω + E i
j / Fτ,z C44 Fs,z . Ω + E i,y

j,y / Fτ C66 Fs . Ω

K τ sij
xy = E i

j,y / Fτ,xC23 Fs . Ω + E i,y
j / Fτ C66 Fs,x . Ω

K τ sij
xz = E i

j / Fτ,xC12 Fs,z . Ω + E i
j / Fτ,z C44 Fs,x . Ω

K τ sij
yx = E i,y

j / Fτ C23 Fs,x . Ω + E i
j,y / Fτ,xC66 Fs . Ω

K τ sij
yy = E i,y

j,y / Fτ C33 Fs . Ω + E i
j / Fτ,z C55 Fs,z . Ω + E i

j / Fτ,xC66 Fs,x . Ω

K τ sij
yz = E i,y

j / Fτ C13 Fs,z . Ω + E i
j,y / Fτ,z C55 Fs . Ω

K τ sij
zx = E i

j / Fτ,z C12 Fs,x . Ω + E i
j / Fτ,xC44 Fs,z . Ω

K τ sij
zy = E i

j,y / Fτ,z C13 Fs . Ω + E i,y
j / Fτ C55 Fs,z . Ω

K τ sij
zz = E i

j / Fτ,z C11 Fs,z . Ω + E i
j / Fτ,xC44 Fs,x . Ω + E i,y

j,y / Fτ C55 Fs . Ω

(3.125)

Construction of the Element Structural Stiffness Matrix

The nine components of the 3× 3 fundamental nucleus of the Structural Stiffness Matrix
have been explicitly computed in the previous section for a homogeneous cross-section
(Eqs. 3.115 and 3.116 for orthotropic and isotropic materials) and a nonhomogeneneous
cross-section (Eqs. 3.124 and 3.125 for orthotropic and isotropic materials).

As can be seen in virtual strain energy equation (Eq. 3.42), the fundamental nucleus
Kτ sij refers to the generic virtual nodal displacement vector q τi, which contains the
degrees of freedom of the generic τ th expansion term corresponding to the ith element node,
and to the generic nodal displacement vector qsj , which contains the degrees of freedom of
the generic sth expansion term corresponding to the jth element node:

δLint = δqTτi Kτ sij qsj (3.126)

where it is important to remind that repeated subscripts indicate summation based on
Einstein’s notation. Hence, the fundamental nucleus Kτ sij is now expanded with respect
to the indices τ , s, i, and j in order to build the Element Structural Stiffness Matrix KEL,
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that is the stiffness matrix of the single finite element with NN nodes based on the CUF
formulation with expansion order N . The procedure to build this matrix is illustrated in
Fig. 3.12, where the sample case of a B3 finite element (defined in section 3.1.2) and a
second-order Taylor expansion (N = 2) is considered.
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Figure 3.12: Procedure to build the Element Structural Stiffness Matrix KEL of a B3 element with
N = 2.

The first expansion to be implemented is on the CUF indices τ and s. In other words, for
the generic combination of i and j values, the fundamental nuclei for all the combinations of
τ and s values have to be computed, i.e. Nu×Nu combinations. In the sample case proposed
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(N = 2), the number of expansion terms Nu is equal to 6, according to Eq. 2.35. As
depicted in Fig. 3.12, 36 fundamental nuclei for the generic combination of ith and jth nodes
are collected. The notation used here employs index τ for rows and index s for columns.
The order used to sort these 36 nuclei is of course arbitrary. For the sake of simplicity,
indices τ and s are considered in ascending order. In this case, according to Eq. 3.25, the
dimensions of the block of these 36 nuclei are equal to DOFsN ×DOFsN = 18× 18.

The second expansion to be carried out is on the nodes of the single element considered.
Different one-dimensional finite elements have been defined in sections 3.1.1, 3.1.2 and 3.1.3.
The fundamental nuclei previously expanded on indices τ and s for the generic combination
of i and j values are now computed for all the combinations of i and j values of the finite
element, i.e. NN ×NN combinations. The sample case here proposed refers to the generic
B3 element (NN = 3) depicted in Fig. 3.4. As depicted in Fig. 3.12, 9 combinations (i, j)
are possible and then 9 blocks are collected. The notation used here employs index i for
rows and index j for columns. The order used to sort these 9 blocks nuclei is of course
arbitrary, but a particular sorting choice is convenient and the reason will be clear in the
assembly procedure, see section 3.4.1. This choice does not sort i and j indices in ascending
order, but following a physical order. In other words, looking at Fig. 3.4, the order of
i and j values follows axis y, i.e. Nodes 1EL, 3EL, 2EL. This sorting choice is followed
in the construction of the Element Structural Stiffness Matrix, as shown in Fig. 3.12. In
this case, according to Eq. 3.21, the dimensions of this square matrix KEL are equal to
DOFsEL ×DOFsEL = 54× 54.

Assembly procedure

In the previous section, the procedure to build the Element Stiffness Matrix KEL of the
single finite element with NN nodes has been described. The numerical procedure that
allows to build the Structural Stiffness Matrix K starting from the Element Stiffness
Matrices associated to all the NEL elements of the mesh is called assembly procedure and is
a standard process of the finite element method.

As introduced in sections 3.1.4 and 3.3, the structural domain is discretized by a mesh,
i.e. a series of connected (non-overlapping) one-dimensional finite elements. The sample
case of two connected B3 elements previously depicted in Fig. 3.8 is now slightly modified
in Fig. 3.13. Given a mesh of one-dimensional finite elements, an identifier IDN is assigned

1 23
EL 1 EL 1 EL 1

1
EL 2

2
EL 2

3
EL 2

EL 1 EL 2

1 2 3 4 5

Figure 3.13: Example of a mesh with two B3 elements assembled and notation used to enumerate
nodes.

to each node of the mesh. The assembly procedure is considerably simplified if there are no
“gaps” in the node numbering sequence. For the sake of simplicity, here it is thus assumed
that there are no gaps. For instance, the five nodes of the sample mesh in Fig. 3.13 are
numbered from 1 to 5. It is noteworthy that the identifier IDN is unique for each node of
the mesh. The notation here employed includes the identifier of the node of the mesh into
a circle, as depicted in Fig. 3.13, and is used in order to not confuse the identifier IDN with
the local identification number of the node on the element, i.e. 1EL, 2EL for a B2 element,
1EL, 2EL, 3EL for a B3 element, 1EL, 2EL, 3EL, 4EL for a B4 element.
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In finite element modeling, a standard procedure consists in building a connectivity
matix, which relates the local identification numbers of the nodes on each element to
the identifiers IDN of each node of the mesh. In other words, the connectivity matrix
summarizes the numbers associated to the nodes of each element and highlights the node
that two adjacent elements share. An example of connectivity matrix is reported in
Table 3.2 for the case depicted in Fig. 3.13. As far as DOFs are concerned, the connectivity
matrix relates to each element degree of freedom the corresponding assemblage degree of
freedom.

Table 3.2: Connectivity matrix for the sample case of a mesh of two B3 elements.

ID-EL Node 1EL Node 3EL Node 2EL

1 1○ 2○ 3○

2 3○ 4○ 5○

The assembly procedure realizes numerically the connection of different finite elements
and satisfies the congruence and equilibrium of the structure. The assembly procedure
consists in collecting the Element Structural Stiffness Matrices computed for each element
in order to build the Structural Stiffness Matrix K. The position of the Element Structural
Stiffness Matrices over K follows the order of the node identifiers in the connectivity matrix.
For the sample case proposed, the two B3 elements share the node with IDN equal to
3○. This node is the node referred as 2EL 1 for element 1 and is the node referred as 1EL 2

for element 2, according to Table 3.2. This means that the Element Structural Stiffness
Matrices KEL 1 and KEL 2 are collected in matrix K as illustrated in Fig. 3.14, where
the blocks corresponding to the shared node 3○ = 2EL 1 = 1EL 2 are superimposed. The
same order used to build the Structural Stiffness Matrix K will be coherently followed in
the construction of the Mass Matrix K and the Vector of Equivalent Nodal Forces F in
following sections. Obviously, the same method is used to collect the degrees of freedom in
the nodal displacement and acceleration vectors q and q̈ introduced in section 3.3 to write
the governing equations of the elasticity problem.

3.4.2 Mass Matrix

Equation 3.52 presents the expression of the fundamental nucleus of the Mass Matrix
Mτ sij . In section 3.4.1 the difference between a homogeneous or a nonhomogeneous cross-
section about the material properties integration has been highlighted fo the Structural
Stiffness Matrix. Also for the Mass Matrix computation, the choice of a homogeneous or
a nonhomogeneous cross-section influences the integration over Ω, since the integral in
Eq. 3.52 contains the density material.

Homogeneous cross-section case

When the material over the cross-section is homogeneous, the density material is a unique
scalar coefficient and then can be taken out of the integral over Ω in Eq. 3.52. The integral
of the product of cross-section functions over Ω is retrieved from Eq. 3.114:

J τs =

∫
Ω
Fτ Fs dΩ (3.127)
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Figure 3.14: Assembly procedure to build the Structural Stiffness Matrix K of two B3 elements.

For a cross-section made of homogeneous orthotropic material, the components of the
fundamental nucleus Mτ sij are:

M τ sij
xx = M τ sij

yy = M τ sij
zz = ρE i

j J
τ
s

M τ sij
xy = M τ sij

xz = M τ sij
yx = M τ sij

yz = M τ sij
zx = M τ sij

zy = 0
(3.128)

It is important to note the symmetry of the fundamental nucleus, which is preserved also
for the nonhomogeneous cross-section case. In fact:

Mτ sij = Msτ ji T = Msτ ji (3.129)

Nonhomogeneous cross-section case

The formula of the fundamental nucleus of the Mass Matrix in Eq. 3.52 is still valid for
the nonhomogeneous cross-section case, since this formula is general. However, for a
nonhomogeneous cross-section, the integral over Ω includes the contributions corresponding
to each of the NS subsections, as expressed in Eq. 3.122. For the sake of completeness,
let the sample cross-section with three subsections depicted in Fig. 3.11 to be considered.
According to Eq. 3.123 for the fundamental nucleus of the Structural Stiffness Matrix, the
integral over Ω for the Mass Matrix nucleus in Eq. 3.52 is computed as follows:

/ ρ Fτ Fs . Ω = ρ1

∫
Ω1

Fτ Fs dΩ1 + ρ2

∫
Ω2

Fτ Fs dΩ2 + ρ3

∫
Ω3

Fτ Fs dΩ3 (3.130)

where ρ1, ρ2 and ρ3 are the density of the materials which subsections 1, 2 and 3 are
made of. Ω1, Ω2 and Ω3 are the areas of subsections 1, 2 and 3. In other words, for a
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nonhomogeneous cross-section the material density cannot be taken out of the integral over
Ω, unlike the homogeneous case (Eq. 3.127).

For a cross-section made of nonhomogeneous orthotropic material, the components of
the fundamental nucleus Mτ sij are:

M τ sij
xx = M τ sij

yy = M τ sij
zz = E i

j / ρFτ Fs. Ω

M τ sij
xy = M τ sij

xz = M τ sij
yx = M τ sij

yz = M τ sij
zx = M τ sij

zy = 0
(3.131)

Construction of the Element Mass Matrix

The nine components of the 3 × 3 fundamental nucleus of the Mass Matrix have been
explicitly computed in the previous section for a homogeneous cross-section (Eq. 3.128)
and a nonhomogeneneous cross-section (Eq. 3.131).

As can be seen in virtual work of inertial loadings (Eq. 3.51), the fundamental nucleus
Mτ sij refers to the generic virtual nodal displacement vector q τi, which contains the
degrees of freedom of the generic τ th expansion term corresponding to the ith element node,
and to the generic nodal displacement vector qsj , which contains the degrees of freedom of
the generic sth expansion term corresponding to the jth element node:

δLine = δqTτi Mτ sij q̈sj (3.132)

where it is important to remind that repeated subscripts indicate summation based on
Einstein’s notation. Hence, the fundamental nucleus Mτ sij is now expanded with respect
to the indices τ , s, i, and j in order to build the Element Mass Matrix MEL, that is the
mass matrix of the single finite element with NN nodes based on the CUF formulation
with expansion order N . The procedure to build this matrix is exactly the same of that
followed for the Element Structural Stiffness Matrix in the previous section. For the sake
of completeness, it is illustrated in Fig. 3.15, where the sample case of a B3 finite element
(defined in section 3.1.2) and a second-order Taylor expansion (N = 2) is considered.

Firstly, as done for the construction of KEL, the expansion on the CUF indices τ and s
is carried out. This leads to collect Nu×Nu fundamental nuclei for the generic combination
of i and j values. In the sample case proposed (N = 2), the number of expansion terms
Nu is equal to 6, according to Eq. 2.35. As depicted in Fig. 3.15, 36 fundamental nuclei for
the generic combination of ith and jth nodes are collected. The expansion on the nodes of
the single element is then performed by considering the NN ×NN combinations of i and j
values. The sample case here proposed refers to the generic B3 element (NN = 3) depicted
in Fig. 3.4. Hence, 9 combinations (i, j) are possible and then the Element Mass Matrix
MEL is composed of 9 blocks, as depicted in Fig. 3.15.

Assembly procedure

In this section the method to build the Mass Matrix M starting from the Element Mass
Matrices previously computed is presented. The method to be implemented is exactly
the same used in section 3.4.1 to obtain the Structural Stiffness Matrix. Referring to
the same sample mesh of two B3 elements depicted in Fig. 3.13 the position of the
Element Mass Matrices over M follows the order of the node identifiers in the connectivity
matrix in Table 3.2. The elements share the node with IDN equal to 3○. Since this
node is also referred as 2EL 1 for element 1 as well as 1EL 2 for element 2, the block with
dimensions DOFsN × DOFsN corresponding to the combination (i = 2, j = 2) of MEL 1

is superimposed to the block with dimensions DOFsN × DOFsN corresponding to the

68



3.4. Finite Element Matrices and Vectors

M
sij

xxx

y

z

x y z

=1

=2

=3

=4

=5

=6

=1s =2s =3s =4s =5s =6s

s

s

Node 1

j

i

Node 3

Node 2

Node 1

EL

EL

EL

EL
Node 3 Node 2

EL

MEL

EL

M
sij

xy M
sij

xz

M
sij

yx M
sij

yy M
sij

yz

M
sij

zx M
sij

zy M
sij

zz

Figure 3.15: Procedure to build the Element Mass Matrix MEL of a B3 element with N = 2.

combination (i = 1, j = 1) of MEL 2. For the sake of completeness, the procedure here
described to obtain the Mass Matrix M to be used in governing equations of section 3.3 is
sketched in Fig. 3.16.

3.4.3 Vector of Equivalent Nodal Forces

Equation 3.79 presents the expression of the fundamental nucleus of the Vector of Equivalent
Nodal Forces Fτi. In this section the components of this fundamental nucleus are computed
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Figure 3.16: Assembly procedure to build the Mass Matrix M of two B3 elements.

and the procedure to build the Vector of Equivalent Nodal Forces starting from the nucleus
is addressed.

The components of Fτi can be expressed following Eq. 3.79:

Fxτi = FPxτi + F l
xτi + F s

xτi + F V
xτi

Fy τi = FPy τi + F l
y τi + F s

y τi + F V
y τi

Fz τi = FPz τi + F l
z τi + F s

z τi + F V
z τi

(3.133)

Using Eqs. 3.61 and 3.67, Eq. 3.133 becomes:

Fxτi = FPxτi + F p l±xx
xτi + F p l±zx

xτi + F p±xx
xτi + F p±zx

xτi + F V
xτi

Fy τi = FPy τi + F
p l±xy
y τi + F

p l±zy
y τi + F

p±xy
y τi + F

p±zy
y τi + F V

y τi

Fz τi = FPz τi + F p l±xz
z τi + F p l±zz

z τi + F p±xz
z τi + F p±zz

z τi + F V
z τi

(3.134)

The components of the fundamental nucleus Fτi can be explicitly computed following
Eq. 3.134 and retrieving the expressions of the components of the fundamental nuclei FP

τi,
F l
τ i, Fs

τi, FV
τi in Eqs. 3.57, 3.59, 3.65, 3.74, respectively:

Fxτi = Ni (yP ) Fτ (xP , zP ) Pux +

∫
L±x

Ni p
l±
xx dy Fτ

(
x±x , z

±
x

)
+∫

L±z

Ni p
l±
zx dy Fτ

(
x±z , z

±
z

)
+

∫
l
Ni

[ ∫
b±
Fτ p

±
xx dz

]
dy+∫

l
Ni

[ ∫
a±
Fτ p

±
zx dx

]
dy +

∫
l
Ni

[ ∫
Ω
Fτ p

V
x dΩ

]
dy

70



3.4. Finite Element Matrices and Vectors

Fy τi = Ni (yP ) Fτ (xP , zP ) Puy +

∫
L±x

Ni p
l±
xy dy Fτ

(
x±x , z

±
x

)
+∫

L±z

Ni p
l±
zy dy Fτ

(
x±z , z

±
z

)
+

∫
l
Ni

[ ∫
b±
Fτ p

±
xy dz

]
dy+∫

l
Ni

[ ∫
a±
Fτ p

±
zy dx

]
dy +

∫
l
Ni

[ ∫
Ω
Fτ p

V
y dΩ

]
dy

(3.135)

Fz τi = Ni (yP ) Fτ (xP , zP ) Puz +

∫
L±x

Ni p
l±
xz dy Fτ

(
x±x , z

±
x

)
+∫

L±z

Ni p
l±
zz dy Fτ

(
x±z , z

±
z

)
+

∫
l
Ni

[ ∫
b±
Fτ p

±
xz dz

]
dy+∫

l
Ni

[ ∫
a±
Fτ p

±
zz dx

]
dy +

∫
l
Ni

[ ∫
Ω
Fτ p

V
z dΩ

]
dy

For the sake of completeness, the case of line, surface and volume loadings constant along
the single finite element lenght LEL is here considered. In this case, it is possible to simplify
Eq. 3.4.3 by taking into account Eqs. 3.62, 3.68 and 3.75. Hence:

Fxτi = Ni (yP ) Fτ (xP , zP ) Pux + E i Fτ
(
x±x , z

±
x

)
p l±xx +

E i Fτ
(
x±z , z

±
z

)
p l±zx + E i I p

±
xx

τ + E i I p
±
zx

τ + E i I p
V
x

τ

Fy τi = Ni (yP ) Fτ (xP , zP ) Puy + E i Fτ
(
x±x , z

±
x

)
p l±xy +

E i Fτ
(
x±z , z

±
z

)
p l±zy + E i I

p±xy
τ + E i I

p±zy
τ + E i I

pVy
τ

Fz τi = Ni (yP ) Fτ (xP , zP ) Puz + E i Fτ
(
x±x , z

±
x

)
p l±xz +

E i Fτ
(
x±z , z

±
z

)
p l±zz + E i I p

±
xz

τ + E i I
p±zy
τ + E i I p

V
z

τ

(3.136)

where terms E i, I
p±xh
τ , I

p±zh
τ , and Ip

V

τ have been defined in Eqs. 3.63, 3.70, 3.71, and 3.77,
respectively.

Construction of the Element Vector of Equivalent Nodal Forces

The three components of the 3× 1 fundamental nucleus of the Vector of Equivalent Nodal
Forces have been explicitly computed in the previous section by taking into account point,
line, surface, and volume loadings (Eqs. 3.4.3 and 3.136).

As can be seen in virtual work of applied loadings (Eq. 3.78), the fundamental nucleus
Fτi refers to the generic virtual nodal displacement vector q τi, which contains the degrees
of freedom of the generic τ th expansion term corresponding to the ith element node:

δLal = δqTτi Fτi (3.137)

where it is important to remind that repeated subscripts indicate summation based on
Einstein’s notation. Hence, the fundamental nucleus Fτi is now expanded with respect to
the indices τ and i in order to build the Element Vector of Equivalent Nodal Forces FEL,
that is the vector of nodal forces of the single finite element with NN nodes based on the
CUF formulation with expansion order N . The procedure to build this vector is similar to
that followed for the Element Structural Stiffness Matrix and the Element Mass Matrix
in previous sections. For the sake of completeness, it is illustrated in Fig. 3.17, where the
sample case of a B3 finite element (defined in section 3.1.2) and a second-order Taylor
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Figure 3.17: Procedure to build the element Vector of Equivalent Nodal Forces FEL of a B3 element
with N = 2.

expansion (N = 2) is considered. The first expansion to be implemented is on the CUF
index τ . In other words, for the generic ith node of the element, the fundamental nuclei
for all the τ values (Nu combinations) have to be computed. In the sample case proposed
in Fig. 3.17, N is equal to 2 and the number of expansion terms Nu is therefore equal to
6, according to Eq. 2.35. For the generic ith node, Nu nuclei are collected and index τ is
employed for rows in ascending order as done for the construction of KEL and MEL. For
N = 2, the dimensions of the block of these 6 nuclei are equal to DOFsN × 1 = 18× 1,
according to Eq. 3.25.

The second expansion to be carried out is on the nodes of the single element. The
fundamental nuclei previously expanded on index τ for the generic i value are now computed
for all the NN values of i for the finite element nodes. For a B3 element, 3 blocks are
considered as can be shown in Fig. 3.17. The order to be followed to sort these block is
consistent to the choice made for KEL and MEL, where i follows axis y, i.e. Nodes 1EL,
3EL, 2EL. In the case depicted in Fig. 3.17, the dimensions of the vector FEL are equal to
DOFsEL × 1 = 54× 1, according to Eq. 3.21.

Assembly procedure

In this section the method to build the Vector of Equivalent Nodal Forces F starting from
the Element Vector of Equivalent Nodal Forces previously computed is presented. The
method to be implemented is exactly the same used in sections 3.4.1 and 3.4.2 to obtain
the Structural Stiffness Matrix and the Mass Matrix. Referring to the same sample mesh
of two B3 elements depicted in Fig. 3.13 the position of the Element Vectors of Equivalent
Nodal Forces over F follows the order of the node identifiers in the connectivity matrix
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in Table 3.2. The elements share the node with IDN equal to 3○. Since this node is also
referred as 2EL 1 for element 1 as well as 1EL 2 for element 2, the block with dimensions
DOFsN × 1 corresponding to the combination (i = 2, j = 2) of FEL 1 is superimposed to
the block with dimensions DOFsN × 1 corresponding to the combination (i = 1, j = 1) of
FEL 2. For the sake of completeness, the procedure here described to obtain the Vectors of
Equivalent Nodal Forces F to be used in governing equations of section 3.3 is sketched in
Fig. 3.18.
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Figure 3.18: Assembly procedure to build the Vector of Equivalent Nodal Forces F of two B3
elements.
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Chapter 4

Results: free vibration analysis of
thin and thick shell structures

4.1 Assessment with 3D elasticity solutions

First of all, the proposed 1D structural model is compared to free vibration results based on
three-dimensional analysis in [88] and exact analysis of reference [85]. In [88] the governing
equations of three-dimensional linear elasticity were solved by using an iterative approach
based on the introduction of fictitious layers along the shell thickness. Armenàkas et
al. [85] provided exact natural frequencies of harmonic elastic waves propagating in an
infinitely long isotropic hollow cylinder. Nonetheless, this work may be used directly to
obtain the frequency of standing waves propagating in simply supported shells of finite
length. The analyses in [85] were instead based on closed form solutions of the governing
three-dimensional equations, which were obtained in terms of Bessel functions.

A circular cylindrical shell with middle surface radius R equal to 0.5 m and axial
length L equal to 0.5 m is introduced, see Fig. 4.1(a). The values here considered for the
cylinder thickness t are 0.05 m and 0.1 m. The simply supported boundary conditions
ux = uz = 0 are imposed on the free edges (at y = 0 and y = L). They correspond to
the three-dimensional constraints used in [88] and analogues of what are classified, in
two-dimensional shell theories, as S2 simply supported edge boundary conditions according
to Almroth’s classification [116]. The isotropic material considered is aluminium: Young’s
modulus E = 73 GPa, Poisson’s ratio ν = 0.3, and density ρ = 2700 kg m−3.

t
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y

R

(a) One-layer cylinder

di

x

z

321

y

de

(b) Three-layer cylinder

Figure 4.1: Cross-sections geometry for the one-layer and three-layer cylinders.

75



Chapter 4. Results: free vibration analysis of thin and thick shell structures

This geometrical layout has been chosen since it represents a very severe test case for
the present one-dimensional model. In fact, both the configurations are very short cylinders
(L/R = 1) with a thin (R/t = 10) or a thicker (R/t = 5) cross-section. Classical beam
theories are thus completely ineffective for studying this kind of structure due to their
kinematic hypotheses on the cross-section and shear deformation. The cylinder is analyzed
by means of higher-order CUF models and modeled through a 1D mesh of 10 B4 finite
elements along the y axis. This choice of mesh ensues from the conclusions made in previous
CUF works on the dynamics of thin-walled structures [117, 118]. A convergence study on
the mesh is not repeated here for the sake of brevity. Different values of the circumferential
half-wave number n (2n in [85]) are investigated, whereas the axial half-wave number m is
set to 1.

In Table 4.1 the three first frequency parameters ω̄ based on the present 1D CUF model
are compared with corresponding 3D results obtained in references [85, 88] according to
Eq. 4.1:

ω̄ =
Ωπ L

t
√

2
= ω L

√
ρ (1 + ν)

E
(4.1)

where Ω is the frequency parameter used in [85] and ω is the natural angular frequency of
vibration. Values of 4, 7, and 9 are employed for the expansion order N . Table 4.1 shows
that it is necessary to enhance the displacement field with higher-order terms to correctly
describe the dynamic behavior of a thin-walled cylinder. This statement is true especially
for vibrating modes with a high half-wave number. For instance, even a fourth-order model
provides good results for n = 2, whereas the frequency parameters computed for n = 6 are
clearly wrong. The results of the present 1D CUF model (with N = 9) are in excellent
agreement with the results based on three-dimensional exact and quasi-exact elasticity
solutions [85, 88].

It is interesting to note a particular behavior of ω̄. Considering the ninth-order model,
for a fixed combination of t/R ratio and n, the first frequency parameter (I) is always
affected by the higher error compared to exact 3D results. On the contrary, the second
value (II) shows the best agreement with even fifth-digit precision. From the results in
Table 4.1, it seems that an increasing value of N might be necessary for the correct study of
thicker cylinders. The ninth-order model is accurate also for t/R = 0.2, but it seems more
powerful for t/R = 0.1. For a t/R ratio higher than 0.2 the N = 9 model might be not
refined enough, especially for the frequency detection of the first vibrational mode n = 6.
However, accuracy in at least three significant digits is achieved for all the vibrational
modes of both the shell structures involved. This validates the correctness of the proposed
1D CUF analysis even for short structures, according to the previous CUF work [119].

4.2 Assessment with 3D finite element solutions

The assessment procedure regarding homogeneous shells is completed. A thin-walled
cylinder with a nonhomogeneous cross-section is now introduced. As depicted in Fig. 4.1(b),
the cross-section is composed of three thin circular layers denoted as layers 1, 2 and 3.
The layers of the cylinder are made of three different isotropic materials. The material
and geometrical properties of the layers are summarized in Table 4.2. The thickness t =
1 mm is constant for each layer and is small enough to consider overall the cylinder as
a thin-walled structure, since the external and internal diameters are equal to de = 100
mm and di = 94 mm, respectively. The length L of the cylinder is equal to 500 mm. A
clamped boundary condition is taken into account for both the free edges of the cylinder
(at y = 0 and y = L).
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Table 4.1: Comparison of frequency parameters ω̄ based on the present 1D models with 3D elasticity
solutions. m = 1.

t/R n N = 4 N = 7 N = 9 Exact 3D [85] 3D [88]

0.1 2 I 1.0804 1.0620 1.0620 1.0623 1.0624
II 2.3758 2.3745 2.3744 2.3744 2.3745
III 3.9659 3.9634 3.9632 3.9634 3.9634

4 I 0.9937 0.8838 0.8819 0.8823 0.8826
II 2.9118 2.7160 2.7159 2.7159 2.7159
III 4.8497 4.4877 4.4875 4.4874 4.4876

6 I 1.7500 0.8388 0.8112 0.8093 0.8096
II 4.1441 3.1562 3.1534 3.1533 3.1533
III 5.9431 5.2485 5.2367 5.2365 5.2367

0.2 2 I 1.2430 1.1891 1.1887 1.1889 1.1891
II 2.3806 2.3757 2.3757 2.3757 2.3758
III 3.9620 3.9531 3.9529 3.9527 3.9528

4 I 1.2823 1.1184 1.1015 1.1009 1.1012
II 2.9260 2.7192 2.7182 2.7182 2.7184
III 4.7903 4.4667 4.4661 4.4659 4.4661

6 I 1.8907 1.2647 1.2181 1.1975 1.1979
II 4.0979 3.1688 3.1569 3.1566 3.1569
III 5.8511 5.2247 5.1965 5.1949 5.1952

Table 4.2: Material and geometrical properties of the cylinder layers.

Property Layer 1 Layer 2 Layer 3

t [mm] 1 1 1
E [GPa] 69 30 15
ν 0.33 0.33 0.33
ρ [kg/m3] 2700 2000 1800

One-dimensional theories are usually employed to study slender beams because of their
limiting kinematic hypotheses. Instead, the cylinder here considered is relatively short since
the span-to-external diameter ratio L/de is equal to 5. Nevertheless, the free vibration
analysis of this shell structure is performed by solving Eq. 3.95. The 1D CUF model,
which has been previously assessed for homogeneous shells, is employed with a variable
expansion order up to N = 9 as well as a 1D mesh of 10 B4 finite elements. A solid finite
element analysis is also carried out via the commercial code NASTRAN and taken as
reference in order to assess the present refined 1D model for a nonhomogeneous shell case.
Due to the small layer thickness and the well-known aspect ratio restrictions typical of
solid finite elements, the model in NASTRAN consists of 86880 nodes and 64800 HEX8
elements. The number of degrees of freedom (DOFs) is thus equal to 257760. All the
vibrational modes obtained can be divided into four categories: bending, axial, radial, and
lobe-type modes. In axial modes, the cylinder vibrates along its longitudinal axis y and
the cross-sections remain annular-type. In radial modes, the cross-sections vibrate radially
remaining annular-type and rotate along the circumferential direction. In lobe-type modes,
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Chapter 4. Results: free vibration analysis of thin and thick shell structures

the cross-sections do not remain annular-type since two, theee, or four lobes and so on
compare along the circumferential direction in the deformed configuration, see Fig. 4.2.

Undeformed

Two-lobe

Three-lobe

Four-lobe

Figure 4.2: Cross-section deformation for different lobe-type modes.

Table 4.3 summarizes the three first natural frequencies of the bending modes computed
through different models. Each frequency value refers to two numbers, put as superscripts
and denoted as mode indices, whose meaning is important to be explained. Let the
vibrational modes computed by EBBM to be considered for instance. The first and second
modes correspond to the same natural frequency (1963.0 Hz) and represent the same way
of vibrating, that is a single-half-wave bending mode. In fact, the cylinder is axisymmteric
and thus can vibrate along a single-half-wave either in the x− y plane or in the y− z plane.
Hence, the mode indices related to EBBM single-half-wave bending mode (1963.0 Hz) are 1
and 2. Instead, the single-half-wave bending mode computed by N = 4 model corresponds
to the third and fourth overall modes of the cylinder. Although EBBM is basically a
bending beam theory, for this thin-walled short structure it is not able to properly detect
even bending frequencies with respect to the reference 3D solution. The first-order shear
deformation theories (TBM and N = 1) are also not accurate enough and only a theory
order higher than 2 provides good results compared to NASTRAN solid bending frequencies.
The increase of the expansion order N improves the results approaching the reference data
with a convergent trend.

Let a dimensionless frequency parameter f/fREF be defined as the ratio between the
frequency computed and the reference value obtained by the solid FE model. The trend of
this parameter is depicted in Fig. 4.3 for different FE models and bending modes. It is
noteworthy that the error obtained by the first-order theories is significant even for bending
frequencies. As can be seen, f/fREF seems to rise as the number of bending half-waves
increases and the error is likely to propagate dramatically for higher mode numbers even
for N = 3.

An opposite behavior is instead visible for N > 3. In fact, for this bending case, the
introduction of fourth-order terms in the displacement field expansion makes the present
1D model accurate enough to achieve an excellent agreement with the solid model. As
shown in Table 4.3, for N > 3 the percent difference with 3D results is almost negligible
and slightly decreases as the mode number increases. As far as the mode index is concerned,
an increasing expansion order is required to achieve a perfect agreement for increasing
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4.2. Assessment with 3D finite element solutions

Table 4.3: Comparison of natural frequencies [Hz] based on the present 1D models with 3D FE
solution. Bending modes.

Model
Mode number

1 2 3
DOFs

EBBM 1963.0 1,2 5044.9 4,5 9014.9 7,8 93
TBM 1572.6 1,2 3530.3 3,4 5823.0 6,7 155
N = 1 1572.6 1,2 3530.3 6,7 5823.0 12,13 279
N = 2 1597.7 1,2 3562.1 4,5 5852.6 8,9 558
N = 3 1368.0 1,2 2925.0 6,7 4725.5 11,12 930
N = 4 1365.4 3,4 2912.6 10,11 4679.5 19,20 1395
N = 5 1364.3 3,4 2909.7 10,11 4674.0 25,26 1953
N = 6 1364.3 3,4 2909.6 16,17 4673.9 25,26 2604
N = 7 1364.2 3,4 2909.5 16,17 4673.8 29,30 3348
N = 8 1364.2 3,4 2909.5 16,17 4673.8 33,34 4185
N = 9 1364.0 3,4 2908.6 16,17 4671.0 37,38 5115
Solid FEM 1360.9 3,4 2906.3 16,17 4670.9 37,38 257760
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1.9
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 f R

E
F

Mode number

EBBM
N = 1

N = 3
N = 4

N = 5
Solid FEM

Figure 4.3: Dimensionless frequency parameter for different 1D models. Bending modes.

mode numbers. With N = 9, both the bending frequency values and mode indices are in
excellent agreement with the reference solution for all the three first mode numbers. It
should be foreseen that a correct computation of the mode indeces here is related to a
correct analysis of all the four kinds of vibrational modes of the cylinder, not only the
bending modes. The last column of Table 4.3 reports the DOFs required by the models. It
is worth pointing out that the bending dynamic behavior of the cylinder is well described by
the proposed 1D CUF model with a considerably smaller computational cost with respect
to the solid FE model.

The natural frequencies related to the radial and axial modes are presented in Table 4.4
for several structural models. As will be shown afterwards, when the cylinder vibrates
radially the thin cross-sections remain circular-type but they are subjected to a torsion
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about the longitudinal y axis. It means that the radial mode is also a torsional mode of
vibration. Hence, Euler−Bernoulli and Timoshenko beam theories are unable to detect
any radial mode due to the kinematic hypotheses they are based on. On the contrary, the
radial natural frequencies are well-computed even by the first-order model (N = 1), which
takes into account the torsional deformation of the cross-section. It is noteworthy that
in this particular case the introduction of higher-order terms in the a priori displacement
field does not improve the radial frequencies computation. For instance, the seventh-order
model provides the same values as those computed by N = 1. For the sake of brevity, the
results corresponding to N = 8 and N = 9 are not reported in Table 4.4 even for axial
modes, since the five digits do not change when an expansion order higher than the seventh
is considered.

Table 4.4: Comparison of natural frequencies [Hz] based on the present 1D models with 3D FE
solution. Radial and axial modes.

Model
Radial Axial

Mode 1 Mode 2 Mode 1
DOFs

EBBM − − 4173.2 3 93
TBM − − 4173.2 5 155
N = 1 2540.9 4 5081.7 10 4173.3 8 279
N = 2 2540.9 3 5081.7 7 4191.3 6 558
N = 3 2540.9 5 5081.7 15 4182.5 10 930
N = 4 2540.9 7 5081.7 23 4182.4 18 1395
N = 5 2540.9 7 5081.7 29 4182.1 22 1953
N = 6 2540.9 11 5081.7 31 4182.0 24 2604
N = 7 2540.9 11 5081.7 39 4182.0 24 3348
Solid FEM 2540.2 13 5080.1 43 4172.2 32 257760

Unlike bending and radial modes, the natural frequency of the first axial mode is
accurately computed by classical beam theories, even better than higher-order models.
In axial modes, the cylinder vibrates along its longitudinal axis y and the cross-sections
remain annular-type. This kind of deformation is consistent with the kinematic hypotheses
which classical beam models are based on. Nonetheless, it is foreseen that classical models
are not so accurate in the evaluation of the axial modal shape. In fact, the thin-walled
surface of the cylinder induces some in-plane deformations which are not detectable by
classical beam theories.

As occurred for bending modes, an increase of the expansion order N corresponds to a
decrease of the numerical value of the axial frequency, see Table 4.4. The main reason of this
behavior stands in the fact that higher-order models reduce the overall structural stiffness
since the enrichment of the displacement field enables the structure to deform in a more
realistic way. This general consideration is consistent with those made in previous works on
higher-order models [101]. Nonetheless, it is interesting to note that the value of the axial
natural frequency decreases when the theory changes from a first-order to a second-order
form. The same behavior occurred for bending modes as can be seen in Table 4.3. This
turnaround is mainly due to the required correction of a phenomenon known in literature
as Poisson’s locking, which is explained in detail in [120, 121]. Poisson’s locking correction
is here correctly adopted only for classical and first-order theories (EBBM, TBM, N = 1),
according to the works of Carrera and Giunta [44] on beams and Carrera and Brischetto
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4.2. Assessment with 3D finite element solutions

[120, 121] on plates and shells. It means that if this correction was disabled, first-order
models would provide a higher value for the axial frequency corresponding to an increase
of the cylinder stiffness.

The analysis now addresses the investigation of the lobe-type modes, which are typical
of shell structures. This kind of vibrating involves a lobe-type deformation over the
cross-section (see Fig. 4.2) and cannot be consistent with the kinematic hypotheses which
classical beam models are based on. Classical models are therefore not expected to yield
accurate results. By enriching the displacement field, the first-order model provide a
linear displacement distribution in all the three directions. Nevertheless, it is not refined
enough for the investigation of lobe-type modes as well as the second-order expansion. This
statement is confirmed by the fact that none of the lobe-type modes is detected for N < 3.
Numerical results in Table 4.5 present the natural frequencies of two-lobe modes computed
by the present hierarchical models. It is necessary to enhance the displacement field with
higher-order terms to correctly describe the dynamic behavior of the thin-walled cylinder.
In fact, an expansion order lower than the sixth provides a remarkable error in computing
the two-lobe frequencies as illustrated in Fig. 4.4. This error is maximum when the axial
half-wave number m is equal to 1 and decreases as the mode number increases. However,
the proposed 1D FEs provide a convergent solution by approaching the NASTRAN 3D
results as the refinement of the expansion increases, until a well agreement for N = 9 is
achieved for every m considered.

Table 4.5: Comparison of natural frequencies [Hz] based on the present 1D models with 3D FE
solution. Two-lobe modes.

Model
Mode number

1 2 3 4 5

N = 3 1617.9 3,4 2960.7 8,9 4755.5 13,14 6832.6 18,19 9094.5 24,25

N = 4 1209.1 1,2 1795.0 5,6 2732.8 8,9 3850.7 14,15 5049.5 21,22

N = 5 1005.4 1,2 1666.3 5,6 2643.3 8,9 3765.4 18,19 4937.7 27,28

N = 6 995.8 1,2 1640.9 5,6 2602.6 12,13 3707.4 20,21 4859.5 27,28

N = 7 862.7 1,2 1561.9 5,6 2551.7 12,13 3670.0 20,21 4829.1 35,36

N = 8 862.6 1,2 1561.6 5,6 2551.3 14,15 3669.4 20,21 4828.0 35,36

N = 9 860.4 1,2 1560.3 5,6 2550.6 14,15 3669.3 24,25 4827.4 39,40

Solid FEM 859.9 1,2 1557.0 5,6 2545.4 14,15 3662.9 24,25 4820.9 41,42

Table 4.6 reports the natural frequencies of three-lobe modes obtained by the CUF
models. None of the three-lobe modes is computed by the third-order model. A further
increase of N is required and this means that the introduction of higher-order terms is
even more important here than in the previous two-lobe case. The higher the theory
order employed the more the results approach the solid FEM frequencies. However, the
convergence obtained by increasing N shows that the proposed hierarchical models do
not introduce additional numerical problems in the free vibration analysis. This trend is
consistent with the considerations made in previous CUF works for static [122], aeroelastic
[123] and dynamic response [118] analyses. The choice of N = 8 seems to be accurate
enough for three-lobe modes, even if the ninth-order theory is more powerful especially
for high values of m. Moreover, the choice of N = 9 provides the exact evaluation of the
mode indices even for m = 6. In regards to the DOFs required, it is worth pointing out
that an accurate evaluation even of the lobe-type dynamic behavior is provided by the
proposed 1D CUF model with a sizeable reduction in computational cost with respect to
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Figure 4.4: Dimensionless frequency parameter for different 1D models. Two-lobe modes.

the solid FE model. For the sake of brevity, the results for models with an expansion order
higher than the ninth are not reported here, since an excellent agreement is achieved in
comparison with three-dimensional FE results with a convergent trend on N .

Table 4.6: Comparison of natural frequencies [Hz] based on the present 1D models with 3D FE
solution. Three-lobe modes.

Model
Mode number

1 2 3 4 5 6

N = 4 3281.2 12,13 4099.2 16,17 5354.2 24,25 6946.7 30,31 8795.1 40,41 10837.6 53,54

N = 5 3027.4 12,13 3160.3 14,15 3453.3 16,17 3930.7 20,21 4572.9 23,24 5339.8 30,31

N = 6 2319.2 7,8 2504.7 9,10 2882.6 14,15 3454.6 18,19 4178.1 22,23 5001.9 29,30

N = 7 2306.9 7,8 2458.7 9,10 2789.4 14,15 3308.7 18,19 3978.0 22,23 4746.3 33,34

N = 8 1826.3 7,8 2006.7 9,10 2390.3 11,12 2968.6 18,19 3688.1 22,23 4493.8 29,30

N = 9 1826.2 7,8 2006.2 9,10 2389.1 11,12 2966.7 18,19 3685.0 26,27 4490.2 35,36

Solid FEM 1818.0 7,8 1997.1 9,10 2378.6 11,12 2954.9 18,19 3672.2 26,27 4475.1 35,36

The accuracy of the CUF approach as N increases is highlighted in Fig. 4.5, where the
trend of the frequency parameter is depicted for a raising mode number. The choice of
N = 5 provides frequencies which are clearly wrong with respect to the reference solution.
The f/fREF ratio, i.e. the error with respect to the reference solution, decreases when
a sixth- or a seventh-order model is employed. Nonetheless, only with a higher-order
model than the seventh the curve trend changes and becomes practically the same as the
reference one. The convergent trend which has been mentioned above is clearly shown in
Fig. 4.5 confirming the numerical consistency of Carrera Unified Formulation. As in the
case of two-lobe vibrations, the error computed decreases as the axial half-wave number
m increases. The frequency parameter is maximum for m = 1. It is noteworthy that this
behavior is typical of lobe-modes. For instance, the situation is opposite as far as the
bending vibrations are concerned, see Fig. 4.3.

As can be seen, the lobe-type modes have two mode indexes for each frequency, due
to the cylinder axisymmetry. In general, the higher the mode number the more is the
expansion order required to compute the correct mode index. In order to understand this
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Figure 4.5: Dimensionless frequency parameter for different 1D models. Three-lobe modes.

statement, the following consideration is crucial. It is important to note that the increase
of N usually corresponds to a detection of new lobe-type modes thanks to the displacement
field enrichment. As previously reported, the second-order model is not able to detect any
two-lobe mode. Instead, the third-order model is able to compute such modes, though the
corresponding frequencies are sizeable far from the correct vales. As a consequence, it has
been necessary to increase the expansion order to 7 to match the NASTRAN reference
results, see Table 4.5. Nevertheless, the seventh-order model is not refined enough for the
frequency computation of three-lobe modes, which appear only with N ≥ 4, see Table 4.6.
In the same way, the four-lobe modes are not detectable for an expansion order lower than
5. This is the reason why the increase of the accuracy of the 1D model improves not only
the computation of the frequency values, but also the corresponding mode indices.

Taking the solid FE model as reference, the results summarized in Table 4.7 improve
again as the expansion order N increases. In particular, for the present ninth-order model
the four-lobe natural frequencies are accurately computed and the agreement with the
3D solution is remarkable as well as the sizeable reduction in computational cost. On the
contrary, the eighth-order expansion is no longer as refined as it was in the analysis of
the other vibrational modes. Numerical results are depicted in Fig. 4.6 in terms of the
dimensionless frequency parameter f/fREF. The trend of the curves is very similar to
that illustrated in Fig. 4.5 corresponding to three-lobe modes. Given a theory, the error
decreases as m increases. A remarkable difference between these figures is that N = 8 is
not an appropriate choice to compute the correct four-lobe frequencies.

As far as lobe-type modes are concerned, it is interesting to note a noteworhty behavior
that occurs when the half-wave number m is equal to 1. Sometimes an increment by one
of the expansion order N seems to improve the numerical results very slightly in terms of
frequencies computed by CUF models. The particularity stands in the fact that it occurs
even when the convergence on N is not achieved. This particular behavior is clearly shown
in Figs. 4.4−4.6. For instance, for four-lobe modes the first frequencies computed by the
seventh- and eighth-order models are approximately the same. Regarding three-lobe modes,
the same goes for N = 6 and N = 7. Figure 4.4 illustrates a similar behavior for the fifth-
and sixth-order models.

Looking at the numerical results presented so far, the ninth-order model seems to
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Figure 4.6: Dimensionless frequency parameter for different 1D models. Four-lobe modes.

Table 4.7: Comparison of natural frequencies [Hz] based on the present 1D models with 3D FE
solution. Four-lobe modes.

Model
Mode number

1 2 3 4 5 6

N = 5 5961.4 32,33 6489.5 40,41 7350.1 46,47 8512.2 56,57 9937.2 66,67 11585.3 86,87

N = 6 5805.4 32,33 5877.9 34,35 6017.7 40,41 6243.3 42,43 6527.3 46,47 6993.4 50,51

N = 7 4380.8 25,26 4494.4 27,28 4702.8 31,32 5020.9 37,38 5453.5 40,41 5994.1 46,47

N = 8 4368.4 25,26 4445.6 27,28 4595.8 31,32 4837.5 37,38 5180.6 40,41 5623.1 44,45

N = 9 3441.1 20,21 3528.8 22,23 3700.4 28,29 3976.8 30,31 4364.8 33,34 4856.7 41,42

Solid FEM 3417.8 20,21 3503.3 22,23 3672.4 28,29 3945.3 30,31 4329.1 33,34 4816.1 39,40

be refined enough to study the dynamic behavior of the layered cylinder considered.
This statement is confirmed by Table 4.8, where the first thirty-eight natural frequencies
computed by the present 1D model (N = 9) and the NASTRAN solid model. Each mode
presents a superscript composed of two terms. The first term indicates the kind of mode
whereas the second term indicates the value of m. The results involve bending, radial,
axial, two-, three- and four-lobe vibrational modes with an axial half-wave number up to 6.
Despite the one-dimensional approach of the proposed higher-order model, it provides an
error lower than 0.8 percent for all these modes, with a remarkably lower computational
effort than that required by the reference solid model. In fact, about a 98% saving of the
degrees of freedom involved in the free vibration analysis is obtained. The maximum error
is computed for three- and four-lobe modes, for which an expansion with an even higher
order, N = 10 for instance, would further increase the computational accuracy.

Further results regarding five-lobe modes are not reported here for the sake of brevity.
In fact, the same conclusions made for two-, three- and four-lobe modes would be valid
also for more complex lobe-type vibrational modes. However, for the considered cylinder
a ninth-order expansion theory detects vibrational modes with a five-lobe deformation
of the cross-section. Nonetheless, a further increase of N might be required to achieve a
good accuracy regarding the numerical frequencies of these even more complex vibrational
modes. This behavior is consistent with the considerations previously mentioned about the
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Table 4.8: Natural frequencies [Hz] of the first thirty-eight vibrational modes of the cylinder.

Mode N = 9 Solid FEM % Difference

1 , 2 2.1 860.4 859.9 0.058
3 , 4 b.1 1364.0 1360.9 0.228
5 , 6 2.2 1560.3 1557.0 0.212
7 , 8 3.1 1826.2 1818.0 0.451
9 , 10 3.2 2006.2 1997.1 0.456
11 , 12 3.3 2389.1 2378.6 0.441

13 r.1 2540.9 2540.2 0.028
14 , 15 2.3 2550.6 2545.4 0.204
16 , 17 b.2 2908.6 2906.3 0.079
18 , 19 3.4 2966.7 2954.9 0.399
20 , 21 4.1 3441.1 3417.8 0.682
22 , 23 4.2 3528.8 3503.3 0.728
24 , 25 2.4 3669.3 3662.9 0.175
26 , 27 3.5 3685.0 3672.2 0.349
28 , 29 4.3 3700.4 3672.4 0.762
30 , 31 4.4 3976.8 3945.3 0.798

32 a.1 4190.6 4172.2 0.441
33 , 34 4.5 4364.8 4329.1 0.825
35 , 36 3.6 4490.2 4475.1 0.337
37 , 38 b.3 4671.0 4670.9 0.002

DOFs 5115 257760 −98.02

2.1: two-lobe mode, m = 1 b.1: bending mode, m = 1

3.1: three-lobe mode, m = 1 r.1: radial mode, m = 1

4.1: four-lobe mode, m = 1 a.1: axial mode, m = 1

4.5: four-lobe mode, m = 5

expansion enrichment.

A summary of the first thirty-eight vibrational modes detected by the present one-
dimensional models is reported in Table 4.9, where the accuracy in computing natural
frequencies with respect to the solid FE analysis is shown by varying the expansion order
N . It should be pointed out that a different higher-order expansion is required depending
on the kind of vibrational mode investigated. Some structural models are not even able
to detect all the kinds of vibrational modes. For instance, classical beam theories do not
consider radial modes. Third-, fourth- and fifth-order models are necessary to compute
two-, three- and four-lobe modes, respectively. As far as the accuracy is concerned, a
further higher expansion order is required. However, the results show that the introduction
of higher-order terms is fundamental for the free vibration analysis of a thin-walled layered
structure, according to previous dynamic response computations through 1D CUF models
[118].

The assessment procedure of 1D CUF models on natural frequencies is now completed.
A graphical comparison between the modal shapes based on the present 1D CUF model
and those computed by the solid FEM is now carried out. Some interesting modal shapes
have been chosen and compared in Figs. 4.7−4.12. The three-dimensional deformation as
well as the front-view of each modal shape are depicted. It is noteworthy that the modal
shapes perfectly match for all the kinds of vibrational modes considered, including the
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Table 4.9: Summary of the vibrational modes detected with an increasing expansion order N by
1D models and comparison of the corresponding natural frequencies with 3D FE solution.

Model
Vibrational mode

2.1 b.1 2.2 3.1 3.2 3.3 r.1 2.3 b.2 3.4 4.1 4.2 2.4 3.5 4.3 4.4 a.1 4.5 3.6 b.3

EBBM � 6 � � � � � � 6 � � � � � � � f � � 6

TBM � � � � � � � � 6 � � � � � � � f � � 6

N = 1 � � � � � � f � 6 � � � � � � � f � � 6

N = 2 � � � � � � f � 6 � � � � � � � f � � 6

N = 3 6 f 6 � � � f 6 f � � � 6 � � � f � � ?

N = 4 6 f � 6 6 6 f ? f 6 � � ? 6 � � f � 6 f

N = 5 � f ? 6 6 6 f ? f 6 6 6 ? 6 6 6 f 6 � f

N = 6 � f ? 6 6 6 f ? f � 6 6 ? � 6 6 f 6 � f

N = 7 f f f 6 6 � f f f � 6 6 f ? 6 6 f 6 ? f

N = 8 f f f f f f f f f f 6 6 f f 6 6 f � f f

N = 9 f f f f f f f f f f f f f f f f f f f f

� Mode not detected. ? Mode detected. 1% ≤ Error < 10%.

6 Mode detected. Error > 20%. f Mode detected. Error < 1%.

� Mode detected. 10% ≤ Error ≤ 20%.

lobe-type modes which are typical of shell structures.
The lobe-type shapes are correctly described by one-dimensional higher-order models

even when these models do not provide accurate frequencies in comparison with the
reference three-dimensional results. For example, the shape of two-lobe modes is correctly
described by using a third-order displacement expansion, although this choice does not
provide accurate two-lobe frequencies in comparison with higher-order models and solid FE
solution, see Table 4.5. As a consequence, when the accuracy in computing the numerical
frequency of a certain lobe-type mode is low, nonetheless the corresponding modal shape is
usually well-described.

Figure 4.10 highlights the rotation of the cross-sections about the longitudinal y axis
that occurs when the cylinder vibrates radially. Instead, when the cylinder vibrates along
its longitudinal y axis, the cross-sections which are close to the clamped edges are subjected
to streching or dilation effects. These effects are emphasized in Fig. 4.9. Euler−Bernoulli
is very effective in the computation of the axial frequencies of the cylinder, see Table 4.4.
Nonetheless, although the axial mode computed by Euler−Bernoulli beam theory is not
represented here, this classical theory is not able to describe the in-plane deformation of
the compressed and dilated cross-sections. On the contrary, these in-plane deformations
are well-described by the present higher-order 1D models and a good agreement with the
three-dimensional solution is achieved not only in the frequency computation but also in
the vibrational shape description, see Figs. 4.7−4.12.

The results in Figs. 4.7−4.12 clearly show the accuracy of the present refined model in
detecting the three-dimensional deformation despite its one-dimensional approach, according
to previous dynamic computations through 1D CUF models [118]. The present method
shows features not present in standard one-dimensional theories such as the thickness
changing of the thin-walled laminated surface and the in-plane and out-of-plane cross-section
deformations.
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(a) Present 1D model (b) NASTRAN solid model

Figure 4.7: Third bending modal shape (b.3).

(a) Present 1D model (b) NASTRAN solid model

Figure 4.8: Second radial modal shape (r.2).

(a) Present 1D model (b) NASTRAN solid model

Figure 4.9: First axial modal shape (a.1).

(a) Present 1D model (b) NASTRAN solid model

Figure 4.10: Fifth two-lobe modal shape (2.5).

(a) Present 1D model (b) NASTRAN solid model

Figure 4.11: Fourth three-lobe modal shape (3.4).

(a) Present 1D model (b) NASTRAN solid model

Figure 4.12: Second four-lobe modal shape (4.2).
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Chapter 5

Results: free vibration analysis of
conventional and joined wings

A free vibration analysis of different beam models is conducted in this chapter. The adopted
coordinate frame is shown in 5.1. An isotropic material is used. Young’s modulus, E, is
equal to 75 [GPa]. The Poisson ratio, ν, is equal to 0.33. The density of the material, ρ, is
equal to 2700 [Kg/m3]. Beams geometries are described in the following sections.

Figure 5.1: Coordinate frame of the beam model.

5.1 Solid rectangular cross-section beam

A rectangular compact beam is considered as a first example to assess the proposed FE
model. The coordinate frame and the cross-section geometry are shown in Fig. 5.2. The
span-to-height ratio, L/h, is equal to 100. The straight and the swept beams have square
cross-sections with b equal to 0.2 m. Fig. 5.3 shows the notation used to deal with the
swept configuration. The case considered has hΛ equal to 5 m, this choice makes the sweep
angle, Λ, equal to 14.3◦. The swept tapered beam keeps this angle while b varies linearly
along the span-wise direction, y. The clamped section is square with b = 0.2 m and the
free tip section is rectangular with b equal to 0.1 m, and h equal to 0.2 m.

A static analysis of a cantilever is first carried out to evaluate the convergence properties
of the finite element mesh. Four-node elements are used (B4). A vertical force is applied
at the center of the free-tip cross-section, [b/2, L, h/2]. The vertical displacement, uz,
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Chapter 5. Results: free vibration analysis of conventional and joined wings
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Figure 5.2: Rectangular cross-section.

Figure 5.3: Graphical definition of the sweep angle , Λ.

is evaluated at [0, L, h/2]. An MSC Nastran model made of solid elements is used as a
reference solution. The computed results are presented in Table 5.1.

Table 5.1: Vertical displacement, uz × 10−2 m, for different beam models and meshes. Rectangular
cross-section cantilever beam.

Number of Elements EBBM TBM N = 1 N = 2 N = 3 N = 4

Straight beam −1.332∗

10 −1.333 −1.333 −1.333 −1.324 −1.324 −1.324
20 −1.333 −1.333 −1.333 −1.328 −1.329 −1.329
30 −1.333 −1.333 −1.333 −1.330 −1.330 −1.330

Swept beam −1.507∗

10 −1.515 −1.515 −1.515 −1.504 −1.504 −1.504
20 −1.515 −1.515 −1.515 −1.510 −1.510 −1.510
30 −1.515 −1.515 −1.515 −1.510 −1.510 −1.510

Swept tapered beam −1.753∗

10 −1.755 −1.755 −1.755 −1.744 −1.744 −1.744
20 −1.753 −1.753 −1.753 −1.748 −1.748 −1.748
30 −1.753 −1.753 −1.753 −1.749 −1.749 −1.749

(∗): computed with MSC Nastran, solid elements

The free-vibration analysis is also considered. The first five bending modes are analyzed.
The natural frequencies, fi, are compared with those obtained by the Euler-Bernoulli beam
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5.1. Solid rectangular cross-section beam

model (EBBM):

fi =
1

2π
(
(λiL)2

L2

(
EI

ρA

) 1
2

(5.1)

Table 5.2: First four bending frequencies, Hz, for different beam models and meshes. Cantilever
straight beam with rectangular cross-section.

Number of Elements EBBM TBM N = 1 N = 2 N = 3 N = 4

f1 0.426∗

10 0.428 0.426 0.426 0.428 0.428 0.428
20 0.426 0.426 0.426 0.427 0.427 0.427
30 0.426 0.426 0.426 0.426 0.426 0.426

f2 2.668∗

10 2.668 2.667 2.667 2.680 2.679 2.679
20 2.668 2.667 2.667 2.673 2.673 2.673
30 2.668 2.667 2.667 2.671 2.671 2.671

f3 7.470∗

10 7.468 7.461 7.461 7.498 7.497 7.497
20 7.468 7.461 7.461 7.480 7.479 7.479
30 7.468 7.461 7.461 7.474 7.473 7.473

f4 14.639∗

10 14.630 14.607 14.607 14.680 14.676 14.676
20 14.630 14.607 14.607 14.644 14.639 14.639
30 14.630 14.607 14.607 14.632 14.628 14.628

(∗): reference value computed by means of Eq. (5.1)

For the sake of brevity, the values of λiL are not reported here. They can be found
in [124] or [125]. Table 5.2 shows the first four bending frequencies in the case of a
cantilever straight beam for different models and meshes. Figs. 5.4 present the fourth
bending frequency values obtained with and without the Poisson locking correction for the
EBBM, TBM, and full linear models. Table 5.3 shows the first four bending frequencies of
a fixed-pinned straight beam, values from Eq. 5.1 are used as references. The cantilever
swept and swept-tapered beam models are addressed in Tables 5.4 and 5.5, respectively.
The first three bending frequencies along the x− and z− directions are reported. An MSC
Nastran solid model is used as a benchmark. Solid elements with an almost unitary aspect
ratio have been used. The first row reports the total number of degrees of freedom (DOFs)
of the considered models, that is, the computational cost of each analysis.

The static analysis of the compact rectangular slender beam suggests the following
conclusions.

1. In all the considered beam configurations, the linear models, N < 2, furnishes the
largest displacement values. This result is due to the Poisson locking correction that
is just activated for the linear cases, and it is coherent with [117].

2. No significant differences have been observed amongst the classical models, EBBM
and TBM, and the full linear case, that is, the shear effect and the linear terms of
the cross-section displacements haven’t remarkable effects in this case. This is due to
the fact that the beam is slender, L/h = 100, the section is compact, and a bending
load is applied.
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Figure 5.4: Effect of the Poisson locking correction on the fourth bending frequency of the straight
beam with rectangular cross-section.

Table 5.3: First four bending frequencies, Hz, for different beam models and meshes. Fixed-Pinned
straight beam with rectangular cross-section, 30 B4 mesh.

EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN
(solid)

f1 1.866∗

1.867 1.866 1.866 1.869 1.869 1.869 1.868

f2 6.050∗

6.048 6.044 6.044 6.054 6.053 6.053 6.049

f3 12.621∗

12.617 12.598 12.598 12.620 12.617 12.617 12.609

f4 21.584∗

21.570 21.518 21.518 21.556 21.546 21.546 21.535

(∗): reference value computed by means of Eq. (5.1)

Table 5.4: First three bending frequencies, Hz, in the x− and z− directions. Cantilever swept
rectangular beam. 30 B4 mesh.

Model Type EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN
(solid)

Number of DOFs 455 455 819 1638 2730 4095 5565

x−direction
f1 0.388 0.387 0.387 0.388 0.388 0.388 0.389
f2 2.427 2.426 2.426 2.430 2.430 2.430 2.437
f3 6.795 6.789 6.789 6.801 6.800 6.800 6.819

z−direction
f1 0.400 0.400 0.400 0.400 0.400 0.400 0.400
f2 2.505 2.504 2.504 2.508 2.508 2.508 2.507
f3 7.012 7.006 7.006 7.018 7.017 7.017 7.014
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5.1. Solid rectangular cross-section beam

Table 5.5: First three bending frequencies, Hz, in the x− and z− directions. Cantilever swept-tapered
rectangular beam. 30 B4 mesh.

Model Type EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN
(solid)

Number of DOFs 455 455 819 1638 2730 4095 5565

x−direction
f1 0.430 0.422 0.422 0.422 0.422 0.422 0.427
f2 2.020 2.018 2.018 2.021 2.021 2.021 2.046
f3 5.207 5.205 5.205 5.212 5.212 5.212 5.279

z−direction
f1 0.499 0.491 0.491 0.491 0.491 0.491 0.490
f2 2.675 2.672 2.672 2.677 2.676 2.676 2.668
f3 7.181 7.175 7.175 7.187 7.186 7.186 7.165

3. The results are in good agreement with those furnished by the solid elements.

4. As far as the mesh refinement is concerned, the use of thirty four-node elements offers
appreciable convergent capabilities.

5. The good match between the results given by the present beam formulation and
MSC Nastran is confirmed, even in the cases of swept and swept-tapered beam
configurations. This aspect offers validation of the adopted formulation.

As far as the free vibration analysis is concerned, the following conclusions hold.

1. The results match those obtained with the analytical model. As seen for the static
case, the Poisson locking correction greatly enhances the flexibility of the finite
element model for EBBM, TBM, and full linear models. It has to be highlighted that
this correction can lead to lower frequencies than those from higher-order models.
This result agrees with [117] and [126].

2. The free vibration analysis highlights the difference between the EBBM solution and
the TBM one. The higher the mode number, the larger the differences. No very
significant differences were observed between TBM and the full linear case.

3. A ten element mesh furnishes the first natural frequency with an appreciable accuracy.
However, the higher the mode number, the larger the influence of a finer mesh. Since
the thirty element mesh offers good convergent behavior, it will be used for all the
subsequent analyses.

4. The results show a good match with those obtained with the solid model. This
confirms the validity of the adopted formulation in dealing with arbitrary oriented
structures (swept) with varying cross-section geometries along the longitudinal axis
(tapered).

5. The higher the order of the beam model, the larger the total number of DOFs. A
fourth-order model requires a similar total number of DOFs to that of the solid model
because b/h is close to unity and the cross-section is compact.
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Chapter 5. Results: free vibration analysis of conventional and joined wings

5.2 Airfoil-Shaped Beam

A cantilever arbitrary shaped thin-walled beam is considered in this section. The cross-
section contour is defined by the NACA 2415 airfoil profile. The cross-section geometry is
shown in Fig. 5.5. The chord length, b, is assumed equal to 1 m. A three-cell section is
evaluated. The cells are obtained by inserting two beams along the span-wise direction
at 25% and 75% of the chord. The span-to-chord ratio, L/b, is assumed to be equal to
5, that is, a moderately short structure is considered. The graphical definitions of the
sweep and dihedral angles are shown in Figs. 5.3 and 5.6. Two different configurations
are considered: a straight wing, i.e. hΛ, hΓ = 0, and a wing with both sweep and dihedral
angle. In this latter case hΛ and hΓ are equal to 2 m, i.e. Λ = 21.8◦ and Γ = 21.8◦. An
Ansys solid model is adopted for result comparison purposes.

z

x
O

y

b

h

Figure 5.5: Wing cross-section.

Figure 5.6: Graphical definition of the dihedral angle, Γ.

Table 5.6: Bending natural frequencies, Hz, of the cantilever wing models for different theories, 10
B4 mesh.

Model Type EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN
(solid)

Number of DOFs 155 155 279 558 930 1395 > 600000

Straight
f1, bending z−dir 5.872 5.866 5.866 5.984 5.934 5.925 5.864
f2, bending x−dir 33.340 32.709 32.709 32.891 32.712 32.696 32.335
f3, bending z−dir 36.735 36.581 36.581 37.206 36.447 36.288 34.844
f4, bending z−dir 102.634 101.617 101.617 103.430 99.100 98.318 81.976

Sweep + Dihedral
f1, bending z−dir 4.126 4.128 4.128 4.200 4.171 4.166 4.114
f2, bending x−dir 23.736 23.432 23.432 23.560 23.472 23.465 23.778
f3, bending z−dir 25.854 25.782 25.783 26.189 25.798 25.722 24.991
f4, bending z−dir 72.288 71.815 71.815 73.035 70.837 70.459 64.731

Tables 5.6 and 5.7 show the first four bending frequencies for the two considered wing
configurations, 10 B4 and 30 B4 meshes are used, respectively. The first torsional frequency
is shown in Table 5.8. Figure 5.7 shows the cross-section modal shape of the free tip
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5.2. Airfoil-Shaped Beam

Table 5.7: Bending natural frequencies, Hz, of the cantilever wing models for different theories, 30
B4 mesh.

Model Type EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN
(solid)

Number of DOFs 455 455 819 1638 2730 4095 > 600000

Straight
f1, bending z−dir 5.872 5.866 5.866 5.972 5.922 5.913 5.864
f2, bending x−dir 33.340 32.709 32.709 32.834 32.656 32.625 32.335
f3, bending z−dir 36.735 36.581 36.581 37.127 36.376 36.216 34.844
f4, bending z−dir 102.634 101.617 101.617 103.210 98.918 98.133 81.976

Sweep + Dihedral
f1, bending z−dir 4.126 4.128 4.128 4.191 4.162 4.157 4.114
f2, bending x−dir 23.736 23.432 23.432 23.513 23.426 23.411 23.778
f3, bending z−dir 25.854 25.782 25.783 26.132 25.746 25.668 24.991
f4, bending z−dir 72.288 71.815 71.815 72.866 70.696 70.317 64.731

obtained via a fourth-order model with a significant distortion of the airfoil contour. The
following considerations can be made.

1. A good match is found with the reference solutions.

2. The bending modes can be detected using classical models. However, the importance
of higher-order terms increases for higher vibration modes.

3. The investigation of the torsional modes underlines the importance of the refined
models. At least a second-order theory is needed to obtain a reliable estimation of the
torsional frequency. In the presence of sweep and dihedral angles, the ineffectiveness
of linear models is even more evident. It has to be highlighted that, while EBBM
and TBM cannot provide torsional modes, the N = 1 model is able to detect the
torsion of the cross-section, however higher-order terms are needed to compute more
accurate torsional frequencies. This aspect is consistent to what presented in [117]
for the static case.

4. The influence of the higher-order terms is more relevant on the torsional modes than
on the bending ones.

5. Refined models are able to detect the distortion of the cross-section. It is noteworthy
that this aspect is particular relevant when thin-walled structures are considered.

6. The TBM and the full linear models provide the same results for bending modes.

7. The combined presence of the sweep and dihedral angles does not corrupt the accuracy
of the solution.

8. The difference in computational cost between the beam and the solid models is more
evident in the case of a thin-walled structure than for the compact one of the previous
section.

9. A fourth-order model cannot be enough to detect the exact torsional frequency or
higher bending modes. This issue is typical of thin–walled structures as clearly shown
in [127] where N = 11 models were used to detect the right distortion of a thin-walled
cylinder loaded by a point force.
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Chapter 5. Results: free vibration analysis of conventional and joined wings

Table 5.8: First torsional natural frequency, Hz, of the cantilever wing models for different theories,
30 B4 mesh.

Model Type EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN
(solid)

Number of DOFs 455 455 819 1638 2730 4095 > 600000a

Straight −∗ −∗ 161.581 56.857 54.457 53.979 44.481
Sweep + Dihedral −∗ −∗ −∗∗ 48.689 46.692 46.304 39.443

(∗): No torsional modes are provided by this model

(∗∗): No torsional modes have been found for frequencies up to 200 Hz

N = 4

NACA 2415

Figure 5.7: Wing cross-section 17th natural modal shape, f = 604 Hz, straight wing model.

5.3 Joined Wing

A joined wing model is considered as the last assessment of the present beam formulation.
The geometry of the wing is shown in Fig. 5.8. The structure is composed of three segments:
two horizontal and one vertical. As far as the boundary conditions are considered, the
horizontal segments are both clamped at y = 0. Two cross-section geometries are considered:
rectangular and airfoil-shaped.

Figure 5.8: Joined-wing scheme, the horizontal segments are both clamped at y = 0.

A compact rectangular cross-section is first considered, and is shown in Fig. 5.2. The
height, h, is equal to 0.1 m and the width, b, is equal to 1 m. The horizontal segments
have L1/h and L3/h equal to 100, while for the vertical segment, L2/h is equal to 30. 45
four-node beam elements are used as the mesh. An MSC Nastran shell model is used to
compare the results. The different types of natural frequencies are reported in Table 5.9.
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5.3. Joined Wing

A torsional mode shape is shown in Fig. 5.9. The last row in Table 5.9 is related to a
particular mode shape characterized by a differential bending of the horizontal segments
which induces a torsion of the vertical part. This mode is shown in Fig. 5.10.

Table 5.9: Natural frequencies, Hz, of the joined rectangular wing for different beam models and
comparison with those obtained via shell elements in NASTRAN.

Model Type EBBM TBM N = 1 N = 2 N = 3 N = 4 NASTRAN
(shell)

Number of DOFs 680 680 1224 2448 4080 6120 4242

Bending z-direction
f1 1.203 1.152 1.148 1.175 1.164 1.162 1.116
f2 5.417 5.414 5.373 5.532 5.466 5.454 4.620
f3 6.620 6.613 6.575 6.760 6.680 6.667 6.287
f4 14.929 14.911 14.798 15.260 15.052 15.022 13.110
f5 16.571 16.553 16.450 16.961 16.725 16.693 15.738

Bending x-direction
f1 11.510 11.361 7.913 7.933 7.882 7.875 6.682
f2 65.600 62.511 46.150 46.296 45.965 45.941 43.112

Torsional
f1 −∗ −∗ −∗∗ 33.774 33.548 33.177 31.417
f2 −∗ −∗ −∗∗ 34.034 33.803 33.442 31.658

Others
f1 119.290 107.005 56.101 47.803 47.553 47.512 47.118

(∗): No torsional modes are provided by this model

(∗∗): No torsional modes have been found for frequencies up to 200 Hz

(a) Present Beam, f = 33.216 Hz. (b) NASTRAN, f = 31.417 Hz.

Figure 5.9: Comparison between the present beam and the NASTRAN solution of a torsional mode
of the joined-wing.

The second joined wing model has the airfoil shaped cross-section shown in Fig. 5.5.
The horizontal segments have L1/b and L3/b equal to 10, while for the vertical segment,

97



Chapter 5. Results: free vibration analysis of conventional and joined wings

Figure 5.10: Differential bending mode of the rectangular joined wing. f = 47.512 Hz.

L2/b is equal to 3. Some natural frequencies are reported in Table 5.10. Some modal
shapes are reported in Fig. 5.11.

Table 5.10: Natural frequencies, Hz, of the joined wing with the airfoil-shaped cross-section.

Model Type EBBM TBM N = 1 N = 2 N = 3 N = 4
Number of DOFs 680 680 1224 2448 4080 6120

Bending z-direction
f1 1.735 1.728 1.717 1.747 1.739 1.736
f2 8.125 8.115 8.010 8.193 8.135 8.118
f3 9.923 9.912 9.817 10.024 9.957 9.939
f4 22.384 22.324 22.043 22.566 22.384 22.337
f5 24.850 24.786 24.530 25.100 24.898 24.850

Bending x-direction
f1 11.511 11.361 8.148 8.158 8.089 8.080
f2 65.600 62.511 46.827 46.918 46.528 46.476

Torsional
f1 −∗ − 152.689 49.721 49.409 48.375
f2 − − 162.443 52.803 52.476 52.722

Others
f1 119.291 107.005 56.488 45.982 45.722 45.338

(∗): No torsional modes are provided by this model

The following remarks can be made.

1. In the case of a rectangular cross-section, the total number of degrees of freedom is
lower than that of the shell model in the cases of linear and parabolic beam models.
In the case of cubic expansion, the number of DOFs is almost the same, while the
fourth-order model requires a larger number of displacement variables than the shell
model. This is due to the fact that a compact rectangular cross-section is considered.
It should be pointed out that the analysis of the airfoil-shaped cross-section requires
the same amount of DOFs as the compact rectangular one, while modeling via shell
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5.3. Joined Wing

(a) f = 45.892 Hz., f = 33.216 Hz. (b) f = 49.721 Hz.

(c) f = 52.803 Hz. (d) f = 100.364 Hz.

Figure 5.11: Various modal shapes of the joined-wing with airfoil-shaped cross-section.

elements would probably need a considerably larger effort.

2. The results are in good agreement with those furnished by the shell model.

3. It has been confirmed that the torsional modes are detected by higher models than
the linear ones.

4. The proper detection of the torsional modes as well as of the differential bending
ones shows that the present beam model is able to detect complex modal deformed
configurations that are usually furnished by shell models. This kind of result is
therefore referred to shell-like.
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Chapter 5. Results: free vibration analysis of conventional and joined wings

5. The x-direction bending frequencies by TBM and EBBM present larger differences
with respect to the refined models than the z-direction ones. This is most likely due
to the fact that such a bending mode makes the vertical portion of the joined wing
rotate along its local longitudinal axis, this rotation cannot be properly detected by
TBM and EBBM because no in-plane distortions are foreseen by these models.
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Chapter 6

Results: static and dynamic
response of homogeneous
structures

The present chapter report the results concerning the implementation of one-dimensional
CUF models in the dynamic response analysis of slender structures. A preliminary
assessment to test the accuracy of finite elements based on the CUF in a Newmark direct
integration process is therefore required. Some reference cases retrieved from the structural
dynamics literature [128] are taken as a benchmark. Moreover, a number of thin-walled
structures under dynamc loads are afterwards analyzed through refined 1D theories in
order to highlight the shell-type capabilities of the formulation.

6.1 Compact square section

A square simply supported cross shaped beam is considered. The sides of the cross-section
are equal to 0.1 m, whereas the span-to-height ratio L/h is equal to 100. This slender
structure is modeled through a one-dimensional mesh of 10 B4 finite elements along the y
axis, as done for all the following analyses. In this chapter, the isotropic material considered
is aluminium: Young’s modulus E = 69 GPa, Poisson’s ratio ν = 0.33, and density ρ = 2700
kg m−3.
The first assessment case is a single harmonic force applied at the mid-span section of the
beam:

Pz (t) = Pz0 sin (ω t) yL = L/2 (6.1)

where Pz0 = −1000 N is the amplitude of the sinusoidal load with angular frequency ω = 7
rad s−1. The analytical undamped dynamic response of an Euler-Bernoulli beam made
of isotropic material and loaded by this kind of force is well-known [128]. Let ω1 be the
fundamental angular frequency of the beam corresponding to a bending modal shape.
For the sake of brevity, when ω < ω1 some reference values for the maximum transverse
dynamic and static deflections occurring at the load application point are reported here:

uanal
zmax,DYN

∼=
2Pz0 L

3

π4E I

1

1− ω/ω1
uanal
zmax,ST =

Pz0 L
3

48E I
∼=

2Pz0 L
3

π4E I
(6.2)

uanal
zmax,DYN

uanal
zmax,ST

∼=
1

1− ω/ω1
(6.3)
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Figure 6.1: Effect of the time step ∆t of the transverse displacement at the mid-span section.
Sinusoidal force. EBBM.

where I is the moment of inertia of the beam cross-section.

The numerical dynamic response of the system is investigated through direct time
integration via the Newmark method over the interval [0,8] s. Since the analytical solution
refers to an Euler-Bernoulli beam, for a proper comparison the analysis involves that
classical beam theory, which is obtained as a particular case of the first-order CUF model.
Here, the Newmark method is unconditionally stable. However, the numerical solution
approaches the reference trend as the time step ∆t decreases. A convergence study is carried
out to evaluate the dependence of the results on the time step chosen. The time-history
of the transverse displacement uz at the mid-span section is depicted in Fig. 6.1. It is
noteworthy that the choice of ∆t = 0.08 s represents a coarse time discretization for this
problem, whereas a good agreement with the analytical deflection is achieved for ∆t =
0.004 s. The dynamic response is approximately the sum of two sinusoidal functions with
angular frequencies equal to ω and ω1. The maximum dynamic displacement computed
through FEs based on EBBM differs in about 0.03 % from the analytical value, as reported
in Table 6.1. It occurs for t = 3.816 s at the mid-span beam section. The static solution
of the system is also evaluated by disabling the inertial contribution of the mass matrix.
As expected, it is a time-dependent sinusoid with the same frequency as that of the point
force. Unlike the dynamic case, the amplitude is constant and equal to uanal

zmax, ST.

Table 6.1: Maximum dynamic and static displacements for different beam models. Sinusoidal load.
∆t = 0.004 s for the Newmark method.

Theory uzmax,DYN uzmax,ST ω1
uzmax,DYN

uzmax,ST

1

1− ω/ω1

Analytical −70.0116 −36.2319 14.4030 1.9323 1.9456
EBBM −69.9886 −36.2318 14.4024 1.9317 1.9456
N = 3 −70.0232 −36.2427 14.4006 1.9321 1.9459
N = 7 −70.0233 −36.2428 14.4006 1.9321 1.9459

The time-response analysis is also conducted through refined beam models. Table 6.1
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6.1. Compact square section

summarizes the maximum dynamic and static displacements for the third- and seventh-
order models. However, for this case the increase of the theory expansion order N does
not reveal any remarkable difference in comparison with Euler-Bernoulli beam theory. In
fact, the use of a compact square section for a slender beam subjected to a bending load
restricts the local effects of the beam cross-section, which are eventually detectable by the
higher-order terms of the beam displacement field. In confirmation of this fact, the value
of the fundamental bending frequency of the beam ω1 is substantially the same for all the
theories involved, as evident from Table 6.1. EBBM is therefore an effective theory for this
case.
The second assessment consists in a single sinusoidal force starting from the left support
and traveling along the beam axis with constant velocity vy = 1.25 m s−1:

Pz (t) = Pz0 sin (ω t) yL (t) = vy t (6.4)

The analytical dynamic response to this load can be found in [128]. Unlike the non-traveling
load case, in this second assessment the maximum displacement of the beam is not placed
at the mid-span section for both the static and dynamic analyses. Nevertheless, as in the
previous case, the time-dependent displacement of the mid-span section is investigated
through EBBM and plotted in Fig. 6.2. The influence of the time step exploited in the
Newmark method is less evident with respect to the non-traveling load case. However, the
choice of ∆t = 0.004 s is again an appropriate time discretization. In fact, the amplitude of
the curve obtained with ∆t = 0.08 s noticeably differs from the analytical benchmark even
over t = 2 s and this error is likely to propagate dramatically in even longer simulations.
The inertial effect due to the mass matrix emphasizes the transverse deflection of the beam
with respect to the static response. For the sake of brevity, the results for refined theories
are not reported here because there is no noticeable difference with Euler-Bernoulli beam
theory.
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Figure 6.2: Effect of the time step ∆t of the transverse displacement at the mid-span section.
Sinusoidal traveling force. EBBM.

A concentrated force Pz0 advancing along the beam axis with the same velocity is
considered as a third assessment case:

Pz (t) = Pz0 yL (t) = vy t (6.5)
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Chapter 6. Results: static and dynamic response of homogeneous structures

At first, the inertial effect is neglected in order to evaluate the static behavior of the beam,
in terms of the displacement uz

(
y = L/2 , t

)
of the mid-span section. This time-dependent

displacement is described by the continuous cubic function illustrated by the square symbols
in Fig. 6.3. The static curve is defined on two subsets and is symmetrical with respect to
t = 4 s. In fact, for Euler-Bernoulli beam theory:

uz
(
y = L/2 , t

)
=


Pz0

48E I

(
3L2 − 4 (vy t)

2
)

(vy t) 0 ≤ vy t ≤ L/2

Pz0

48E I

(
−L2 + 8L (vy t)− 4 (vy t)

2
) (
L− (vy t)

)
L/2 ≤ vy t ≤ L

(6.6)
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Figure 6.3: Effect of the time step ∆t of the transverse displacement at the mid-span section.
Constant traveling force. EBBM.

For the static analysis, it is possible to demonstrate that the maximum deflection
of the beam, uzmax = Pz0 L

3/48E I, is placed at y = L/2 for tuzmax = 4 s, that is for
yL = vy t = 5 m. On the contrary, the dynamic response curve oscillates over the static
cubic function and is no longer symmetrical. As a result, the maximum value of uz during
the considered time interval is no longer reached at the mid-span section. The Newmark
method fails to compute the frequency of this oscillating trend through a coarse time
discretization (∆t = 0.08 s). Instead, the direct time integration with ∆t = 0.004 s ensures
a convergent solution by approaching the analytical results accross the entire time interval
of study. Furthermore, the error in computing the maximum dynamic displacement at
y = L/2 decreases as ∆t decreases. As shown in Table 6.2, the same occurs for the
corresponding time instant tuzmax . In fact, the position of the load application point
yL (tuzmax) at the time instant tuzmax is moderately different from the analytical value,
except for the refined value ∆t = 0.004 s.

6.2 Thin-walled rectangular section

The assessment procedure is completed. A clamped beam with a thin-walled rectangular
cross-section is now introduced. As illustrated in Fig. 6.4, the width a of the section is equal
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6.2. Thin-walled rectangular section

Table 6.2: Maximum displacement of the mid-span section and corresponding time instant for
different time steps through the Newmark method. Constant traveling load. EBBM.

Analysis uzmax tuzmax yL (tuzmax)/L

Newmark ∆t = 0.08 s −36.9617 4.160 0.52
Newmark ∆t = 0.016 s −37.1458 3.840 0.48
Newmark ∆t = 0.004 s −37.1292 3.824 0.47
Analytical solution −37.1185 3.824 0.47
Static solution −36.2319 4.000 0.50

to 1 m and the width-to-height ratio is equal to 0.1. The thickness t of the skin is constant
and equal to 0.005 m. The beam is relatively short since the span-to-width ratio L/a is now
equal to 10. The section at y = 2.5 m is loaded by a concentrated force Pz. Four points are
chosen as characteristic positions. The application point is denoted as point 1 in Fig. 6.4.
The effect of the point load on this thin-walled section is evaluated through a preliminary
static analysis with Pz = −10000 N. This case cannot be consistent with the kinematic
hypotheses which classical beam models are based on. Classical models are therefore not
expected to yield accurate results. In fact, while EBBM assumes an undeformed section,
the increase of the expansion order N provides a remarkable shell-like deformation of the
loaded cross-section. Figure 6.5 illustrates that the upper skin is particularly deflected due
to the position of Pz at point 1. However, at least a tenth-order model (6138 DOFs) is
necessary to detect such an effect and simulate the FE NASTRAN solution well, obtained
through a 396000 DOFs analysis.

t 1 2

34

x

z

y

a

h

Figure 6.4: Thin-walled rectangular cross-section.

NASTRAN
EBBM

N = 4
N = 7

N = 10
N = 12

N = 14

Figure 6.5: Static deformation of the loaded beam cross-section. t = 0 s.

A time-dependent sinusoidal load with the same amplitude Pz0 = −10000 N and angular
frequency ω = 30 rad s−1 is applied at point 1. Given the static results, a tenth-order
structural model is considered in the dynamic analysis over the interval [0,1.5] s. Figure 6.6
plots the convergence of the solution as the time step used in the Newmark method decreases.
For instance, point 2 is taken as a control point. Again, ∆t affects the correct evaluation of
the amplitude and frequency of the beam dynamic response. It can be demonstrated that
this convergence is also required for classical and lower-order theories. Once an appropriate
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Chapter 6. Results: static and dynamic response of homogeneous structures

∆t is chosen, the transverse displacement is evaluated for points 1, 2, 3 and 4 and depicted
in Fig. 6.7. As expected, uz reaches the maximum value at loading point 1, whose trend is
described mainly by an oscillation with angular frequency equal to ω. The other points
seem to be affected in a different way by some local oscillations due to inertial effects, see
in particular point 3. Such effects can be observed thanks to higher-order terms. In fact,
for EBBM the four curves coincide perfectly, given the undeformed section hypothesis of
classical models.
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Figure 6.6: Effect of the time step ∆t of the transverse displacement of Point 2. N = 10.

-60

-40

-20

 0

 20

 40

 60

 0  0.25  0.5  0.75  1  1.25  1.5

u z
  [

m
m

]

t  [s]

POINT 1 POINT 2 POINT 3 POINT 4

Figure 6.7: Dynamic response of different points on the loaded cross-section. ∆t = 7.5 10−4 s.
N = 10.

Figure 6.8 displays the response of point 1 computed for different theories. EBBM and
the fouth-order model provide very similar results. For N = 7 the maximum displacement
increases, but it is via the tenth-order model that uz dramatically rises, even over 250
% with respect to EBBM and N = 4. The difference consists not only in the amplitude
of the oscillation, but also in the trend shape. Unlike lower-order models, for N = 10
the displacement of point 1 vs. time is an oscillating curve dominated by the angular
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6.3. Thin-walled annular section

frequency of the load. The same behavior does not occur at point 3, which lies on the
lower skin of the section. The refinement of models does not reveal a striking difference in
maximum displacement whereas their trend shapes are considerably dissimilar, see Fig. 6.9.
Since higher-order terms are powerful in evaluating the section deformation, refined models
are able to detect local shell-like oscillations related to different inertial accelerations of
points over the loaded section. Table 6.3 summarizes the results in terms of maximum
displacement of points 1, 2, 3 and 4 obtained over the interval. Especially for N = 10 these
values are very different within the section and correspond to different time instants.

Table 6.3: Maximum displacement [mm] of points 1, 2, 3 and 4 and corresponding time instant for
different theories.

uzmax EBBM N = 4 N = 7 N = 10

Point 1
-24.660

(1.08225 s)
24.812

(1.38975 s)
39.359

(1.41225 s)
57.838

(0.88125 s)

Point 2
-24.660

(1.08225 s)
23.964

(1.38900 s)
32.944

(1.41300 s)
32.071

(1.42425 s)

Point 3
-24.660

(1.08225 s)
23.964

(1.38900 s)
31.055

(1.41225 s)
26.193

(1.43100 s)

Point 4
-24.660

(1.08225 s)
24.810

(1.38975 s)
37.419

(1.41225 s)
-39.633

(0.87900 s)
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Figure 6.8: Time-dependent transverse displacement of Point 1 for different theories. ∆t = 7.5 10−4

s.

6.3 Thin-walled annular section

A clamped-clamped beam with a thin-walled annular cross-section is considered in the
last analysis case of the present chapter. The outer diameter of the cylinder d is equal
to 0.1 m whereas the thickness is 0.001 m. The span-to-diameter ratio L/d is equal to
10. As displayed in Fig. 6.10, four particular points are considered over the mid-span
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Figure 6.9: Time-dependent transverse displacement of Point 3 for different theories. ∆t = 7.5 10−4
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cross-section. Four concentrated forces are applied at points A, B, C and D within the
thin-walled cross-section, in an outward direction. They are time-dependent sinusoids with
the same amplitude Pz0 = 10000 N and a phase shift:

PzA (t) = Pz0 sin (ω t + φA) φA = 0◦

PxB (t) = Pz0 sin (ω t + φB) φB = 30◦

PzC (t) = −Pz0 sin (ω t + φC) φC = 60◦

PxD (t) = −Pz0 sin (ω t + φD) φD = 90◦

(6.7)

where the angular frequency ω = 100 rad s−1. The dynamic response of the structure
is evaluated over the time interval [0,0.025] s by involving classical as well as refined 1D
models. The deformed configuration of the mid-span section at t = 0 s is presented in
Fig. 6.11 and compared with NASTRAN shell-FE solution. EBBM and TBM cannot
evaluate any displacement at any point of the section. The fourth-order theory shows
a global deformation but cannot detect any local effect due to the concentrated loads.
With N = 7 the refined elements are able to detect the shell-like displacement field of all
the cross-section points except the loading ones. An expansion order N at least equal to
10 is necessary to obtain a detailed description of the loading points displacement field.
This conclusion is consistent with the results obtained through CUF models by Carrera et
al.[129].

Table 6.4 summarizes the transverse displacements of loading points A and D at t = 0
s. The third and fifth columns present the percentage error computed with respect to the
NASTRAN solution, taken as a reference, for uxD and uzA, respectively. As expected, the
computation of local displacements on these loading points is not trivial for lower-order
models and impossible for classical models. A slight improvement is noticed for N = 7, but
the error decreases remarkably for an expansion order higher than 10. The last column
shows the total number of degrees of freedom, DOFs, for each model. A good convergent
trend is observed as N increases with a considerably smaller computational effort than that
required by the reference shell model. In Fig. 6.12 the static three-dimensional deformation
of the cylinder computed via N = 10 is graphically compared with NASTRAN shell
solution. The spectrum used on the surface corresponds to the resultant displacement. As
expected, the mid-span section is subjected to the overall maximum deflection due to the

108



6.3. Thin-walled annular section
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Figure 6.10: Thin-walled annular cross-section.

EBBM

N = 4

N = 7

N = 10

N = 14

NASTRAN

Figure 6.11: Static response of the mid-span cross-section. t = 0 s.

concentrated loads. Figure 6.12 emphasizes the capabilities of the proposed refined model
in describing typical shell-like lobs over the thin-walled structure with a sizeable reduction
in computational cost in terms of DOFs (6138 vs. 250000).

Table 6.4: Displacements [mm] of the loading points A and D for different FE models. t = 0 s.

Theory uxD Error uxD uzA Error uzA DOFs

EBBM 0. − 0. − 93
TBM 0. − 0. − 155
N = 1 −2.0937 −91.08 % −1.4362 −85.47 % 271
N = 3 −2.9313 −87.51 % −3.5311 −64.27 % 930
N = 4 −5.9690 −74.56 % −6.8900 −30.29 % 1395
N = 7 −15.7213 −32.99 % −9.3591 −5.31 % 3348
N = 10 −19.7523 −15.81 % −9.7314 −1.54 % 6138
N = 14 −21.1939 −9.67 % −9.8418 −0.43 % 11160
NASTRAN −23.4628 − −9.8840 − 250000
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NASTRAN   250000 DOFs

N = 10   6138 DOFs

Figure 6.12: Static three-dimensional resultant displacement of the thin-walled cylinder. t = 0 s.

As far as the dynamic response is concerned, the analysis involves variable kinematic
models with an expansion order N up to 10 because of the considerations exposed above
for the static case. The mid-span cross-section remains the most stressed section and the
high sensitivity of its shape to the point loads is detectable for higher-order models. For
instance, the configuration at the final time instant t = 0.025 s is depicted in Fig. 6.13.
According to Fig. 6.11, N = 4 is again unable to detect any local effect near the loading
points; it only detects a global deflection of the annular section. On the contrary, with
N = 7 and N = 10 the proposed 1D model makes it possible to take into account local
deformations typical of a shell-like behavior.

EBBM

N = 4

N = 7

N = 10

Figure 6.13: Deformation of the mid-span cross-section for different beam models. t = 0.025 s.
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Chapter 7

Results: static and dynamic
response of nonhomogeneous
structures

In this chapter, applications of 1D CUF models to the static and dynamic response
of structures with arbitrary cross-sections are presented. The capabilities of the CUF
one-dimensional (1D) model in describing the structural static and dynamic behavior of
arbitrary nonhomogeneous structures are investigated. The simulation of biomechanical
systems requires nowadays a multifield approach involving computational fluid mechanics
of haematic flows, structural modeling of biological tissues and high-fidelity fluid-structure
techniques [46]. In order to gain more insight into the complex biomedical processes during
therapeutical interventions and for the optimization of treatment methods and disease
preventions, constitutive modeling of biological tissues and related computer simulations
are active subjects of current research [3]. As well as in other physical applications
such as aerospace and civil engineering, nonhomogeneous structures are widely used in
biomechanical field. For example, healthy arteries consist of three layers with different
mechanical properties: the intima, the media and the adventitia. In last decades, a large
use of three-dimensional models for the structural analysis of biological tissues has been
necessary with the main disadvantage of huge computational cost simulations.

7.1 Static analysis of a layered cylinder

The structure studied in the present section is a thin-walled three-layer cylinder. As
depicted in Fig. 7.1, the cross-section is composed of three thin circular layers denoted as
layers 1, 2 and 3. The layers of the cylinder are made of three different isotropic materials.
The material and geometrical properties of the layers are summarized in Table 7.1. The
thickness t = 1 mm is constant for each layer and is small enough to consider overall the
cylinder as a thin-walled structure, since the external and internal diameters are equal to
de = 100 mm and di = 94 mm, respectively. The length L of the cylinder is equal to 500
mm. A clamped boundary condition is taken into account for the edges of the cylinder at
y = 0 and y = L.

In order to easily present the deformation of the cylinder, a cylindrical coordinate
system r−θ−y is now introduced. The plane r−θ is the cross-section plane. The r
coordinate goes along the radial direction, whereas the θ coordinate is an angle measured
counterclockwise from the axis −z, see Fig. 7.1. For the sake of simplicity, the origin of
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Chapter 7. Results: static and dynamic response of nonhomogeneous structures

x
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321

Figure 7.1: Pressure applied to the cylinder with three different layers for the static analysis.

Table 7.1: Material and geometrical properties of the cylinder layers.

Property Layer 1 Layer 2 Layer 3

t [mm] 1 1 1
E [GPa] 69 30 15
ν 0.33 0.33 0.33
ρ [kg/m3] 2700 2000 1800

the cylindrical system overlaps the cross-section center of mass as well as the origin of the
cartesian coordinate system.

A uniform pressure p = 14.8 MPa is applied on the internal surface of the cylinder as
shown in Fig. 7.1. In particular, the loading is applied along all the length of the structure
and only on the upper side of layer 1 (r = di/2, 90◦ ≤ θ ≤ 270◦, 0 ≤ y ≤ L). This sample
case is retrieved from the work [130]. Although the structure here analyzed is axisymmetric,
its deformed configuration is not expected to be axisymmetric due to this particular loading
distribution. Nevertheless, the solution will be symmetrical with respect to both x = 0
and y = L/2 planes. Given the solution’s simmetry with respect to y = L/2 plane, the
maximum deformation is placed on the section lying on this plane. This section is denoted
as mid-span section from this point forward.

One-dimensional theories are usually employed to study slender beams because of their
limiting kinematic hypotheses. Instead, the cylinder here considered is relatively short since
the span-to-external diameter ratio L/de is equal to 5. Nevertheless, the static response
of the structure is computed through the 1D CUF model with a variable expansion order
up to N = 8 and a 1D mesh of 10 B4 finite elements by solving Eq. 7.1, i.e. Eq. 3.89. A
solid finite element analysis is also carried out via the commercial code NASTRAN and
taken as reference in order to assess the present refined 1D model for a nonhomogeneous
shell case. Due to the small layer thickness and the well-known aspect ratio restrictions
typical of solid finite elements, the model in NASTRAN consists of 64800 HEX8 elements
and 86880 nodes. The number of degrees of freedom (DOFs) is thus equal to 257760.

K q = F (7.1)

The deformation of the cylinder mid-span section, which is expressed in terms of the
magnitude of displacement vector u, is depicted in Fig. 7.2 for different 1D models and
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7.1. Static analysis of a layered cylinder

compared with the solid NASTRAN solution. Instead, the magnitude of displacement vector
u computed on the external edge of the annular mid-span section (r = de/2, y = L/2) along
the angular θ coordinate is depicted in Fig. 7.3. The solution confirms to be symmetrical
with respect to the x = 0 plane regardless the model used. In addition to a bending
behavior, the particular distribution of pressure loadings is supposed to deform the beam
cross-section. This type of deformation cannot be consistent with the kinematic hypotheses
of undeformed cross-section shape which classical beam models are based on. Classical
models are therefore not expected to yield accurate results and this statement is confirmed
by the constant displacement trend computed by Euler-Bernoulli beam theory.

By enriching the displacement field, the first-order model provides a linear displacement
distribution along the x and z directions, but it results not to be realistic. Taking the
solid FE model as reference, the results obtained by the present formulation improve as
the expansion order N increases. In particular, for an eighth-order model the deformation
of the mid-span section is accurately described and its agreement with the 3D solution is
remarkable. Even though it is not reported here, it is noteworthy that for an expansion
order higher than 8 the analysis would provide the same results as those obtained by
N = 8, thus confirming a convergent trend on N . However, for N < 8 the displacement
is remarkably overestimated at point θ = 180◦ and dangerously underestimated at points
where the displacement is actually maximum.

The maximum displacement on the external edge of the mid-span section is reported in
Table 7.2. The error in computing the maximum deflection is significant for classical and
low-order models, except for N = 1. Nonetheless, the solution for the first-order model is
completely unrealistic, see Fig. 7.3. In general, umax increases as N increases approaching
the 3D value. Also the position of the maximum displacement along the external edge in
terms of θ noticeably changes for different models. θumax for 1D models with an expansion
order higher than 4 coincides with the reference solution, whereas lower-order models show
their low accuracy even in the position evaluation. This aspect has not to be underestimate
because it turns out to be fundamental for a failure investigation, for instance. In conclusion,
the eighth-order model proves its capability in detecting exactly the three-dimensional
deformation of the layered thin-walled cylinder with a sizeable reduction in computational
cost in terms of DOFs (4185 vs. 257760).

Table 7.2: Maximum displacement [mm] on the external edge of the mid-span section. Layered
cylinder case.

Model umax % Difference θumax DOFs

EBBM 5.639 −60.663 − 93
N = 1 14.272 −0.439 180 279
N = 2 8.780 −38.751 93 558
N = 3 12.011 −16.212 0 930
N = 4 12.625 −11.929 120 1395
N = 5 12.685 −11.510 117 1953
N = 6 13.281 −7.353 117 2604
N = 7 13.300 −7.220 117 3348
N = 8 14.236 −0.691 117 4185
Solid FEM 14.335 − 117 257760
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Figure 7.2: Deformation of the mid-span section for higher-order 1D models.

7.2 Static analysis of a nonhomogeneous arterial atheroscle-
rotic plaque

The static structural analysis of a clinic artery case retreived from the biomechanical
literature [2, 3] is now addressed. This example represents a preliminary application of
the 1D CUF model to the study of a biomechanical case with arbitrary cross-section and
nonhomogeneous materials. In the work [3] only a two-dimensional structural simulation
of the cross-section under a time-dependent internal blood pressure is carried out in order
to keep the computational effort relatively low. This simplified approach totally neglects
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Figure 7.3: Displacement of the external edge of the mid-span section. Layered cylinder case.

the important effects due to the third out-of-plane dimension. In general, these effects
are fundamental especially in a biomechanical case where the haematic flow field and the
non-standard structural behavior of biological tissues need a complete three-dimensional
description. Obviously, the introduction of the third direction would typically need the use
of solid (3D) elements instead of 2D plate or shell FEs and, consequently, a much higher
computational effort. In order to take into account the out-of-plane direction and analyze
a complete solid structure, 1D CUF models are thus here proposed since they require a low
computational cost though showing remarkable three-dimensional performance.

Once the capabilities of higher-order 1D CUF models have been assessed for the previous
nonhomogeneous cylinder case with a classic annular section, a human external iliac artery
with a pronounced atherosclerotic plaque is now considered as an important application
in biomechanics of an arbitrary cross-section structure. In particular, a portion of the
athesclerotic artery with a severe stenoses (lumen reduction) presented in [2] is introduced.
The components of the artery are identified by hrMRI (high resolution magnetic resonance
imaging) and histological analysis [2], see Fig. 7.4. These approaches consider eight different
tissue types: fibrous cap (FC), i.e. the fibrotic part at the luminal border, calcification
(C), lipid pool (LP), adventitia (A), non-diseased media (M), non-diseased intima, fibrotic
intima at the medial border and diseased fibrotic media. As done in [3], for the following
numerical investigations the non-diseased intima is neglected. Furthermore, the fibrotic
intima at the medial border and the diseased fibrotic media are treated as one component,
the fibrotic media (FM). According to these assumptions, in [3] the same cross-section
including the above mentioned components is discretized with 6048 triangular elements
with quadratic Ansatz functions, as depicted in Fig. 7.5.

The section width and height of the cross-section are approximately the same and
equal to 20 mm. For the sake of simplicity, the arterial cross-section is extruded along
the out-of-plane direction (y axis) for 40 mm and a clamped boundary condition is taken
into account for the edges at y = 0 and y = L. The structure is here modeled with a
one-dimensional mesh of 10 B4 finite elements (31 nodes), as shown in Fig. 7.6(c), and
analyzed through the CUF formulation. Furthermore, a FE model is built in NASTRAN
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(a) Segmented macroscopic view (b) Segmented histological section
(EVG coloring)

(c) High resolution magnetic reso-
nance image (hrMRI)

Figure 7.4: Arterial cross-section with a pronounced atherosclerotic plaque in a human external
iliac artery. This figure is retrieved from [2].

Figure 7.5: Two-dimensional model for the discretization of atherosclerotic plaque section used in
[3].

and discretized with a mesh of 244320 HEX8 solid elements (260172 nodes) with a total
number of DOFs equal to 761244. Figures 7.6(a) and 7.6(b) show the solid model of the
atherosclerotic plaque, obtained by extruding the same cross-section shape as that used in
[3] (see Fig. 7.4(c)). The linear static analysis is performed with a uniform pressure load of
180 mmHg (∼= 24 kPa) applied on the surface bounding the lumen, i.e. the inside space of
the artery, as illustrated in Fig. 7.6(a). This pressure level may be seen as an upper bound
for the hypertensive internal blood pressure.

Higher-order CUF models with a variable expansion order N are employed and the
results are compared to the solid FEM solution. Both the cases of homogeneous and
nonhomogeneous materials are considered and afterwards described. The clinic application
above described is a very preliminary application of the 1D CUF model to the study of
a biomechanical case. For the sake of completeness, it is emphasized that the following
results provide a numerical example of limited validity with respect to quantitative results.
However, this section has the goal to show that the proposed one-dimensional CUF models
provide an excellent agreement with a three-dimensional solution in the context of finite
element simulations, with a remarkable reduction in computational cost (in terms of DOFs).
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7.2. Static analysis of a nonhomogeneous arterial atherosclerotic plaque

(a) Solid model: cross-section
under uniform internal blood
pressure

(b) Solid model: three-dimensional view (c) Mesh of the one-
dimensional model

Figure 7.6: Simplified solid model of the arterial atherosclerotic plaque discretized with 244320 HEX8
solid finite elements in NASTRAN (a),(b). Mesh of the one-dimensional CUF model discretized
with 10 B4 finite elements (c). Homogeneous material case.

Homogeneous material case

A simplified test case is here addressed by assuming the cross-section made of homogeneous
isotropic material. Averaging grossly the Young’s moduli of the six arterial tissue types
reported in [3], the Young’s modulus considered is E = 2.4 MPa and Poisson’s ratio is
ν = 0.33. Figure 7.7 shows the deformation of the mid-span arterial cross-section (y = L/2),
where the maximum displacement is located, for different one-dimensional models (up
to N = 20) compared to the solid FE solution. In particular, the coloured map of each
subfigure represents the magnitude of the displacement vector u computed over the section
by each one-dimensional theory. On the contrary, the two coloured curves shows the
internal and external plaque contours in the deformed configuration computed through the
solid FE method, which is taken as reference. The remaining blue lines are the edges of
the six arterial tissues.

As expected, classical beam theories (EBBM and TBM) are completely not able to
study this case due to their kinematic hypotheses about the cross-section deformation. In
fact, they show a uniform quasi-null displacement over the cross-section. The first-order
model (N = 1) enables the in-plane deformation of the cross-section but the result is again
completely wrong with respect to the 3D solution. In this case, even low-order theories
are not accurate enough to catch an acceptable solution compared to the 3D simulation.
According to the reference solid solution, the reason is that the plaque deforms locally
around the lumen, i.e. the load application region, whereas a quasi-null displacement is
observed far from the lumen. This particular deformation requires a high expansion order
for the present formulation to reach an acceptable accuracy. In particular, the tissues
most interested by the internal blood pressure are the media and the part of adventitia in
contact with the media. Though surrounding part of the lumen and being thus directly
loaded by the pressure, the fibrous cap is barely deformed and its maximum displacement
is placed close to the media. As will be seen in the nonhomogeneous material case, this
fact is directly related to the assumption of homogeneous material for all the tissue types.
In fact, when a homogeneous material is taken into account the volume occupied by the
lipid pool and calcification remarkably stiffens the side of the section on the right of the
lumen with respect to the left one.

Despite its one-dimensional approach, the proposed higher-order model is able to
accurately detect the in-plane deformation of this kind of cross-section with arbitrary
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EBBM TBM N = 1

N = 4 N = 7 N = 9

N = 10 N = 12 N = 14

N = 17 N = 20 NASTRAN
solid
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Figure 7.7: Displacement |u| [mm] over the mid-span cross-section of the atherosclerotic plaque for
different one-dimensional models compared to the solid FE solution. Homogeneous material case.

geometry. In fact, the proposed 1D FEs provide a convergent solution by approaching the
NASTRAN 3D results as the refinement of the expansion increases, until a well agreement
is achieved for N = 20. As can be seen in Fig. 7.7, the region subjected to the maximum
displacement lies on the central part of media (M) and adventitia (A). Thus, the maximum
displacements on media and adventitia computed by the different models are reported in
Table 7.3 and indicated as uM

max and uA
max, respectively. For the sake of completeness, also

the maximum displacement on fibrous cap uFC
max is reported, even though it is much lower

as previously mentioned. As expected, classical beam theories are completely ineffective in
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7.2. Static analysis of a nonhomogeneous arterial atherosclerotic plaque

studying this kind of structure, giving a constant quasi-null displacement over the section.
For all the displacements summarized, the increase of the expansion order N improves the
results approaching the reference data with a convergent trend. In fact, the introduction of
higher-order terms enables the structure to deform in a more realistic way and results to
be fundamental in order to catch properly the artery deformation. It is important to note
the remarkably lower computational effort required by 1D CUF model. In fact, the N = 20
model provides an acceptable maximum error but with a number of degrees of freedom
equal to 21483, about 35 times lower than the DOFs required by the solid FE model.

Table 7.3: Maximum displacements [mm] on media, adventitia and fibrous cap of the atherosclerotic
plaque over the mid-span cross-section for different models. Homogeneous material case.

Model uM
max (% Error) uA

max (% Error) uFC
max (% Error) DOFs

EBBM 0.0000 (−100.00 %) 0.0000 (−100.00 %) 0.0000 (−100.00 %) 93
TBM 0.0001 (−99.99 %) 0.0001 (−99.99 %) 0.0001 (−99.95 %) 155
N = 1 0.4212 (−58.88 %) 0.4632 (−53.96 %) 0.3656 (+93.44 %) 279
N = 4 0.0468 (−95.43 %) 0.0471 (−95.32 %) 0.0263 (−86.08 %) 1395
N = 7 0.1631 (−84.08 %) 0.1609 (−84.01 %) 0.0402 (−78.73 %) 3348
N = 9 0.2774 (−72.92 %) 0.2674 (−73.42 %) 0.0569 (−69.89 %) 5115
N = 10 0.3999 (−60.96 %) 0.3839 (−61.84 %) 0.0770 (−59.26 %) 6138
N = 12 0.5696 (−44.39 %) 0.5469 (−45.64 %) 0.0912 (−51.75 %) 8463
N = 14 0.7628 (−25.53 %) 0.7468 (−25.77 %) 0.1322 (−30.05 %) 11160
N = 17 0.9001 (−12.13 %) 0.8884 (−11.70 %) 0.1581 (−16.35 %) 15903
N = 19 0.9441 (−7.83 %) 0.9320 (−7.36 %) 0.1661 (−12.12 %) 19530
N = 20 0.9645 (−5.84 %) 0.9537 (−5.21 %) 0.1714 (−9.31 %) 21483
NASTRAN
solid

1.0243 − 1.0061 − 0.1890 − 761244

Numerical results are presented also for strain and stress quantities in Table 7.4. In
particular, the maximum value of the transverse normal strain εmax

zz , the minimum (negative)
value of the longitudinal normal strain εmin

yy , and the maximum value of the transverse
normal stress σmax

zz (all lying in the adventitia) are reported for different one-dimensional
models in comparison with the three-dimensional solution. The reason of this choice is
to compare the 1D higher-order formulation with classical beam theories, which neglect
εzz and σzz by definition. For the arterial case studied, higher-order models highlight that
these transverse quantities are not negligible in agreement with 3D results. Moreover,
although EBBM and TBM take into account the longitudinal normal strain εyy, Table 7.4
shows that even this quantity is completely wrongly computed by classical beam theories,
which in this case are able to catch only a uniform quasi-null displacement, see Fig. 7.7
and Table 7.3. In general, the convergent trend obtained for displacements as N increases
occurs also for strain and stress computation, approaching the reference 3D results with a
remarkably lower number of DOFs.

In addition to the evaluation of the maximum value of σzz, a comparison of this
transverse normal stress between the model N = 20 and the 3D reference solution is
presented in Fig. 7.8. The figure clearly shows that the σmax

zz value is obtained in the
adventitia of the mid-span atherosclerotic plaque and that the internal blood pressure
causes a stress field locally influenced on the right of the lumen. It is important to remark
the accuracy achieved by the 1D twentieth-order model in detecting the stress field all
over the cross-section, reaching with a much lower computational cost (21438 vs. 761244
DOFs) an approximation comparable to the three-dimensional model. It is noteworthy
that higher-order terms are necessary for the proper evaluation of all transverse normal
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Chapter 7. Results: static and dynamic response of nonhomogeneous structures

Table 7.4: Some maximum and minimum strain and stress [MPa] values on the atherosclerotic
plaque over the mid-span cross-section for different models. Homogeneous material case.

Model 102 εmax
zz (% Error) 102 εmin

yy (% Error) σmax
zz (% Error) DOFs

EBBM 0.0000 (−100.00 %) −0.0004 (−99.86 %) 0.00 (−100.00 %) 93
TBM 0.0000 (−100.00 %) −0.0004 (−99.86 %) 0.00 (−100.00 %) 155
N = 1 3.7706 ( −52.97 %) −0.0004 (−99.86 %) 0.00 (−100.00 %) 279
N = 4 0.6539 ( −91.84 %) −0.0421 (−85.39 %) 31.40 (−85.68 %) 1395
N = 7 1.4728 ( −81.63 %) −0.0505 (−82.47 %) 59.53 (−72.86 %) 3348
N = 9 2.3757 ( −70.37 %) −0.0736 (−74.45 %) 110.60 (−49.57 %) 5115
N = 10 3.3719 ( −57.94 %) −0.1045 (−63.73 %) 112.31 (−48.79 %) 6138
N = 12 4.7096 ( −41.25 %) −0.1453 (−49.57 %) 134.44 (−38.70 %) 8463
N = 14 6.2810 ( −21.65 %) −0.1997 (−30.68 %) 184.00 (−16.10 %) 11160
N = 17 7.1202 ( −11.18 %) −0.2382 (−17.32 %) 200.49 (−8.58 %) 15903
N = 19 7.5109 ( −6.31 %) −0.2514 (−12.74 %) 194.66 (−11.24 %) 19530
N = 20 7.7067 ( −3.87 %) −0.2590 (−10.10 %) 204.56 (−6.73 %) 21483
NASTRAN
solid

8.0169 − −0.2881 − 219.31 − 761244

and shear strains and stresses, which is a feature not present in standard beam models. A
more accurate comparison of strain and stress terms over the structure will be carried out
in the following nonhomogeneous material case.

N = 20 NASTRAN solid
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 0.15

 0.2

Figure 7.8: Comparison of stress σzz [MPa] over the mid-span cross-section of the atherosclerotic
plaque between the present N = 20 model (21483 DOFs) and NASTRAN solid model (761244
DOFs). Homogeneous material case.

Nonhomogeneous material case

The assessment procedure on the simplified case of homogeneous atherosclerotic plaque is
completed. The same static analysis is carried out now considering a different material for
each of the six tissues constituting the atherosclerotic plaque. As illustrated in Fig. 7.9,
the mesh of the solid finite element model is the same as that employed for the analysis
of the homogeneous material case (in Fig. 7.6). In [3] the calcification is assumed to be
isotropic and the lipid pool is a neo-Hookean material. The adventitia, media, fibrous cap,
and fibrotic are instead modeled as hyperelastic materials defined via several hyperelastic
and damage parameters. For the sake of simplicity, all the six tissues of Fig. 7.9(a) are here
assumed to be made of linear isotropic materials. The isotropic material properties of each
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7.2. Static analysis of a nonhomogeneous arterial atherosclerotic plaque

tissue are introduced extrapolating grossly the Young’s moduli used in [3] and reported in
Table 7.5 with the corresponding acronyms. It is important to note that this approximation
is not very relevant for the purpose of this work, i.e. the assessment of the 1D formulation
with respect to a solid FE model in presence of significant nonhomogeneities. In fact, it is
emphasized that the following results provide a numerical example of limited validity with
respect to quantitative results.

A

M

C

FC

FM

LP

C

(a) Cross-section under uniform
internal blood pressure

(b) Three-dimensional view

Figure 7.9: Simplified solid model of the arterial atherosclerotic plaque discretized with 64800 solid
HEX8 finite elements in NASTRAN. Nonhomogeneous material case.

Table 7.5: Material properties of the tissue types used for the analysis the arterial atherosclerotic
plaque. Nonhomogeneous material case.

Tissue type E [MPa] ν

Calcification (C) 12 0.33
Lipid pool (LP) 0.1 0.33
Fibrous cap (FC) 2.4 0.33
Media (M) 1 0.33
Fibrotic media (FM) 5 0.33
Adventitia (A) 2.5 0.33

Also for the nonhomogeneous case, the displacements computed by 1D CUF models
over the mid-span cross-section are depicted in Fig. 7.10 and compared with a commercial
solid finite element solution (NASTRAN). The equivalent results of the homogeneous case
have been presented in Fig. 7.7. Comparing Figs. 7.7 and 7.10, it points out that now the
deformation of the cross-section, under the same internal blood pressure, is higher than
the deformation obtained in the homogeneous case. In fact, when each tissue is modeled
through a different material, the large volume occupied by the lipid pool is very deformable
and “relaxes” the in-plane cross-section rigidity. The lipid pool deforms significantly as well
as the fibrous cap, unlike for the homogeneous case. As a consequence, also the adventitia
and the media present displacement values higher than the previous case. Nonetheless, the
deformation of the calcification and fibrotic media remains quasi-null due to their high
material stiffness. In general, this larger in-plane corss-section deformation requires an
expansion order higher than the homogeneous case to obtain a good agreement with the
solid finite element solution, which is achieved with N = 22. It is noteworthy that even for
this very complex structure made of nonhomogeneous material with arbitrary cross-section
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Chapter 7. Results: static and dynamic response of nonhomogeneous structures

geometry, the more the expansion order N is, the more the results obtained through the
1D formulation are accurate, approaching the NASTRAN results.

EBBM N = 1 N = 4

N = 7 N = 9 N = 10

N = 12 N = 14 N = 17

N = 20 N = 22 NASTRAN
solid

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

Figure 7.10: Displacement |u| [mm] over the mid-span cross-section of the atherosclerotic plaque
for different one-dimensional models compared to the solid FE solution. Nonhomogeneous material
case.

The same maximum results over the cross-section as those presented in Table 7.3 are
now reported for the nonhomogeneous case in Table 7.6. The analysis involves models with
N up to 22 and shows the larger deformation due to the nonhomogeneous material. While
about a 60 percent increase is observed in uM

max and uA
max, the maximum displacement in

the fibrous cap uFC
max shows about a 450 percent increase, mainly due to the butter-like
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7.2. Static analysis of a nonhomogeneous arterial atherosclerotic plaque

behavior of the lipid pool. The considerations about the inefficiency of classical beam
theories made for the homogeneous case are still valid here. On the contrary, the 1D CUF
FEs provide again a convergent solution by approaching the NASTRAN 3D results and
a good agreement is obtained for N = 22. Although the error computed with respect to
the 3D solution is about 8-11 %, it is important to note that this error is on the overall
maximum displacement values and that this approximation is achieved via about a 96 %
reduction in degrees of freedom (see Table 7.6).

Table 7.6: Maximum displacements [mm] on media, adventitia and fibrous cap of the atherosclerotic
plaque over the mid-span cross-section for different models. Nonhomogeneous material case.

Model uM
max (% Error) uA

max (% Error) uFC
max (% Error) DOFs

EBBM 0.0000 (−100.00 %) 0.0000 (−100.00 %) 0.0000 (−100.00 %) 93
TBM 0.0001 (−99.99 %) 0.0001 (−99.99 %) 0.0001 (−99.99 %) 155
N = 1 0.4200 (−74.31 %) 0.4590 (−71.68 %) 0.3552 (−65.65 %) 279
N = 4 0.0713 (−95.64 %) 0.0716 (−95.58 %) 0.0515 (−95.02 %) 1395
N = 7 0.2333 (−85.73 %) 0.2329 (−85.63 %) 0.2075 (−79.94 %) 3348
N = 9 0.4556 (−72.13 %) 0.4435 (−72.64 %) 0.2922 (−71.75 %) 5115
N = 10 0.6430 (−60.67 %) 0.6176 (−61.89 %) 0.3496 (−66.20 %) 6138
N = 12 0.8491 (−48.06 %) 0.8102 (−50.01 %) 0.4740 (−54.17 %) 8463
N = 14 1.0911 (−33.26 %) 1.0611 (−34.53 %) 0.6125 (−40.77 %) 11160
N = 17 1.3249 (−18.96 %) 1.3122 (−19.04 %) 0.7826 (−24.33 %) 15903
N = 20 1.4650 (−10.39 %) 1.4575 (−10.08 %) 0.8649 (−16.37 %) 21483
N = 21 1.4855 (−9.14 %) 1.4804 (−8.66 %) 0.8714 (−15.74 %) 23529
N = 22 1.5047 (−7.96 %) 1.4928 (−7.90 %) 0.9194 (−11.10 %) 25668
NASTRAN
solid

1.6349 − 1.6208 − 1.0342 − 761244

Despite its one-dimensional approach, the proposed higher-order model is able to
accurately detect the in-plane deformation of the cross-section even for this kind of cross-
section made of nonhomogeneous material. A thorough assessment on strain and stress
fields over the mid-span cross-section is now carried out. The two transverse normal strains
εxx and εzz and the shear stress εxz are evaluated for the six arterial tissues and the relative
maps are depicted on the deformed configuration in Figs. 7.11, 7.12, and 7.13, respectively.
These strain quantities are related to the beam cross-section, i.e. the components of vector
εp, and are neglected by classical beam theories. Considering the mid-span cross-section,
the maximum values of these strains are achieved in the adventitia and media, whereas
the minimum ones occur in the lipid pool and media. This fact clearly highlights the
complexity of the case studied, given the markedly material nonhomogeneity. In fact, as
can be seen also in Fig. 7.10, unlike the homogeneous material case, the whole section
is affected by the internal blood pressure. Nonetheless, for all the strains mentioned, an
expansion order equal to 21 provides a solution in excellent agreement with the reference
3D results. In general, a further increase of N might be required to achieve an even better
accuracy, consistent with the considerations previously mentioned about the expansion
enrichment.

Numerical results for the transverse normal strain εzz are summarized in Table 7.7.
In particular, the maximum value, lying in the adventitia, and the minimum value, lying
in the lipid pool, are reported for different one-dimensional models up to N = 21 and
compared to the reference solution. As can be seen, classical and low-order models provide
a unrealistic behavior of the arterial plaque. In fact, EBBM and TBM neglect εzz, whereas
N = 1 takes into account an inaccurate non-null constant strain distribution. On the
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Figure 7.11: Comparison of strain εxx over the mid-span cross-section of the atherosclerotic plaque
between the present N = 21 model (23529 DOFs) and NASTRAN solid model (761244 DOFs).
Nonhomogeneous material case.
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Figure 7.12: Comparison of strain εzz over the mid-span cross-section of the atherosclerotic plaque
between the present N = 21 model (23529 DOFs) and NASTRAN solid model (761244 DOFs).
Nonhomogeneous material case.

contrary, the proposed 1D FEs provide a convergent solution by approaching the NASTRAN
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Figure 7.13: Comparison of strain εxz over the mid-span cross-section of the atherosclerotic plaque
between the present N = 21 model (23529 DOFs) and NASTRAN solid model (761244 DOFs).
Nonhomogeneous material case.
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7.2. Static analysis of a nonhomogeneous arterial atherosclerotic plaque

3D results as the refinement of the expansion increases. According to Fig. 7.12, a good
agreement is achieved via a remarkably lower number of DOFs. The maximum value of the
corresponding transverse normal stress σmax

zz computed through an increasing expansion
order is also presented in Table 7.7. The accuracy obtained demonstrates once again
the three-dimensional capabilities of the CUF higher-order approach in computing the
displacement and strain fields, since all the different strain terms are involved in the
computation of stresses via the constitutive equations (Eq. 3.120). These capabilities are
nonstandard for a one-dimensional formulation.

Table 7.7: Some maximum and minimum strain and stress [MPa] values on the atherosclerotic
plaque over the mid-span cross-section for different models. Nonhomogeneous material case.

Model 102 εmax
zz (% Error) 102 εmin

zz (% Error) σmax
zz (% Error) DOFs

EBBM 0.000 (−100.00 %) 0.000 (−100.00 %) 0.00 (−100.00 %) 93
TBM 0.000 (−100.00 %) 0.000 (−100.00 %) 0.00 (−100.00 %) 155
N = 1 3.025 ( −72.31 %) 3.025 (−129.94 %) 0.00 (−100.00 %) 279
N = 4 1.050 ( −90.39 %) −0.468 (−95.37 %) 42.04 (−86.51 %) 1395
N = 7 2.097 ( −80.80 %) −0.472 (−95.33 %) 74.70 (−76.03 %) 3348
N = 9 3.629 ( −66.78 %) −1.259 (−87.54 %) 162.98 (−47.70 %) 5115
N = 10 4.953 ( −54.66 %) −2.567 (−74.59 %) 171.68 (−44.91 %) 6138
N = 12 6.206 ( −43.19 %) −4.889 (−51.61 %) 179.47 (−42.41 %) 8463
N = 14 8.032 ( −26.47 %) −6.587 (−35.54 %) 228.49 (−26.68 %) 11160
N = 17 9.287 ( −14.99 %) −8.173 (−19.11 %) 274.38 (−11.95 %) 15903
N = 20 10.301 ( −5.70 %) −9.014 (−10.79 %) 287.15 (−7.86 %) 21483
N = 21 10.569 ( −3.25 %) −9.114 (−9.80 %) 311.23 (−0.13 %) 23529
NASTRAN
solid

10.924 − −10.104 − 311.63 − 761244

Figures 7.14 and 7.15 compare the longitudinal stress σyy and the transverse normal
stress σzz computed by the CUF model to the three-dimensional solution, respectively. The
stress maps are depicted on the deformed configuration of the media, which is particularly
stressed and subjected to both traction and compression. Even though the EBBM and
TBM results are not reported here, it can be demonstrated that these classical beam
theories are again completely ineffective for this case even in evaluating the axial stress,
which is not neglected by kinematic hypotheses. Obviously, Figs. 7.14 and 7.15 show that
the introduction of higher-order terms is fundamental not only for the accurate evaluation
of the deformation, but also of the stress field. In fact, the higher the theory order employed
the more the results approach the solid FEM solution with a convergent trend.

The present model allows the computation of strain and stress fields in every point of the
structure analyzed. The shear stress σxz distribution over the cross-section is investigated
with an expansion order equal to 21 and compared with the solid FE solution, bearing in
mind that EBBM and TBM completely neglect it. The prediction of the shear stress σxz
is slightly underestimated by the N = 21 model as can be noted by the different scales
used in Fig. 7.16, but its distribution is well-detected all over the cross-section with an
acceptable approximation with respect to the 3D solution, which involves a number of
DOFs about 32 times higher.

In conclusion, the one-dimensional CUF formulation provides not only a correct evalu-
ation of the displacements of the structure, but also a proper computation of the strain
and stress fields. The atherosclerotic plaque studied here represents a very severe test
case for the present one-dimensional model, from different points of view. First of all, this
configuration is very short, given that the ratio between the length L and the characteristic
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Figure 7.14: Comparison of stress σyy [MPa] over the media of the atherosclerotic plaque (mid-span
cross-section) for different models. Nonhomogeneous material case.
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Figure 7.15: Comparison of stress σzz [MPa] over the media of the atherosclerotic plaque (mid-span
cross-section) for different models. Nonhomogeneous material case.

cross-section dimension is about equal to 2. Furthermore, the cross-section has an arbitrary
nonconventional geometrical layout. The material employed is markedly nonhomogeneous
and, finally, the internal pressure load is applied on a nonplanar surface again of arbitrary

N = 21 NASTRAN solid
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Figure 7.16: Comparison of stress σxz [MPa] over the mid-span cross-section of the atherosclerotic
plaque between the present N = 21 model (23529 DOFs) and NASTRAN solid model (761244
DOFs). Nonhomogeneous material case.
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geometry.

7.3 Dynamic analysis of nonhomogeneous structures with
arbitrary cross-sections

In this section, some structural cases with arbitrary cross-sections are subjected to time-
dependent loads of different kind. The analyses aim at proving the capabilities of the
higher-order 1D CUF model in the dynamic response analysis of nonhomogeneous structures.

The first study focuses on the propagation of a wave in a three-layer cylinder with a
thin circular cross-section. Let the cylinder introduced in section 4.2 for the free vibration
analysis to be employed again here. As a resume, more details are given in Table 7.8 and
Fig. 7.17(a), which are equal to Table 4.2 and Fig. 4.1(b), respectively. The three layers of
the cylinder are made of different isotropic materials. The external and internal diameter
are respectively equal to de = 100 mm and di = 94 mm. The length L of the cylinder is
equal to 500 mm. The simply supported cylinder is modeled with a 1D finite element mesh
of 10 B4 elements.

Table 7.8: Material and geometrical properties of the cylinder and half-cylinder layers.

Property Layer 1 Layer 2 Layer 3

t [mm] 1 1 1
E [GPa] 69 30 15
ν 0.33 0.33 0.33
ρ [kg/m3] 2700 2000 1800
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(a) Geometry of the cross-section
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(b) Points on the cross-section at y = L/2

Figure 7.17: Cross-sections geometry of the three-layer cylinder and five points chosen on the
circular cross-section at y = L/2 to evaluate the deformation as the time increases.

The wave is here described as a step profile of pressure which travels along the longitu-
dinal axis with constant velocity vy = 90 m s−1 and its extension is described by the length
a = L/10 = 50 mm, as can be seen in Fig. 7.18. In particular, the cylinder is subjected to
a uniform pressure p1 = 14.8 MPa applied to the internal surface of the cylinder (r = di/2,

127



Chapter 7. Results: static and dynamic response of nonhomogeneous structures

90◦ ≤ θ ≤ 270◦, 0 ≤ y ≤ L, see Fig. 7.1), to which a step of length a and pressure value
p2 = −172.7 MPa (the negative sign means that this pressure p2 is along the opposite
versus with respect to p1).

0 L
y

p

a

vy

Figure 7.18: Step profile pressure distribution which travels along the y axis with constant velocity
vy.

The dynamic response of the structure is computed over the interval [0, 0.005] s via the
Newmark’s method. Figure 7.17(b) shows five points chosen at the mid-span cross-section
(y = L/2) as characteristic positions where to evaluate the deformation as the time increases.
The corresponding curves are depicted in Fig. 7.19 for N = 8. It is worth pointing out that
these five curves would be equal and coincident in the case of classical beam theories, such
as Euler-Bernoulli (EBBM) and Timoshenko (TBM), due to their kinematic limitations on
the cross-section deformation.
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Figure 7.19: Dynamic response of different points at y = L/2. Circular cross-section case. ∆t =
1.67 · 10−5 s. N = 8.

The three-dimensional time-dependent deformation of the cylinder is presented in
Fig. 7.20. At the starting time instant, the wave is close to the constrained section at
y = 0 and so it slightly affects the cylinder which basically bends as though the load were a
uniform pressure on the upper half of the cylinder. As the wave moves in the cylinder, the
deformed configuration of the cross-sections changes along the longitudinal axis assuming
a typical triangle-like shape, similar to the deformation already described for the static
analysis in section 7.1 (see Fig. 7.2). Local effects due to the wave loading and inertial effects
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7.3. Dynamic analysis of nonhomogeneous structures with arbitrary cross-sections

are computed by an eight-order model (N = 8) as highlighted in Fig. 7.20 for different time
instants. The results clearly show the accuracy of the present refined model in detecting the
three-dimensional deformation despite its one-dimensional approach, according to previous
dynamic computations through 1D CUF models [118]. The present method shows features
not present in standard one-dimensional theories such as the thickness changing of the
thin-walled laminated surface and the in-plane and out-of-plane cross-section deformations.

Figure 7.20: Three-dimensional deformation of the cylinder as time increases. t = [0 : 0.005] s.
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Chapter 7. Results: static and dynamic response of nonhomogeneous structures

The same wave propagation as that described in the previous case is now applied on a
half-cylinder, i.e. a structure whose cross-section is shown in Fig. 7.21(a). This structure
results to be exactly the upper half-part of the previous cylinder; in fact, the external and
internal radius are respectively equal to re = 50 mm and ri = 47 mm. The material and
the geometrical propoerties are summarized in Table 7.8.
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Figure 7.21: Cross-section geometry of the three-layer half-cylinder and five points chosen to
evaluate the deformation as the time increases.

The dynamic response of the structure is computed over the interval [0, 0.005] s as
in the previous case. Five points are chosen at the mid-span cross-section (y = L/2)
as characteristic positions where to evaluate the deformation as the time increases, see
Fig. 7.21(b). The corresponding curves are depicted in Fig. 7.22 for N = 8. Moreover, the
three-dimensional time-dependent deformation of the cylinder is presented in Fig. 7.23. It
is possible to compare the completely different dynamic response of the cylinder and the
half-cylinder, mainly due to the contrasting choice of section (close section for cylinder vs.
open section for half-cylinder).
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Figure 7.22: Dynamic response of different points at y = L/2. Half-circular cross-section case.
∆t = 1.67 · 10−4 s. N = 8.
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7.3. Dynamic analysis of nonhomogeneous structures with arbitrary cross-sections

Figure 7.23: Three-dimensional deformation of the half-cylinder as time increases. t = [0 : 0.05] s.

The third and last analysis of this section addresses the dynamic response of a open-
section structure over the time interval [0, 0.2] s to an impulse load in presence of damping.
The cross-section chosen for this assessment is different from the previous cases in order to
show the versatility of the proposed 1D CUF approach independently of the cross-section
geometry employed. In particular, the triangle-like configuration is illustrated in Fig. 7.24(a)
and composed of three layers with material and geometrical properties listed in Table 7.9.
The length of the structure is L = 5 m.

The impulse load is a uniform pressure load p = 90 kPa applied at t = 0 s over the
region 1.8 m ≤ x ≤ 2.0 m, 0.9 m ≤ y ≤ 1.1 m of the upper-side region of the structure.
Rayleigh damping with coefficients γ = 0.005 and β = 0.0075 is assumed to compute
the damping matrix C, see Eq. 3.98. Five points are chosen at the one-third-of-the-span
cross-section (y = L/3) as characteristic positions where to evaluate the deformation as
the time increases, see Fig. 7.24(b). The corresponding curves are depicted in Fig. 7.25
for N = 8. Moreover, the three-dimensional time-dependent deformation of the cylinder
is presented in Fig. 7.26. The same conclusion about the limitations of classical beam
theories and the ability of higher-order theories to detect a three-dimensional response as
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Figure 7.24: Triangle-like three-layer cross-section geometry and five points chosen to evaluate the
deformation as the time increases.

Table 7.9: Material and geometrical properties of the three layers for the triangle-like cross-section.

Property Layer 1 Layer 2 Layer 3

t [mm] 2 2 2
E [GPa] 69 30 15
ν 0.33 0.33 0.33
ρ [kg/m3] 2700 2000 1800

those mentioned above can be made for the present case.
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Figure 7.25: Dynamic response of different points at y = L/3. Triangle-like cross-section case.
∆t = 1 · 10−3 s. N = 8.
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Figure 7.26: Three-dimensional deformation of the structure with triangle-like cross-section as time
increases. t = [0 : 0.02] s.
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Chapter 8

Aeroelastic Preliminaries

8.1 Introduction

This part of the work is dedicated to address the multidisciplinary topic of the aeroelastic
analysis. So far the aerodynamic problem has not been taken into account yet. It will be
faced in the following discussion and then interfaced to the structural analysis. The result
will be a unified formulation for the aeroelastic beam-like structures.
This first chapter included in such a part plays an introductory role to chapter 9. It presents
the general concepts at the base of the model, whose aeroelastic formulation will be faced
in detail and will refer to the particular notation exposed here.

8.2 Aeroelastic Notation

First of all, the choice of the global coordinate system is faced. It plays an important role
because it permits to define univocally the geometrical configuration and its coordinates.
Furthermore, it is the system taken as reference in writing some vectorial quantities
corresponding to the wing system considered as a whole. For that reason, the choice of
such a reference must be as useful as possible for the sake of ease.

Therefore, the system is so that its global x axis is parallel to the free stream velocity
V∞ and directed toward the trailing edge of the wing system. Instead, the global y axis
goes along the spanwise direction. In particular its direction is from the root wing section to
the tip of right half-wing. The third global axis z is located so that the reference coordinate
system is orthogonal according to the right-hand rule. Thus, it is oriented from the lower
to the upper surface of the wing section airfoil. The origin of the system is placed on the
intersection point between the leading edge of right half-wing and the fusolage longitudinal
axis of the aircraft. In other words, it is the leading edge point of the root wing section
profile. Assuming the yaw angle of the aircraft corresponding to the considered wing
system to be zero, then the global coordinate system is parallel to aircraft wind axes. The
difference consists in the choice of x and z axes directions, that for wind axes are opposite.

The proposed method is able to analyze wing systems generally oriented in the 3D space,
so including the conventional and unconventional wing configurations. Hence, it is aimed
at the study the variety of innovative wing configurations that could replace the traditional
aircraft shape. For this purpose, the model allows to divide the wing system into a set
of large trapezoidal Wing Segments, according to the same logic used in other previous
aeroelastic works (see Demasi and Livne [12]). The number of these trapezi is denoted as
NWS . As it will be seen later, the Wing Segments will be subdivided into aerodynamic
panels. In the present formulation they are located on the aerodynamic reference surfaces
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Chapter 8. Aeroelastic Preliminaries

of the wing system with initial angle of attack equal to zero. Then, the Wing Segments are
identified with these reference surfaces. Hence it is assumed that all the Wing Segments
have two opposite segment parallel to the wind direction, i.e. parallel to the global x axis.

Thanks to the possibility of studying nonplanar configuration, each Wing Segment can
have dihedral or sweep angle. That is more clear by looking at Fig. 8.1, which shows a
typical C-Wing configuration. The presented model allows to divide that unconventional
wing system in a set of Wing Segments. In such a figure, each differently coloured surface
represents a Wing Segment. It has to be noticed also the orientation of the global coordinate
system according to what described above.

y

z

x

¥
V

Wing  Segment  1

Wing  Segment  2

Wing  Segment  3

Wing  Segment  4

Figure 8.1: An example of subdivision in Wing Segments for a C-Wing configuration.

The previous paragraph has introduced a global reference system, but it is not the only
one utilized for the configuration. In fact, each Wing Segment contains a local coordinate
system. Let superscript S be the index for the generic Wing Segment; its local reference
system has orthogonal axes denoted as xS , yS and zS . As it can be seen in Fig. 8.2, the first
two axes are located in a way so that the Wing Segment itself lies in the plane xS − yS . In
particular, the xS axis has to be always parallel to the free stream V∞. As a consequence,
xS is parallel to global x for each Wing Segment. Then, it is important to notice that yS

lies on the reference surface of the Wing Segment along the direction perpendicular to xS .
Instead of xS , yS is not parallel to y only if the Wing Segment has a dihedral different
from zero. In that case also the local zS axis would be not parallel to the global z. The
origin of the system is located on one of the two leading edges of the Wing Segment. The
point is chosen so that the other one has a positive value of the local yS coordinate. So,
once the direction of yS is decided, then the origin is fixed according to the exposed logic.

Now, it is carried out the procedure to number the four vertices of each Wing Segment.
As done for all the following operations, such a procedure has to be general and unique,
leading to a computerized implementation. In fact, the numerical code will be able to
automatically treat the quantities involved in the formulation. Let S be the index for the
generic Wing Segment and 1S , 2S , 3S , 4S its four vertices; the utilized scheme is so that
the numbering will respect the conditions:
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8.2. Aeroelastic Notation

Figure 8.2: Local coordinate system and numbering convention for a Wing Segment.

xS1S > xS2S

xS4S > xS3S

yS3S > yS2S

yS4S > yS1S

(8.1)

where the involved coordinates are local. According to the previous reasoning, among the
four vertices the point 2S is the right candidate to be the origin of the local coordinate
system. Hence:

xS2S = 0

yS2S = 0

zS2S = 0

(8.2)

As it will be seen in chapter 9, the local reference system plays an important role because
a lot of quantities will be written with respect to it. For instance, the application of the
splining will be performed by considering such a system.

As remembered, the present notation must follow a scheme implementation oriented.
As a consequence, also the numbering of the Wing Segments is performed in such a way.
Being the structure subdivided into NWS Wing Segments, it is assumed that they have
identification numbers (= IDs) from 1 to NWS . In other words, the IDs numerating has to
be consecutive. This constraint is very useful in view of a more easy implementation. No
other assumptions have been taken into account about the Wing Segments. For example
they have not to be necessarily sorted following the physical order, but randomly.

Once introduced the division of the whole structure in Wing Segments, now the
discussion focuses on the generic Wing Segment S. As written above, the aeroelastic
analysis carries out not only the structural analysis, but combines such an analysis with
the aerodynamic problem. The aerodynamic method here chosen has been the Vortex
Lattice Method (VLM), which will be described in the following sections. Just to introduce
its logic, the whole structure is divided into a lattice of quadrilateral aerodynamic panels.
Since the structure has been split into a set of Wing Segments, the aerodynamic mesh is
performed on these reference surfaces.

The discretization is automatically carried out by the aeroelastic code and follows a
general scheme for each Wing Segment. The four straight lines bounding the generic Wing
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Segment S have been divided by means of a mesh seed, whose parameters are chosen by
the user. Such parameters are the numbers of subdivisions of each Wing Segment along the
spanwise and chord directions. They coincide with the local axes xS and yS . As a result,
the mesh seeds on two opposite lines bounding the Wing Segment are equal. Because of the
parallelism between xS and x (and V∞), then the two edges along the chord direction of
the aerodynamic panels are parallel. As a consequence, the generic ith aerodynamic panel
has the same geometrical features of the Wing Segment to which the panel corresponds.
For that reason, the automatic method of numbering its vertices is assumed equal to the
one utilized for the Wing Segments. Thus:

xS1i > xS2i

xS4i > xS3i

yS3i > yS2i

yS4i > yS1i

(8.3)

where the involved coordinates are written with respect to the local reference system of
Wing Segment S in which the panel lies. Considering the ith panel, the Vortex Lattice
Method will perform the aerodynamic analysis via the definition of a couple of points on
the panel. They are denoted as Control Point P iC and Load Point P iL. They result from
the location of a bound vortex at the panel quarter chord line. As a consequence, the
Control Point P iC (also called Collocation Point) is placed at the center of the panel’s
three-quarter chord line. Concerning the Load Point, it is the point at the center of the
panel’s quarter chord line because there it is supposed to be concentrated the resulting
lifting force, equivalent to the pressure distribution on the panel. As it will be resumed,
such a choice of the positions is not a theoretical law, simply a placement that works
well and has become a rule of thumb. It was discovered by Pistolesi [131]. Mathematical
derivations of more precise vortex/control point locations are available (see [132]), but the
1/4 - 3/4 rule is widely used, and has proven to be sufficiently accurate in practice.

However, the two described points for the generic panel i are shown in Fig. 8.3.

Figure 8.3: Conventions for a generic aerodynamic panel.

It should be noted that the aerodynamic mesh is carried out on the Wing Segments; as
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8.2. Aeroelastic Notation

a consequence it discretizes only the reference surfaces of the structure, which are assumed
to have an angle of attack equal to zero. That does not mean that the incidence of the
wing system is not considered in the model, but just that it is not faced in the discetization.
In fact, the angle of attack of the structure will be considered in the construction of a term
denoted as LRHS . The details are addressed in chapter 9, but at the moment it has to
be clear that it is allowed to have an angle of attack. However, it must not be very large,
in order to have a problem case where the linear aerodynamic analysis remains a valid
approximation.

The numbering of aerodynamic panels has been chosen for the sake of ease. At first,
the number of aerodynamic panels into which the generic Wing Segment S is divided has
been named NS

AP , where the superscript S refers to the index of the segment. Furthermore,
the first N1

AP panels are located on the Wing Segment having ID equal to 1 . The second
N2
AP panels are placed on the Wing Segment 2 and so forth. It has to be noted that the

segments do not share any aerodynamic panel; in fact there are no common panels even
between two adjacent Wing Segments.

NAP =

NWS∑
S= 1

NS
AP (8.4)

As a result, during the assembly procedure developed in chapter 9 to obtain the matrix
K aero , all the contributions due to panels of different Wing Segments will not be summed
up. Differently from the classical FEM assembly procedure, the method of superposition
will just collect different terms on the assembled matrix, but without superposing any
value.

So far the discussion has not cited yet the structural FEM mesh. The formulation of
the refined finite element has already been described in chapters 2 and 3, but no details
have been added about the discretization of the structure. The first step of the aeroelastic
formulation will be the extension of the finite element formulated so far to the study of
generally oriented beam-like structures. Such an extensions leads to write the fundamental
nucleus of the Structural Stiffness Matrix in the global coordinate system. Now, it is
interesting to discuss where the beam elements are located in the generic wing system. First
of all, the subdivision of the structure into NWS Wing Segments is taken into account while
discretizing it. In fact, for each Wing Segment it is assigned a straight beam, over which a
structural 1D mesh is created. For the sake of completeness, it should be remembered that
here the finite elements analyzing the structure are one-dimensional and formulated by the
hierarchical 1D CUF approach exposed in chapter 2.

For the generic Wing Segment S a set of NS
EL finite elements is assigned. Each beam

element must be entirely contained in a plane perpendicular to the global x axis (wind
direction). For the Wing Segment attached to the fuselage, in which the local xS axis
coincide with the global x one, the finite elements are located along the local yS axis of
that Wing Segment. It is important to know that the last element corresponding to such
a Wing Segment ends exactly at the same yS of its edge 3S − 4S . Then for the Wing
Segment adjacent to the first one the corresponding elements are aligned along a direction
parallel to its local yS axis, but starting from the last node of the previous Wing Segment
and not from the origin point 2S . As a matter of fact, the beam elements of each Wing
Segment are located on a straight line parallel to the local yS and on the global plane x− z.
Furthermore, all the elements constituting the mesh are adjacent, i.e. all the elements are
connected. In general, only the Wing Segment joined to the fuselage has its finite elements
along its local yS axis. Figure 8.4 shows more clearly all the above remarks.
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Figure 8.4: One-dimensional structural mesh and bidimensional aerodynamic mesh of Wing
Segments.

The conclusion is that the origin of the coordinate system on the section of a generic finite
element does not necessarily coincide with the centroid of the cross-section. Furthermore,
such an origin in general is not necessarily included in the cross-section area. It can be
located outside it. This is very useful to analyze wings with sweep angles or joints. To
summarize, the model studies the deformation of a wing system generally oriented in the
3D space by means of refined finite elements in general not lying on the wing surface.

Another obvious notice is that each element of the mesh has to correspond to one and
only one Wing Segment. In fact, different Wing Segments do not share common elements.
It is resumed by the following formula:

NEL =

NWS∑
S= 1

NS
EL (8.5)

On the contrary, different Wing Segments could share some common Structural Nodes. In
fact, as said before, the elements have to be all joined, also at the connection point between
two adjacent Wing Segments. Such a remark reflects to the assembly operations performed
in chapter 9 to construct the Structural Stiffness Matrix. In fact, the terms referring
to same nodes belonging to different beam elements are summed up via the method of
superposition, according to the classical assembly procedure. The only particularity is that
such a procedure has to be conducted with respect to the global system. The reason is
that the terms summed up has to be written in the same coordinate system. For the sake
of convenience, such a system has been chosen to be the global one.

As done for the aerodynamic panels, now the numbering issue is faced. Let us start
from the beam elements. There are not particular assumptions about their IDs. In fact the
first element could have an ID different from 1 and the last element could have ID higher
or lower than NEL. Furthermore, the sorting of the elements can be not consecutive. For
instance, if the first element has ID equal to 3, the last element could have ID equal to
5 +NEL; in that case three ID number between the starting and the ending points are not
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associated to any element. The model allows this situation.

The discussion above is not valid for the grid nodes. In fact, their IDs have to start
from 1 and go to NSN (SN = Structural Nodes). Thus, the convention for the nodes is the
same adopted for the Wing Segments. It is convenient because in this way the vector of
nodal degrees of freedom is sorted following the ID numbering, which starts from 1 and
has not any discontinuity.

NSN /=

NWS∑
S= 1

NS
SN (8.6)

The proposed program code will be able to study the possible symmetry of the wing
system. The fundamental method is exposed in section 8.3, where the Vortex Lattice
Method will be described in detail. It will be noted that such a feature will be performed
without discretizing both the half-wings of the wing system, but just the desired right or
left half-wing. This strategy turns out to be advantageous, since the number of degrees of
freedom will be smaller, so saving appreciably analysis time.

The last point to be treated is the coupling of structures and aerodynamics. As it
will be seen in detail in the following sections, the utilized method to perform that is the
splining. Now any mathematical concept is introduced, but it is important to anticipate
the logic adopted in the proposed formulation. The spline methods analyzed in Section 8.4
are two: the first is called Beam Spline Method and the second one is denoted as Infinite
Spline Method. The Beam Spline Method is usually performed to interpolate a surface
when a set of structural values is known only along a line lying on the surface. For that
reason such a method is addressed to one-dimensional discretizations of the space, such as
it happens here. Instead, the Infinite Plate Method utilizes a set of structural quantities
spread on the surface to find its mathematical description. Thus, it is addressed mainly
to a FEM bidimensional discretization, since the degrees of freedom at the element nodes
could directly represent the set required as input.

In this work the utilize of a spline method is unconventional with respect to what said
before. In fact, although the Finite Element Model is 1D, the splining is not performed by
means of the Beam Spline method, but indeed of the Infinite Plate Spline method (IPS).
The reason is due to the formulated hierarchical element, which shows some good accuracy
in the prediction of displacements on a set of desired points on the surface to fit, even if
they are not necessarily coincident with the actual FEM nodes and not even located on
the element axis. So, for each Wing Segment (the generic one is indicated with S) a set of
NS
PS aeroelastic points is chosen on the reference plane of the each Wing Segment and the

corresponding displacements are computed by means of the structural formulation. Then,
these deflections are utilized as input data in order to compute slopes and displacements
on other desired points on the Wing Segment via IPS method.

The points forming the set are denoted as Pseudo-Structural Points, precisely because
they have the meaning of structural points (the spline surface is treated as a plate by IPS
method). The adjective Pseudo is adopted to not confuse them with the Structural Nodes
of the beam elements lying in the Wing Segment. Their meaning is also shown in Fig. 8.5,
where it is clear how they can be spread randomly on the surface to fit. Obviously, a quite
uniform distribution can be lead to a more correct interpolation of the surface.

In conclusion, it is anticipated that the following formulation will take the structural
degrees of freedom as the independent variables of the problem. It means that the quantities
involved in the model are all written as functions of these unknwns, in order to obtain a
sole final matricial system to solve. This remark is obvious in the classical structural FEM
codes, since it is a method based on displacements unknowns. Now also the aerodynamic
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Figure 8.5: Meaning of Pseudo-Structural Points.

quantities are evaluated. Thus, the formulation will describe how they can be written as
functions of the degrees of freedom. It will appear more clear during the construction of
the Aerodynamic Stiffness Matrix. This is the practical meaning of the coupling between
structural and aerodynamic fields.

8.3 The Vortex Lattice Method

8.3.1 Introduction

The method chosen to carry out the aerodynamic analysis of the aeroelastic model is the
Vortex Lattice Method (VLM). It was among the earliest numerical methods utilizing
computers to actually assist aerodynamicists in estimating aircraft fluid dynamics. The
Vortex Lattice Method models the lifting surfaces, such as a wing, of an aircraft as an
infinitely thin sheet of discrete vortices to compute lift and induced drag. The influence of
the thickness and viscosity is neglected. In particular, the VLM is very easy to use and
capable of providing remarkable insight into wing aerodynamics and component interaction.
It is based on solutions to Laplace’s Equation, and is subject to the same basic theoretical
restrictions that apply to panel methods.
As a summary, the main features of such a method are listed in the following scheme:

• singularities are placed on a surface;

• the non-penetration condition is satisfied at a number of Control Points;

• a system of linear algebraic equations is solved to determine singularity strengths;

• method oriented toward thin lifting effects, and classical formulations ignoring thick-
ness;

• boundary conditions (BCs) are applied on a mean surface, not the actual surface.

Vortex Lattice Methods were first formulated in the late ’30s, and the method was
first called “Vortex Lattice” in 1943 by Falkner. The main concept is simple, but because
of its purely numerical approach practical applications awaited sufficient development of
computers. The early ’60s saw widespread adoption of the method.
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8.3. The Vortex Lattice Method

8.3.2 Preliminaries

Nowadays, there are many different vortex lattice schemes. The first implementation
procedure follows the classical way to face the aerodynamic problem via the Vortex Lattice
Method. Instead, the second part of this section will be dedicated to the variation by
Katz and Plotkin [133] and a further adaptation to the present aeroelastic model. As
briefly explained in the previous section, the thin wing reference surface is divided into a
lattice of quadrilateral panels, as shown in Fig. 8.6. In order to perform the aerodynamic
analysis of the wing-system, a horseshoe element is placed on each panel. This element
consists of a straight bound vortex segment BC that models the lifting properties, and
of two semi-infinite trailing vortex lines that models the wake, AB and CD. Here, the
bound vortex is placed at the panel quarter chord line and the Control Point (also called
Collocation Point) is at the center of the panel’s three-quarter chord line.
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Figure 8.6: Lattice of trapezoidal aerodynamic panels for the VLM.

The segment BC does not necessarily have to be parallel to y or yS axes, but at the
element tips the vortex is shed into the flow where it must be parallel to the streamlines
so that no force will act on the trailing vortices. In order to not violate the Helmholtz
condition, these vortex elements are viewed as the near portions of vortex rings whose
starting vortices extend far back, so that the effect of this segment AD is negligible. On
the practical point of view, it means that such edges are located at least 20 wing spans
behind the wing.

The requirement that the ”far wake” must be parallel to the free stream poses some
modeling difficulties in the case the angle of attack of the structure is not as small as
considered among the assumptions of the lifting-line model. However, some solutions could
be adopted in that situation. For instance, one adeguate solution has the trailing wake
bent near the trailing edge in order to meet the “free wake” condition. Another possibility
takes into account the horseshoe vortex, but modified because the trailing segments are not
shed at the trailing edge. Thus, in general the method can be easily modified to treat the
desired general case. However, the following discussion will assume small angles of attack.

The strength of the vortex is assumed to be constant for the horseshoe element and
a positive circulation is defined as shown in Fig. 8.7. Furthermore, it is assumed that
the introduced three-dimensional model accounts for (in an approximate way) the Kutta
condition:

γT.E. = 0 (8.7)

where the subscript T.E. stands for trailing edge.
The procedure carried out to compute the velocity

(
u
′
, v
′
, w
′ )

induced at a point

P (x, y, z) by a straight vortex line segment with circulation Γ
′

is based on the Biot-Savart
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Figure 8.7: The horseshoe convention followed for the VLM.

Law. Here, the details are not explained, but it is assumed that all the operations can be
joined in a function called VORTEXL (stands for Vortex Line):(

u
′
, v
′
, w
′ )

= VORTEXL
(
x, y, z, x1, y1, z1, x2, y2, z2, Γ

′ )
(8.8)

The superscript
′

indicates that the quantities are not normalized, i.e. with physical units;
it is utilized because the discussion below is going to involve dimensionless quantities. The
coordinates having subscripts 1 and 2 are the coordinates of the considered vortex line
segment.

Concerning the horseshoe element, the velocity induced by such an element at an
arbitrary point P (x,y,z) of the 3D space can be computed by applying three times the
function VORTEXL, that is for each vortex line segment. As a result:(

u
′
1, v

′
1, w

′
1

)
= VORTEXL

(
x, y, z, xA, yA, zA, xB, yB, zB, Γ

′ )
(8.9)(

u
′
2, v

′
2, w

′
2

)
= VORTEXL

(
x, y, z, xB, yB, zB, xC , yC , zC , Γ

′ )
(8.10)(

u
′
3, v

′
3, w

′
3

)
= VORTEXL

(
x, y, z, xC , yC , zC , xD, yD, zD, Γ

′ )
(8.11)

Now let these three computations be included in a sole function, which is addressed as
HSHOE . Hence, the velocity induced by the generic horseshoe vortex element j with vortex
line strength Γj at the generic Control Point of panel i is given by:(

u
′
, v
′
, w
′ )
ij

= HSHOE
(
xi, yi, zi, xAj , yAj , zAj ,

xBj , yBj , zBj , xCj , yCj , zCj , xDj , yDj , zDj , Γ
′
j

) (8.12)

where i and j are counters for all the aerodynamic panels of the structure. In fact, they go
from 1 to NAP , which is the total number of aerodynamic panels located in the domain of
the whole structure. Such a number is the sum of the different NS

AP , i.e. the number of
aerodynamic panels of each Wing Segment S, where S = 1, 2, ... , NWS . The term Γ

′
j is

the circulation, that is the strength of the vorteces of panel j. Besides, (xi, yi, zi) are the
coordinates of the generic point in which the induced velocity has to be evaluated. The
other coordinates indicate the position of the horseshoe’s edges A, B, C, D.
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In general, there is not a particular reference system in which the coordinates have to be
written. They can be expressed in a general reference system, provided that all of them are
in the same system. The only restriction is the “free wake” condition. According to it, at
each element tip the two trailing vortex segments must be parallel to the streamlines. This
condition has to be satisfied and its consequence in terms of coordinates depends on the
choice of the reference system. The result of the function HSHOE will be the components
of induced velocity with respect to the same reference system of the input coordinates.

In this work the discussion of Vortex Lattice Method follows the aeroelastic notation
described in section 8.2. According to such a notation, the global x and local xS axes are
parallel to the free stream V∞. Then, the aerodynamic mesh of the generic Wing Segment
S lies on its reference plane surface parallel to the free stream. The conclusion is that
each element corresponding to the Wing Segment S lies on the plane xS − yS parallel to
V∞ and without any angle of attack. This does not have to confuse the reader about the
inclusion of an eventual angle of attack for the structure. In fact, the aeroelastic model is
formulated so that the angles of attack of the configuration are treated in the construction
of LRHS , as it will be seen afterwards.

However, it is preferred to write Eq. 8.12 in the global reference system; the reason is
related to the ability of the presented aeroleastic model to analyze wing systems composed
of different Wing Segments, generally oriented in the 3D space. This choice will be more
clear in the following.

Thus, in this particular case, the restriction “free wake” condition becomes:

yAj = yBj
yDj = yCj
zAj = zBj
zDj = zCj

(8.13)

At this point, the relation between the vortex line strength of a horseshoe and the velocity
which it induces at a Control Point has been shown. The following Eq. 8.14 is able to
provide the value of the lift force, in modulus, of the bound vortex segment once known its
circulation on the panel j. It is the Kutta-Joukowsky theorem and is given by:

Lj = ρ∞ V∞ 2 ej Γ
′
j (8.14)

where 2 ej is the panel bound vortex projection normal to the free stream. In other words,
ej refers to half length of panel j along the wing span, i.e. along the yS local direction
of the corresponding Wing Segment. It is convenient now to introduce the dimensionless
vortex line strengths, denoted without adding the superscript

′
:

Γj =
Γ
′
j

Γref
(8.15)

The choice of the reference value [Γref ] = mm2

s is arbitrary and has been chosen for
the sake of convenience. In fact, the millimeter will be the unit of measurement for the
distances. However, this is not an important aspect. Notice that such a reference value
will be repeated in the following formulae just for the sake of completeness. Thus, Eq. 8.16
replaces the previous Eq. 8.14 as follows:

Lj = ρ∞ V∞ 2 ej Γref Γj (8.16)
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The formula 8.16 can be extended to all the NAP aerodynamic panels of the whole
configuration. It allows to write the Lift Forces as functions of the circulations on all the
panels. As a result, Eq. 8.17 assumes a matricial notation given by:

L = ρ∞ V∞ · ∆y · Γref Γ (8.17)

where the vector L contains the NAP Lift Forces applied on all the Load Points. The
same procedure is followed for the vortex strengths. Instead, the matrix ∆y collects the
panel bound vortex projections normal to the free stream in its main diagonal. Then, their
definitions are given by the following schemes:

Γ =



Γ1

Γ2

Γ3

...

ΓNAP


L =



L1

L2

L3

...

LNAP



∆y =



2 e1 0 0 . . . 0

0 2 e2 0 . . . 0

0 0 2 e3 . . . 0

...
...

...
. . .

...

0 0 0 . . . 2 eNAP



8.3.3 The Aerodynamic Influence Coefficient Matrix

As it will be seen in Section 9.4, the vortex circulations do not appear among the aerody-
namic quantities involved. In fact, pressures acting on the aerodynamic panels are in place
of these circulations. On the countrary, the discussion presented so far takes into account
the vortex line strengths rather than pressures. Thus, it is useful to find an expression
relating the two quantities in order to adapt the Vortex Lattice Method to the aeroelastic
model.

The connection between pressures and circulations is carried out by the definition of
Lift Force provided by Eq. 8.18. As known, the modulus of the Aerodynamic Force applied
at the Load Point of generic jth panel is obtained by multiplying the pressure load by the
panel surface:

Lj = ∆xj 2ej ∆p
′
j (8.18)

where ∆xj is the average chord of jth panel. The equation indicates how the Aerodynamic
Loads acting on the surface are transferred as Lift Forces located on the Loads Points of
the aerodynamic panels of the whole structure. It means that the pressure distribution
charging the wing system becomes a set of concentrated loads.

As done about the vortex strengths, it is better to treat a dimensionless pressure, which
will be addressed as ∆pj , lacking of the superscript

′
used for the real quantities. Thus,
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they are normalized with respect to the dynamic pressure and defined in Eq. 8.19:

∆pj =
∆p
′
j

∆pref
=

∆p
′
j(

1

2
ρ∞ V 2

∞

) (8.19)

Since the dimensionless quantities have been introduced, for a generic panel j the modulus
of the Aerodynamic Force, applied at its Load Point, is obtained by multiplying the dynamic
pressure by the panel surface and by the dimensionless pressure load:

Lj =
1

2
ρ∞ V

2
∞ ∆xj 2ej ∆pj (8.20)

Now, let ∆p be a vector which contains all the dimensionless pressure loads on all aero-
dynamic panels of the structure. It represents the ratio of the real pressures ∆p

′
to the

dynamic pressure
1

2
ρ∞V∞, taken as reference value. The same matrix notation utilized in

Eq. 8.17 leads to:

L =
1

2
ρ∞ V

2
∞ · ∆x · ∆y · ∆p (8.21)

where L and ∆y have been defined previously. On the contrary, the other two entities are
written as:

∆p =



∆p1

∆p2

∆p3

...

∆pNAP



∆x =



∆x1 0 0 . . . 0

0 ∆x2 0 . . . 0

0 0 ∆x3 . . . 0

...
...

...
. . .

...

0 0 0 . . . ∆xNAP


It is useful to join the terms of matrices ∆x and ∆x in a single matrix, addressed as ID.
By means of the new matrix, Eq. 8.21 becomes more compact as shown in Eq. 8.22.

L =
1

2
ρ∞ V

2
∞ · ID · ∆p (8.22)

where:

ID =



∆x1 2e1 0 0 . . . 0

0 ∆x2 2e2 0 . . . 0

0 0 ∆x3 2e3 . . . 0

...
...

...
. . .

...

0 0 0 . . . ∆xNAP 2eNAP
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Notice that ID is a square matrix and its dimension is NAP × NAP . An easy practical
example of construction of these matrices and vectors will be provided in Section 9.4.

Now, the procedure to connect pressures and circulations on the aerodynamic panels is
faced. It is carried out according to the matrix forms written in Eqs. 8.17 and 8.21. Their
coupling, i.e. their equality, conducts to:

��ρ∞��V∞ · ∆y · Γref Γ =
1

2�
�ρ∞ V �

2
∞ · ∆x · ∆y · ∆p

By multiplying both the right and left sides by matrix
[
∆y

]−1
, finally Eq. 8.23 expresses

the relationship between dimensionless circolations and dimensionless pressures.

Γref Γ =
1

2
V∞ · ∆x · ∆p (8.23)

By isolating the contribution of the generic jth panel in the previous equation, it is possible
to relate its single dimensionless circulation to its single dimensionless pressure:

Γref Γj =
1

2
V∞ · ∆xj · ∆pj (8.24)

Then Eq. 8.12 is resumed; considering the jth panel, the induced velocity at the Control
Point of ith panel is written as function of real vortex line circulation Γ

′
j . The transition to

dimensionless circulation is performed by means of the following expedient:(
u
′
, v
′
, w
′ )
ij

= HSHOE
(
xi, yi, zi, xAj , yAj , zAj , xBj , yBj , zBj ,

xCj , yCj , zCj , xDj , yDj , zDj , Γ = Γref

)
· Γj

(8.25)

As a matter of fact, the input value for the function is the reference value of circulation;
it’s important to notice that such an input has physical units. The purpose of the previous
derivation of Eqs. 8.23 and 8.24 was to relate the vortex line strength to the pressure of the
generic panel j. Thus, let us utilize the latter equation in order to build a correspondence
between the induced velocity at Control Point i and such a pressure. Furthermore, according
to the aeroelastic notation, it is better to find the dimensionless components

(
u, v, w

)
ij

of such an induced velocity. Obviously, the normalization is performed considering the
modulus of free stream velocity as the reference value:

(
u, v, w

)
ij

=

(
u
′
, v
′
, w
′ )
ij

V∞
(8.26)

The combination of Eqs. 8.25 and 8.26 leads to:

(
u, v, w

)
ij

= HSHOE
(
xi, yi, zi, xAj , yAj , zAj , xBj , yBj , zBj ,

xCj , yCj , zCj , xDj , yDj , zDj , Γ = 1
)
· 1

2
∆xj · ∆pj

The value Γ = 1 could be changed, but particular attention has to be payed. It is
remembered that the function HSHOE is based on the Biot-Savart Law and then it involves
the quantity Γ. This is the reason why the input of HSHOE must remains a quantity playing
the role of vortex line strength. Besides, the Biot-Savart Law is directly proportional to
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the circulation. Thus, the term
1

2
∆xj can be included into the input data of function

HSHOE . Such a term has the meaning of the circulation of vorteces on jth panel so that its
dimensionless pressure is equal to the unit and so that the free stream has velocity equal

to

(
1
mm

s

)
.

At the end, the formula giving the dimensionless components of the velocity induced
by the horseshoe on aerodynamic panel j to the Control Point of aerodynamic panel i as a
function of the dimensionless pressure on the panel j is Eq. 8.27:(

u, v, w
)
ij

= HSHOE
(
xi, yi, zi, xAj , yAj , zAj , xBj , yBj , zBj ,

xCj , yCj , zCj , xDj , yDj , zDj ,
1

2
∆xj

)
· ∆pj

(8.27)

Considering the Control Point of the generic panel i, its final induced velocity resulting
from the aerodynamic analysis will be the summation of the contributes corresponding to
all the aerodynamic panels j of the whole structure. In fact the method of superposition is
applied to sum up all the values deriving from Eq. 8.27. It appears more clear looking at
Eq. 8.28:

(
u, v, w

)
i

=

NAP∑
j=1

HSHOE
(
xi, yi, zi, xAj , yAj , zAj , xBj , yBj , zBj ,

xCj , yCj , zCj , xDj , yDj , zDj ,
1

2
∆xj

)
· ∆pj

(8.28)

As said above, in general there is not any constraint about the choice of the reference
system in which to write Eq. 8.27. However, since the exposed aeroelastic model will be
able to study wing systems composed of different Wing Segments generally oriented in
the 3D space, then the global reference results the most useful choice. The meaning is
explained as follows.

Even if the final result has to be written in the local reference system of the panel i, i.e.
the local reference system of the Wing Segment where it lies, it is advantageous that such
values are all written in the same reference system, so as to avoid any further coordinate
tranformation. For instance, in the case the panel i lies in a Wing Segment different from
panel j, the input coordinates could not refer to different reference systems. So, a further
transformation of either the ith panel or the jth panel would be required. By the way,
that transformation from a local reference to another local reference would require two
operations, through the global system. Finally, the adoption of global reference system
appears to be the most convenient choice.

As a consequence, both the input and the output coordinates of Eq. 8.27 will be written
in the global reference system. According to the aeroelastic notation, the transformation
of the output induced velocity at Control Point i of such an equation from global to local
components is required. The local reference system to be chosen is the one corresponding
to the Wing Segment S where the panel i lies. It follows from the fact that the following
boundary condition will involve the slopes of the panels and such quantities are expressed
in local coordinates.

Besides, in the cited boundary condition only the dimensionless normalwash is considered.
Looking at a generic panel i, the normalwash w

′
i is the component of the velocity normal

to the reference undeformed surface of the Wing Segment where the panel lies, i.e. normal
to the considered aerodynamic panel. Being this surface parallel to the free stream
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direction V∞, then the normalwash results to be perpendicular to the free stream too.
As a consequence, the dimensionless normalwash wi at Control Point of ith panel is the
projection of the computed vector

(
u, v, w

)
i

(written in the global reference) toward the
vector ni perpendicular to the panel. Hence:

wi =

NAP∑
j=1

[
HSHOE

(
xi, yi, zi, xAj , yAj , zAj , xBj , yBj , zBj ,xCj , yCj , zCj ,

xDj , yDj , zDj ,
1

2
∆xj

)∣∣∣
glob
• ni

]
· ∆pj

(8.29)

The NAP terms appearing between the box brackets are addressed as ADij . They can be
computed by only knowing the geometrical quantities. In fact, the input data consist of the
vertices’ coordinates of the horseshoes, the coordinates of the Control Points and finally the
chords and the normal vectors of all the panels of the structure. Thus, the dimensionless
normalwash for each panel of the structure can be easily evaluated. Via the extension of
Eq. 8.29 to all the aerodynamic panels of the structure, the problem can be summarized
by the following matricial form:

w = AD · ∆p (8.30)

whereAD is the Aerodynamic Influence Coefficient Matrix for the aerodynamic panels. This
matrix is calculated once by using the geometry of the aerodynamic reference configuration.
In fact it depends only on the aerodynamic discretization. Equation 8.30 will be resumed
in Section 9.3 to relate the dimensionless normalwash to the dimensionless pressures.

8.3.4 The Boundary Condition

Finally, the boundary condition for the Vortex Lattice Method has to be written. The
VLM is based on the theory of the vortex line, which is a solution of the Laplace’s equation.
As a consequence, the only boundary condition that needs to be satisfied is the zero normal
flow accross the thin wing’s solid surface. According to the aeroelastic notation and what
obtained above, the boundary condition here adopted is given by Eq. 8.31:

w =
∂Z loc

dx
(8.31)

Concerning the equation, the normalization of the normalwash with respect to V∞ means
that the dimensionless normalwash is equal to the tangent of the angle from the velocity
of the stream in proximity of the panel, in the deformed configuration, to the free stream
direction V∞. As a consequence, considering small angles of deflection because of the
model’s linearity, the dimensionless normalwash has to equal the slope at the aerodynamic
Control Point.

8.3.5 Modelling of Wing Symmetry

In situations when symmetry exists between the left and right halves of the body’s surface
a rather simple method can be used to include this feature in the numerical scheme. In
terms of programming simplicity, these modifications will affect only the aerodynamic
influence coefficient calculation.

Usally, when a wing is symmetric it could be better to model only its right-hand half.
The influence of the generic panel j on point P (indicated as the generic ith point) can be
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obtained by the function HSHOE so far introduced. According to Eq. 8.12, the velocity
induced (indicated with the subscript 1) at point P by the jth element is:(

u
′
1, v

′
1, w

′
1

)
ij

= HSHOE
(
xi, yi, zi, xAj , yAj , zAj ,

xBj , yBj , zBj , xCj , yCj , zCj , xDj , yDj , zDj , Γ
′
j

) (8.32)

Now let us evaluate the effect of the wing left/right symmetry. Let the panel symmetrical
to panel j be called image panel j

′
. Obviously it lies in the left half-wing and has the

same strenght of the panel j, because of the symmetry. The scope is to perform the new
aerodynamic analysis without meshing the left symmetrical half-wing, reducing the number
of unknowns.

It has been seen how the induced velocity on a point depends only on the circulation
of the vortices and the distances from the considered point to the vorteces’ edges. Then,
in order to measure the influence of the image panel j

′
on the point P , it is possible to

evaluate the influence of jth panel on point P
′

(indicated as the generic point i
′
), which is

symmetrical to P with respect to the longitudinal aircraft plane. The choice of that image
panel is appropriate since in this way the two strengths of the panels and the two distances
to the points are the same; as a consequence, the modulus of the velocity induced at point
P by the image panel j

′
is equal to the modulus of the velocity induced (indicated with

the subscript 2) at point P
′

by panel j (Fig. 8.8).

y

x

j    Panelth

j Image Panel’th

P (x,y,z)

P’(x,-y,z)

V’1 j

V’2 j

z

¥
V

Figure 8.8: Influence of panel j and image panel j
′

However, not only the modulus has to be considered. In fact, also the direction of
the induced velocity has to be taken into account. It is easy to understand that the two
resulting induced velocity are symmetrical with respect to the longitudinal plane. Hence,
they differs only for the component along the spanwise direction, coincident with the y
axis . It means that in evaluating the velocity induced at point P it is necessary to involve
the velocity induced at point P

′
, but inverting the sign of its y component.

(
u
′
2, v

′
2, w

′
2

)
i′j

= HSHOE
(
xi, − yi, zi, xAj , yAj , zAj ,

xBj , yBj , zBj , xCj , yCj , zCj , xDj , yDj , zDj , Γ
′
j

) (8.33)
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By utilizing the method of superposition between contributes of Eqs. 8.32 and 8.33, the
final result for the induced velocity at the generic ith point in the case of symmetrical wing
system is given by: (

u
′
, v
′
, w
′ )
ij

=
(
u
′
1 + u

′
2 , v

′
1 − v

′
2 , w

′
1 + w

′
2

)
(8.34)

This procedure can reduce the number of unknowns by half, and only the vortices of the
right half-wing need to be modeled. Therefore, when scanning the elements of the half-span
in the ”influence coefficient” computation the coefficients have to be modified according to
Eq. 8.34.

8.4 Spline Methods

Aeroelastic analysis, as an interdisciplinary problem, requires the coupling of the aerody-
namics and structural responses. In practice, the requirements to generate the discretized
models of these disciplines are subject to different engineering considerations. For instance,
the grid of the discretized aerodynamic model is usually placed on the external surface,
whereas that of the Structural model is located on the internal load-carrying component.
This gives rise to the data-transfer problem between two computational grid systems. This
would amount to the following problems:

• the proper transfer of the displacements computed in the Structural grid to those
located on the aerodynamic grid, where the incidences with respect to the free stream
have to be evaluated too;

• the transformation of Aerodynamic Loads from aerodynamic grid points into Equiva-
lent Nodal Loads by which the Structure is charged.

The development of a suitable methodology for solving this type of data transfer problem
is by no means a trivial task. In fact, such a methodology should be further developed
as the Aerodynamic and Structural methods advance. The interpolation method used
is called “splining”. The spline theory involves the mathematical analysis of beams and
plates. Briefly, a Beam spline is a generalization of the simple beam, which allows torsional
as well as bending behavior. Instead, a Surface spline is a solution for an infinite uniform
plate.

There are several ways to analyze splines. These include the three-moment method, the
stiffness method and the influence function methods. Here, the influence function methods
have been chosen. The advantages include a uniform formulation for beams and plates,
the ease of interpolation for the Aerodynamic Points, and the ease of eventually putting
springs at the point attachments, even if not described here.

This chapter will describe the spline theories adopted for Aeroelastic problems nowadays.
The purpose of the following is to provide a transformation matrix which gives structural
displacements at a set of interpolated (or extrapolated) locations in terms of deflections
at structural points. As said, the matrix coefficients are determined by using Beam and
Surface splines, which give ”structural-like” deformation patterns since they are beams
and plates.

However, according to the most popular aeroelastic convention (as well as commercial
software MSC.Nastran or ZAERO), the Structural degrees of freedom have been chosen
as the independent degrees of freedom, whereas the aerodynamic degrees of freedom are
dependent. It is important to note that this mathematical tool is essential for both the

154



8.4. Spline Methods

two transformations required in aeroelastic problems. At first, the interpolation from the
structural deflections to the aerodynamic deflections is necessary. In the second place also
the relationship between the Aerodynamic Forces and the “structurally equivalent”forces
acting on the Structural Nodes is equally required.

8.4.1 The Infinite Plate Spline Method (IPS)

The IPS method was first proposed by Harder and Desmarais, which was a significant
improvement over two-dimensional (2D) interpolation method of Rodden, McGrew and
Kalman. This development was motivated by the advent of lifting surface methods in
aerodynamics at that time, which required a 2D interpolation method such as IPS. The
2D surface is defined as the plane of the lifting surface. Therefore, IPS is ideally suited for
displacements and forces transfer of wing-like components. Today, IPS is one of the most
popular methods of interpolation used in aerospace industry.

As a matter of fact, the Surface Spline is a mathematical tool used to find a surface
function w(x,y) for all points (x,y) when w is known for a discrete set of N Structural
Points (the ith displacement is wi(xi,yi), for i = 1, 2, ... , N), lying within a 2D domain with
Cartesian coordinates x and y; i.e. it is the problem of a plate with multiple deflecting
supports. In fact the theory introduces an infinite plate with uniform thickness and solves
its partial differential equation of equilibrium. The resulting deformation satisfies the given
deflections wi(xi,yi) at the N Structural Points. Moreover, the deflection at other points,
for istance the Aerodynamic Points, can be determinated on the the plate.

To solve the surface spline problem, at first the governing Differential Equation 8.35 of
an infinite plate with bending stiffness is taken into account:

D ∇4 w = q (8.35)

where w is the plate deflection, D is the plate bending stiffness and q is the distributed
load on the plate. Introducing polar coordinates, x = r cosϑ and y = r sinϑ, then the
differential operator ∇4 is given by:

∇4 =
1

r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
d

dr

)]}
(8.36)

Let us start deducting the solution to the previous Differential Equation, by means of a
series of integrations:

D ∇4 w = q ⇒ 1

r

da

dr
=

q

D
where a =

{
r
d

dr

[
1

r

d

dr

(
r
dw

dr

)]}
da

dr
= r

q

D
⇒ a =

∫
da =

∫
r
q

D
dr ⇒ a =

r2

2

q

D
+ K1

where q is considered constant and then independent of radius r.

r2

2

q

D
+ K1 = r

db

dr
where b =

[
1

r

d

dr

(
r
dw

dr

)]
db

dr
=

r

2

q

D
+

K1

r
⇒ b =

∫
db =

∫
r

2

q

D
dr +

∫
K1

r
dr

⇒ b =
r2

4

q

D
+ K1 ln r + K2
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r2

4

q

D
+ K1 ln r + K2 =

1

r

dc

dr
where c = r

dw

dr

c =

∫
dc =

∫
r3

4

q

D
dr +

∫
r K1 ln r dr +

∫
r K2 dr

⇒ c =
r4

16

q

D
+

∫
r K1 ln r dr +

K2

2
r2 + K3

where

∫
r ln r dr =

r2

2
ln r −

∫
r

2
dr =

r2

2
ln r − r2

4

⇒ c =
r4

16

q

D
+ K1

r2

2
ln r − K1

r2

4
+

K2

2
r2 + K3

r4

16

q

D
+ K1

r2

2
ln r − K1

r2

4
+

K2

2
r2 + K3 = r

dw

dr

w =

∫
dw =

∫
r3

16

q

D
dr +

∫
K1

[
r

2
ln r − r

4

]
dr +

∫
K2

r

2
dr +

∫
K3

r
dr

In conclusion, Eq. 8.37 represents the solution of the Differential Equation, i.e. the
deformation of an infinite plate charged by the distributed load q in the origin.

w (r) = K4 + K3 ln r + K2
r2

4
− K1

r2

4
+ K1

r2

4
ln r +

q

D

r4

64
(8.37)

Since, from now on, the discussion will focus on a concentrated load rather than a distributed
one charging the plate, the integral of the homogeneous form of Eq. 8.35 is written. To do
that, let us assume the distributed load q equal to zero, obtaining:

w
∣∣∣
q = 0

= K4 + K3 ln r + K2
r2

4
− K1

r2

4
+ K1

r2

4
ln r +

�
�
�q

D

r4

64
(8.38)

By isolating some terms and recalling them, it becomes:

w
∣∣∣
q = 0

= C0 + C1 r
2 + C2 ln r + C3 r

2 ln r (8.39)

where :

C0 = K4 C1 =
K2

4
− K1

4
C2 = K3 C3 =

K1

4

The transverse displacement w must assume finite values when r = 0. That is why it is
useful to look at the limit of Eq. 8.39 as follows:

lim
r→ 0

w = lim
r→0

[
C0 + C1 r

2 + C2 ln r + C3 r
2 ln r

]
= lim

r→ 0
C0︸ ︷︷ ︸

= C0

+ lim
r→ 0

(
C1 r

2
)

︸ ︷︷ ︸
= 0

+ lim
r→ 0

(
C2 ln r

)
︸ ︷︷ ︸

= C2 (−∞)

+ lim
r→ 0

(
C3 r

2 ln r
)

︸ ︷︷ ︸
to be evaluated

The last term of previous equation is studied below by means of L’Hôpital’s rule:

lim
r→ 0

(
C3 r

2 ln r
)

= lim
r→ 0

C3
ln r

1

r2

= lim
r→ 0

C3

1

r

−
2

r3

= lim
r→ 0

(
− C3

2

)
r2 = 0

156



8.4. Spline Methods

Therefore, to have finite values for lim
r→ 0

w only C2 must be set to zero: C2 = 0. Thus:

w (r) = C0 + C1 r
2 + C3 r

2 ln r (8.40)

The concentrated load P is applied on the origin of the plane (r = 0) instead of q,
multiplied by 2πr and integrated from 0 to r:

P = lim
r→ 0

[∫ r

0
2πrq dr

]
(8.41)

Remembering that:

q = D
1

r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
dw

dr

)]}
the new Differential Equation 8.42 valid for concentrated load P acting the plate results to
be by integration:

P = lim
r→ 0

[∫ r

0
2πrq dr

]
= lim

r→ 0

[∫ r

0
2π�rD

1

�r

d

dr

{
r
d

dr

[
1

r

d

dr

(
r
dw

dr

)]}
dr

]

= lim
r→ 0

[
2πD r

d

dr

[
1

r

d

dr

(
r
dw

dr

)]]
(8.42)

Here Eq. 8.42 assumes the role of a boundary condition useful to derive one of the coefficients
listed in the fundamental solution 8.40. In fact, combining that equation to the previous
just obtained, C3 becomes dependent on the load’s intensity and the bending stiffness D.
The procedure consists in easily substituting the formula for w and computing the limit
value when r → 0.

P = lim
r→ 0

[
2πD r

d

dr

[
1

r

d

dr

(
2 C1 r

2 + r C3

(
2r ln r + r

))]]

= lim
r→ 0

[
2πD r

d

dr

[
4 C1 + 2 C3 + 4 ln r + 2 C3

]]

= lim
r→ 0

[
2πD

(
4 C3

)]
= 8πD C3 ⇒ C3 =

P

8πD

Thanks to the property of the logarithm: ln r =
1

2
2 ln r =

1

2
ln r2, hence:

w (r) = C0 + C1 r
2 +

P

16πD
r2 ln r2

which, according to the traditional spline notation, represents the following fundamental
solution:

w (r) = A + B r2 + F r2 ln r2 (8.43)

where:

A = C0 B = C1 F =
P

16πD
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The deflection due to a single concentrated load is the fundamental solution and has polar
symmetry. When the concentrated load is not located at the origin of the coordinate
system (x,y), ri has to be put in place of r in Eq. 8.43. The quantity ri is the distance
between the generic point (x,y), where w is computed, and the load’s application point.

Looking at the former statement, the application of several loads on different points
of the domain doesn’t involve any problem. In fact, in general the infinite plate could be
charged not only by a sole concentrated load, but by N forces acting on N different Load
Points. In that case it’s allowed to apply the method of superposition as follows, where
(xi,yi) represent the coordinates of the ith Load Point. In other words the deflection of the
plate is synthesized as the sum of deflections due to a set of point loads on the infinite
plate. Figure 8.9 shows the physical meaning of the introduced quantities.

y

x(0,0)

(x,y)

r

è (x ,y )ii

(x ,y )ii

(x ,y )ii

r i

r i

r i

Figure 8.9: Coordinate system and Generic Load’s Application Point.

As said before, the quantity ri represents the distance between the generic point (x,y),
where w is computed, and the ith load’s application point. It’s advantageous to introduce
ri, according to the polar coordinates used so far. As a resume:



x = r cosϑ

y = r sinϑ

r2 = x2 + y2

r2
i =

(
x − xi

)2
+
(
y − yi

)2
The method of superposition leads to the expression given by:

w (x,y) =

N∑
i=1

[
Ai + Bi r

2
i + Fi r

2
i ln r2

i

]
(8.44)

The aim is to write a formula dependent on xi, yi, r and ϑ, instead of x, y and ri, quantities
appearing in Eq. 8.44. Therefore, the substitution of the relation among ri, xi and yi leads
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to Eq. 8.45.

w (x,y) =
N∑
i=1

Ai︸ ︷︷ ︸
TERM 1

+
N∑
i=1

Bi

[(
x− xi

)2
+
(
y − yi

)2]
︸ ︷︷ ︸

TERM 2

+

+

N∑
i=1

Fi

[(
x− xi

)2
+
(
y − yi

)2]
ln

[(
x− xi

)2
+
(
y − yi

)2]
︸ ︷︷ ︸

TERM 3

(8.45)

The analysis of TERM 2 is performed in order to eliminate the dependence on ri, by splitting
it into minimum elements.

N∑
i=1

Bi

[(
x− xi

)2
+
(
y − yi

)2]
=

=
N∑
i=1

Bi

[(
x2 + y2

)
+ x2

i + y2
i − 2xxi − 2yyi

)2]
=

= r2
N∑
i=1

Bi +
N∑
i=1

Bi x
2
i +

N∑
i=1

Bi y
2
i − 2x

N∑
i=1

Bi xi − 2y
N∑
i=1

Bi yi

− 2x
N∑
i=1

Bi xi = − 2r
N∑
i=1

Bi xi cosϑ

− 2y

N∑
i=1

Bi yi = − 2r

N∑
i=1

Bi yi sinϑ

Finally, TERM 2 becomes:

N∑
i=1

Bi

[(
x− xi

)2
+
(
y − yi

)2]
=

= r2
N∑
i=1

Bi +
N∑
i=1

Bi x
2
i +

N∑
i=1

Bi y
2
i − 2r

N∑
i=1

Bi xi cosϑ − 2r
N∑
i=1

Bi yi sinϑ

In the same way, also TERM 3 is given by:

N∑
i=1

Fi

[(
x− xi

)2
+
(
y − yi

)2]
ln

[(
x− xi

)2
+
(
y − yi

)2]
=

N∑
i=1

Fi

[
r2 + x2

i + y2
i − 2r cosϑ xi − 2r sinϑ yi

]
×

× ln

[
r2 + x2

i + y2
i − 2r cosϑ xi − 2r sinϑ yi

]
For the purpose of determining the undetermined spline coefficients Ai, Bi, Fi certain
information about the solution need to be used. The considered plate is infinite, therefore
the displacement progress has to be at maximum linear at infinity, when r →∞. In fact,
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the Surface Spline is a smooth continuous function that will become nearly linear in x
and y at large distances from Load Points (xi,yi). That statement describes a boundary
condition; radial lines emanating from load’s application points (which all may be regarded
as at the origin relative to infinity) appear to be straight lines.

At first the expansion of w(x,y) for large values of r is performed. But to do that,
TERM 3 must be written in a different manner, since it’s present a natural logarithmic
part. Since it should be expanded, the trick consists in referring to Taylor series of natural
logarithm ln(1 + z) when z → 0, i.e. r →∞.

ln

[
r2 + x2

i + y2
i − 2r cosϑ xi − 2r sinϑ yi

]
=

= ln

[
r2

(
1 +

x2
i + y2

i − 2r cosϑ xi − 2r sinϑ yi
r2

)]
=

= ln r2 + ln

[
1 +

x2
i + y2

i − 2r (xi cosϑ + yi sinϑ)

r2︸ ︷︷ ︸
= z

]
︸ ︷︷ ︸

TERM 3.1

By using the big O notation, the Taylor series of natural logarithm ln (1 + z) is introduced
in Eq. 8.46 and utilized to rewrite TERM 3.1 :

ln
(
1 + z

)
≈

∞∑
n=1

(−1)n−1

n
zn = z − 1

2
z2 +

1

3
z3 − 1

4
z4 + O

(
z5
)

(8.46)

ln
(
1 + z

)
≈ x2

i

r2
+

y2
i

r2
− 2 (xi cosϑ + yi sinϑ)

r
− 1

2

x4
i

r4
− 1

2

y4
i

r4
+

− 2

r2
x2
i cos2 ϑ − 2

r2
y2
i sin2 ϑ − 4 xi yi cosϑ sinϑ

r2
− x2

i y
2
i

r4
+

+
2

r3
(xi cosϑ + yi sinϑ) x2

i +
2

r3
(xi cosϑ + yi sinϑ) y2

i + . . .

ln
(
1 + z

)
≈ − 2 (xi cosϑ + yi sinϑ)

r
+

x2
i + y2

i − 2 (xi cosϑ + yi sinϑ)2

r3
+ O

(
1

r2

)

Hence, when r →∞ TERM 3 has the form:

N∑
i=1

Fi

[
r2 + x2

i + y2
i − 2r cosϑ xi − 2r sinϑ yi

]
×

×

[
ln r2 − 2 (xi cosϑ + yi sinϑ)

r
+
x2
i + y2

i − 2 (xi cosϑ + yi sinϑ)2

r3
+O

(
1

r2

)]
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In conclusion, when r →∞ the deflection w(r,ϑ) is given by:

w (r,ϑ)

∣∣∣∣
r→∞

=
N∑
i=1

Ai + r2
N∑
i=1

Bi︸ ︷︷ ︸
TERM 5

+
N∑
i=1

Bi x
2
i +

N∑
i=1

Bi y
2
i +

− 2 r

N∑
i=1

Bi (xi cosϑ+ yi sinϑ)︸ ︷︷ ︸
TERM 7.1

+ r2 ln r2
N∑
i=1

Fi︸ ︷︷ ︸
TERM 4

− 2 r

N∑
i=1

Fi (xi cosϑ+ yi sinϑ)︸ ︷︷ ︸
TERM 7.2

+
N∑
i=1

Fi
(
x2
i + y2

i

)
− 2

N∑
i=1

Fi (xi cosϑ+ yi sinϑ)2 + ln r2
N∑
i=1

Fi
(
x2
i + y2

i

)
︸ ︷︷ ︸

TERM 8

+

− 2r ln r2
N∑
i=1

Fi (xi cosϑ + yi sinϑ)︸ ︷︷ ︸
TERM 6

+ 4

N∑
i=1

Fi (xi cosϑ + yi sinϑ)2 + O
(
ln r2

)

By neglecting all the terms O
(
ln r2

)
, which are negligible with respect to the other terms,

the expansion for w is a list of the indicated TERMS 4 − 8 :

w (r,ϑ)

∣∣∣∣
r→∞

= r2 ln r2
N∑
i=1

Fi︸ ︷︷ ︸
TERM 4

+ r2
N∑
i=1

Bi︸ ︷︷ ︸
TERM 5

− 2r ln r2
N∑
i=1

Fi
(
xi cosϑ + yi sinϑ

)
︸ ︷︷ ︸

TERM 6

+

− 2 r
N∑
i=1

(
Bi + Fi

) (
xi cosϑ + yi sinϑ

)
︸ ︷︷ ︸

TERM 7.1 + 7.2

+ ln r2
N∑
i=1

Fi
(
x2
i + y2

i

)
︸ ︷︷ ︸

TERM 8

+O
(
ln r2

)

Remembering what said before, both first derivatives approching ±∞ and irregularities in
the w trend are forbidden far from the load points. Therefore, looking for monotonic and
limited trend when r →∞, the conditions to be satisfied are:

lim
r→∞

D1
(
w(r,ϑ)

)
/= ±∞ (8.47)

lim
r→∞

D2
(
w(r,ϑ)

)
= 0± (8.48)

where D1 and D2 are differential operators of first and second derivatives respectively.
Since the summations appearing in TERMS 4 − 8 are constants independent of r, let us
evaluate the functions multiplying the summations to find the boundary conditions at
infinity :

TERM 4 :

lim
r→∞

D1
(
r2 ln r2

)
= lim

r→∞

(
2r ln r2 + 2r

)
= ∞

lim
r→∞

D2
(
r2 ln r2

)
= lim

r→∞

(
2 ln r2 + 8

)
= ∞ /= 0±

TO BE ELIMINATED
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TERM 5 :

lim
r→∞

D1
(
r2
)

= lim
r→∞

(
2r
)

= ∞

lim
r→∞

D2
(
r2
)

= lim
r→∞

(
2
)

= 2 /= 0±
TO BE ELIMINATED

TERM 6 :

lim
r→∞

D1
(
− 2r ln r2

)
= lim

r→∞

(
− 2 ln r2 − 4

)
= −∞

lim
r→∞

D2
(
− 2r ln r2

)
= lim

r→∞

(
− 4

r

)
= 0−

TO BE ELIMINATED

TERM 7 :

lim
r→∞

D1
(
− 2r

)
= lim

r→∞

(
− 2
)

= − 2 /= ±∞

lim
r→∞

D2
(
− 2r

)
= 0

COMPATIBLE TERM

TERM 8 :

lim
r→∞

D1
(
ln r2

)
= lim

r→∞

(
2

r

)
= 0+

lim
r→∞

D2
(
ln r2

)
= lim

r→∞

(
− 2

r2

)
= 0−

COMPATIBLE TERM

Finally, the boundary conditions at infinity, necessary to compute later the spline coefficients,
are given by:

To eliminate TERM 4 :
N∑
i=1

Fi = 0 (8.49)

To eliminate TERM 5 :

N∑
i=1

Bi = 0 (8.50)

To eliminate TERM 6 :



N∑
i=1

Fi xi = 0

N∑
i=1

Fi yi = 0

(8.51)

Here Eq. 8.49 can be recognized as the discrete force equilibrium equation, whereas Eq. 8.51
assumes the role of discrete moment equilibrium equation. As reported by Harder and
Desmarais, the physical significance of Eq. 8.50 is not clear, but that is necessary to satisfy
the desired behavior for w at infinity.

After involving the boundary conditions, the transverse deflection of a generic point
(r,ϑ) expressed in polar coordinates is given by:

w (r,ϑ) =

N∑
i=1

Ai +

N∑
i=1

Bi x
2
i +

N∑
i=1

Bi y
2
i +

− 2r cosϑ

N∑
i=1

Bi xi − 2r sinϑ

N∑
i=1

Bi yi +

N∑
i=1

Fi r
2
i ln r2

i

(8.52)
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The first three terms appearing in the previous equation are constants. Thus, it is
advantageous to gather them in a sole constant a0. Being more useful coming back to a
function dependent on Coordinates x and y, also coefficients a1 and a2 have been introduced:

N∑
i=1

Ai +

N∑
i=1

Bi x
2
i +

N∑
i=1

Bi y
2
i = a0

− 2r cosϑ

N∑
i=1

Bi xi = x

[
− 2

N∑
i=1

Bi xi

]
= a1 x

− 2r sinϑ

N∑
i=1

Bi yi = y

[
− 2

N∑
i=1

Bi yi

]
= a2 y

(8.53)

In conclusion, Eq. 8.54 describes the final transverse deflection at a generic point (x,y),
expressed in scalar coordinates, and lying on the infinite plate, charged by N concentrated
loads located in N Load Points as follows:

w (x,y) = a0 + a1 x + a2 y +
N∑
i=1

Fi r
2
i ln r2

i︸ ︷︷ ︸
=Ki(x,y)

(8.54)

where the definition of ri is retrived by using the coordinates (xi,yi) of the generic ith Load
Point:

r2
i =

(
x − xi

)2
+
(
y − yi

)2
At this point the unknowns of the spline are the following:

a0 , a1 , a2 , Fi N + 3 UNKNOWNS

Given N Load Points, it is necessary to find N + 3 equations in order to obtain all the
above unknowns, essential for the complete description of surface spline. The first three
equations to be considered are the boundary conditions at infinity involving the unknowns
Fi, i.e. Eqs. 8.49 and 8.51. N equations could be added to the set if the displacements
at the N load points are known. For that reason, N Structural Points playing the role of
N Load Points are considered. Thus, the load’s application points will be the Structural
Points, for which it is assumed to know all the displacements wj , for j = 1, 2, ... , N .

By the way, it is noteworthy that these Structural Points will be denoted as Pseudo
Points according to the aeroelastic formulation adopted in this work. The reason is just
that this particular work discusses about Beams with Structural Nodes on their axis. The
displacements on the surface necessary for the spline will be computed by means of the
structural formulation and only not to confuse them with the Structural Nodes, it is
preferred to address them as Pseudo Points, according to the aeroelastic formulation.

Thus, other N equations are added to the set by writing Eq. 8.55 for all the N Structural
Points and assuming their displacements w known.

wj (xj ,yj) = a0 + a1 xj + a2 yj +

N∑
i=1

Fi Kij(x,y) (8.55)

where:
r2
ij =

(
xi − xj

)2
+
(
yi − yj

)2
Kij = r2

ij ln r2
ij


Kij = Kji

Kij = 0 when i = j
(8.56)
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It could be interesting to demonstrate why Kij is null when i = j. In that situation rij = 0
and lim

rij → 0
r2
ij ln r2

ij = 0. In fact:

lim
rij → 0

(
r2
ij ln r2

ij

)
= lim

rij → 0

ln r2
ij

1

r2
ij

= lim
rij → 0

(
− r2

ij

)
= 0

Now the following column vectors and matrices are introduced in order to build later, in
matrix notation, the final system to solve. Its resolution will provide the surface spline
unknows:

{w} =



w1

w2

...

wN


{a} =


a0

a1

a2

 {F} =



F1

F2

...

FN



[R] =


1 x1 y1

1 x2 y2

...
...

...

1 xN yN

 [K] =


K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN


The entire set of N + 3 equations can be listed in the system 8.57; it contains the boundary
conditions 8.49 and 8.51 and Eq. 8.55 written for all N Structural Points.

 [0] = [0] {a} + [R]T {F}

[w] = [R] {a} + [K] {F} (8.57)

In a matrix notation, it becomes:

{
{0}

{w}

}
=

 [0] [R]T

[R] [K]

{{a}
{F}

}
=
[
G
] {{a}
{F}

}
(8.58)

Inverting the relation expressed by Eq. 8.58, it is possible to find the N + 3 unknowns
represented by the components of vectors {a} and {F}.

So far only the Structural Points on the surface have been considered. Once obtained
the coefficients necessary to describe the spline, then the Aerodynamic Points on the surface
can be taken into account; the scope consists in computing their displacements w ? and
slopes, called w ?′ .

The first step concerns one point with coordinates (xk, yk). That lies on the plate’s
surface and represents the kth Aerodynamic Point on which the unknowns are computed.
Its interpolated displacement w ?

k (xk,yk) can be obtained by evaluating w (x,y) of Eq. 8.54
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at the desired location:

w ?
k (xk , yk) = a0 + a1 xk + a2 yk +

N∑
i=1

Fi r
2
ki ln r2

ki

= a0 + a1 xk + a2 yk +

N∑
i=1

Fi Kki

where:
r2
ki =

(
xk − xi

)2
+
(
yk − yi

)2
Kki = r2

ki ln r2
ki

(8.59)

In a matrix notation, it becomes:

w ?
k (xk , yk) =

[
1 , xk , yk ,Kk1 ,Kk2 , . . . ,KkN

]{a}{F}


=
[

1 , xk , yk ,Kk1 ,Kk2 , . . . ,KkN
] [
G
]−1

{0}{w}


After having discussed about the deformation of kth Aerodynamic Point, the formulation
focuses on its slope w ?′ , which is defined in Eq. 8.60:

w ?′
k (xk , yk) =

∂w ?
k

∂x

∣∣∣∣
(xk , yk)

(8.60)

According to the definition written above:

w ?′
k (xk , yk) = a1 +

N∑
i=1

Fi
∂
(
r2
i ln r2

i

)
∂x

∣∣∣∣
(xk , yk)

= a1 +
N∑
i=1

Fi DKki

where:
r2
i =

(
x − xi

)2
+
(
y − yi

)2
The term DKki has to be investigated in order to find a formula similar to Kki:

DKki =
∂Ki
∂x

∣∣∣∣
(xk , yk)

=
∂
(
r2
i ln r2

i

)
∂x

∣∣∣∣
(xk , yk)

=

=
∂r2

i

∂x

∣∣∣∣
(xk , yk)

ln r2
i

∣∣∣∣
(xk , yk)

+
∂ ln r2

i

∂x

∣∣∣∣
(xk , yk)

r2
i

∣∣∣∣
(xk , yk)

=

= 2
(
xk − xi

)
ln

[(
xk − xi

)2
+
(
yk − yi

)2]
+

+
2

r2
ki

(
xk − xi

)(
r2
ki

)
= 2

(
xk − xi

) (
1 + ln r2

ki

)
(8.61)
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In a matrix notation, the kth slope becomes:

w ?′
k (xk , yk) =

[
0 , 1 , 0 ,DKk1 ,DKk2 , . . . ,DKkN

]{a}{F}


=
[

0 , 1 , 0 ,DKk1 ,DKk2 , . . . ,DKkN
] [
G
]−1

{0}{w}


Following the exposed procedure for all the NAP ( = Number of Aerodynamic Points)
locations on the surface, it is possible to create a system in a matrix notation; in particular
two new matrices [D] and [D ?] have to be built as done for matrix [R].

{w ?} =



w ?
1A

w ?
2A

...

w ?
NA


=


1 x1A y1A K1A,1 K1A,2 . . . K1A,N

1 x2A y2A K2A,1 K2A,2 . . . K2A,N

...
...

...
...

...
. . .

...

1 xNA yNA KNA,1 KNA,2 . . . KNA,N


︸ ︷︷ ︸

=
[
D ?
]

[
G
]−1

{0}{w}


(8.62)

{
w ?′
}

=



w ?′
1A

w ?′
2A

...

w ?′
NA


=


0 1 0 DK1A,1 DK1A,2 . . . DK1A,N

0 1 0 DK2A,1 DK2A,2 . . . DK2A,N

...
...

...
...

...
. . .

...

0 1 0 DKNA,1 DKNA,2 . . . DKNA,N


︸ ︷︷ ︸

=
[
D
]

[
G
]−1

{0}{w}


(8.63)

Note that the matrices [D] and [D ?] have dimension NAP × (N + 3). Observing that
the first three rows of the spline coefficients vector are zeros, it is useful to eliminate the
first three columns of the matrix [G]−1 without changing the result. Defining [G ?]−1 (the
matrix [G]−1 with the first three columns eliminated) and being (N + 3) × N its new
dimension, Eqs. 8.62 and 8.63 can be rewritten as functions of input data:

{w ?} =



w ?
1A

w ?
2A

...

w ?
NA


=
[
D ?

] [
G ?
]−1 {w} =

[
T ?
]
{w} (8.64)

{
w ?′
}

=



w ?′
1A

w ?′
2A

...

w ?′
NA


=
[
D
] [
G ?
]−1 {w} =

[
T
]
{w} (8.65)
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where
[
T ?
]

and
[
T
]

result from the matrix multiplications
[
D ?
] [
G ?
]−1

and
[
D
] [
G ?
]−1

respectively.
Now, the Surface Spline’ examination is completed. As a summary, it results very

useful to list all the operations performing the computation of the desired output and to
note some important remarks about the IPS method.

a. INPUT

• xi , yi : Coordinates along the beam axis of N Structural Points, called

later Pseudo Points ;

• wi : Transverse Displacements of N Structural Points ;

• xk , yk : Coordinates along the beam axis of NAP Aerodynamic

Points.

b. COMPUTATION

• Computation of rij and Kij by means of Eq. 8.56:

r2
ij =

(
xi − xj

)2
+
(
yi − yj

)2
Kij = r2

ij ln r2
ij ∀i , j on Structural Points

• Construction of matrices [R], [R]T and [K], necessary to matrices [G] and [G]−1

;

• Optional Resolution of linear system 8.58, with the purpose of

obtaining the spline coefficients vectors {a} and {F} ;

• Computation of rki, Kki and DKki by means of Eqs. 8.59 and 8.61 :

r2
ki =

(
xk − xi

)2
+
(
yk − yi

)2
Kki = r2

ki ln r2
ki

∀k on Aerodynamic Points
∀i on Structural Points

DKki = 2
(
xk − xi

) (
1 + ln r2

ki

)
• Construction of matrices [D ?] and [D] ;

• Construction of matrices [T ?] and [T ].

c. OUTPUT

• Computation of {w ?} by performing Eq. 8.64 ;

• Computation of
{
w ?′
}

by performing Eq. 8.65.
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The solutions of {w ?} and
{
w ?′
}

exist only if the matrix [G] is non-singular. The singularity

in matrix [G] occurs when:

• all Structural Points are aligned along a line. This is obvious since a line fails to
define a plane.

• two or more than two Structural Points share the same x and y location on the spline
plane.

To perform the IPS method, it is required that all Structural Points and Aerodynamic
Points are located on the same plane, called “spline plane”. Normally, the plane of the
lifting surface (or the mean one of the wing-like component) is selected as the spline plane.
However, for Structural Points located in 3D space, they may not be necessarily located on
the plane. In this case, it is required to project the Structural Points onto the plane along
the normal direction of the spline plane. This can be done by transforming the Structural
Point locations to a local coordinate system whose x − y plane coincide with the spline
plane.

According to the boundary conditions imposed at infinity, linear extrapolation occurs
only if the Aerodynamic Points are far from the domain of the Structural Points. Otherwise,
distorsions or oscillations may appear in the extrapolated regions.

The last conclusion is that the IPS method is a scalar operator. For a given set of
displacements along one direction, the IPS method does not recover displacements along
other directions. However, for this purpose the IPS can be applied in the same way as
that of the normal displacements. The result would be an IPS generalized spline method.
Here this solution is not necessary, since both the structural and aerodynamic analyses are
linear. That means that the eventually displacements along directions different from the
normal one of the spline plane are negligible.
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Chapter 9

Aeroelastic Formulation

9.1 Introduction

This is the main chapter of the Aeroelastic Part II. In fact, it reports the detailed description
of the aeroelastic beam model. At this point, the fundamental notation and concepts are
well known about both the hierarchical structural element and the general logic introduced
in chapter 8. The following formulation will make large use of matrices and vector since it
represents an easier way to face problems as complicated as the aeroelastic ones. Moreover,
this approach has already been used successfully in this field. In addition, it will result
well oriented to the implementation into a numerical code, such as this case.

9.2 Assumptions

As a summary, it is very useful to list all the assumptions taken into account for the
following document. They resume both the structural model and the aeroelastic notation:

• Assumption # 1

The wing system is divided into NWS trapezoidal Wing Segments, according to the
same logic used in other previous aeroelastic works (see Demasi and Livne AIAA J
2009)

• Assumption # 2

Each Wing Segment can have only one beam (which is divided into elements according
to the finite element method). For example, if a planar wing is considered then only
a straight beam will be used.

• Assumption # 3

Each beam element must be entirely contained in a plane perpendicular to the x axis
(wind direction). This means that each structural element is always perpendicular to
the x axis

• Assumption # 4

The origin of the coordinate system in one section does not necessarily coincide with
the centroid of the cross-section

• Assumption # 5
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Chapter 9. Aeroelastic Formulation

The origin of the coordinate system in one section is not necessarily included in the
cross-section area. It can be located outside it. This is very useful to analyze wings
with sweep angles or joints.

9.3 Displacement Model

As said in chapter 3, the structural model analyzed so far cannot yet analyze structures
generally oriented in 3D space. In fact the nuclei are obtained in the local coordinate
system of the element. For the general purpose of this work, it is necessary to extend the
formulation to the global coordinate system, which is defined in chapter 2, according to the
aeroelastic notation introduced and used from now on. The problem consists in a typical
transformation of coordinates by means of orthogonal matrices.

Let us consider the Wing Segment S and resume the Carrera Unified Formulation
(CUF). According to Assumption # 3, the axis of each beam will always be perpendicular
to the x direction. This implies, according to Fig. 8.1, that the local beam axis is parallel
to yS . The cross-section coordinates are xS and zS . Adding the superscript S and the
subscript loc respect to the previous notation, the displacement model (in the Wing Segment
local coordinate system) is the following (static case):

uSloc

(
xS , yS , zS

)
= Fτ

(
xS , zS

)
uSτ loc

(
yS
)

(9.1)

where

uSloc

(
xS , yS , zS

)
=


ux loc

(
xS , yS , zS

)
uy loc

(
xS , yS , zS

)
uz loc

(
xS , yS , zS

)


uSτ loc

(
yS
)

=


uSτx loc

(
yS
)

uSτy loc

(
yS
)

uSτz loc

(
yS
)


are the vectors of displacements and generalized displacements respectively, evaluated at
the generic point of the Wing Segment S with local coordinates (xS , yS , zS). The FEM
approximation, by means of the introduction of Shape Functions, is:

uSτ loc

(
yS
)

= Ni

(
yS
)
qSτi loc (9.2)

where the vector

qSτi loc =


qux τi loc

quy τi loc

quz τi loc


is the vector of nodal degrees of freedom of the finite element corresponding to the local
coordinate yS . The superscript S is used to denote that these elements have axis parallel
to the local yS axis. By adopting the Principle of Virtual Displacements (PVD), the strain
energy is defined as:

δLi =

∫
l

∫
Ω

(
δεTn σn + δεTp σp

)
dxS dzS dyS (9.3)

where T has the meaning of transposition. Using the procedure presented in chapter 3 such
a strain energy can be written as function of the fundamental nucleus, the nodal degrees of
freedom and their virtual variations:
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9.3. Displacement Model

δLi = δqS Tτi loc K
τsij S
loc qSsj loc (9.4)

This presentation is in general valid in local coordinate system, whose yS axis is parallel
to the element beam axis. It is convenient to use the same coordinate system valid for
the s-th trapezoidal Wing Segment described in Fig. 8.1. However, the aim of the model
proposed is to analyze beam-like structures generally oriented in the 3D space; to do that,
before the assembly, the FE matrices must be rotated to impose the compatibility of the
displacements expressed in global coordinates. Let us consider known the orientations
of both the Wing Segment’s local and global coordinate systems. The unit vectors of
the former system are expressed as iS , jS and kS , while i, j and k refer to the global
coordinates (see Fig. 8.2). The former vectors are expressed in the global reference system
by intoducing 9 coefficients:

iS = eS11 i + eS12 j + eS13 k

jS = eS21 i + eS22 j + eS23 k

kS = eS31 i + eS32 j + eS33 k

(9.5)

Looking at Eq. 9.5 the coefficients eS11, eS12 and eS13 are the global coordinates of the local
unit vector iS . Instead, eS21, eS22 and eS23 are the global coordinates of the local unit vector
jS . In the same way, eS31, eS32 and eS33 are the global coordinates of the local unit vector kS .

The inverse of relation 9.5 relates the global unit vectors to the local unit vectors by
means of other 9 coefficients:

i = eS11 i
S + eS12 j

S + eS13 k
S

j = eS21 i
S + eS22 j

S + eS23 k
S

k = eS31 i
S + eS32 j

S + eS33 k
S

(9.6)

According to the previous logic, the coefficients eS11, eS12 and eS13 are the local coordinates
of the global unit vector i, and so on. Now, the following operations are listed in order to
obtain the final transformation equations relating the systems. Let us write qSsj loc from
local coordinates to global coordinates, by using Eq. 9.5:

qSsj loc = qSsj loc x i
S + qSsj loc y j

S + qSsj loc z k
S

= qSsj loc x

(
eS11 i + eS12 j + eS13 k

)
+

+ qSsj loc y

(
eS21 i + eS22 j + eS23 k

)
+

+ qSsj loc z

(
eS31 i + eS32 j + eS33 k

)
The same vector can be written in the global coordinates; in this way, the subscript loc is
eliminated and the vector is called again as qSsj :

qSsj =
(
qSsj loc x e

S
11 + qSsj loc y e

S
21 + qSsj loc z e

S
31

)
i +

+
(
qSsj loc x e

S
12 + qSsj loc y e

S
22 + qSsj loc z e

S
32

)
j +

+
(
qSsj loc x e

S
13 + qSsj loc y e

S
23 + qSsj loc z e

S
33

)
k

In matrix notation, it becomes:

qSsj = eS T · qSsj loc (9.7)
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where

eS =


eS11 eS12 eS13

eS21 eS22 eS23

eS31 eS32 eS33


In the same way, let us write qSsj from global coordinates to local coordinates, by resuming
Eq. 9.6:

qSsj = qSsj x i + qSsj y j + qSsj z k

= qSsj x
(
eS11 i

S + eS12 j
S + eS13 k

S
)

+

+ qSsj y
(
eS21 i

S + eS22 j
S + eS23 k

S
)

+

+ qSsj z
(
eS31 i

S + eS32 j
S + eS33 k

S
)

As done previously, the obtainment of the same vector in the local coordinates is completed.
Then the subscript loc is added and the vector is called again as qSsj loc:

qSsj loc =
(
qSsj x e

S
11 + qSsj y e

S
21 + qSsj z e

S
31

)
iS +

+
(
qSsj x e

S
12 + qSsj y e

S
22 + qSsj z e

S
32

)
jS +

+
(
qSsj x e

S
13 + qSsj y e

S
23 + qSsj z e

S
33

)
kS

In matrix notation, it becomes:

qSsj loc = eS T · qSsj (9.8)

where

eS =


eS11 eS12 eS13

eS21 eS22 eS23

eS31 eS32 eS33


By coupling Eqs. 9.7 and 9.8, the result is a first relationship connecting the two transfor-
mation matrices:

qSsj loc = eS T eS T · qSsj =
[
eS eS

]T
· qSsj loc (9.9)

As a consequence: [
eS eS

]T
= I = I T

where I is the identity matrix. Finally:

eS =
[
eS
]−1

or eS =
[
eS
]−1

(9.10)

The objective is to write a final equation between the inverse transformation matrix and
the transposed one. To do that, a mathematic expedient is utilized; let a and b be two
unit vectors related by the expression:

a = eS · b
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Because of the unit module of both the vectors, the multiplication by aT is performed,
obtaining:

aT · a = bT · eS T eS · b

As a consequence:

eS T eS = I

where I is the identity matrix. Finally:

eS T =
[
eS
]−1

Proceeding in the same way for eS , then it is demonstrated that the transformation matrices
are orthogonal. In conclusion, Eqs. 9.11 and 9.12 permit to express any vector of nodal
local degrees of freedom in global coordinates and vice versa:

qSsj loc = eS · qSsj (9.11)

qSsj = eS · qSsj loc (9.12)

Note that all finite elements in one Wing Segment will have the same transformation matrix,
since the local coordinate system is distinctive of a the Wing Segment. Equations 9.4 and
9.11 imply that for all finite elements contained in Wing Segment S the fundamental nuclei
must be symbolically changed in global reference as follows:

δLi = δqS Tτi loc K
τsij S
loc qSsj loc = δqS Tτi

[
eS T · Kτsij S

loc · eS
]
qSsj (9.13)

Therefore, within Wing Segment S, the fundamental nuclei must be modified as follows:

Kτsij S =
[
eS T · Kτsij S

loc · eS
]

(9.14)

where the orthogonal transformation matrices are involved. The assembly phase among
beam elements of different Wing Segments will be performed in the classical way, summing
up the stiffness terms corresponding to the common nodes. Via this generalization, it will be
possible to study accurately beam-like structures, generally oriented in the tridimensional
space, and unconventional too.

9.4 Aeroelastic Model

As explained before, the interaction between structures and aerodynamics represents a
delicate issue. The coupling of these fields focuses on relating the displacements and slopes
at the aerodynamic Load and Control Points (see Section 8.3), respectively, to the structural
degrees on freedom. Section 8.4 indicates the spline methods as the mathematical tools
able to resolve this matter.
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9.4.1 Introduction of Pseudo-Structural Points

In this work, although the Finite Element Model is 1D, it is not performed the Beam
Spline method, but indeed the Infinite Plate Spline method (IPS). The reason is due to the
hierarchical element, which is quite thorough in the prediction of displacements on a set of
desired Points not necessarily coincident with the actual FEM nodes and not even located
on the element axis. So, the user defines a series of aeroelastic points on the plane of the
Wing Segment, whose displacements are computed by means of the structural formulation.
These deflections are utilized as input data in order to compute slopes and displacements
on other desired points (aerodynamic Loads Points and Control Points) via IPS method.
The points forming the set are denoted as Pseudo-Structural Points, precisely because
they have the meaning of structural points (the spline surface is treated as a plate by IPS
method). The adjective Pseudo is adopted to not confuse them with the Structural Nodes
of the beam elements.

For each Wing Segment the user must specify these Pseudo-Structural Points by giving
the coordinates in the global reference system. The vector x contains the global coordinates
of these points. Notice that if there are common points between two adjacent Wing
Segments they will be not duplicated.
Suppose that all finite nodal degrees of freedom of all beam elements are known. They
are necessarily considered in the global coordinate system, according to the explanation of
Section 9.3. Let us consider the ith node. The nodal degrees of freedom depend on the
theory expansion order used in CUF. Let’s indicate these quantities in global coordinates
with qi. For example, if the expansion is composed of three terms, qi contains the following
global degrees of freedom:

qi =
[
qux1i quy1i quz1i qux2i quy2i quz2i qux3i quy3i quz3i

]T
If q indicates the vector of nodal degrees of freedom (in global coordinate system) of all
nodes on the beams (not including the “extra” structural points), it is possible to define a
matrix which depends on the expansion order and IDs of the nodes contained in a Wing
Segment. This matrix, addressed as IS , will select the nodal displacements corresponding
to the Wing Segment S only, among the entiree set of Structural Nodes. The vector qS

indicates the nodal degrees of freedom (in global coordinates) of all the Structural Nodes
of the elements (along the beam axis yS) corresponding to Wing Segment S. From the
previous definitions it follows:

qS = IS · q (9.15)

As said above, the final purpose is to compute the displacements and slopes of Loads
Points and Control Points by means of the input local displacements at Pseudo-Structural
Points. The latter can be computed by the CUF just knowing the local coordinates of
these Pseudo-Structural Points on the Wing Segment and the nodal degrees of freedom of
the corresponding finite element. Thus, let us proceed to find these coordinates, starting
from the global ones.

It is now possible to convert the vector of degrees of freedom in local coordinates using
a formula similar to Eq. 9.11. Let ES

q to be defined as the matrix that transforms the
degrees of freedom from global to local coordinates. It is a block diagonal matrix containing
the transformation matrix eS , along the main diagonal, for each degree of freedom of
Structural Nodes corresponding to the Wing Segment. By resuming Eq. 9.15, thus:

qSloc = ES
q · qS = ES

q · IS · q (9.16)
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As done for the Structural Nodes, it is possible to extract the coordinates of the Pseudo-
Structural Points located on the Wing Segment S and define the vector xS , which contains
their coordinates, written in the global reference system:

xS = JS · x (9.17)

where the matrix JS needs in input only the IDs of Pseudo-Structural Points positioned
on the reference surface of the considered Wing Segment. Now, the local coordinates of
these points have to be computed; at first it is necessary to focus on point 2S , positioned
on the reference surface of Wing Segment S, according to the notation of numeration
described in chapter 8. Its global coordinates are addressed as x2S , y2S and z2S . Moreover,
the coordinates of each Pseudo-Structural Point on the Wing Segment S expressed in the
local reference system are determined by subtracting the global coordinates of the point 2S

to their global coordinates and multiplying the result by the already defined matrix eS .
For this purpose, it is introduced the vector x2S (which has dimension 3NS

PS × 1, where
NS
PS is the number of Pseudo-Structural Points of Wing Segment S):

x2S =
[
x2S y2S z2S ... x2S y2S z2S

]T
(9.18)

and the matrix ES which is a block diagonal matrix, where the transformation matrix eS

is repeated for all the Pseudo-Structural Points of each Wing Segment; its construction is
similar to matrix ES

q . Notice that the dimension of ES is 3NS
PS × 3NS

PS . The main point

is that the global coordinates of a generic point minus the global coordinates of point 2S

are the coordinates of the generic point with respect to a reference system parallel to the
global one and with the point 2S as its origin. That concerns the translation; whereas, the
rotation between coordinate systems is performed by matrix ES . Finally, the coordinates
of the Pseudo-Structural Points on Wing Segment S (in the undeformed configuration with
zero angle of attack) can be expressed in the local coordinate system thanks to Eq. 9.19:

xSloc = ES ·
[
xS − x2S

]
= ES ·

[
JS · x − x2S

]
(9.19)

The purpose of writing the local coordinates of Pseudo-Structural Points has been reached.
Note that all these points have zero local zS coordinate because of the zero angle of attack
condition. However, for the same reason, also all the Structural Nodes have zero local
zS coordinate. Although in general Pseudo-Structural and Structural Nodes are different
entities, some of them may be equivalent. In fact it is possible that a structural node were
a Pseudo-Structural Point.

To utilize the Finite Element formulation, it is mandatory to individualize the corre-
sponding finite element for each Pseudo-Structural Point. The parameter to be analyzed is
the local yS coordinate, which is extracted from vector xSloc. In fact, using that value it is
possible to “assign” that Pseudo-Structural Point to a particular beam element on Wing
Segment S. If the local yS coordinate is exactly coincident with the yS coordinate of a
node that two adjacent beam elements have in common, both the elements can be used;
however only one has to be selected and the choice is arbitrary, since the displacements
are continuous functions. Everything is expressed in local coordinates and so the FEM
equation 9.20 can be used to calculate the local displacements:

uSloc

(
xS , yS , zS

)
= Fτ

(
xS , zS

)
uSτ loc

(
yS
)

= Fτ
(
xS , zS

)
Ni

(
yS
)
qSτi loc (9.20)
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where the counter τ goes from 1 to Nu = Nu(N). The number Nu indicates how many
terms in the CUF expansion have to be considered and depends only on the order of the
theory N . Instead, the counter i in the Einstein notation goes from 1 to NN , i.e. the total
number of nodes of the element (2, 3 or 4), on the nodes of the element corresponding to
the Pseudo-Structural Point.

The generic Pseudo-Structural Point has zero angle of attack and so zS = 0. Thus:

uSloc

(
xS , yS , 0

)
= Fτ

(
xS , 0

)
uSτ loc

(
yS
)

= Fτ
(
xS , zS

)
Ni

(
yS
)
qSτi loc (9.21)

The same operations can be repeated for all the Pseudo-Structural Points of Wing Segment
S. Resuming Eq. 9.16, this means that for each Wing Segment it is possible to define a
matrix Y S which relates the vector of nodal degrees of freedom in local coordinates of
Wing Segment S with the displacements (in local coordinates) of all the Pseudo-Structural
Points:

ũSloc = Y S · qSloc = Y S · ES
q · IS · q (9.22)

The creation of matrix Y S is an important point of the discussion. As a matter of fact,
it can be built in two ways: the first consists in putting the terms corresponding to the
Pseudo-Structural Points directly in the right positions. The second manner is to obtain the
matrix by multiplication between tho matrices. In that case, the first matrix would relate
the displacements of Pseudo-Structural Points to the vector of generalized displacements
uSτ loc

(
yS
)
. This matrix needs the values of functions approximating the section and

thus the coordinates (xS , zS) of Pseudo-Structural Points. So, the second matrix would
connect the generalized displacements to the nodal degrees of freedom q by means of shape
functions, according to the FE approximation.

Calling ISz the constant matrix which allows extraction of the zS component of the
local displacement it is possible to write Eq. 9.23 (see Eq. 9.22):

ZS
loc = ISz · ũSloc = ISz · Y S · ES

q · IS · q (9.23)

where ISz is sparse matrix, which is full of null terms and has some unit terms conveniently
located. Note that the initial local zS coordinates of all Pseudo-Structural Points are zero.
This implies that vector ZS

loc in equation 9.23 contains the zS coordinates of the deformed
configuration. Using the fitted surface spline shape it is possible to calculate the derivatives
of such a shape and the associated local angle of attack. Let the ith Pseudo-Structural
Point on wing segment S be considered. The local z coordinate of the point i will be ZSi loc.

ZSi loc = ZSi loc

(
xSi loc, y

S
i loc

)
Again it has to be clear that xSi loc, y

S
i loc are the local coordinates of the Pseudo-Structural

Point i in which the local z coordinate ZSi loc is considered. The assumption that the
displacements are not very large is made. In fact, a linear theory is utilized, then it’s
appropriate to assume small displacements. So, the aerodynamic linear theory holds. Also,
under this assumption, it is reasonable to consider the local in-plane coordinates of nodes,
Load Points and Control Points of a generic Wing Segment constant. Only the out-of-plane
local displacement will be different from zero. Under this hypothesis, all the splining
matrices are constant and they can be calculated once, precisely because the surface is
defined once.
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9.4.2 The Spline Method

The Infinite Plate Spline method (IPS) is involved now. As resumed in Section 8.4, it’s
necessary as input a discrete set of points, lying within a 2D domain with Cartesian
coordinates x and y, in which the displacement is known. In this case, the set is composed
af all the Pseudo-Structural Points of the Wing Segment S.

For each Pseudo-Structural Point i of Wing Segment S the corresponding ZSi loc is
written as:

ZSi loc = aS0 + aS1 x
S
i loc + a2 y

S
i loc +

NS
PS∑
j=1

Fj
(
rSij loc

)2
ln
(
rSij loc

)2
(9.24)

where: (
rSij loc

)2
=
(
xSi loc − xSj loc

)2
+
(
ySi loc − ySj loc

)2
(9.25)

noting that also the counter j refers to the Pseudo-Structural Points. According to the
exposed spline notation, Eq. 9.24 can be rewritten introducing the matrix KS , whose
generic term lying in ith row and jth column is defined as

KS
ij =

(
rSij loc

)2
ln
(
rSij loc

)2
(9.26)

Thus,

ZSi loc

(
xSi loc, y

S
i loc

)
= aS0 + aS1 x

S
i loc + a2 y

S
i loc +

NS
PS∑
j=1

Fj K
S
ij (9.27)

Also the following conditions have to be satisfied:

NS
PS∑
j=1

FSj = 0

NS
PS∑
j=1

FSj x
S
j loc = 0

NS
PS∑
j=1

FSj y
S
j loc = 0

(9.28)

Equations 9.27 written for all the Pseudo-Structural Points and 9.28 can be combined in
the following matricial system:

0

0

0

ZS1 loc

ZS2 loc

...

ZS
NS
PS loc



=



0 0 0 1 1 . . . 1

0 0 0 xS1 loc xS2 loc . . . xS
NS
PS loc

0 0 0 yS1 loc yS2 loc . . . yS
NS
PS loc

1 xS1 loc yS1 loc 0 KS
12 . . . KS

1NS
PS

1 xS2 loc yS2 loc KS
21 0 . . . KS

2NS
PS

...
...

...
...

...
. . .

...

1 xS
NS
PS loc

yS
NS
PS loc

KS
NS
PS1

KS
NS
PS2

. . . 0





aS0

aS1

aS2

FS1

FS2

...

FS
NS
PS
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Isolating the terms of the matrix and introducing other vectors and matrices, the system
can assume the more compact form expressed by Eq. 9.29. Notice that the vector ZS?

loc is
coincident with ZS

loc except for the fact that three rows of zeros have been added at the
top.

ZS?
loc =

[
0 0 0 ZS1 loc ZS2 loc . . . ZS

NS
PS loc

]T
P S =

[
aS0 aS1 aS2 FS1 FS2 . . . FS

NS
PS

]T

RS =


1 1 . . . 1

xS1 loc xS2 loc . . . xS
NS
PS loc

yS1 loc yS2 loc . . . yS
NS
PS loc



KS =



0 KS
12 . . . KS

1NS
PS

KS
21 0 . . . KS

2NS
PS

...
...

. . .
...

KS
NS
PS1

KS
NS
PS2

. . . 0


ZS?

loc =

[
0 RS[
RS
]T

KS

]
· P S (9.29)

Moreover, if the system matrix is addressed as:

GS =

[
0 RS[
RS
]T

KS

]
(9.30)

then the above system is easily summarized by Eq. 9.31:

ZS?
loc = GS · P S (9.31)

Notice that RS has dimension 3×NS
PS , KS has dimension NS

PS ×NS
PS , P S has dimension(

3 +NS
PS

)
× 1 and GS has dimension

(
3 +NS

PS

)
×
(
3 +NS

PS

)
.

As explained in Section 8.4, the only input data to construct GS are the coordinates of
Pseudo-Structural Points (in the local system according to the aeroelastic notation) and
their displacements. Actually, the latter will be known only after having computed the
degrees of freedom of the structure. But, as it will be seen, the relationship between the
two entities will be written in a matrix notation; so the spline coefficients of the spline, and
even better the slopes of Control Points and displacements of Load Points, will be linked
by some transformation matrices to the vector q.

Inverting the relation expressed by Eq. 9.31, it is possible to find the NS
PS + 3 unknowns

represented by the components of P S :

P S =
[
GS

]−1
· ZS?

loc (9.32)

Now the coefficients that have to be used for the spline are known.
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Slopes at Control Points

So far only the Pseudo-Structural Points on the reference surface of Wing Segment S have
been considered. Once obtained the coefficients necessary to describe the spline, then the
Aerodynamic Points of the panels can be taken into account. The beginning of this chapter
has shown that the Wall Tangency Condition (WTC) is enforced at the aerodynamic
Control Points. Then, let the local coordinates (in the reference plane) of the kth Control
Point be indicated with X Sk loc and YSk loc. The coordinate ZSk loc in the direction zS of the
kth Control Point will be calculated by resuming the spline equation 9.27:

ZSk loc

(
X Sk loc, YSk loc

)
= aS0 + aS1 X Sk loc + a2 YSk loc +

NS
PS∑
j=1

Fj KSkj (9.33)

where

KSkj =
(
RSkj loc

)2
ln
(
RSkj loc

)2
(9.34)

and (
RSkj loc

)2
=
(
X Sk loc − xSj loc

)2
+
(
YSk loc − ySj loc

)2
(9.35)

The number of Control Points is the same as the number of aerodynamic panels NS
AP .

Equation 9.33 is utilized for the whole set of NAP locations on the surface. Therefore, it is
more advantageous to create a system in a matrix form:



ZS1 loc

ZS2 loc

ZS3 loc

...

ZS
NS
AP loc


=



1 X S1 loc YS1 loc KS11 . . . KS
1NS

PS

1 X S2 loc YS2 loc KS21 . . . KS
2NS

PS

1 X S3 loc YS3 loc KS31 . . . KS
3NS

PS

...
...

...
...

. . .
...

1 X S
NS
AP loc

YS
NS
AP loc

KS
NS
AP 1

· · · KS
NS
APN

S
PS





aS0

aS1

aS2

FS1

...

FS
NS
PS


Actually, this matricial form will not be used for Control Points, but for Load Points,
since the displacement is required to be computed for these latter points. To impose the
boundary conditions the derivatives with respect to xS are required. Actually, there is no
difference between x and xS because the reference surfaces do not have angle of attack.
In fact, the aeroelastic convention for the Wing Segments is so that the local xS axis is
always parallel to the global x axis. Hence, the derivations with respect the two direction
are equal. However it’s kept here the notation xS to designate that the local coordinate
system of wing segment S is considered. Therefore, it is necessary to differentiate the spline
equation 9.33 with respect to xS and calculate the result in the local coordinates of the
Control Points. As a result, the slope of the kth Control Point is given by:

∂ZSk loc

∂xS
(
X Sk loc ,YSk loc

)
= a1 +

NS
PS∑
j=1

Fj
∂
((
RSkj loc

)2
ln
(
RSkj loc

)2)
∂xS

∣∣∣∣∣
(XSk loc ,X

S
k loc)

= a1 +

NS
PS∑
j=1

Fj DKSkj

(9.36)
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where:

DKSkj =
∂KS

j

∂xS

∣∣∣∣
(XSk loc ,Y

S
k loc)

= 2
(
X Sk loc − xSj loc

) [
1 + ln

(
RSkj loc

)2]
(9.37)

Following the exposed procedure for all the NS
AP ( = Number of Aerodynamic Points)

locations on the surface, it is possible to create a system in a matrix notation:



∂ZS1 loc

∂xS

∂ZS2 loc

∂xS

...

∂ZS
NS
AP loc

∂xS


=



0 1 0 DKS11 DKS12 . . . DKS
1NS

PS

0 1 0 DKS21 DKS22 . . . DKS
2NS

PS

...
...

...
...

...
. . .

...

0 1 0 DKS
NS
AP 1

DKS
NS
AP 2

. . . DKS
NS
AP N

S
PS





aS0

aS1

aS2

FS1

FS2

...

FS
NS
PS


Let us indicate with

∂ZS
loc

∂xS
the vector which contains the slopes of the Control Points

of Wing Segment S. Instead, DS is the above matrix which multiplied by the vector

containing the coefficients of the spline P S gives the vector
∂ZS

loc

∂xS
. The following quantities

are so defined:

∂ZS
loc

∂xS
=

[
∂ZS1 loc

∂xS
∂ZS2 loc

∂xS
∂ZS3 loc

∂xS
. . .

∂ZS
NS loc

∂xS

]T

DS =



0 1 0 DKS11 DKS12 . . . DKS
1NS

PS

0 1 0 DKS21 DKS22 . . . DKS
2NS

PS

...
...

...
...

...
. . .

...

0 1 0 DKS
NS
AP 1

DKS
NS
AP 2

. . . DKS
NS
AP N

S
PS


Using these definitions, the slopes can be written as functions of the coefficients of the
spline fit by means of Eq. 9.38:

∂ZS
loc

∂xS
= DS · P S (9.38)

Just to be exhaustive, the vector
∂ZS

loc

∂xS
has dimension NS

AP ×1, whereas DS has dimension

NS
AP×(NS

PS + 3). Besides, the only input required to build the latter matrix are geometrical,
i.e. the local coordinates of Pseudo-Structural and Control Points on the Wing Segment S.
Now, it is advantageous to write an expression able to relate directly the output and the
input data, corresponding to the zS coordinates of the Pseudo-Structural Points in the
deformed configuration. The result avoids computing the spline coefficients P S and thus:
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∂ZS
loc

∂xS
= DS · P S = DS ·

[
GS

]−1
· ZS?

loc (9.39)

Observing that the first three rows of ZS?
loc are zeros, it is possible to eliminate the first

three columns of the matrix
[
GS
]−1

without changing the result. Defining SS , the matrix[
GS
]−1

with the first three columns eliminated, and coming back to ZS
loc, the vector ZS ?

loc

without the first three rows, Eq. 9.39 can be rewritten as:

∂ZS
loc

∂xS
= DS · SS · ZS

loc (9.40)

Notice that SS has dimension (NS
n + 3)×NS

n and ZS
loc has dimension NS

n × 1.

In the model proposed, the aim is to express all the introduced quantities as functions
of the nodal degrees of freedom. In fact, these are the independent variables as well as the
unknowns to be computed. Thus, it is very useful to combine Eqs. 9.40 and 9.23:

∂ZS
loc

∂xS
= DS · SS · ISz · Y S · ES

q · IS · q (9.41)

Introducing the definition:

aS3 = SS · ISz · Y S · ES
q · IS (9.42)

it is obtained:

∂ZS
loc

∂xS
= DS aS3 · q (9.43)

This formula relates the slope of all the Control points of all panels of Wing Segment S to
the vector of nodal degrees of freedom of the whole structure. Equation 9.43 can be written
for all Wing Segments and so an assembly procedure is required to have all the local slopes
of all the panels of the entire wing system as a function of the degrees of freedom of all the
structural finite elements.

Displacements at Load Points

Since the discussion is about splining method, it is useful to face the matter of aero-
dynamic Load Points, too. As it will be seen, not only the boundary condition require
the IPS method. In fact, in the calculation of the generalized aerodynamic matrices, it is
required to also transform loads, i.e. Lift Forces, at aerodynamic Load Points to nodes
on the structural grid. This transformation will be performed via the Principle of Virtual
Displacements and will involve the displacements of Load Points. Thus, the spline method
has to evaluate them.

The matrix of transformation between the input displacements at Pseudo-Struc-tural
Points and the output deflections at Load Points is built following what done above about

the Control Points. This matrix is addressed as D̃S ?
, where appears the superscript ? to

indicate the calculus of displacements rather than slopes, according to Section 8.4. While
the symbol ˜ is added from now on in order to refer to Load Points rather than Control
Points:
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D̃S ?
=



1 X̃ S1 loc ỸS1 loc K̃S11 . . . K̃S
1NS

PS

1 X̃ S2 loc ỸS2 loc K̃S21 . . . K̃S
2NS

PS

1 X̃ S3 loc ỸS3 loc K̃S31 . . . K̃S
3NS

PS

...
...

...
...

. . .
...

1 X̃ S
NS
AP loc

ỸS
NS
AP loc

K̃S
NS
AP 1

· · · K̃S
NS
APN

S
PS


(9.44)

where X̃ S1 loc and ỸS1 loc are the coordinates of Load Points, written with respect to the
local coordinate system of Wing Segment S. Thus, the displacements at Load Points can
be written as functions of the coefficients of the spline fit by means of Eq. 9.45:

Z̃S
loc = D̃S ? · P S (9.45)

Just to be exhaustive, the vector Z̃S
loc has dimension NS

AP × 1, whereas D̃S ?
has dimension

NS
AP ×(NS

PS + 3). Again, the only input required to build the latter matrix are geometrical,
i.e. the local coordinates of Pseudo-Structural and Load Points on the Wing Segment S.

By using a procedure formally identical to the one used to obtain Eq. 9.43, it is possible
to obtain:

Z̃S
loc = D̃S ?

aS3 · q (9.46)

The only difference between Eqs. 9.46 and 9.43 consists in the fact that the local coordinates
of the Load Points are considered instead of the local coordinates of the Control Points.

Assembly procedure

The aerodynamic panels are numbered so as to have the first NS
AP panels of the first

Wing Segment and then the second NS
AP panels of the seconds Wing Segment and so forth.

The assembly process is carried out by calculating all the products (for all Wing Segments)

DSaS3 and D̃S ?
aS3 and observing that each aerodynamic panel can be included only in one

trapezoidal Wing Segment. This means that two different Wing Segments do not share
common aerodynamic panels. Thus, the assembly procedure is different from the classical
way followed in structural finite element method. In fact, since two Wing Segments are
adjacent, then they necessarily share common nodes. Instead, adjacent Wing Segments
don’t have common aerodynamic panels, which are bidimensional, thus no terms have to
be summed up. After the assembly, at wing system level, Eqs. 9.43 and 9.46 become:

∂Z loc

∂x
= A3 · q (9.47)

Z̃ loc = Ã?
3 · q (9.48)

By means of the exposed matrix notation, Eqs. 9.47 and 9.48 allow to directly relate
displacements and slopes at Aerodynamic Points of the structure to its nodal degrees of
freedom. That was the target of the Surface Spline method.
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9.4.3 Steady Aerodynamic Forces

Once completed the discussion about splining, the derivation of Aerodynamic Loads is
faced. According to the Vortex Lattice Method exposed in Section 8.3, the Aerodynamic
Loads acting on the deflecting surface are transferred as Lift Forces located on Loads Points
of the aerodynamic panels of the whole structure. It means that the pressure distribution
charging the wing system becomes a set of concentrated loads.

As done in the spline section, here the object is to build a formulation in which the
aeroelastic quantities are written as functions of nodal degrees of freedom. In fact, they
represent the independent variables of the problem. It counts also for the Aerodynamic
Forces. Therefore, the goal to be achieved is to write the relationship between these loads
and the vector of nodal degrees of freedom.

At first, a connection between the Lift Forces and the pressure loads on all the
aerodynamic panels has to be established . Thus, let ∆p be a vector which contains all the
dimensionless pressure loads on all aerodynamic panels of the structure. It represents the

ratio of the real pressures ∆p
′

to the dynamic pressure
1

2
ρ∞V∞, taken as reference value.

Considering the jth aerodynamic panel, then:

∆p =
∆p

′

1

2
ρ∞ V 2

∞

For a generic panel the Aerodynamic Force, applied at the Load Point of that panel,
is obtained by multiplying the dynamic pressure by some geometrical quantities of the
panel and by the dimensionless pressure load. This happens because the pressure load on
that generic panel has been normalized with respect to the dynamic pressure, in this way
generating the dimensionless pressure load. At this point, let us consider the modulus of
the Aerodynamic Load of panel j of Wing Segment S, given by Eq. 9.49:∣∣LSj ∣∣ =

1

2
ρ∞ V

2
∞ ∆xj 2ej ∆pSj (9.49)

where the product ∆xj 2ej represents the jth panel’s surface. The quantity ∆xj is the
average chord of the panel and ej refers to its half length along the wing span, i.e. along
the yS local direction.

If the global components of the unit normal vector of the aerodynamic panel j are nx j ,
ny j and nz j (notice that nx j = 0 because the reference aerodynamic configuration has no
angle of attack), the y and z global components of the Aerodynamic Load are:[

LSj

]
x

= 0[
LSj

]
y

=
1

2
ρ∞ V

2
∞ ∆xj 2ej ny j ∆pSj[

LSj

]
z

=
1

2
ρ∞ V

2
∞ ∆xj 2ej nz j ∆pSj

(9.50)

It’s obvious that Aerodynamic Load vector is parallel to the normal of panel j; in this way
the load results to be perpendicular to the wind direction and plays the role of a lift load
for that panel.

Since what it has been described applies to all the Wing Segments, then the vector
which contains the moduli of the Aerodynamic Forces of all the panels is written as a
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product between the dynamic pressure and a matrix ID. The matrix depends on the
geometrical features of the aerodynamic mesh. For the sake of clarity, let us show how to
build this matrix, by considering four aerodynamic panels for instance. In that case, the
moduli of Aerodynamic Loads are the following:

∣∣LS1 ∣∣ =
1

2
ρ∞ V

2
∞ ∆x1 2e1 ∆pS1∣∣LS2 ∣∣ =

1

2
ρ∞ V

2
∞ ∆x2 2e2 ∆pS2∣∣LS3 ∣∣ =

1

2
ρ∞ V

2
∞ ∆x3 2e3 ∆pS3∣∣LS4 ∣∣ =

1

2
ρ∞ V

2
∞ ∆x4 2e4 ∆pS4

It is useful to join the terms in a matrix form:

∣∣LS1 ∣∣∣∣LS2 ∣∣∣∣LS3 ∣∣∣∣LS4 ∣∣


=

1

2
ρ∞ V

2
∞



∆x1 2e1 0 0 0

0 ∆x2 2e2 0 0

0 0 ∆x3 2e3 0

0 0 0 ∆x4 2e4





∆pS1

∆pS2

∆pS3

∆pS4


The extension of the same procedure to the general case conducts to the final expression
relating the Lift Forces (written as their moduli) to the dimensionless pressures, as given
by Eq. 9.51:

L =
1

2
ρ∞ V

2
∞ I

D · ∆p (9.51)

The first step has been completed. Now the Vortex Lattice key equation is resumed. As
seen before, Eq. 9.52 describes the dimensionless normalwash as function of the pressures
on each aerodynamic panel:

w = AD · ∆p (9.52)

whereAD is the Aerodynamic Influence Coefficient Matrix for the aerodynamic panels. This
matrix is calculated once by using the geometry of the aerodynamic reference configuration.
In fact, it depends only on the aerodynamic discretization.

Considering a generic panel i, the normalwash w
′
i is the component of the velocity

normal to the reference undeformed surface of the Wing Segment where the panel lies, i.e.
normal to the considered aerodynamic panel. Being this surface parallel to the free stream
direction V∞, then the normalwash results to be perpendicular to the free stream, too.
The normalization of this quantity is with respect to V∞, since it is the reference velocity:

w =
w
′

V∞

At this point, it would be possible to write an expression linking the lift forces and the
dimensionless normalwash of the panels. Moreover, the use of IPS method has previously
conducted to Eq. 9.47, where the slopes at Control Point are dependent on the nodal
degrees of freedom. Thus, the last step would consist in finding a correlation between such
slopes and the dimensionless normalwash.
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In the steady case, considering that the structure changes configuration when it deforms,
the boundary condition used for the Vortex Lattice formulation is:

w =
∂Z loc

dx
(9.53)

where all the quantities are real numbers (steady case). In fact, the normalization of the
normalwash with respect to V∞ means that the dimensionless normalwash is equal to the
tangent of the angle from the velocity of the stream in proximity of the panel, in the
deformed configuration, to the free stream direction V∞. As a consequence, considering
small angles of deflection because of the model’s linearity, the dimensionless normalwash
has to equal the slope at the aerodynamic Control Point.

The boundary condition is not only a constraint expressing the coupling between the
aerodynamics and the deflection of the structure, but in this case is the convenient interface
able to correlate the Lift Forces to the nodal degrees of freedom. As a result, from Eqs. 9.53,
9.52 and 9.47 it is possible to relate the vector containing dimensionless pressures to the
nodal degrees of freedom vector (this last is unknown):

∆p =
[
AD

]−1
· w =

[
AD

]−1
A3 · q (9.54)

At last, the vector with the aerodynamic forces is written as:

L =
1

2
ρ∞ V

2
∞ I

D ·
[
AD

]−1
· A3 · q (9.55)

With the help of the definition of a new matrix in which all the terms different from the
dynamic pressure and the unknowns have been isolated:

c = ID ·
[
AD

]−1
· A3 (9.56)

finally the formula in matrix notation is obtained:

L =
1

2
ρ∞ V

2
∞ c · q (9.57)

To be remebered is that Aerodynamic Forces of Eq. 9.57 are applied at Load Points of the
aerodynamic panels.

9.4.4 The Aeroelastic Stiffness Matrix

At this point, the Aerodynamic Loads are known as concentrated Forces localized on the
aerodynamic panels. According to the FE approximation, they have to be transferred to
the Structural Nodes. The result will be a vector of equivalent nodal loads, by means of
which the construction of the Aeroelstic Stiffness Matrix will be carry out. The procedure
to apply utilizes the following algorithm.

From Eq. 9.57 it is possible to extract the Forces which are applied only on the
aerodynamic panels of the generic Wing Segment S. This operation is particularly easy
since the aerodynamic panels are numbered as explained above. In fact, the IDs of the
panels are the sole input needed to know the matrix of Eq. 9.58:

LS =
1

2
ρ∞ V

2
∞ cS · q (9.58)

where cS is directly obtained from c. Considering the properties of the present aerodynamic
theory, all these forces are parallel and perpendicular to the surface that represents the
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Wing Segment S. It means that local xS , yS components of the Aerodynamic Loads are
zero; then LS contains not only the moduli of the loads on aerodynamic panels of Wing
Segment S, but also their local zS components.

The transfer from Loads at the Aerodynamic Points to the Loads at Structural Nodes
is performed in the classical way, so that they will be energetically equivalent. For this
purpose, the Principle of Virtual Displacements is involved. According to it, the virtual
work carried out by the Lift Forces on the virtual variation of displacemenets of Load
Points balances the virtual work carried out by the equivalent nodal forces on the virtual
variation of nodal degrees of freedom. Now the virtual work is going to be calculated
and the expression for the out-of-plane displacements of the Load Points of all the panels
contained in Wing Segment S is resumed:

Z̃S
loc = D̃S ?

aS3 · q (9.59)

From its definition it follows that the virtual work δW of all the Aerodynamic Forces
applied in Wing Segment S is:

δW =
[
δZ̃S

loc

]T
· LS =

[
D̃S ?

aS3 · δq
]T
· LS = δq T ·

[
aS3

]T
·
[
D̃S ?

]T
· LS (9.60)

where the virtual variation of Eq. 9.59 is considered. On the contrary, the virtual work of
the equivalent nodal forces applied to all Structural Nodes of all the beams (of the entire
wing system) is given by:

δW = δq T · L S
str (9.61)

where the virtual variation of nodal degrees of freedom q is considered. The vector L S
str

contains the nodal forces on all Structural Nodes. The superscript S is used to indicate
that only the Aerodynamic Loads applied to the Load Points of the aerodynamic panels of
Wing Segment S have been taken into account.

By comparison of Eqs. 9.60 and 9.61, for the nodal forces equivalent to the Aerodynamic
Forces applied on Wing Segment S it is possible to deduce the following relation:

L S
str =

[
aS3

]T
·
[
D̃S ?

]T
· LS =

1

2
ρ∞ V

2
∞

[
aS3

]T
·
[
D̃S ?

]T
· cS · q (9.62)

At this point, not only the Lift Forces have been related to the degrees of freedom,
but also the equivalent nodal loads are functions of the unknowns vector q. If all the
contributions of all Wing Segments are added following Eq. 9.62, the loads on the Structural
Nodes Lstr can be obtained. This operation means that an assembly of the matrices
1

2
ρ∞ V

2
∞

[
aS3

]T
·
[
D̃S ?

]T
· cS is required. Differently from the previous case, the assembly

procedure consists in summing up the various contributions corresponding to different
Wing Segments.

The final assembled matrix is named −K aero , where the negative sign is adopted for
the sake of convenience. The expression of the Aerodynamic Loads on all Structural Nodes
after all Wing Segments have been taken into account is:

Lstr = −K aero · q (9.63)

Even if Lstr represents a nodal load vector, Eq. 9.63 expresses it as function of the degrees
of freedom via the Aerodynamic Stiffness Matrix K aero, coherently with the role of q as
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independent variables vector. Therefore, such a term can go to the left hand side of the
aeroelastic system equation and summed up to the product due to the Structural Stiffness:

K str · q = Lstr = −K aero · q (9.64)

or [
K str + K aero

]
· q = 0 (9.65)

or

K aeroelastic · q = 0 (9.66)

The isolation of the Stiffness Matrices in Eq. 9.65 leads to a single term, called Aeroelastic
Stiffness Matrix. As a matter of fact, it substitutes the Structural Stiffness Matrix in
the FEM system, so that the stiffness of the structure is sensible to and inclusive of the
Aerodynamic Loads applied. In this way the deflection due to such Loads is already taken
into account directly in the stiffness of the system. This is the meaning of aeroelastic
analysis.

9.4.5 The Right Hand Side Load Vector

From Eq. 9.66 it appears that there is no motion. And this is the case because the angle of
attack so far considered is zero. In fact, in the generic Wing Segment S the aerodynamic
mesh lies on its reference surface, which is parallel to the free stream V∞, even if the Wing
Segment is not. So, there is no motion unless external non-aerodynamic loads, i.e. some
mechanical loads, are applied.

To solve this problem, a given known shape of the structure is assigned. Such a shape
can be assigned, for instance, as coordinates of those points having the same xS and yS local
coordinates of the Pseudo-Structural Points. Instead, the zS local out-of-plane coordinates
are not equal to zero; in fact, these coordinates describe a shape with different from zero
angle of attack. In particular, it is the undeformed shape of the structure, so that all the
geometrical features are included in the aeroelastic model.

The new points will be denoted as Perturbed Pseudo-Structural Points, precisely because
only the local out-of-plane coordinates are perturbed from the null value. Replacing the
appropriate quantities in Eq. 9.19, the formula:

xpert S
loc = ES ·

[
xpert S − x2S

]
= ES ·

[
JS · xpert − x2S

]
(9.67)

involves the global coordinates of all the Perturbed Pseudo-Structural Points, which are
addressed as xpert. The vector xpert S

loc contains their local coordinates, whereas the matrices
ES and JS and the vector x2S have already been defined in section 9.4.2.

From now on, the algorithm will be very similar to the previous procedure described to
find Eq. 9.62. What is aerodynamically relevant is the out-of-plane coordinate which can
be easily extracted from Eq. 9.67 (see also Eq. 9.23):

ZS
loc = ISz · x

pert S
loc = ISz · ES ·

[
JS · xpert − x2S

]
(9.68)

Looking at Eq. 9.68 it is easy to understand that now xpert S
loc is considered like some sort

of a displacements vector. In fact, it represents a configuration different from the reference
one. It is also known that the coordinates of the original Pseudo-Structural Points do not
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have angle of attack. Hence:

0 = ISz · xSloc = ISz · ES ·
[
JS · x − x2S

]
⇒ ISz · ES · x2S = ISz · ES · JS · x

Thus,

ZS
loc = ISz · x

pert S
loc = ISz · ES · JS ·

[
xpert − x

]
= ISz · ES · JS · ∆x (9.69)

where the vector ∆x is known, being x and xpert geometrical input data. By using the
spline method and Eq. 9.40, it is possible to relate the slopes of the Control Points to the
local out-of-plane coordinates of the Pseudo-Structural Points:

∂ZS
loc

∂xS
= DS · SS · ZS

loc = DS · SS ISz ES JS · ∆x = DS · aS3 · ∆x (9.70)

Equation 9.70 can be written for all Wing Segments and so an assembly procedure is required
to have all the local slopes of panels of the entire wing system due to the initial shape.
Again, the assembly procedure is different from the classical way followed in structural
finite element method. Before, the reason was that adjacent Wing Segments did not share
any aerodynamic panels. On the contrary, now adjacent Wing Segments could share some
common Pseudo-Structural Points (perturbed or not). In spite of such a remark, potential
common points are considered in both the Wing Segments in writing x and ∆x. As a
result, assembling DS aS3 terms, none of them has to be summed up to construct A3 of
Eq. 9.71:

∂Z loc

∂x
= A3 · ∆x (9.71)

For the sake of thoroughness, the local out-of-plane coordinate of the Load Points can also
be expressed (see Eq. 9.46 and 9.48):

Z̃S
loc = D̃S ?

aS3 · ∆x ⇒ Z̃ loc = Ã
?

3 · ∆x (9.72)

As previously discussed, the boundary condition has been introduced to connect the slopes
at Control Points and the dimensionless normalwash. It leads to Eq. 9.73 :

w =
dZ loc

dx
= A3 · ∆x (9.73)

Now the Vortex Lattice key equation is resumed. As seen before, Eq. 9.52 describes the
dimensionless normalwash as function of the pressures on each aerodynamic panel. Let us
resume it as follows:

w = AD · ∆p

Then, the expression relating the Lift Forces (written as their moduli) to the dimensionless
pressures is given by Eq. 9.51, which is written here:

L =
1

2
ρ∞ V

2
∞ ID · ∆p

The combination of the Eqs. 9.73 and 9.52 allows to find:

∆p =
[
AD

]−1
w =

[
AD

]−1
· A3 · ∆x (9.74)
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At last, the vector with the Aerodynamic Forces is written coupling Eqs. 9.74 and 9.51:

L =
1

2
ρ∞ V

2
∞ ID ·

[
AD

]−1
· A3 · ∆x (9.75)

With the help of the definition of a new matrix in which all the terms different from the
dynamic pressure and the unknowns have been isolated :

c = ID ·
[
AD

]−1
· A3 (9.76)

finally Eq. 9.77 written in matrix notation is obtained:

L =
1

2
ρ∞ V

2
∞ c · ∆x (9.77)

At this point, the Aerodynamic Loads are known as concentrated Forces localized on the
aerodynamic panels. According to the FE approximation, they have to be transferred to
the Structural Nodes.

From Eq. 9.77 it is possible to extract the Forces which are applied only on the
aerodynamic panels of the generic Wing Segment S. This operation is particularly easy
since the aerodynamic panels are numbered as explained above. In fact, the IDs of the
panels are the single input needed to know the matrix of Eq. 9.78:

LS =
1

2
ρ∞ V

2
∞ c

S · ∆x (9.78)

where c
S

is directly obtained from c. The transfer from Loads at the Aerodynamic Points
to the Loads at Structural Nodes is performed so that they will be energetically equivalent.
For this purpose, the Principle of Virtual Displacements is involved. Since the virtual
variation of out-of-plane displacements of Load Points is going to be computed, it is
advantageous to write them as functions of nodal degrees of freedom, resuming Eq. 9.59:

Z̃S
loc = D̃S ?

aS3 · q

From its definition it follows that the virtual work δW of all the Aerodynamic Forces
applied in Wing Segment S is formally coincident with Eq. 9.60, given by

δW =
[
δZ̃S

loc

]T
· LS =

[
D̃S ?

aS3 · δq
]T
· LS = δq T ·

[
aS3

]T
·
[
D̃S ?

]T
· LS (9.79)

Again, let us follow the same procedure used to find the Aeroelastic Stiffness matrix. Thus,
the nodal forces on all Structural Nodes equivalent to the Aerodynamic Loads applied on
the panels of Wing Segment S are collected into the vector L S

str. In conclusion, Eq. 9.80 is
obtained:

L S
str =

[
aS3

]T
·
[
D̃S ?

]T
· LS =

1

2
ρ∞ V

2
∞

[
aS3

]T
·
[
D̃S ?

]T
· cS · ∆x (9.80)

If all the contributions of all Wing Segments are added following Eq. 9.62, the loads LRHS

on the Structural Nodes can be obtained, where RHS means Right Hand Side. The

assembly of the matrices
1

2
ρ∞ V

2
∞

[
aS3

]T
·
[
D̃S ?

]T
· cS is equal to the procedure carried

out in the previous section. In fact, it consists in summing up the various contributions
corresponding to different Wing Segments.
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At the end, the final aeroelastic equation to be solved is:[
K str + K aero

]
· q = LRHS (9.81)

or

K aeroelastic · q = LRHS (9.82)

Equation 9.82 allows to compute the vector of unknowns nodal degrees of freedom q. Now
that the right hand side is different from zero, a non-trivial solution exists.

9.5 Effect of cross-section in-plane deformation on the aeroe-
lastic coupling

9.5.1 Cross-section in-plane deformation for classical and refined beam
models

Classical beam models such as Euler-Bernoulli’s and Timoshenko’s assume that the section is
not deformable, i.e. there is no in-plane cross-section deformation (distortion). An example
of wing cross-section distortion is reported in Fig. 9.1. The cross-section indeformability
makes classical beam model unsuitable to analyze cases in which the deformation of the
cross-section is crucial, such as profiles of smart wings.

x

z
s

Figure 9.1: Distortion of cross section.

A strategy to overcome this difficulty is either to employ more complex models. For
this purpose, the hierarchical refined 1D CUF model presented in this thesis is here used to
analyze the aeroelastic response of wings taking into account the cross-section distortion.

9.5.2 A numerical approach for wing aerodynamic analysis

Preliminaries

The evaluation of aerodynamic loads can be typically carried out through a CFD code
which solves for example either Navier-Stokes equations or Euler equations numerically.
This kind of analysis has a high computational cost but under some assumptions it is
possible to employ simplified approaches. In the wing cases considered in the present work,
the flow field is assumed to be steady and the fluid viscosity is not decisive since the taking
place viscous effects can be confined into a small region (boundary layers and wake regions).
The fluid can be thus considered as inviscid and the flow field is irrotational, since the curl
of the velocity vector V(x, y, z) is equal to zero:

∇×V = 0 (9.83)

In this case the velocity vector V(x, y, z) can be considered as the gradient of a potential
function φ:

∇φ = V (9.84)
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9.5. Effect of cross-section in-plane deformation on the aeroelastic coupling

Hence, the analysis of a wing or an airfoil under these conjectures can be performed by
potential methods. The potential function describing the flow field around an object can
be described as a combination of singularities such as doublets, vortices, sources or uniform
flux over the external body surface. According to the detailed exposition in [134], the
equation to be used to compute the solution of the aerodynamic problem is the Laplace’s
equation:

∇2φ = 0 (9.85)

Laplace’s equation describes a potential flow field only if the compressibility effects can be
neglected, as occurs for the results presented afterwards where the free stream air velocity is
rather low. Otherwise some corrections, e.g. Prandtl-Glauert transformation, are necessary
as explained in [135]. The assumptions here introduced lead to an integral-differential
equation which expresses the potential function in an arbitrary point of the fluid domain as
a combination of singularities. For the sake of completeness, this equation is not reported
here but more details can be found in [134]. Among the potential methods, the panel
methods can be formulated following a low-order or a high- order approach. Low-order
(first-order) panel method employs triangular or quadrilateral panels having constant
values of singularities strength such as Hess and Smith approach. Higher-order panel
methods instead use higher than first-order panels (e.g. paraboloidal panels) and a varying
singularity strength over each panel.

XFLR5: an implementation of aerodynamic potential methods

XFLR5 is a software developed by Andre Deperrois. It performs viscous and inviscid
aerodynamic analysis on airfoils and wings using three potential methods: the LLT (Lifting
Line Theory), the VLM (Vortex Lattice Method) and the 3D Panel Method. The LLT
method derives from the Prandtl’s wing theory and considers the wing as a linear distribution
of vortices. The VLM considers a wing as an infinitely thin lifting surface via a distribution
of vortices placed over a wing reference surface. This method requires the non-penetration
condition on the reference surface as a boundary condition. Hence, the normal component
of the induced velocity Vi on the generic ith aerodynamic panel with normal vector ni is
equal to zero:

Vi • ni = 0 (9.86)

Further details on this method can be found in [133]. The 3D Panel Method schematizes
the wing surface as a distribution of doublets and sources. The strength of the doublets
and sources is calculated to meet the appropriate boundary conditions, which may be of
Dirichlet- or Neumann-type. According to the creator of the program, after a trial and
error process, the best results can be obtained just using the Dirichlet BC type [136]. The
3D Panel Method employs a low-order panel method. The LLT approach is not able to
evaluate the pressure coefficients on the wing surface, but only the lifting loads along the
lifting line. The VLM is able to analyze the pressure coefficients but only on the reference
surface which is defined as the mean surface between the upper and the lower wing surfaces.
The 3D Panel Method is able to calculate the pressure coefficients on both the upper and
the lower wing surfaces. Therefore, this method offers the most realistic description of the
aerodynamic field in XFLR5.

9.5.3 Aeroelastic static response analysis via iterative scheme

In this work the aeroelastic static response of the wing is computed through an iterative
procedure based on a coupled CUF-XFLR5 method. Hence, the aerodynamic analysis is
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performed through the potential methods available in XFLR5, as previously mentioned,
whereas variable kinematic 1D CUF models provide the structural wing deformation with
a variable ex-pansion order N .

Iterative procedure

 

Aerodynamic 
analysis (XFLR5) 

Pre-process 

START 

Aerodynamic 
coefficients 

Aerodynamic 
loads 

Deformed 
configuration for 

aerodynamic mesh 

Controller 1 
 

  

Wing 
deformation 

Controller 2 
 

Structural    
analysis (1D CUF) 

Post-process 

Figure 9.2: Aeroelastic iterative procedure with controllers on aerodynamic coefficients and wing
deformation.

Figure 9.2 shows in detail the aeroelastic iterative process, which starts with the
evaluation of the pressure coefficients in the undeformed wing configuration. The further
steps to be repeated for each iteration are:

1. post-processing calculation of the aerodynamic forces;

2. structural analysis of the wing subject to the aerodynamic forces previously computed;

3. new calculation of the aerodynamic pressure coefficients for the new deformed config-
uration;

4. post-processing evaluation of the wing deformation and cross-section distortion.

Structural displacements are evaluated in specific sections distributed regularly along the
wing span. The cross-section distortion s is defined as the in-plane displacement, i.e. a
quantity which expresses the in-plane difference between the deformed shape and the
“undeformed” shape of the airfoil cross-section:

s =
√

∆u2
x + ∆u2

z (9.87)

where ∆ux and ∆uz are the cartesian components of the relative displacement vector
∆u along the chord direction x and the transversal direction z, respectively, between the
deformed cross-section and the base section. Given a structural model, the base section
corresponds to the undeformed cross-section shifted and rotated in such a way that its
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displacement 
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Convergent  

load value 

Convergent  

displacement 
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Figure 9.3: Aerolastic iterative convergence.

leading edge and trailing edge points corresponds to the leading edge and trailing edge
points of the deformed cross-section obtained by such a structural model.

The iterative process in Fig. 9.2 is stopped once the convergences of the lifting coefficient
CL, the moment coefficient CM , and the cross-section distortion of the wing sections are
achieved simultaneously, as can be shown in Fig. 9.3. The description of a similar iterative
process can be found also in [137]. The convergence controls are thus:∣∣CiL − Ci+1

L

∣∣
CiL

< toll ;

∣∣CiM − Ci+1
M

∣∣
CiM

< toll (9.88)

∣∣s̄i − s̄i+1
∣∣

s̄i
< toll (9.89)

where toll is equal to 10−4, CiL and s̄i are the lifting coefficient and the average cross-section
distortion for the generic ith iteration, respectively. The average distortion s̄ is defined in
Eq. 12.3. A linear approach is adopted as usual in classical aeroelasticity: for each iteration
the aerodynamic loads computed for the deformed wing configuration are applied to the
undeformed configuration, without changing the structural stiffness matrix K of Eq. 3.89.

Aerodynamic loads computation

The aerodynamic load computed by XFLR5 is a distributed pressure and in this work it is
modeled as distributed forces. The generic force acting on the jth aerodynamic panel is
evaluated as:

Fj =
1

2
Cjp ρ∞ V

2
∞Aj (9.90)

where V∞ is the free stream velocity and ρ∞ is the air density. Aj is the area of the

jth aerodynamic panel which the pressure coefficient Cjp refers to. According to XFLR5
notation, normal vectors are considered positive when Cjp is negative and their verse is
outer-pointing. Each aerodynamic force is transferred from the aerodynamic model to the
structural model following the approach described in section 3.2.4 for the generic point
load P.

For each iteration, the three-dimensional deformed configuration of the wing is built
using 11 airfoils along the half-wing span at a distance of 0.5 m from each other. The first

193



Chapter 9. Aeroelastic Formulation

section lies at the wing root. The wing is discretized through a lattice of quadrilateral
aerodynamic panels. Let Nx

AP be the number of panels along the chord line and let Ny
AP

be the number of panels along the half-wing span. When the VLM is employed the total
number of aerodynamic panels NAP is equal to 2Nx

APN
y
AP . For the 3D Panel Method NAP

must be calculated as 4Nx
APN

y
AP + 2Nx

AP , where the term 4Nx
APN

y
AP is the number of

panels along the wing span on the upper and lower surfaces of the wing. In addition, the
term 2Nx

AP is the number of panels placed on the tip lateral cross-sections. For the sake of
convenience, only half-wing is analyzed since the aerodynamic loads are considered to be
symmetric with respect to the wing root.
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Chapter 10

Results: structural response to
aerodynamic VLM loadings

Conventional wing configurations, which are beam-like structures, are analyzed and the
results are presented here. They are subjected to aerodynamic, bending, and torsional
loadings. Clamped boundary condition is accounted for. The beams are considered to
have an unconventional airfoil-shaped section or a conventional thin-walled rectangular
cross-section. The wing shapes examined below are summarized in Table 10.1. An isotropic
material is used. Young’s modulus E is equal to 69 [GPa] and Poisson’s ratio ν is equal to
0.33. For all the cases presented, a selective integration of the shape functions along the
beam axis is adopted. Moreover, the aerodynamic loadings refer to an air density equal to
1.225 [kg/m3].

Table 10.1: Wing configurations adopted to discuss the results.

Name A B C D E F

Section Airfoil Airfoil Airfoil Wing box Airfoil Airfoil
Λ + 13.5◦ 0◦ 0◦ 0◦ - 13.5◦ 0◦

Γ 0◦ 0◦ 0◦ 10◦ 0◦ 0◦

λ 0.25 1 1 0.25 0.25 0.25
croot [m] 1.6 1 0.2 1.6 1.6 1.6
ctip [m] 0.4 1 0.2 0.4 0.4 0.4
c̄ [m] 1 1 0.2 1 1 1
L [m] 5 5 4 7 5 5
L/c̄ 5 5 20 7 5 5
b [m] 10 10 8 14 10 10
Sw [m2] 10 10 1.6 14 10 10
AR 10 10 40 14 10 10

Airfoil: NACA 2415 airfoil profile with 3 cells.

Wing box: thin-walled rectangular cross-section.

Λ: sweep angle Γ: dihedral angle λ: taper ratio c̄: mean chord

L: beam’s length b: wingspan Sw: wing area AR: aspect ratio
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Chapter 10. Results: structural response to aerodynamic VLM loadings

10.1 Aerodynamic model assessment

The first assessment examines to aerodynamic implications closely related to the Vortex
Lattice formulation. For this purpose, a first wing shape is chosen and named configuration
A. It consists of a swept tapered wing subjected to an aerodynamic load. The NACA 2415
airfoil profile is adopted as cross-section, which is subdivided into three cells. The cells are
obtained by inserting two spars along the span-wise direction at 25% and 75% of the chord
length, see Fig. 10.1a. Their thicknesses are respectively 10% and 7% of the maximum
airfoil thickness, whereas the percentage is about 4% for the skin. The aspect ratio AR
is defined as the square of the wingspan b divided by the area of the wing planform Sw
and is equal to 10 for configuration A. Thus its half-wing corresponds to a clamped beam
which has a span-to-mean chord ratio L/c̄ equal to 5.

(a) NACA 2415 with 3 cells (b) Thin-walled rectangle

Figure 10.1: Cross-sections used for the wing configurations.

An aerodynamic mesh composed of 4 × 40 panels is set on the surface of the structure.
The angle of attack α of the wing and the free stream velocity V∞ are considered as free
parameters of the first analysis. The former ranges from 30 to 70 [m/s], whereas the latter
is from 1◦ to 5◦. They represent acceptable values for the hypothesis of VLM. The effect
of such parameters on the Total Lift Force L is investigated and shown in Table 10.2. By
comparing the values for α = 1◦ and α = 5◦, the trend of L confirms its correlation with
tan α as exposed in Eq. 10.1, since tan

(
π − α

)
is equal to − tan α. For the sake of brevity,

the results corresponding to the in-between angles of the range are not reported. As far
as the stream velocity is concerned, L is dependent on the square of V∞, as confirmed in
Eq. 10.1.

L =
1

2
ρ∞ V

2
∞ I

D ·
[
AD
]−1 · w

=
1

2
ρ∞ V

2
∞ tan

(
π − α

)
ID
[
AD
]−1

d =
1

2
ρ∞ V

2
∞ tan

(
π − α

)
b

(10.1)

Configuration A is now discretized by 20 refined B4 elements and the previous study is
carried out on the maximum displacement uzmax where the expansion order is N = 3. The
trend of uzmax in Table 10.2 appears to be exactly the same as that obtained by L and
expressed as follows:

L
(
α = 5◦,V = 30÷ 70

)
L
(
α = 1◦,V = 30÷ 70

) =
uzmax

(
α = 5◦,V = 30÷ 70

)
uzmax

(
α = 1◦,V = 30÷ 70

) =
tan
(
α = 5◦

)
tan
(
α = 1◦

) ∼= 5

L
(
α = 1◦ ÷ 5◦,V = 60

)
L
(
α = 1◦ ÷ 5◦,V = 30

) =
uzmax

(
α = 1◦ ÷ 5◦,V = 60

)
uzmax

(
α = 1◦ ÷ 5◦,V = 30

) =

(
V = 60

)2(
V = 30

)2 = 4

Given a reference combination of α and V∞, changing one of either parameters implies
applying new aerodynamic loads on the panels which are all multiplied by the same factor
with respect to the reference loading. The outcome is that the pressure distribution and the
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10.1. Aerodynamic model assessment

Table 10.2: Effect of V∞ and α on Total Lift Force and uzmax. Configuration A.

Theory : N = 3 20 B4 elements 4× 40 panels

V∞ [m/s] 30 40 50 60 70

α = 1◦
237.22a

0.3816b
421.72
0.6784

658.94
1.0600

948.87
1.5264

1291.5
2.0776

α = 5◦
1189.0
1.9127

2113.8
3.4003

3302.7
5.3129

4756.0
7.6506

6473.4
10.413

a Total Lift Force L [N]
b Maximum displacement uzmax [mm]

deflection on the wing do not change in shape, but only in value. From a numerical point
of view, the reason is that the aerodynamic mesh is considered to be fixed. In conclusion,
the Total Lift Force L and the maximum displacement uzmax are influenced in the same
way by the angle of attack α and the free stream velocity V∞.

The effect of the aerodynamic parameters on L is also shown in Fig. 10.2. Because of
the model’s linearity, only small angles of attack can be considered and the Lift changes
almost linearly with α. It is noteworthy that the trend is affected neither by the chosen
aerodynamic mesh nor by the structural theory involved. On the contrary, it depends only
on the used aerodynamic model and is valid for any wing configuration. Although only
the clamped right half-wing of the structure is considered, the aerodynamic computation
takes into account the wing as a whole. This capability exploits the symmetry condition in
the formulation of Vortex Lattice Method and is adopted for the following analyses, unless
differently specified.

 1  2  3  4  5
 30

 40
 50

 60
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 0

 2000

 4000

 6000

 8000

α  [deg]

V  [m/s]

Ltot  [N] 6473

 0

 1000

 2000
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Figure 10.2: Effect of V∞ and α on Total Lift Force. Aerodynamic mesh: 4×40 panels. Configuration
A.

The second analysis investigates the pressure distribution on the wing. For this purpose,
the straight wing named configuration B is used and exposed to a free stream velocity
equal to 50 [m/s] with α = 3◦. As before, the structure is modelized via the clamped
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right half-wing but the letf one is considered in the computation of aerodynamic loading.
Figure 10.3b shows the resulting distribution of dimensionless pressure with respect to
the dynamic pressure 1

2ρV
2
∞. In particular, the three-dimensional trend is drawn upon the

undeformed configuration. Besides, the bidimensional projection of the pressures onto the
aerodynamic mesh is shown in colour at the top of the figure. The distribution is based on
discrete pressure values corresponding to the chosen discretization of 20 × 40 panels. For
any wing section, the maximum pressure value acts on its leading edge. By enabling the
aerodynamic symmetry, the distribution along the spanwise direction is symmetrical to the
longitudinal aircraft plane. Thus it has a maximum value placed on the root cross-section
and decreases as y increases according to typical pressure profiles for subsonic aircraft
aerodynamics.

(a) Symmetry disabled (b) Symmetry enabled

 0

 0.5

 1

 1.5

 2

 2.5

Figure 10.3: Dimensionless pressure distribution for enabled and disabled aerodynamic symmetry
condition. V∞ = 70 m/s and α = 5◦. Aerodynamic mesh: 20× 40 panels. Configuration B.

It is interesting to note how the dimensionless pressure distribution strongly changes
when the aerodynamic symmetry is disabled. In Fig. 10.3a the trend is no longer symmetrical
to the longitudinal plane, but it is now symmetrical to the middle plane of the half-wing.
In fact now, from an aerodynamic point of view, the free edges exposed to the free stream
are the tip and root sides.

Table 10.3 shows how dimensionless pressure values change when the symmetry condition
is taken into account and when it is not taken into account (“enabled” or “disabled”).
Although for any section the maximum load always acts on its leading edge, now the
maximum pressure is no longer at y = 0, but at y = L

2 and its value is lower than before.
Moreover, not only is the maximum value different, but the pressure at the mid-cross-section
of the half-wing is also lower. This is a clear example of the way the left half-wing influences
the aerodynamic field also around the right one. In particular, its presence ha sthe effect
of increasing the Total Lift Force.

The third analysis focuses on the effect on the results of the aerodynamic mesh in shape
and refinement. At first configuration A is discretized via a uniform lattice of panels with
a variable panel ratio (PR). It is a parameter defined as the ratio between the chordwise
and spanwise lengths of the used aerodynamic elements. In other words, it represents
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10.1. Aerodynamic model assessment

Table 10.3: Dimensionless pressure values for enabled and disabled aerodynamic symmetry.

Aerodynamic symmetry condition

V∞ = 50 m/s α = 3 deg 20× 40 panels

Symmetry p y = 0 p y = L/2 p y = L

Enabled 2.4417? 2.3324 1.0341
Disabled 0.9974 2.1368? 0.9974

? Maximum dimensionless pressure value

the mesh shape. The number of panels along x axis is the last parameter of the analysis,
influencing the total number of elements as a consequence. The aerodynamic field (α and
V∞) is considered to be constant in the analysis in order to evaluate only the mesh effect.
The structural mesh stays fixed on 20 B4 elements and the theory has N = 3.

Table 10.4: Convergence study: Effect of the aerodynamic mesh on Total Lift Force and uzmax.
Configuration A.

V∞ = 50 m/s α = 3 deg Theory : N = 3 20 B4 el.

Number of panels along x axis

Panel
ratio

2 4 6 8 10

0.5
(10)a

2016.5b

3.6424c

(40)
1998.0
3.5612

(90)
1990.2
3.5146

(160)
1985.8
3.4856

(250)
1983.0
3.4662

1.0
(20)

1998.1
3.5643

(80)
1985.9
3.4859

(180)
1981.0
3.4524

(320)
1978.5
3.4341

(500)
1976.9
3.4227

2.0
(40)

1985.6
3.4870

(160)
1978.4
3.4337

(360)
1975.8
3.4143

(640)
1974.4
3.4044

(1000)
1973.6
3.3983

a (Total number of panels NAP )
b Total Lift Force L [N]
c Maximum displacement uzmax [mm]

The Total Lift Force and the maximum transverse displacement uzmax are reported
in Table 10.4. For each panel ratio, the convergence is investigated as the number of
panels changes. As expected, the trends confirm that the convergence of the VLM does
not depend on the mesh shape. In particular, both the displacement and the Lift decrease
as NAP increases approaching the final value. It is interesting to note that the results are
different according to the panels’ shape. For instance, considering panel ratio as equal to
0.5 and panel ratio as equal to 2.0 with the same NAP = 40, the aerodynamic loading and
the resulting deflection differ. The same situation recurs for NAP = 160. The 0.5-mesh is
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Chapter 10. Results: structural response to aerodynamic VLM loadings

twice as refined as the 2.0-mesh along the chord direction, whereas the opposite occurs
along the spanwise direction. Since the results are different, it means that the refinement
of the aerodynamic mesh leads to solutions which depend on the direction the refinement
acts along.

In order to make more detailed considerations, the percentage errors defined in Eq. 10.2
are introduced. For each panel ratio, the reference values LREF and uzmax REF refer to the
Lift and the displacement with 10 panels along the x axis. Their trend versus NAP are
summarized in Fig. 10.4.

% Error L =
L− LREF

LREF
% Error uzmax =

uzmax − uzmax REF

uzmax REF
(10.2)

The numerical convergence is more evident on the graph, but it is different for the Lift and
the deflection, as can be easily noted. This is true for any panel ratio (PR) involved. The
reason is that refining the aerodynamic discretization leads to a more accurate evaluation
of the Total Lift Force. However it is the result of a better description of the pressure
distribution and its corresponding shape. This means that by increasing NAP the resulting
loads not only differ in magnitude, but are also distributed differently. It is interesting
to note that the deflection depends not only on the magnitude of the load, but also on
its distribution. Thus, the dissimilar trends shown in Fig. 10.4 are plausible since they
confirm the obtainment of different pressure profile as the panels increase.
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Figure 10.4: Error of Total Lift Force and uzmax as a function of the aerodynamic mesh. Structural
mesh: 20 B4 elements . Theory: N = 3. Configuration A.

The analysis on the aerodynamic mesh is also extended to configuration B and Table 10.5
reports the results. Globally, the conclusions are very similar to the previous case. In fact,
the convergent trend is verified and confirms that it is independent of the panel ratio. The
most evident difference is the rate of convergence, which is higher for the swept wing case
for every panel ratio. Moreover, the comparison between the values obtained with the
same number of panels and different panel ratio suggests a less notable dependence on the
mesh shape for configuration A. In any case, this point should be analyzed more in detail.
Finally it is possible to conclude that the convergence of VLM is ensured as expected, at
least for simple wing configurations, but its speed depends on the shape of the panels and
the geometry of analyzed structure.
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10.2. Structural model assessment

Table 10.5: Convergence study: Effect of the aerodynamic mesh on Total Lift Force and uzmax.
Configuration B.

V∞ = 50 m/s α = 3 deg Theory : N = 3 20 B4 el.

Number of panels along x axis

Panel
ratio

2 4 6 8 10

0.5
(10)a

2039.1b

9.4821c

(40)
1995.9
9.0617

(90)
1979.2
8.8903

(160)
1970.4
8.7985

(250)
1965.0
8.7413

1.0
(20)

1994.7
9.0538

(80)
1970.1
8.7957

(180)
1961.2
8.7010

(320)
1956.6
8.6519

(500)
1953.8
8.6219

2.0
(40)

1968.4
8.7845

(160)
1956.1
8.6485

(360)
1951.7
8.6002

(640)
1949.4
8.5753

(1000)
1948.0
8.5601

a (Total number of panels NAP )
b Total Lift Force L [N]
c Maximum displacement uzmax [mm]

10.2 Structural model assessment

At this point the considerations closely related to the aerodynamic method are concluded.
From now on the analyses deal mainly with the structural behavior of the configurations
summarized in Table 10.1. In particular, the fourth assessment of the present chapter
discusses the effect of the structural parameters for the first four wings undergoing an
aerodynamic load with a pressure distribution similar to Fig. 10.3b.

At first, configuration B rotated with an angle of attack α = 3◦ and exposed to a free
stream with V∞ = 50 [m/s] is considered. Referring to the last analysis of Table 10.5,
the aerodynamic mesh used is fixed to 4 × 40 panels. In this situation, the loading is
approximately similar to that obtained with much more refined meshes, but with the
advantage of a less expensive numerical cost. In any case, such a choice is arbitrary in
that at this point the aim is to evaluate the structural behavior and the conclusions are
independent of NAP . A structural convergence study is carried out to evaluate the combined
effect of the number of Finite Elements NEL and the expansion order N on the solution.
The mechanics of the beam is described in terms of the maximum vertical displacement
uzmax, which is located at the leading edge of the tip cross-section for configuration B.
This location derives from the coupling of bending and torsional loads applied on the wing
exposed to the free stream. Typically, the torsion of a straight wing about y axis tends to
lift the leading edge of any cross-section. The results are summarized in Table 10.6.

In accordance with the typical behavior of FEM solutions, the maximum displacement
increases and becomes more accurate as NEL increases. Therefore a higher number of
elements enhances the flexibility of the structure. An excellent agreement is obtained
between NASTRAN and the higher-order model’s results. Table 10.6 shows the percentage
error in computing the maximum displacement for all the theories and a mesh of 40
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Chapter 10. Results: structural response to aerodynamic VLM loadings

Table 10.6: Convergence study: Effect of the number of B4 elements on ūzmax [mm] for different
beam models. Configuration B.

V∞ = 50 m/s α = 3 deg 4× 40 panels

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 8.8021 8.8119 8.8189 8.2425 8.3508 8.3686
5 8.8021 8.8119 8.8189 8.4300 8.5586 8.5805
10 8.8021 8.8119 8.8189 8.4880 8.6202 8.6431
20 8.8021 8.8119 8.8189 8.5159 8.6485 8.6723
40 8.8021 8.8119 8.8189 8.5285 8.6607 8.6854

+1.451 % +1.564 % +1.645 % -1.702 % -0.179 % +0.106 %

NASTRAN (solid): 8.6762

elements. The trend is convergent for each adopted theory as reported in Fig. 10.5a. In
particular, when the theory is linear (EBBM, TBM and N = 1), the results are not affected
by NEL whereas for N > 1 the solution approaches a reference value. This shows that the
refinment of B4 elements-mesh for a straight wing charged with this kind of distributed
load is not the best way to improve the results if a first-order model is involved.

(a) Configuration B
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Figure 10.5: Maximum transverse displacement uzmax as a function of the structural mesh and the
models involved for straight wings.

As far as the approximation order is concerned, the linear theories give very similar
results, although they are slightly different (in the third significant digit). The absolute
value of the gap among N ≥ 1 theories is more evident underlining the importance of
increasing N to reach convergent results. However, this gap decreases in absolute value
as the expansion order increases. Higher orders than linear approximation yield a more
flexible structure. It is interesting to note how uzmax decreases when the theory changes
from a linear to a parabolic form. The main reason for this turnaround stands in Poisson’s
locking correction adopted only for N = 1. In fact, according to Carrera and Brischetto
[120, 121] this correction is detrimental for orders higher than the linear one.

At this point a slender wing is introduced and named configuration C. Essentially, its
geometry is analogous to configuration B, with the sole difference of a higher value for
the parameter L/c̄. Analysis of the combined convergence is carried out again and the
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10.2. Structural model assessment

conclusions are similar to the previous case, see Table 10.7. This time the free stream
velocity is lower, equal to 20 [m/s], in order to avoid large deflections and so to respect the
linear approximation. In the matter of numerical mesh, the convergent trend of uzmax as
NEL increases is shown in Fig. 10.5b and is the same as for configuration B. Therefore, it
appears to be the distinctive numerical trend for a straight beam in a load case which is
mainly bending, regardless of its slenderness.

Table 10.7: Convergence study: Effect of the number of B4 elements on ūzmax [cm] for different
beam models. Configuration C.

V∞ = 20 m/s α = 3 deg 4× 40 panels

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 9.4210 9.4216 9.4220 8.9471 8.9603 8.9615
5 9.4210 9.4216 9.4220 9.1999 9.2263 9.2291
10 9.4210 9.4216 9.4220 9.2718 9.3067 9.3108
20 9.4210 9.4216 9.4220 9.3036 9.3418 9.3466
40 9.4210 9.4216 9.4220 9.3186 9.3578 9.3628

+1.046 % +1.052 % +1.056 % -0.053 % +0.368 % +0.422 %

NASTRAN (solid): 9.3235

As far as expansion order is concerned, the results highlight a similar diversification of
the theories. Nevertheless, by decreasing L/c̄ the accuracy of the model becomes more and
more important. For configuration C less remarkable differences have been found in the
case N > 1 with respect to configuration B. As a matter of fact, cubic and fourth-order
approximations differ in the fourth significant digit. Besides, the linear theories give the
same results, as first-order approximation matches the classical models. Now the linear
terms of ux and uz and the shear effects can be neglected, whereas, in the case of short
beams, the shear effects are important since the EBBM solution differs from the TBM
and first-order results. It should be noted that EBBM presents more stiffness than TBM:
+0.111% for shorter configuration B versus +0.006% for slender configuration C. On the
contrary, EBBM provides less stiffness than N = 4: -1.344% for shorter configuration B
versus -0.622% for slender configuration C. An excellent agreement with NASTRAN is
again obtained by higher-order models.

After having analyzed straight wings, the fourth assessment continues to focus on
two tapered structures. The first is configuration A, which has already been introduced.
As usual, the geometry exposed to V∞ = 50 [m/s] with α = 3◦ is discretized by 4 × 40
aerodynamic panels. Table 10.8 summarizes the corresponding results and Fig. 10.6a shows
the trends as the number of elements changes for each theory involved. For any mesh
with more than 2 elements, uzmax increases with N when N is greater than 1, to such an
extent that no remarkable differences are detected for high-order expansion, so confirming
the convergence on N . For a poor mesh of 2 elements, the model presents a convergence
problem which is evidently due to the swept configuration. As will be clear in the following,
this swept wing is subjected to a significant twist of the cross-section. Bearing in mind that
linear theories (EBBM, TBM, and N = 1) are not able to handle this mechanical behavior,
the Poisson’s locking correction is not sufficient to make them effective in computing the
maximum displacement. On the contrary, the refined models approach NASTRAN results.
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(a) Configuration A
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(b) Configuration D
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Figure 10.6: Maximum transverse displacement uzmax as a function of the structural mesh and the
models involved for tapered wings.

Table 10.8: Convergence study: Effect of the number of B4 elements on ūzmax [mm] for different
beam models. Configuration A.

V∞ = 50 m/s α = 3 deg 4× 40 panels

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 4.2085 4.2164 4.2244 3.7847 5.2668 3.4187
5 3.1274 3.1347 3.1471 3.6050 3.8213 3.9757
10 2.9928 3.0000 3.0131 3.4188 3.5266 3.5811
20 2.9604 2.9675 2.9809 3.3586 3.4337 3.4863
40 2.9524 2.9595 2.9729 3.3411 3.3926 3.4285

-15.03 % -14.83 % -14.44 % -3.848 % -2.366 % -1.332 %

NASTRAN (solid): 3.4748

In relation to the numerical convergence, the trend is different with respect to configura-
tions B and C, since the deflection decreases as NEL increases. By discretizing the tapered
wing with a poor mesh, the elements close to the tip have cross-sections with dimensions
shorter than reality. This leads the analysis to underestimate the moment of inertia and
therefore structural stiffness too. This is why the trends of uzmax versus NEL for EBBM,
TBM, and N = 1 are no longer independent of NEL. In the case of a swept not tapered
wing, such curves would have been as straight as for configurations B and C. Hence, the
taper ratio causes a remarkable difference on the maximum displacement between NEL = 2
and NEL = 40: +42.5% for EBBM versus +12.6% for N = 3.

The fourth assessment completes the analysis of the structural method with a further
configuration, named D in Table 10.1. This time, the wing is dihedral with a thin-walled
rectangular cross-section so as to simulate a typical wing box, see Fig. 10.1b. The thickness
of the skin is 5% of the rectangle’s height. The considered height-to-chord length ratio
is 0.1. The taper ratio is 0.25 as in the swept configuration A, whereas the parameter
L/c̄ is higher. By using the same aerodynamic parameters and boundary conditions as
before, Table 10.9 summarizes the combined convergence of uzmax on N and NEL. The
structural convergence as N increases is guaranteed and the conclusions about Poisson’s
locking correction formerly introduced are still valid. On the contrary, the gap between
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theories is less evident for configuration D than for configuration A. This applies mainly
because the torsion of the tip cross-section is less significant for the unswept wing than
the swept one. This makes the classical theories effective at least in the computation of
the maximum displacement compared to N = 4, which offers the closest result to the
NASTRAN solution.

Table 10.9: Convergence study: Effect of the number of B4 elements on ūzmax [mm] for different
beam models. Configuration D.

V∞ = 50 m/s α = 3 deg 4× 40 panels

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 3.4704 3.4732 3.4744 3.2120 3.2852 3.3446
5 2.5787 2.5812 2.5822 2.4893 2.5586 2.5777
10 2.4675 2.4699 2.4709 2.4065 2.4733 2.4849
20 2.4407 2.4431 2.4441 2.3885 2.4508 2.4629
40 2.4340 2.4365 2.4374 2.3848 2.4404 2.4539

-1.688 % -1.587 % -1.551 % -3.676 % -1.430 % -0.885 %

NASTRAN (solid): 2.4758

In the matter of numerical mesh, Fig. 10.6b shows trends which in some respects are
similar to Fig. 10.6a. They share the deflection decrease as NEL increases, so confirming
that the taper ratio is the dominant parameter on the numerical convergence. As a
consequence, a notable gap between NEL = 2 and NEL = 40 appears again: +42.6% for
Euler-Bernoulli’s theory and +36.3% for fourth-order model. However, the convergence on
NEL is achieved, so confirming the method’s numerical consistency for dihedral wings as
well as straight, swept, and tapered ones.

10.3 Load cases analysis

At this stage, the convergence of the structural method has been proved. In the same
manner, the results have highlighted the remarkable difference among the theories involved
and the capability of higher-order models, too. The analyses now deal mainly with the
structural response of wings subjected to different kinds of loading (aerodynamic, bending
and torsional) combined together. Such combinations are known as load cases and listed
in Table 10.10.

The aim is to simulate and discuss the behavior of different wing configurations under
a number of flight conditions. To begin with, load case 1 is a pure bending Pz applied to
the straight wing B, which is exposed to a free stream V∞ = 70 [m/s] with α = 5◦. These
values of aerodynamic parameters will remain unchanged for the current fifth assessment,
according to Table 10.10. The aerodynamic mesh has 4 × 40 VLM panels whereas 20
B4 elements discretize the structure. While the aerodynamic load is distributed, Pz is a
concentrated load. In particular, it is placed at 50 % of the span and equally split upon
the two spars (at the first and the third quarter of the chord). The value of Pz shown
in the table is negative just because its versus is opposite to z axis. For instance, during
the flight it could simulate the effect of an inertial load along z axis due to wing engines,
missiles, nacelles, or drop tanks.
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Table 10.10: Load cases applied to the wing configurations.

Load Case ID 1 2 3 4 5 6

Configuration B A A E E A, E, F
V∞ [m/s] 70 70 70 70 70 70
α [deg] 5 5 5 5 5 5
Bending Pz [kN] -6.8 -7.2 -20 -7.2 -20 -
Position Pz

a 50% 50% 30% 50% 30% -
Twist Ty [kNm] - - -5, 0, 5 - 0, 3, 6 -
Position Ty

b - - 30% - 30% -

a Position yP along the spanwise direction: yP /L
b Position yT along the spanwise direction: yT /L

As explained previously and as is well known in the aeroelastic field, the aerodynamic
load generates a combination of bending and torsional stress for the wing. In the case of
a straight wing, the effect is a counter-clockwise rotation of the structure about y axis,
with its peak at the tip cross-section. Hence its leading edge undergoes the maximum
transverse displacement of the whole structure uzmax. On the contrary, the bending load
has a negligible torsional effect due to the fact that its application point does not coincide
with the cross-section center of twist. However, Pz provides an overall reduction of the
transverse displacement, although it entails the appearence of a rising local stress at its
application point.

The problem is analyzed at first with the classical Euler-Bernoulli’s beam theory and
then with the third-order model. The comparison of results is shown in Fig. 10.7, where the
tridimensional deflections are drawn by means of a large scale factor to clearly portray their
differences. It is evident that the model N = 3 has the capability to show the torsional effect
due, in this case, exclusively to aerodynamics. On the whole, EBBM properly describes
the bending behavior, but turns out to be ineffective with torsion thus giving unrealistic
solutions.

The load case 2 is again composed of pure bending and the aerodynamic load, this time
involving the swept wing A. The considerations introduced for the previous case about the
load direction and the application point remain true for the current and the following cases.
Because of the positive sweep angle, the whole structure would be expected to undergo
a clockwise rotation about y axis due to the aerodynamics. When Pz is also applied, it
generates a counter-clockwise twist able to contrast the aerodynamic effect. There are
two reasons: at first the bending load acts behind the profile’s center of twist, then the
trailing edge is the “weak side” for configuration A. In other words, when Λ is positive,
the trailing edge is more sensitive to a bending load, even if the latter were placed at the
profile’s center of twist. In the case of a negative Λ, the same applies to the leading edge.
In this case, both give clockwise torsional effects, which are expecially evident at 50 % of
the span. The third-order model shows in Fig. 10.8 that this local twist impacts on the
overall structure, to such an extent that the tip cross-section is rotated clockwise too. The
limits of EBBM are again evident, even for a bending case.

In load case 3, a pure torsional load Ty is added to the second case. Since the aim of the
current assessment is to simulate flight conditions, it is not possible to neglect loadings such
as a pitching moment by pilot intervention, thrust generated by wing engines, or inertial
loads along x axis due again to wing engines, missiles, and drop tanks. Such loads imply a
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Undeformed

EBBM :  Pz = - 6.8 kN 

N = 3  :  Pz = - 6.8 kN 

Figure 10.7: Comparison of classical and higher-order models for configuration B. Load case 1.

EBBM :  Pz = - 7.2 kN 

N = 3  :  Pz = - 7.2 kN 

Figure 10.8: Tridimensional deformation of configuration A. Load case 2.

twist about y axis, considering that the center of gravity of these objects lies below the wing
surface. Besides, in the case of thrust, its bending contribution about z axis is negligible
because of the high level of stiffness of the structure about such an axis. Thus, the analysis
of the swept wing as the torsion Ty increases is made again with a third-order model and
its results are in Fig. 10.9. The local deflection near the application points (yP = yT )
becomes more evident as Ty increases, whereas uz decreases at the tip. In particular, the
twist warps the trailing more than the leading edge of each cross-section, in accordance
with the previous remarks about the torsional center and the “weak side”. On the contrary,
Euler-Bernoulli’s theory always provides the same results, unable to detect any twist. The
figure underlines once more how N = 3 model represents a high-performance theory, unlike
EBBM, in the evaluation of different flight conditions.

To conclude the fifth assessment, a further wing configuration is introduced and named
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N = 3  :  Pz = - 20 kN , Ty =  - 5 kNm 
N = 3  :  Pz = - 20 kN , Ty =    0 kNm 
N = 3  :  Pz = - 20 kN , Ty = + 5 kNm 

EBBM :  Pz = - 20 kN , Ty =  - 5, 0, + 5 kNm 

Figure 10.9: Effect of the variable torsional load on configuration A. Load case 3.

with letter E. It has the same properties of configuration A, with a difference in the negative
sweep angle. It is not a usual wing, but it has been widely studied recently expecially
with the introduction of composite materials. With respect to previous geometries, it
is structurally more sensitive to aerodynamics since its tip cross-section undergoes a
remarkable counter-clockwise rotation about y axis. As far as load case 4 is concerned,
the bending load Pz reduces the transverse displacement but introduces two opposite
twist effects. The application point behind the cross-section’s center of twist generates a
counter-clockwise rotation, whereas an opposite torsion is due to the fact that now the
“weak side” is the leading edge. In conclusion, Fig. 10.10 displays the counter-clockwise
twist of the overall wing obtained by means of a higher-order model. As usual, EBBM does
not detect the proper deformation even for this basic bending case and underestimates
uzmax.

Load case 5 involves Ty variable in value and placed at 30 % of the span like Pz. In
Fig. 10.11 configuration E shows the increasing local effect on the most stressed cross-
section. When the twist is stronger, the transverse displacement at the tip increases for the
forward swept wing. Such a behavior is opposite to the swept configuration A. In the same
manner, a positive Ty does not countervail the typical torsion due to the aerodynamics
when forward swept geometry is involved. For the generic cross-section, now the realistic
center of rotation seems to be placed behind the center of twist. While for wing A the
change of twist in value mainly rotates the trailing edge, only slightly involving the leading
edge, wing E undergoes a notable variation in uz on the leading edge, too. Such a point is
presumably due to the negative sweep angle, which turns the leading edge to the “weak
side”. As usual, all these comments are possible thanks to the capability of higher-order
models to describe the structural behavior for all the load cases proposed. The discussion
of results would not have been possibile by relying on only classical beam models.

By considering the most constraining twist (Ty = 6 kNm) of load case 5, the transverse
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EBBM :  Pz = - 7.2 kN 

N = 3  :  Pz = - 7.2 kN 

Figure 10.10: Tridimensional deformation of configuration E. Load case 4.

N = 3  :  Pz = - 20 kN , Ty = 0 kNm 

N = 3  :  Pz = - 20 kN , Ty = 3 kNm 

N = 3  :  Pz = - 20 kN , Ty = 6 kNm 

EBBM :  Pz = - 20 kN , Ty = 0, 3, 6 kNm 

Figure 10.11: Effect of the variable torsional load on configuration E. Load case 5.

shear stress τxz along the charged cross-section is investigated with a third-order model.
The distribution is presented in Fig. 10.12. Obviously, Euler-Bernoulli’s beam theory fails
to detect any transverse shear effect because of the assumptions on the displacement field.
It is to be noted how the linear and higher-order terms of ux and uz cannot be neglected.
In fact, the shear effects are remarkable in such a constraining load case. In particular, the
highest values of τxz are placed at the joint points between the airfoil and the spar at 25%
of the chord. Such a spar is highly stressed, reaching both the maximum and minimum
values. On the contrary, the rear spar seems to not undergo high values of transverse shear
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stress.

x

z

τxz [MPa]

N = 3
EBBM

-400 -200  0  200  400  600  800

Figure 10.12: Distribution of the transvese shear stress τxz on the deformed airfoil cross-section
(30% span). Load case 5.

It is worth pointing out the high rate of stress placed at the trailing edge and slightly
below the leading edge. It is to be noted that such conclusions have to refer to the particular
case in question, which is composed of bending, torsional and aerodynamic loads. Moreover,
Fig. 10.12 illustrates how the proposed 1D model is able to portray the cross-section’s
deformation. The aim of this example is to highlight the significance of a high-performance
analysis of stress, achievable by increasing the expansion order without giving up the
one-dimensional discretization.
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EBBM :  Λ =  - 13.5°, 0°, 13.5°

N = 3 :  Λ = - 13.5°

N = 3 :  Λ = 0°

N = 3 :  Λ = 13.5°

Figure 10.13: Effect of sweep angle on the torsional response of configurations A, E, and F subjected
to aerodynamic pressure distribution. Load case 6.

The concluding assessment concerns load case 6, which involves neither bending nor
torsional loadings. The purpose is to analyze the effect of sweep angle on wings exposed to
a free stream velocity V∞ = 70 [m/s] with α = 5◦. A further unswept configuration F is
introduced and compared to A and E, with Λ equal to 13.5◦ and −13.5◦ respectively. This
choice is purpose-made, since the wings have all the same geometrical parameters with
the exception of sweep angle. The analysis investigates the structural torsion along the
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spanwise direction due to the only aerodynamic pressure by means of the quantity ∆uz.
It is defined as the difference of uz between leading and trailing edges. The simulation is
performed for each case via EBBM and third-order model and Fig. 10.13 shows the results.

At first glance, the twist is more significant when the sweep angle is high. Nevertheless,
the unswept wing also undergoes a twist, since the aerodynamic load is a combination of
bending and torsion. In particular, the rotation about y axis is positive and its maximum
is not placed at the tip cross-section. As expected and explained above, the rotation is
positive for the forward swept wing E and negative for the swept A. It should be noted that
the corresponding lines in Fig. 10.13 are not symmetrical with respect to the horizontal
axis. Their maximum absolute values are not at the same y coordinate and this means
that the shape of ∆uz depends on the sweep angle’s sign, too.

As expected, Euler-Bernoulli’s beam theory neglects any torsion and makes no difference
among wings. Instead, Fig. 10.13 could be very helpful to the design and the evaluation
of aeroelastic behavior of wings. Again, the capability of higher-order models applied to
one-dimensional finite elements via the CUF is proved.
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Chapter 11

Results: VLM-CUF 1D aeroelastic
coupling

As shown in Fig. 11.1, a local cartesian coordinate system composed of x and z axes parallel
to the cross-section plane is defined, whereas y represents the out-of-plane coordinate.
However, the y axis is not necessarily a centroidal one.

 yglob

 x loc

 x loc’ xglob

 yloc

 yloc’

 z loc

 z glob
 z loc’

V

Figure 11.1: One-dimensional structural mesh and two-dimensional aerodynamic mesh of the wing
structure

Several wing configurations with different geometries, layout and loadings are considered.
Two different types of response solutions are investigated and compared in this chapter.
The first one coincides with the static structural analysis, hereinafter referred as SSA, and
involves only the structural stiffness matrix by disabling the aerodynamic matrix Kaero.
Hence, the following system is solved:

Kstr · q = LRHS (11.1)
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Chapter 11. Results: VLM-CUF 1D aeroelastic coupling

The second solution is the static aeroelastic analysis (SAA) which solves the aeroelastic
system (Eq. 11.2, which is equal to Eq. 9.82) by adding the aerodynamic stiffness matrix
to the elastic one:

Kaeroelastic · q = LRHS (11.2)

Straight and swept wing configurations as well as rectangular and airfoil shaped cross-
sections are considered. Unless otherwise specified, they are subjected to a pure aerodynamic
loading (vector LRHS) and modeled with a one-dimensional mesh of 20 B4 elements along
the y axis. This choice ensues from the conclusions made in previous CUF works on isotropic
and orthotropic thin and thick walled structures [122, 138]. Cantilever boundary condition
on half-wings is imposed and the symmetry condition is exploited in the aerodynamic
computation. Both isotropic and anisotropic composite materials are taken into account
and a further analysis evaluates the combined effect of the material lamination and the
sweep angle on the divergence speed of a composite wing.

In the following analyses, the wings are exposed to a free stream velocity V∞ parallel
to the x axis with an angle of attack α. The assessment of the Vortex Lattice formulation
in computing LRHS was carried out in [138]. A result is here retrieved in order to evaluate
the aerodynamic pressure distribution along different wing configurations.

An aft-swept wing with Λ = 45◦ and a forward-swept wing with Λ = −45◦ with a
constant chord c = 1 m are considered as untapered reference configurations [133]. The
half wing span-to-chord ratio L/c is equal to 2 and the terms Cl and CL are introduced as
follows:

Cl (y) =
L?(y)

1

2
ρ∞ V 2

∞ 2 e (y) c (y)

CL =
Ltot

RHS

1

2
ρ∞ V 2

∞ L c̄

(11.3)

Ltot
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NAP∑
i=1

(
L
)
i

=

NAP∑
i=1

1

2
ρ∞ V

2
∞ tan

(
π − α

) (
ID
[
AD
]−1

d
)
i

(11.4)

where c (y) and L?(y) are the chord and the Lift Force generated by the pressure acting on
the panels with span-length 2 e (y) placed at the y coordinate, respectively. Ltot

RHS is the
Total Lift Force acting on the right half-wing and Eq. 11.4 refers to Eq. 11.5:

LRHS =
1

2
ρ∞ V

2
∞ tan

(
π − α

)
Ã?

3

T
· ID

[
AD
]−1

d (11.5)

The air density is henceforth assumed to be ρ∞ = 1.225 kg/m3. The trend of the Cl
CL

ratio
along the y axis is shown for both the swept wings in Fig. 11.2. In the computation two
different aerodynamic meshes are involved, differing in shape and in the total number
of panels. It is interesting to note the influence of the sweep angle Λ on the pressure
distribution and the position of the maximum pressure on the spanwise direction. A slight
dependence on the aerodynamic mesh used is furthermore detected and notable mainly for
the aft-swept case. An excellent agreement with the results obtained by Katz and Plotkin
[133] is achieved.

For a straight configuration, it has been verified that the maximum pressure acts on
the leading edge of each section, with an overall maximum placed on the root cross-section.
The pressure distribution computed by the VLM decreases along the y axis according to
the low-speed aerodynamics of aircraft straight wings [133]. It is noteworthy that the
quantities α and V∞ affect such a pressure distribution only in value, but not in shape.
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Figure 11.2: Effect of the sweep angle on the spanwise loading for two reference untapered wings

11.1 Isotropic metallic wings

11.1.1 Airfoil-shaped wing

In this section, an isotropic aluminium with Young’s modulus E = 69 GPa and Poisson’s
ratio ν = 0.33 is introduced. A straight untapered wing is exposed to a free stream velocity
V∞ = 50 m/s with α = 3◦. The half-wing span L is equal to 5 m and the chord is c = 1
m. The cross-section adopted is a thin-walled NACA 2415 airfoil, which is subdivided
into three cells by two spars along the spanwise direction inserted at 25% and 75% of the
chord, see Fig. 11.3(a). The front and rear spars’ thicknesses are, respectively, 10% and
7% of the airfoil height, whereas the percentage is 4% for the skin. The considered airfoil
height-to-chord ratio is 0.15. An aerodynamic mesh composed of 4 × 40 panels is set on
the reference surface of the structure.

(a) NACA 2415 with 3 cells (b) Rectangular section

Figure 11.3: Cross-sections used for the wing configurations

A convergence study is carried out to evaluate the combined effect of the number of B4
finite elements NEL and the expansion order N on the static aeroelastic response (SAA) of
the wing. The mechanics of the structure is described in terms of the maximum transverse
displacement uzmax, which is located at the trailing edge of the tip cross-section. This
location derives from the aeroelastic coupling between the twist and the vertical bending
of the wing exposed to the free stream. The results for SAA are shown in Table 11.1.

The numerical convergence on NEL is achieved for each adopted theory as reported in
Fig. 11.4. A higher number of elements enhances the flexibility of the structure with the
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Chapter 11. Results: VLM-CUF 1D aeroelastic coupling

Table 11.1: Convergence study: effect of the number of B4 elements on uzmax [mm] for different
beam models. Straight metallic airfoil-shaped wing. V∞ = 50 m/s, α = 3◦, 4× 40 panels. SAA.

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 8.9407 8.9506 8.9603 8.3904 8.4972 8.5134
5 8.9407 8.9506 8.9603 8.5810 8.7112 8.7315
10 8.9407 8.9506 8.9603 8.6393 8.7734 8.7953
20 8.9407 8.9506 8.9603 8.6673 8.8015 8.8245
40 8.9407 8.9506 8.9603 8.6800 8.8136 8.8377

exception of first-order theories EBBM, TBM, and N = 1, in which cases the results are
slightly different and not affected by the mesh.
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Figure 11.4: Maximum transverse displacement uzmax as a function of the structural mesh and the
models involved. Straight metallic airfoil-shaped wing. SAA

The maximum displacement increases with N for any mesh, to such an extent that no
remarkable differences are detected for high-order expansion. It is interesting to note how
uzmax decreases when the theory changes from a first-order to a second-order form. The
main reason for this turnaround stands in Poisson’s locking correction adopted only for
first-order theories [120]. In fact, by disabling such a correction for first-order theories,
uzmax would be even lower than the second-order case. Thus, higher orders than linear
approximation yield a more flexible structure.

The comparison of the aeroelastic response of the wing with MD NASTRAN is now
faced. While the proposed CUF 1D model is able to easily handle arbitrary cross-section
geometries for both SSA and SAA analyses, the choice of an airfoil-shaped wing requires
an equivalent procedure in MD NASTRAN for the aeroelastic analysis (sol 144). The
procedure here used involves an equivalent flat plate with a rectangular cross-section which
is supposed to approximately emulate the bending and torsional behavior of the actual wing.
This technique retrieves the results of structural response (SSA) for the same airfoil-shaped
wing analyzed in [138] and summarized in Table 11.2. In that case, an equivalent procedure
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11.1. Isotropic metallic wings

was not necessary because the MD NASTRAN structural analysis (sol 101) was carried
out by charging the front skin of the airfoil-shaped wing (solid elements - 106 DOFs) with
the pressures due to the pure aerodynamic loading computed by the VLM (vector LRHS).

Table 11.2: Comparison of the structural response (SSA) of the airfoil-shaped wing and the
equivalent flat plate between MD NASTRAN and N = 4 (40 B4 elements).

SSA
MD NASTRAN

Airfoil Wing
MD NASTRAN

Flat Plate
N = 4

Flat Plate
N = 4

Airfoil Wing

uzmax 8.6762 8.6762 8.6787 8.6854
% Diff - +0.000 % +0.029 % +0.106 %
DOFs 106 1845 5445 5445

The equivalent height heq = 80.382 mm is now chosen so that the associated equivalent
wing and the airfoil-shaped wing show the same value for uzmax computed by MD NAS-
TRAN (SSA), see second and third columns of Table 11.2. Hence the aeroelastic analysis
is carried out only on the equivalent flat plate via MD NASTRAN (sol 144) and the results
are compared with the fourth-order model (SAA) in Table 11.3.

Table 11.3: Comparison of the aeroelastic response (SAA) of the airfoil-shaped wing and the
equivalent flat plate between MD NASTRAN and N = 4 (40 B4 elements).

SAA
MD NASTRAN

Flat Plate
N = 4

Flate Plate
N = 4

Airfoil Wing

uzmax 8.7088 8.7124 8.8377
% Diff - +0.041 % +1.480 %
DOFs 1845 5445 5445

The results about the equivalent flat plate in Tables 11.2 and 11.3 show an excellent
agreement of the 1D higher-order model with MD NASTRAN (error of 0.029 % for SSA and
0.041 % for SAA). On the contrary, the comparison between the equivalent flat plate via
MD NASTRAN and the actual airfoil shaped wing via N = 4 leads the error to be no more
negligible, mainly for the aeroelastic response analysis (0.106 % for SSA vs. 1.480 % for
SAA). Thus, the procedure used introduces a further relevant approximation of the actual
aeroelastic behavior of the structure. In fact, the in-plane deformation of the cross-section
plays an important role as proved in [138], where the same NACA 2415 profile is considered.
The present 1D model is able to handle even complex cross-section geometries also for the
aeroelastic analysis without increasing the number of DOFs. This model does not require
the introduction of an equivalent flat plate to study the structural and aeroelastic response
of arbitrary wings via a low number of DOFs (5445 vs. 106 for MD NASTRAN).

11.1.2 Rectangular cross-section

A thin rectangle is now taken into account as cross-section for the straight wing introduced
above. Referring to Fig. 11.3(b), the considered height-to-chord ratio is 0.02 (h = 20 mm).
An aerodynamic mesh composed of 10 × 50 panels is set on the reference surface of the
structure, which is exposed to an increasing free stream velocity with α = 1◦.

Table 11.4 reports a parametric study on the maximum transverse displacement, placed
again at the leading edge of the tip cross-section, as the free stream velocity changes. The
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Chapter 11. Results: VLM-CUF 1D aeroelastic coupling

Table 11.4: Effect of the free stream velocity V∞ [m/s] on uzmax mm. Straight wing, c = 1 m, L =
5 m, h = 20 mm. 20 B4 elements. α = 1◦, 10× 50 panels. SSA vs. SAA.

V∞ = 10 V∞ = 30 V∞ = 50

SSA SAA SSA SAA SSA SAA

EBBM 7.6277 7.6272 68.650 68.611 190.70 190.40
-0.0060 %? -0.0557 % -0.1546 %

TBM 7.6276 7.6272 68.649 68.611 190.69 190.40
-0.0062 % -0.0556 % -0.1544 %

N = 1 7.6278 7.6275 68.650 68.622 190.70 190.48
-0.0045 % -0.0407 % -0.1129 %

N = 2 6.9600 7.0244 62.640 68.236 174.00 224.45
+0.9258 % +8.9345 % +28.997 %

N = 3 7.4226 7.4966 66.804 73.241 185.57 243.94
+0.9960 % +9.6360 % +31.457 %

N = 4 7.4385 7.5126 66.947 73.397 185.96 244.46
+0.9959 % +9.6348 % +31.458 %

NASTRAN - 7.5446 - 73.731 - 245.49

? Difference between SAA and SSA

structural and the aeroelastic responses are evaluated. While uzmax increases linearly with
the square of V∞ for SSA, the same does not occur for SAA. The contribution of Kaero to
the system stiffness becomes more evident as V∞ increases and the difference from SSA
gets very significant for V∞ = 50 m/s. This difference increases with the expansion order N
by approaching MD NASTRAN results as reported in Table 11.4. It should be noticed that
EBBM and TBM here used are unable to handle any torsional behavior since no warping
functions, e.g. in Vlasov beam model, have been implemented. However, N = 1 model
takes into account torsional effects in the displacement field but it results to be ineffective
especially when the aeroelastic effect on the wing is relevant.

The twist of the tip cross-section (y = L) for the structural and aeroelastic responses is
investigated by means of the quantity ∆uz, which is defined as the difference of uz between
the leading and trailing edges. The simulation is performed via a fourth-order approximation
and the results are shown in Fig. 11.5. It is interesting to note the raising importance of
the aeroelastic effect of V∞ on the tip section twist and the excellent agreement between
MD NASTRAN (sol 144) and the higher-order model, which is able to properly describe
the torsional behavior of the structure unlike first-order beam theories.

The dimensionless quantity u?zTIP is introduced to study the bending behavior of the
wing. It represents the transverse displacement at the midpoint of the tip cross-section
normalized with respect to ūzTIP, which is the tip-maximum displacement of a cantilever
beam subjected to a uniformly distributed load q = Ltot

RHS / L:

ūzTIP =
q L4

8 E I
⇒ u?zTIP =

uzTIP

ūzTIP
= uzTIP

8 E I

Ltot
RHS L

3
(11.6)

The free stream velocity has no effect on ūzTIP for SSA. In fact, in this case the raising
V∞ modifies the aerodynamic pressure distribution only in value, but not in shape. Ltot

RHS

increases linearly with the square of V∞ as well as uzTIP. The trend of u?zTIP vs. V∞ is
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Figure 11.5: Effect of V∞ on the twist ∆uzTIP. Isotropic material. SSA vs. SAA

therefore a constant straight line as shown in Fig. 11.6. As confirmed in Table 11.4, a
N = 4 theory detects with a good accuracy in comparison with MD NASTRAN (sol 144)
that the increasing free stream velocity enhances the fluid-structure coupling effect on the
structure for SAA.
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Figure 11.6: Effect of V∞ on the dimensionless u?zTIP. Isotropic material. SSA vs. SAA

A parametric study on the influence of the aspect ratio on the response of the straight
wing is carried out and summarized in Table 11.5. The chord length is maintained constant
and the half-wing span L ranges from 5 to 25 m whereas the thickness is h = 100 mm.
Poisson’s locking correction is not sufficient to make first-order approximation models
effective in computing the maximum displacement for SSA, since the tip section twist
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becomes relevant especially for slender wings. Moreover, the increasing aeroelastic effect
with the aspect ratio is detectable only by means of a higher-order model, which accurately
approaches the MD NASTRAN solution as L increases (SAA).

Table 11.5: Effect of the length L [m] on uzmax [mm]. 20 B4 elements. Straight wing, chord = 1 m,
h = 100 mm. 20 B4 elements. V∞ = 70 m/s, α = 1◦, 10× 50 panels. SSA vs. SAA.

L = 5 L = 10 L = 20

SSA SAA SSA SAA SSA SAA

EBBM 2.9900 2.9899 56.353 56.347 1000.24 999.56
-0.0024 %? -0.0114 % -0.0679 %

TBM 2.9911 2.9910 56.358 56.352 1000.25 999.57
-0.0024 % -0.0115 % -0.0677 %

N = 1 2.9928 2.9933 56.366 56.402 1000.28 1002.99
+0.0137 % +0.0647 % +0.2705 %

N = 2 2.8620 2.8731 54.631 55.717 981.43 1075.78
+0.3863 % +1.9864 % +9.6135 %

N = 3 2.9192 2.9307 55.358 56.465 988.76 1084.07
+0.3945 % +2.0004 % +9.6387 %

N = 4 2.9325 2.9443 55.478 56.611 989.72 1087.30
+0.4020 % +2.0419 % +9.8598 %

NASTRAN - 2.9505 - 56.723 - 1092.77

? Difference between SAA and SSA

The span parameter modifies the distribution of aerodynamic pressures acting on the
reference surface exposed to the free stream (vector LRHS) not only in value, but also in
shape. Figure 11.7 emphasizes the role played by the aspect ratio on this aerodynamic
pressure, whose trend approaches a uniformly distributed load as L increases. The progress
of the dimensionless quantity u?zTIP is thus no more a constant straight line for SSA analysis,
but rather a curve approaching the unit value, see Fig. 11.8. As far as the aeroelastic
response is concerned, the influence of high aspect ratio on u?zTIP depicted by the proposed
refined method is once more consistent with the MD NASTRAN results.

11.2 Anisotropic composite wings

A composite material is introduced to analyze the aeroelastic tailoring on a straight wing
with length L = 10 m and chord c = 1 m. The rectangular cross-section has height h = 100
mm. Young’s modulus along the longitudinal axis EL is equal to 20.5 GPa, whereas those
along the transverse directions are equal to 10 GPa. Poisson’s ratio ν = 0.25 and the
shear modulus G = 5 GPa are the same in all directions. Figures 11.9 and 11.10 show the
influence of the lamination θ on the twist ∆uz and on the bending of the tip cross-section
via N = 4 model. The bending is described via the transverse displacement of the midpoint
placed at the tip section uzTIP.

The comparison of SSA and SAA underlines the importance of the contribution of
Kaero to evaluate the aeroelastic behavior of composite wings. While the curve of twist
related to SSA is essentially anti-symmetric with respect to the θ = 0◦ lamination, the
aeroelastic analysis shows a trend which is far from symmetric, see Fig. 11.9. In general,
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the aeroelastic analysis leads the twist of the unswept wing to be higher compared to the
structural solution as the lamination changes, expecially for negative values of θ. The
same result occurs for bending behavior as shown in Fig. 11.10, where only the SSA case
obtains an almost symmetric curve. However, the laminations which lead to the minimum
and maximum twist conditions are the same for the structural and aeroelastic analyses,
whereas they are different for the bending deflection.

The curves describing the tip twist as θ changes present some particular intersection
points in which ∆uz reaches the same value for SSA and SAA. In general, these orientations
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differ from those which lead the tip bending to be the same for the structural and aeroelastic
analyses. These lamination values depend on the wing geometry, the material properties
and the aerodynamic conditions.

The numerical results summarized in Tables 11.6 and 11.7 reveal the role played by
θ for different structural theories. The use of a composite material leads to move the
maximum transverse displacement from the leading to the trailing edge for particular
positive laminations (negative twist) unlike the isotropic case. The excellent agreement
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11.2. Anisotropic composite wings

between the fourth-order beam model and MD NASTRAN-shell (sol 144) in describing
the aeroelastic response of anisotropic wings with generic orientation is again noteworthy,
whereas the diminishing expansion order N corresponds to a lower number of DOFs as
well as loss of accuracy.

Table 11.6: Effect of the lamination on the twist ∆uzTIP [mm] of the tip cross-section. Straight
wing, c = 1 m, L = 10 m, h = 100 mm. 10 B4 elements. V∞ = 50 m/s, α = 1◦, 10 × 50 panels.
Composite material. SSA vs. SAA.

θ
SSA
N = 4

SAA
N = 2

SAA
N = 3

SAA
N = 4

SAA
NASTRAN

−60◦ 2.9918 3.6114 (+2.00 %) 3.5076 3.5272 (−0.38 %) 3.5407
−30◦ 4.3163 5.5766 (+0.65 %) 5.5127 5.5395 (−0.02 %) 5.5408

0◦ 1.0206 1.0445 (−2.76 %) 1.0458 1.0704 (−0.34 %) 1.0741
30◦ −2.4563 −2.2294 (+3.03 %) −2.1959 −2.1741 (−0.48 %) −2.1638
60◦ −1.1191 −1.1574 (+10.9 %) −1.0845 −1.0569 (+1.25 %) −1.0439
90◦ 1.0390 1.0643 (−3.81 %) 1.0656 1.0909 (−1.41 %) 1.1065

DOFs 1395 558 930 1395 2135

Table 11.7: Effect of the lamination on the bending of the wing: uzTIP [mm] at the midpoint
of the tip cross-section. Straight wing, c = 1 m, L = 10 m, h = 100 mm. 10 B4 elements.
V∞ = 50 m/s, α = 1◦, 10× 50 panels. Composite material. SSA vs. SAA.

θ
SSA
N = 4

SAA
N = 2

SAA
N = 3

SAA
N = 4

SAA
NASTRAN

−60◦ 181.956 214.518 (−0.31 %) 214.494 214.826 (−0.16 %) 215.175
−30◦ 131.597 168.142 (−0.49 %) 168.557 168.898 (−0.04 %) 168.965

0◦ 96.152 100.656 (−0.62 %) 101.071 101.246 (−0.04 %) 101.288
30◦ 127.888 112.284 (−1.12 %) 113.212 113.488 (−0.06 %) 113.555
60◦ 179.707 167.586 (−1.42 %) 169.346 169.753 (−0.15 %) 170.007
90◦ 197.216 206.892 (−0.67 %) 207.548 207.869 (−0.21 %) 208.297

DOFs 1395 558 930 1395 2135

The aeroelastic response of the straight wing previously analyzed is carried out when a
concentrated load applied at the tip cross-section is combined to the aerodynamic pressures.
A mesh of 10 B4 elements and a higher-order model are involved (N = 4). Due to the
material anisotropy, the tip transverse force Pz has an additional torsional effect along
the span-wise direction which could be clockwise or counter-clockwise depending on the
lamination angle’s sign. As a consequence, the three-dimensional deflection of the wing is
strongly affected by θ as depicted in Fig. 11.11 with a large scale factor.

The effect of tailoring on the divergence speed of a swept-forward wing structure is
displayed in Fig. 11.12. Given a lamination, the lower is the sweep angle the lower is the
divergence speed. In general, it is confirmed that for a forward-swept wing the divergence
instability constitutes a more critical case with respect to an unswept one, due to the
wash-in effect. However, for positive lamination angles VD is so high that this critical
phenomenon becomes negligigle.

The lamination angle θVDmin
associated to the minimum divergence speed depends on

the sweep angle of the wing as well as the wing geometry. For the straight wing θVDmin
is

the value associated to the maximum tip twist of the aeroelastic response as depicted in
Fig. 11.9. It remarks that the correct evaluation of the torsional behavior of a structure
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Figure 11.11: 3D deformation of the straight composite wing. Aeroelastic response with tip
transverse force Pz = −515.5 N. V∞ = 50 m/s, α = 1◦
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Table 11.8: Effect of the lamination on the divergence speed VD [m/s]. Straight wing, c = 1 m, L
= 10 m, h = 100 mm. 10 B4 elements. α = 1◦, 10× 50 panels. Composite material.

θ N = 4 NASTRAN % Diff

−90◦ 232.8142 231.7779 +0.4471
−75◦ 164.5029 163.9645 +0.3284
−60◦ 128.6913 128.4517 +0.1865
−45◦ 109.8690 109.7624 +0.0971
−30◦ 106.6362 106.5942 +0.0394
−15◦ 124.5134 124.5123 +0.0009

0◦ 235.1681 235.4656 −0.1263

DOFs 1395 2135 −34.66
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11.2. Anisotropic composite wings

is a mandatory issue for the model involved in the aeroelastic analysis. Thus classical
beam theories are ineffective in detecting the wing divergence instability whereas the
capabilities of higher-order models are proved in comparison with MD NASTRAN results,
see Table 11.8. It should be remarked that the refined CUF model requires a limited
number of DOFs to detect the wing divergence speed with an error no higher than 0.5 %
with respect to the reference MD NASTRAN-shell solution. Although a simple section
geometry has been used here for a direct comparison with MD NASTRAN, the number of
DOFs necessary to the present model would be remarkably lower especially for complex
section geometries.
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Chapter 12

Results: 3D Panel-1D CUF
aeroelastic coupling

12.1 Aerodynamic assessment

Firstly an aerodynamic assessment of VLM and 3D Panel Method, which are able to
evaluate the pressure coefficients on the wing surface, is performed analyzing the effects of
two typical geometrical parameters: the airfoil thickness and the camber line. A straight
wing is considered: the wing span is 10 m and the airfoil chord is 1 m long as drawn in
Fig. 12.1(a), where the right half-wing is depicted. This wing configuration is also used
in the following structural and aeroelastic analyses. The effect of the camber line on the
aerodynamic field is evaluated using NACA 2415, 3415 and 4415 airfoils. The analysis of
the influence of the airfoil thickness is then carried out using the symmetric NACA 0005,
0010 and 0015 airfoils.

The number of aerodynamic panels is chosen as a compromise between the limit number
of panels that can be used in XFLR5 (= 5000) [136] and the number of panels required in
order to achieve convergence in the aerodynamic results. In the following analyses, the
choice of Nx

AP = 24 and Ny
AP = 50 remains the same.

For the present assessment analysis the free stream velocity is assumed to be V∞ = 50
m/s such that the compressibility effects can be neglected. The air density is assumed to be
ρ∞ = 1.225 kg/m3. The angle of attack α of the wing is equal to 3 deg. In all the following
analyses the air density ρ∞ and the angle of attack α will be invariable parameters. The
results focus on the variation of the spanwise local lifting coefficient Cl along the wing span
defined as:

Cl(y) =
L(y)

1
2 ρ∞ V

2
∞ 2 e(y) c(y)

(12.1)

where c(y) and L(y) are the chord and the Lift Force generated by the pressure acting on
the panels with span-length 2 e(y) placed at the y coordinate. More details can be found
in [138]. As a first result, the trend of Cl along the y axis (right half-wing) is reported in
Fig. 12.2(a). This analysis is carried out considering the variation of the airfoil thickness.
As expected, the VLM is not able to take into account the variation of airfoil thickness,
since it computes aerodynamic pressures on the wing reference surface, and underestimates
Cl with respect to the 3D Panel Method. On the contrary, the 3D Panel Method is able to
evaluate the change of the lifting coefficient as the airfoil thickness increases, as can be
seen in Fig. 12.2(a).

Figure 12.2(b) reports the trend of the spanwise local lifting coefficient Cl as the camber
line changes. It is evident that both aerodynamic methods are able to analyze the influence
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y

x
5 m

1 m

V

(a) Plan view of the straight half-wing

1 m

0.25 m

= 2 mmt1 = 2 mmt3 = 1 mmt2

x

z

(b) NACA 2415 airfoil cross-section with variable thickness and 2 cells

Figure 12.1: Geometrical configuration of the straight wing.

of the camber line. Comparing Figs.12.2(a) and 12.2(b) it should to be noted that the
spanwise local lifting coefficient, and thus the aerodynamic pressures, is affected more by
the camber line change than the airfoil thickness change. It can be concluded that the 3D
Panel Method is able to provide a more realistic evaluation of the pressure distribution
on the wing than the VLM. Moreover, the 3D Panel Method affords pressure loads on
the actual wing surface, which are fundamental for an accurate study of the actual wing
deformation and airfoil distortion, in lieu of loads applied on a fictitious wing reference
surface as for the VLM case. These reasons make the 3D Panel Method the recommended
classical aerodynamic tool for the following aeroelastic wing analyses.

12.2 Structural assessment

In order to validate the results given by the proposed higher-order 1D CUF approach
for wings with a high-deformable cross-section, unlike the cases analyzed in chapters 10
and 11, a comparison of the static structural wing response is here performed with MSC
Nastran. Only the right half-wing of the straight configuration introduced in the previous
aerodynamic assessment (see Fig. 12.1(a)) is considered here due to loads and structural
symmetry. A clamped boundary condition is taken into account for the root cross-section
(at y = 0), whereas the tip cross-section is free. The cross-section employed is a 2415
NACA airfoil with constant thickness equal to 2 mm. A spar with a thickness equal to 2
mm is inserted along the spanwise direction at 25% of the. The isotropic material adopted
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Figure 12.2: Effect of the airfoil thickness (a) and camber line (b) on the spanwise local lifting
coefficient Cl of the straight wing along the y axis. Comparison of VLM and 3D Panel Method.
V∞ = 50 m/s, ρ∞ = 1.225 kg/m3, α = 3 deg.

is aluminum: Young’s modulus E = 69 GPa, Poisson’s ratio ν = 0.33.

Due to the small thickness and the well-known aspect ratio restrictions typical of solid
elements, this wing is modeled in MSC Nastran by means of 214500 solid Hex8 elements
and 426852 nodes, corresponding to 127800 degrees of freedom (DOFs). The same structure
is analyzed by means of CUF models with a variable expansion order up to N=14 and
discretized through a 1D mesh of 10 B4 finite elements (31 nodes). The number of DOFs
depends on N as expressed in Eq. 3.24. For instance, with 10 B4 elements DOFs = 11160
for N = 14. However, an analysis of the present structure is carried out also through a
Nastran shell FE model, but it is not reported herein for the sake of brevity. Nonetheless,
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Chapter 12. Results: 3D Panel-1D CUF aeroelastic coupling

the error obtained between 1D CUF and shell results is comparable with the error obtained
between 1D CUF and solid results.

Table 12.1: Pressure distribution on the wing along the spanwise direction for the structural
assessment. V∞ = 50 m/s, ρ∞ = 1.225 kg/m3, pref = 1/2 ρ∞V

2
∞ = 551.25 Pa.

Interval p/pref

0.00 ≤ y ≤ 1.25 1.00
1.25 < y ≤ 2.50 0.75
2.50 < y ≤ 3.75 0.50
3.75 < y ≤ 5.00 0.25

A variable pressure distribution step-like along the spanwise direction is applied to
the upper and lower wing surfaces in order to simulate a real pressure distribution, see
Table 12.1. The static structural response of the wing is evaluated in terms of the distortion
s at the tip cross-section. For the upper and lower surfaces, Figs. 12.3(a) and 12.3(b)
show the percent error e obtained computing the distortion through 1D CUF models and
Nastran solid model, which is taken as reference:

e = 100 · sNastran − s1DCUF

sNastran
(12.2)

As depicted in Figs. 12.3(a) and 12.3(b), the proposed 1D FEs provide a convergent solution
by gradually approaching the Nastran solid results as the expansion order increases from 8
to 14, according to the conclusions made in previous CUF works [118, 130]. For N = 14
the maximum percent error is about 3% for the upper surface and about 2.7% for the
lower surface. For the wing configuration considered, the choice of N = 14 seems hence to
be accurate enough to detect the cross-section distortion with an acceptable error with
respect to Nastran 3D results and with a remarkable reduction in terms of DOFs (about a
91% reduction, 11160 vs. 127800).

12.3 Aeroelastic coupling

This section focuses on the results regarding the equilibrium aeroelastic response of a wing
exposed to a free stream velocity V∞ = 30 m/s via the iterative CUF-XFLR5 procedure.
This analysis aims at evaluating the influence of CUF expansion order N on the aeroelastic
behavior of the structure, as the accurate description of the cross-section distortion depends
on N . The same material and straight wing configuration as those considered in the
previous assessment are employed here, see Fig. 12.1(a). In this case the cross-section is
the NACA 2415 airfoil depicted in Fig. 12.1(b). The spar thickness t3 is constant and equal
to 2 mm whereas the skin thickness of upper and lower surfaces varies gradually from 2
mm (t1 in Fig. 12.1(b)) to 1 mm (t2 in Fig. 12.1(b)) in the zone between the 40% and
the 45% of the chord. This particular choice is coherent with the purpose of studying a
high-deformable nonclassical cross-section.

The 1D structural mesh consists of 10 B4 elements. For the sake of brevity, a convergent
study on the number of mesh elements is not reported here. In fact, the choice of 10 B4
elements yields a good evaluation of displacements for all the points of the structure, as
detailed in [138, 139], where a similar structural case in terms of wing configuration and
applied aerodynamic loads was studied via the present structural model and successfully
assessed with a commercial FE solid model.
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Figure 12.3: Percent error obtained by different 1D CUF models in the computation of the distortion
along the airfoil upper (a) and lower (b) surfaces at the wing tip cross-section (y = 5 m). Static
structural wing response to a variable pressure distribution. Reference solution: Nastran solid.

The aeroelastic analysis is now carried out following the iterative coupled procedure
CUF-XFLR5 described in Fig. 9.2 and varying N . The convergence process on the lifting
and moment coefficients is drawn in Fig. 12.4(a) by means of a dimensionless parameter
CL/C

conv
L and in Fig. 12.4(b), respectively. Cconv

L is the final convergent value of the
lifting coefficient which is different for each expansion order employed as well as the final
convergent moment coefficient Cconv

M , as reported in Table 12.2.

Hence, a different choice of N influences the structural response of the wing to the
aerodynamic loads and consequently affects also the aerodynamic analysis, due to the
aeroelastic coupling. The higher the expansion order employed the more difference appears
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Figure 12.4: Convergence of lifting and moment coefficients in the iterative aeroelastic analysis for
structural models with different accuracy. Aerodynamic method: 3D Panel. V∞ = 30 m/s.

between Cconv
L (Cconv

M ) and the initial value C in
L (Cconv

M ) evaluated for the undeformed
wing. For the cases presented in this work, the number of iterations required to achieve
the convergence of the lifting coefficient is the same as that one required to achieve the
convergence of the moment coefficient. It can be seen that the increase of N corresponds
to a different and increasing number of iterations N conv CLCM

iter required to achieve the
convergence of aerodynamic coefficients, as reported in Table 12.3. This tendency will be
clearly explained afterwards as a consequence of the introduction of higher-order terms in
the model formulation which enriches the displacement field.

An average cross-section distortion s̄ is now introduced in order to evaluate the aeroelas-
tic deformation of the cross-section shape along the wing span. Given an airfoil cross-section,
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12.3. Aeroelastic coupling

Table 12.2: Convergent values of lifting coefficient Cconv
L and moment coefficient Cconv

M for different
structural models. Static aeroelastic equilibrium response. V∞ = 30 m/s, C in

L = 0.4637, C in
M =

−0.1629.

Model Cconv
L Cconv

M N conv CLCM
iter DOFs

N = 1 0.4643 −0.1633 2 279
N = 4 0.4641 −0.1634 2 1395
N = 8 0.4667 −0.1659 3 4185
N = 9 0.4877 −0.1823 6 5115
N = 10 0.4953 −0.1886 8 6138
N = 12 0.5034 −0.1950 9 8463
N = 14 0.5090 −0.1994 10 11160

Table 12.3: Convergence of the lifting coeffient CL in the iterative aeroelastic analysis for different
structural models. Airfoil cross-section at y = 4 m. V∞ = 30 m/s.

Model
Iteration

1 2 3 4 5 6 7 8 9 10

N = 1 0.4643 - - - - - - - - -
N = 4 0.4641 - - - - - - - - -
N = 8 0.4666 0.4666 0.4666 0.4666 - - - - - -
N = 9 0.4816 0.4861 0.4873 0.4876 0.4877 0.4877 0.4877 0.4877 - -
N = 10 0.4828 0.4904 0.4934 0.4946 0.4950 0.4952 0.4953 0.4953 0.4953 0.4953
N = 12 0.4850 0.4949 0.4995 0.5016 0.5026 0.5030 0.5032 0.5033 0.5033 0.5034
N = 14 0.4863 0.4977 0.5034 0.5063 0.5077 0.5084 0.5087 0.5089 0.5090 0.5090

- : convergence achieved with a tolerance toll = 10−4

the average distortion s̄ is defined as:

s̄ =

∮
s · dl∮
dl

(12.3)

where l is the curvilinear coordinate along the external airfoil surface and s is the distortion
of the single point of the external airfoil surface defined in Eq. 9.87. It is noteworthy that
s is a positive quantity and a null value for the average distortion s̄ means no distortion.
Figure 12.5 plots the trend of the average distortion along the wing span showing which
are the most in-plane deformed airfoil cross-sections in the static aeroelastic equilibrium
response. A remarkable variation in the trend of the average distortion appears depending
on the accuracy of the structural model chosen. Models with an expansion order higher
than 9 reveal that the section at y = 4 m appears to be the most distorted section.

For this cross-section, Table 12.4 presents the numerical values of average distortion s̄
in the iterative aeroelastic analysis for different structural theories. As occurred for the
convergence of aerodynamic coefficients in Table 12.3, the number of iterations N conv s

iter

required to achieve the convergence of s̄ increases as N , and consequently DOFs, increases.
In fact, increasing the expansion order N , the structural model becomes in general more
deformable approaching the real structural behavior. It means that a complete three-
dimensional displacement field as well as local effects are evaluated with an increasing
accuracy, especially for structures with high-deformable cross-sections, see Figs. 12.3(a)
and 12.3(b). Since the model accuracy increases, the structural deformation is therefore
more sensitive to the variations of aerodynamic loads, which are different for each iteration
following the convergent trend in Figs. 12.4(a) and 12.4(b), leading to an increasing N conv s

iter .
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Numerical results in Table 12.4 highlight that, given an expansion order, a higher number
of iterations is necessary to achieve convergence on structural distortion than convergence
on aerodynamic coefficients (N conv s

iter > N conv CLCM
iter ), although the tolerance employed is

the same.
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Figure 12.5: Spanwise distribution of the average distortion s̄ of the airfoil cross-sections for different
structural models. Static aeroelastic equilibrium response. V∞ = 30 m/s.

Table 12.4: Convergence of the average distortion s̄ [mm] in the iterative aeroelastic analysis for
different structural models. Airfoil cross-section at y = 4 m. V∞ = 30 m/s.

Model
Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13

N = 1 0.0402 0.0403 0.0403 - - - - - - - - - -
N = 4 0.0135 0.0136 0.0136 - - - - - - - - - -
N = 8 0.1729 0.1816 0.1820 0.1821 0.1821 - - - - - - - -
N = 9 1.1441 1.4721 1.5624 1.5868 1.5934 1.5951 1.5956 1.5958 - - - - -
N = 10 1.4177 1.9198 2.1159 2.1930 2.2234 2.2353 2.2400 2.2419 2.2426 2.2429 - - -
N = 12 1.6738 2.2852 2.5542 2.6774 2.7340 2.7600 2.7719 2.7774 2.7799 2.7811 2.7816 2.7818 -
N = 14 1.7925 2.4670 2.7867 2.9456 3.0250 3.0646 3.0844 3.0941 3.0990 3.1014 3.1027 3.1033 3.1035

- : convergence achieved with a tolerance toll = 10−4

For N > 8 the displacement field becomes accurate enough to relevantly take into
account a cross-section distortion for the airfoil case considered, as can be seen also in
Fig. 12.6. As previously explained, given a structural model the distortion is computed by
comparing the deformed cross-section to the corresponding base section. For the sake of
simplicity, only the base section for N = 1 is plotted in Fig. 12.6.

As expected, low-order models provide a correct evaluation of the bending and torsional
structural behavior, but a not exhaustive description of the in-plane deformation. This
conclusion is confirmed by Fig. 12.7, where the airfoil distortion s computed by variable
kinematic models is depicted along the upper surface at y = 4 m. The maximum distortion
value is reached in the part of the cross-section next to the trailing edge since the stiffening
effect due to the spar at 25% of the chord limits the cross-section distortion. Nonetheless,
the chordwise position of the maximum distortion points on the airfoil upper and lower
surfaces changes depending on the accuracy of the structural model, see Table 12.5. As
a consequence, it is worth pointing out that the increase of N reveals to be relevant not
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Figure 12.6: Deformation of the airfoil cross-section at y = 4 m computed for structural models
with different accuracy. Static aeroelastic equilibrium response. V∞ = 30 m/s.

only for an accurate detection of distortion values but also of the accurate shape-type
deformation.
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Figure 12.7: Distortion of the airfoil upper surface of the cross-section at y = 4 m computed for
different structural models. Static aeroelastic equilibrium response. V∞ = 30 m/s.

In general, improvements of the structural theory yield more realistic deformations of
the wing until a good convergence is achieved for N = 14, according to the conclusions
made for Figs. 12.3(a) and 12.3(b) in the structural assessment. In other words, the
difference between the results obtained through the generic (N − 1)th and N th expansion
orders decreases and becomes minimal for N = 14. For this reason it is possible to consider
the fourteenth-order model sufficiently accurate to describe the aeroelastic behavior of the
structure here considered.
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Chapter 12. Results: 3D Panel-1D CUF aeroelastic coupling

Table 12.5: Convergent average distortion s̄conv [mm] of the cross-section at y = 4 m for different
structural models. Values and chordwise position of the maximum distortions sUSmax [mm] and sLSmax

[mm] on airfoil upper and lower surfaces. Static aeroelastic equilibrium response. V∞ = 30 m/s.

Model s̄conv N conv s
iter sUSmax xsUSmax

/c sLSmax xsLSmax
/c DOFs

N = 1 0.0403 3 0.0718 0.33 0.0439 0.24 279
N = 4 0.0136 3 0.0103 0.33 0.0251 0.23 1395
N = 8 0.1821 5 0.5267 0.74 0.4797 0.75 4185
N = 9 1.5958 8 4.6073 0.74 4.1253 0.75 5115
N = 10 2.2429 10 6.9936 0.73 5.1626 0.79 6138
N = 12 2.7818 12 9.5341 0.73 5.7456 0.82 8463
N = 14 3.1035 13 10.7482 0.73 6.0178 0.82 11160

12.4 Freestream velocity influence

This analysis aims at establishing the influence of the free stream velocity on the wing
distortion. The wing configuration employed for this analysis is the same as the that one
used in the previous study. According to the conclusion made above, the structural model
considered is N = 14. The free stream velocities considered are 25, 30, and 35 m/s. As
in the previous analysis, the aerodynamic convergence process is presented through the
dimensionless parameter CL/C

conv
L , as illustrated in Fig. 12.8(a). The convergence of the

moment coefficient is also shown in Fig. 12.8(a) through the parameter CM/C
conv
M .
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Figure 12.8: Convergence of lifting and moment coefficients in the iterative aeroelastic analysis for
different free stream velocities. Structural model: N = 14. Aerodynamic method: 3D Panel.

In this case, Cconv
L and Cconv

M represent the final convergent values of the lifting and
moment coefficients for a given V∞. As occurred for the previous aeroelastic analysis,
the trends do not show any numerical problems such as oscillations. From Figs. 12.8(a)
and 12.8(b) it is important to note that the number of iterations N conv CLCM

iter required to
achieve the aerodynamic convergence increases as V∞ increases, and the final convergent
values are much different from the initial values, as summarized in Table 12.5. The reason
of this behavior is easily explained by the fact that an increasing free stream velocity
means increasing aerodynamic loads, and consequently higher structural deformations, and
lastly a more relevant coupling effect on the aeroelastic response of the wing. In fact, an
increasing airfoil distortion for the most deformed cross-section at y = 4 m is obtained with
V∞ according to numerical results in Table 12.6 and airfoil deformed profiles in Fig. 12.9.
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Also for velocity values different from 30 m/s, a higher number of iterations is necessary to
achieve convergence on structural distortion than convergence on aerodynamic coefficients
(N conv s

iter > N conv CLCM
iter ), see Table 12.6.

Table 12.6: Convergent values of lifting coeffient Cconv
L , moment coefficient Cconv

M , and average
distortion s̄conv [mm] of cross-section at y = 4 m for different free stream velocities V∞ [m/s]. Static
aeroelastic equilibrium response. Structural model: N = 14. C in

L = 0.4637, C in
M = −0.1629.

V∞ Cconv
L Cconv

M N conv CLCM
iter s̄conv N conv s

iter

25 0.4879 −0.1827 7 1.7269 9
30 0.5090 −0.1994 10 3.1035 13
35 0.5608 −0.2394 18 6.3296 22
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Figure 12.9: Deformation of the airfoil cross-section at y = 4 m computed for different free stream
velocities. Static aeroelastic equilibrium response. Structural model: N = 14.

The limitation of distortion close to the airfoil leading edge due to the spar is enhanced
for V∞ = 35 m/s. The trends of distortion on the airfoil upper and lower surfaces, which
are indicated as US and LS respectively, are depicted in Fig. 12.10 at y = 4 for different
velocities. It is important to note that deformations of upper and lower surfaces remarkably
differ also because of a different aerodynamic pressure distribution. Table 12.7 shows
that not only the maximum distortion values on the airfoil upper (sUSmax1, sUSmax2) and
lower (sLSmax1, sLSmax2) surfaces changes as V∞ varies, but also their corresponding chordwise
positions. This aspect highlights the importance of higher-order models especially for an
accurate evaluation of in-plane cross-section distortion of high-deformable structures.
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Table 12.7: Values and chordwise positions of the maximum distortions sUSmax1, sUSmax2, sLSmax1, sLSmax2

[mm] on airfoil upper and lower surfaces of the cross-section at y = 4 m for different free stream
velocities V∞ [m/s]. Static aeroelastic equilibrium response. Structural model: N = 14.

V∞ sUSmax1 xsUSmax1
/c sUSmax2 xsUSmax2

/c sLSmax1 xsLSmax1
/c sLSmax2 xsLSmax2

/c

25 6.0892 0.72 0.8670 0.29 3.0324 0.83 1.6285 0.46
30 10.7482 0.73 1.5540 0.30 6.0178 0.82 2.6232 0.45
35 21.2323 0.74 3.1618 0.31 13.9437 0.81 4.5026 0.43
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Fluid Dynamic Formulation





Chapter 13

1D CUF model for Computational
Fluid Dynamics

In this chapter the basic differential equations of fluid mechanics are presented. In particular,
the Navier-Stokes and Stokes equations are derived for compressible and incompressible
flows in strong and weak forms. Furthermore, the use of the 1D CUF model to describe the
fluid behavior on a fixed computational domain is addressed. The advantages of a reduced
order model based on the 1D CUF approximation for fluid dynamics will be highlighted
and discussed.

13.1 Notation

Some notations used which will be adopted in the following sections are here introduced.
Ω is a (three-dimensional) volume domain embodying the region of interest: Ω ⊂ R3. It is
usually called computational domain or control volume. It is bounded and its bounding
surface is denoted by ∂Ω, whereas Γ is the symbol used to refer to a generic surface (two-
dimensional) in the domain. The outwardly oriented unit vector normal to the boundary
∂Ω is indicated with n. In general, the computational domain can remain fixed in space or
can move with the fluid. In this chapter, the flow motion is studied in a fixed domain Ω,
since the fluid-structure interaction problem is not considered here. The time interval over
which the flow is studied is indicated with I = (t0, t1), where t0 and t1 are the initial and
the final time instants of the analysis.

A cartesian coordinate system (x1, x2, x3) is introduced and the position of a point
in the three-dimensional cartesian coordinate system is denoted by the vector x, whose
components are (x1, x2, x3). For the sake of clarity, it is here disclosed that the cartesian
coordinate system, whose general form is (x1, x2, x3), will be sometimes indicated also
with the more convenient notation (x, y, z) depending on the case. This choice has not to
confuse the reader.

If a quantity f (like pressure) takes a scalar value on the domain Ω, the quantity defines
a scalar field on Ω at time instant t, which is indicated with f : Ω× I → R. If instead a
quantity f associates to each point in Ω a vector (as in the case of velocity) at time instant
t, it defines a vector field on Ω and I, which is indicated with f : Ω× I → R3. Finally, if
a quantity T associates to each point in Ω a R3×3 matrix at time instant t, it defines a
(second order) tensor field on Ω and I if it obeys the ordinary transformation rules for
tensor [140]. Hence T : Ω× I → R3×3. Its components will be indicated by either (T)ij , or
simply Tij , with i, j = 1, 2, 3.
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13.2 Navier-Stokes equations

The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel Stokes,
are the basic differential equations of fluid mechanics and describe the motion of fluid
substances. The Navier-Stokes equations are based on the assumption that the fluid, at
the scale of interest, is a continuum. In other words, the fluid is not made up of discrete
particles but rather a continuous substance. Another necessary assumption is that all the
fields of interest like pressure, velocity, density, temperature and so on are differentiable.

The Navier-Stokes equations for compressible fluids in a fixed domain Ω ⊂ R3, for any
t ∈ I, are:

∂ρ

∂t
+

3∑
j=1

∂ (ρuj)

∂xj
= 0

∂ (ρui)

∂t
+

3∑
j=1

[
∂ (ρuiuj)

∂xj
− ∂τij

∂xj

]
+

∂P

∂xi
= ρfi i = 1, 2, 3

∂ (ρe)

∂t
+

3∑
j=1

∂ (ρhuj)

∂xj
−
∂
(∑3

j=1 uiτij − qj

)
∂xj

 = 0

(13.1)

where {ui, i = 1, 2, 3} the components of the velocity vector u with respect to the cartesian
coordinate system (x1, x2, x3).

In Eq. 13.1, the first equation describes the conservation of mass, which is also called
continuity equation or mass conservation. The second row represents the conservation
of linear momentum. In R3, the conservation of linear momentum has to be written for
i = 1, 2, 3 leading to three equations. The third equation is the conservation of energy.

The variables in Eq. 13.1 have the following meanings: u is the velocity vector u :
Ω × I → R3 so that [u] = m/s; ρ is the density of the fluid ρ : Ω × I → R so that
[ρ] = kg/m3; P is the pressure P : Ω × I → R so that [P ] = N/m2 = kg/(ms2). The
term fi is the ith component, with respect to the cartesian coordinate system (x1, x2, x3),
of the vector of body forces (per mass unit) applied to the fluid f : Ω × I → R3 so that
[f ] = N/kg = m/s2. The term e is the total energy per mass unit, equal to the sum of
of the internal energy per mass unit ei and the kinetic energy per mass unit of the fluid
([e] = m2/s2):

e = ei +
1

2
|u|2 (13.2)

The term h is the total entalpy per mass unit ([h] = m2/s2), which is defined as:

h = e +
P

ρ
= ei +

P

ρ
+

1

2
|u|2 (13.3)

To complete the system in Eq. 13.1 it is necessary to link e (and h) to the variables ρ, P ,
u by defining a law e = e (ρ, P,u) which is typically derived from the state equations of
the fluid under exam. In particular, the state equations of an ideal gas are:

P = ρR? T ei = cv T (13.4)

where R? = cp − cv is the gas constant ([R?] = [cp] = [cv] = m2/(s2K)) and T is the
temperature ([T ] = K). Equation 13.4 provides the required law e = e (ρ, P,u):

ei = cv T =
cv
R?

P

ρ
=

P

ρ (γ − 1)
⇒ e =

P

ρ (γ − 1)
+

1

2
|u|2 (13.5)
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where γ = cp/cv is the ratio between the specific heats (per mass unit) at constant pressure
and volume, respectively. Finally, the thermal flux vector q has to be written in terms of
the variables ρ, P , u. For this purpose, q ([q] = kg/s3) is usually related to the temperature
gradient via the Fourier law:

q = −λ∇T = − λ

cv
∇ei = −λ∇

(
P

ρR?

)
= − λ

cv
∇
(

P

ρ (γ − 1)

)
(13.6)

where λ is the thermal conductivity ([λ] = kgm/(s3K)).

The term τij is the {ij}th component of the deviatoric stress tensor τ : Ω× I → R3×3.
The Navier-Stokes equations in Eq. 13.1 are still incomplete since kinematic hypotheses
on the form of the 3× 3 deviatoric stress tensor τ have to be formulated. The deviatoric
stress tensor is related to the kinematic quantities (velocity u) via the constitutive law,
which provides a characterization of the mechanical behavior of the particular fluid under
consideration. Here, a Newtonian behavior is assumed for the fluid. In a Newtonian
compressible fluid, the deviatoric stress tensor may be written as a linear function of the
velocity derivatives [141]:

τij = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
+ µv δij div u = µ

[(
∂uj
∂xi

+
∂ui
∂xj

)
− 2

3
δij div u

]
(13.7)

where µ is the dynamic viscosity of the fluid and is a positive quantity so that [µ] = kg/(ms).
The term µv is the second coefficient of viscosity (related to bulk viscosity) and is set

to µv = − 2

3
µ for a Newtonian compressible fluid. The second coefficient of viscosity is

often referred as λ, but here is referred as µv in order not to confuse it with the thermal
conductivity. For the sake of completeness, [τ ] = [P ] = kg/(ms2). The index δij is the
Kronecker delta:

δij =

{
1 i = j

0 i /= j
(13.8)

For a fluid at rest, it is verified that div τ = 0.

The Navier-Stokes equation expressed componentwise in Eq. 13.1 are now retrieved
and rewritten in other forms. In particular, the continuity equation and the equation of
linear momentum conservation are considered. The conservation of mass is written in a
compact vectorial notation:

∂ρ

∂t
+ div (ρu) = 0 (13.9)

where:

div (ρu) = ρdivu + u • ∇ρ (13.10)

Substituting Eq. 13.10 into Eq. 13.9, the continuity equation becomes:

∂ρ

∂t
+ ρdivu + u • ∇ρ = 0 (13.11)

In order to write the conservation of linear momentum in a compact vectorial notation, a
continuously differentiable symmetric tensor field, called Cauchy stress tensor T : Ω× I →
R3×3 is introduced:

T = −P I + τ (13.12)

where I is the 3× 3 identity matrix and P is the pressure. The generic component of the
deviatoric stress tensor τ has already been expressed in Eq. 13.7. Considering this equation

243



Chapter 13. 1D CUF model for Computational Fluid Dynamics

and Eq. 13.12, the generic component of the Cauchy stress tensor is:

Tij = −P δij + τij = −P δij + µ

(
∂uj
∂xi

+
∂ui
∂xj

)
+ µv δij div u (13.13)

Setting µv = − 2

3
µ for a Newtonian compressible fluid, Eq. 13.13 becomes:

Tij = −P δij + µ

[(
∂uj
∂xi

+
∂ui
∂xj

)
− 2

3
δij div u

]
(13.14)

As mentioned for the deviatoric stress tensor, Eq. 13.14 highlights that in a Newtonian
incompressible fluid also the Cauchy stress tensor may be written as a linear function of
the velocity derivatives. According to the definition of the Cauchy stress tensor (Eq. 13.12)
and its components in Eq. 13.14, the conservation of linear momentum can be rewritten in
a compact vectorial notation in terms of T:

ρ
∂u

∂t
+ ρ (u • ∇) u − div T = ρ f (13.15)

The non-linear term ρ (u • ∇) u in Eq. 13.15 is called convective term since it describes the
convective transport. The components of vector (u • ∇) u are:

(
(u • ∇) u

)
i

=
3∑
j=1

uj
∂ui
∂xj

i = 1, 2, 3 (13.16)

The Navier-Stokes equations in Eq. 13.15 can be rewritten componentwise:

ρ
∂ui
∂t

+ ρ

3∑
j=1

uj
∂ui
∂xj

−
3∑
j=1

∂Tij
∂xj

= ρ fi (13.17)

It can be proved that Eq. 13.17 exactly corresponds to the second expression in Eq. 13.1.

13.2.1 Navier-Stokes equations for incompressible fluids

The assumption that the density ρ of the fluid is constant (like for blood flow, for instance)
is now introduced. The equation of mass conservation written for compressible fluids in
Eq. 13.11 can be simplified for constant density fluids taking into account that:

constant density fluid (ρ = const) ⇒ ∇ρ = 0 (13.18)

Hence, the continuity equation becomes:

�
��
∂ρ

∂t
+ ρ divu + u •

�
�∇ρ = 0 ⇒ div u = 0 (13.19)

which is the incompressibility constraint. A flow which satisfies the incompressibility
constraint is called incompressible, as well as the fluid. From the continuity equation
(Eq. 13.19), the following implication is derived:

constant density fluid (ρ = const) ⇒ incompressible flow (div u = 0) (13.20)

whereas the opposite statement is not true in general. In fact, there exist incompressible
flows (div u = 0) featuring variable density fluids (ρ /= const), e.g. stratified fluids.
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The Cauchy stress tensor T has been defined as the sum of the deviatoric stress
tensor τ and the pressure contribution in Eq. 13.12. Its components have been expressed
for compressible fluids in Eq. 13.14 according to Eq. 13.7, which describes the generic
component τij for a Newtonian compressible fluid. For a Newtonian incompressible fluid,
the deviatoric stress tensor may be written as a linear function of the velocity derivatives
[141] as done in Eq. 13.7, but the components τij can be simplified taking into account the
corresponding continuity equation (Eq. 13.19):

τij = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
+ µv δij��

�div u = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
(13.21)

As a consequence, the Cauchy stress tensor for incompressible flow becomes:

T = −P I + τ = −P I + µ
(
∇u + ∇uT

)
= −P I + 2µD (u) (13.22)

where the tensor D is the strain rate tensor. Its expression is:

D (u) =

(
∇u + ∇uT

)
2

(13.23)

For the sake of completeness, the term 2µD (u) in the definition of the Cauchy stress
tensor (Eq. 13.22) is often referred as the viscous stress component of the stress tensor.
The quantities ∇u and ∇uT are the following tensors:

∇u =



∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z


∇uT =



∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z


(13.24)

where, for the sake of convenience, it has been preferred to write the components of the
velocity vector u as ux, uy, uz with respect to the cartesian coordinate system (x, y, z)
instead of u1, u2, u3 with respect to the cartesian coordinate system (x1, x2, x3). The two
forms are equivalent, in fact:

u1 = ux, u2 = uy, u3 = uz, x1 = x, x2 = y, x3 = z (13.25)

From Eq. 13.24 it is easily proved that the generic component of the strain rate tensor is:

Dij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
i, j = 1, 2, 3 (13.26)

It is reminded here that the divergence is a linear operator. Thus:

div (ab + cd + eF + gH) = div (ab) + div (cd) + div (eF) + div (gH) (13.27)

Using the property in Eq. 13.27, it is possible to express the divergence of T as follows:

divT = −div (P I) + 2 div
[
µD (u)

]
(13.28)

The product rule of the divergence operator for tensors is now exploited:

div (P I) = P��
�*= 0

div I + I∇P = ∇P (13.29)
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where div I = 0 since I is the 3 × 3 identity matrix and therefore a matrix of costant
coefficients. The conservation of momentum written in the general form in Eq. 13.15 in
terms of the Cauchy stress tensor can thus be formulated in terms of the strain rate tensor
D and the pressure P as follows:

ρ
∂u

∂t
− 2 div

[
µD (u)

]
+ ρ (u • ∇) u + ∇P = ρ f (13.30)

It is convenient to introduce the kinematic viscosity ν ([ν] = m2/s) and the scaled pressure
p ([p] = m2/s2):

ν =
µ

ρ
p =

P

ρ
(13.31)

The second term of Eq. 13.30 can be now expressed in terms of the density ρ and the
kinematic viscosity ν instead of the dynamic viscosity µ:

div
[
µD (u)

]
= div

[
ρνD (u)

]
= ρdiv

[
νD (u)

]
(13.32)

where the assumption ρ = const is used. This assumption is exploited to relate the gradient
of pressure P to the gradient of scaled pressure p:

∇P = ∇ (ρp) = ρ∇p (13.33)

Substituting Eqs. 13.32 and 13.33 in Eq. 13.30 and dividing by the constant density ρ, the
equation of the conservation of momentum becomes:

∂u

∂t
− 2 div

[
νD (u)

]
+ (u • ∇) u + ∇p = f (13.34)

Recovering the expression of D in Eq. 13.23 the system of conservation equations of
momentum and mass for incompressible fluids can be rewritten in terms of the velocity u
and pressure p variables as:

∂u

∂t
− div

[
ν
(
∇u + ∇uT

)]
+ (u • ∇) u + ∇p = f in Ω, t ∈ I

div u = 0 in Ω, t ∈ I
(13.35)

The term −div
[
ν
(
∇u + ∇uT

)]
describes the process of molecular diffusion, whereas it is

reminded that (u • ∇) u describes the convective transport and its components are written
in Eq. 13.16.

Equation 13.35 describes the Navier-Stokes equations for incompressible fluids. The
principal unknowns are the velocity u and the scaled pressure p = P/ρ. It is important to
note that the energy equation has disappeared. Even though the conservation of energy
(third equation in Eq. 13.1 for compressible fluids) can still be written for incompressible
flows, its solution can be carried out independently once the velocity and pressure fields are
obtained from the solution of the continuity equation and the equation of linear momentum
conservation. Hence, the conservation of energy is not considered here.

Case of constant viscosity

This section shows how the Navier-Stokes equations for incompressible fluids written in
Eq. 13.35 simplifies for the case of constant kinematic viscosity ν.
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Before introducing the assumption of constant kinematic viscosity, the molecular
diffusion term is split into two terms exploiting the property of the linear divergence
operator in Eq. 13.27:

2 div
[
νD (u)

]
= div

[
ν
(
∇u + ∇uT

)]
= div (ν∇u) + div

(
ν∇uT

)
(13.36)

The first term of Eq. 13.36 is firstly addressed. The divergence of the product of a scalar
(ν) and a tensor (∇u) derives from the product of a scalar (ν) and a vector (∇u):

div (ν∇u) = ν div (∇u) + ∇u • ∇ν = ν∆u + ∇u • ∇ν (13.37)

where the Laplacian operator ∆ is introduced:

div (∇u) =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= ∆u (13.38)

Equation 13.37 can be extended to the tensor case:

div (ν∇u) = ν div (∇u) + ∇u • ∇ν = ν∆u + ∇u • ∇ν (13.39)

where the Laplacian of vector u is:

div (∇u) =



∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2


= ∆u (13.40)

The second term of Eq. 13.36 is now addressed following the same procedure described
above:

div
(
ν∇uT

)
= ν div

(
∇uT

)
+ ∇uT • ∇ν (13.41)

The term ν div
(
∇uT

)
is explicitly computed:

ν div
(
∇uT

)
= ν



∂2ux
∂x2

+
∂2uy
∂x∂y

+
∂2uz
∂x∂z

∂2ux
∂x∂y

+
∂2uy
∂y2

+
∂2uz
∂y∂z

∂2ux
∂x∂z

+
∂2uy
∂y∂z

+
∂2uz
∂z2


= ν



∂

∂x

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
∂

∂y

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
∂

∂z

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)


(13.42)

As can be seen in Eq. 13.42:

ν div
(
∇uT

)
= ν∇ (div u) (13.43)

As a result, substituting Eq. 13.43 into Eq. 13.41, the second term of Eq. 13.36 finally
becomes:

div
(
ν∇uT

)
= ν div

(
∇uT

)
+ ∇uT • ∇ν = ν∇ (div u) + ∇uT • ∇ν (13.44)
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Substituting Eqs. 13.39 and 13.44 into Eq. 13.36, the molecular diffusion term is:

div
[
ν
(
∇u + ∇uT

)]
= ν

[
∆u + ∇ (div u)

]
+
[
∇u + ∇uT

]
• ∇ν (13.45)

The assumption of constant kinematic viscosity ν is now taken into account:

ν = const ⇒ ∇ν = 0 (13.46)

When ν is constant, Eq. 13.45 simplifies:

div
[
ν
(
∇u + ∇uT

)]
= ν

[
∆u + ∇ (���div u)

]
= ν∆u (13.47)

where the continuity equation of incompressible fluids div u = 0 is exploited. Finally, the
Navier-Stokes equations for incompressible fluids with constant kinematic viscosity are:

∂u

∂t
− ν∆u + (u • ∇) u + ∇p = f in Ω, t ∈ I

div u = 0 in Ω, t ∈ I
(13.48)

The system in Eq. 13.48 can be rewritten componentwise:

∂ui
∂t
− ν∆ui +

3∑
j=1

uj
∂ui
∂xj

+
∂p

∂xi
= fi i = 1, 2, 3

3∑
j=1

∂uj
∂xj

= 0

(13.49)

The case of fluids with constant density (incompressible flows) and constant kinematic
viscosity is the simplified case which will be considered in the following sections of the
chapter.

Initial and boundary conditions

As mentioned, Navier-Stokes equations for incompressible flows (Eq. 13.35) have the velocity
u and the scaled pressure p = P/ρ as principle unknowns of the problem. In order for
problem in Eq. 13.35 or 13.48 to be well posed it is necessary to assign the initial condition:

u (x, t = t0) = u0 (x) ∀x ∈ Ω (13.50)

which prescribes the initial status of the fluid velocity. The term u0 is a given divergence-free
velocity field, in order to satisfy the continuity equation div u for incompressible flows.

In order to solve the Navier-Stokes equations, it is necessary to provide also appropriate
boundary conditions. In fact, Navier-Stokes equations must be supplemented by proper
boundary conditions that allow the determination of the velocity field up to the boundary
of the computational domain Ω. The more classical boundary conditions which are
mathematically compatible with the Navier-Stokes equations are:

1. Prescribed velocity (or Dirichlet boundary condition). A given velocity field gD :
ΓD × I → R3 is imposed on a measurable subset of the domain boundary ΓD ⊂ ∂Ω.
The Dirichlet boundary condition to be provided to the incompressible Navier-Stokes
equations in Eq. 13.35 is:

u = gD on ΓD ⊂ ∂Ω (13.51)
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It is observed that if ΓD = ∂Ω, the prescribed Dirichlet data gD must be compatible
with the incompressibility constraint, i.e. the continuity equation for compressible
flows (Eq. 13.19). Hence:∫

ΓD = ∂Ω
gD • n dΓ =

∫
Ω

div u dΩ = 0 (13.52)

which is the divergence theorem, also knows as Gauss’s theorem.

2. Applied stresses (or Neumann boundary condition). They represent the forces which
are imposed on the control volume through its surface. It is assumed that they
may be represented via a vector field TN : ΓN × I → R3 defined on a measurable
subset (possibly empty) of the domain boundary ΓN ⊂ ∂Ω and with dimensions
[TN ] = N/m2. As a consequence, under the hypotheses of the Cauchy theorem
[140, 141], the boundary condition is:

T • n =
[
−P I + 2µD (u)

]
• n = −P n + 2µD (u) • n = TN on ΓN ⊂ ∂Ω

(13.53)
where the definition of Cauchy stress tensor T for incompressible fluids in Eq. 13.22
is retrieved. According to Eq. 13.35, where the scaled pressure p is used instead of
the pressure P , the scaled vector field:

tN =
TN

ρ
(13.54)

is introduced ([tN ] = [p] = m2/s2). For the sake of convenience, the Neumann
boundary condition in Eq. 13.53 can be now rewritten in terms of u, p, tN via the
kinematic viscosity ν and the outward unit normal vector n in the following alternative
form: (

ν
∂u

∂n
− pn

)
= tN on ΓN ⊂ ∂Ω (13.55)

Equation 13.55 represents the Neumann boundary condition to be provided to the
incompressible Navier-Stokes equations in Eq. 13.35.

It is important to note that ΓD and ΓN provide a partition of the domain boundary ∂Ω,
that is ΓD ∪ ΓN = ∂Ω, Γ̊D ∩ Γ̊N = ∅.

13.3 Stokes equations

The space discretization of the Navier-Stokes equations leads to a non-linear set of ordinary
differential equations because of the presence of the convective term (u • ∇) u. This makes
both the analysis and the numerical solution more difficult. In some cases, when the fluid
is highly viscous, the contribution of the non-linear convective term may be neglected.

Let the Reynolds number Re to be defined:

Re =
|U| L
ν

(13.56)

where L is a representative length of the domain Ω (e.g. the length of a tube wherein the
fluid flow is studied) and U is a representative fluid velocity (e.g. the free stream velocity).
The Reynolds number measures the extent at which convection dominates over diffusion.
When Re � 1 (for instance, flow in smaller arteries or capillaries) the convective term
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(u • ∇) u in Eqs. 13.15, 13.35, or 13.48 can be omitted, and Navier-Stokes equations reduce
to the so-called Stokes equations.

The generalized Stokes problem with mixed Dirichlet−Neumann homogeneous boundary
conditions is: 

αu − ν∆u + ∇p = f in Ω

div u = 0 in Ω

u = 0 on ΓD

ν
∂u

∂n
− pn = 0 on ΓN

(13.57)

for a given coefficient α ≥ 0. The homogeneous Dirichlet boundary condition is imposed on
ΓD. The homogeneous Neumann boundary condition is imposed on ΓN . The two subsets
ΓD and ΓN of the domain boundary ∂Ω provide a partition of ∂Ω. In fact, ΓD ∪ ΓN = ∂Ω,
Γ̊D ∩ Γ̊N = ∅.

The Stokes problem describes the motion of an incompressible viscous flow in which
the (quadratic non-linear) convective term has been neglected. As mentioned previously,
this simplification is acceptable when Re � 1. The derivative with respect to time has
been neglected from Navier-Stokes equations. In fact, a Stokes flow is steady and has no
dependence on time other than through time-dependent boundary conditions. This means
that, given the boundary conditions of a Stokes flow, the flow can be computed without
knowledge of the flow at any other time.

For the sake of brevity, from here on the given coefficient α is set equal to 0: α = 0.
The Stokes equations with homogeneous Dirichlet and homogeneous Neumann boundary
conditions thus become: 

− ν∆u + ∇p = f in Ω

div u = 0 in Ω

u = 0 on ΓD

ν
∂u

∂n
− pn = 0 on ΓN

(13.58)

For the sake of simplicity, the Stokes equations in Eq. 13.58 are the differential equations
which will be considered in the following sections of the present chapter.

13.3.1 Weak formulation of Stokes equations

The Navier-Stokes and Stokes equations which have been introduced so far represent the
strong formulation of the fluid flow differential problem. A formulation of the problem
alternative to the strong one is now investigated and called weak formulation. The weak
formulation of the differential problem allows the order of the derivation required for the
unknown solution (u, p) to be reduced.

The weak form of Stokes (or Navier-Stokes) equations is formally obtained by taking the
scalar product of the momentum equations with a vector function v (called test function)
belonging to a suitable functional space V (called test function space), integrating over
the computational domain Ω and applying the Green integration formula. Similarly, the
continuity equation is multiplied by a scalar test function q belonging to a suitable test
functional space Q and integrated over the computational domain Ω. More details about
the functional spaces V and Q will be specified later on.
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Let the weak formulation of the Stokes problem in Eq. 13.58 to be now presented. In
particular, the case of mixed Dirichlet−Neumann homogeneous boundary conditions will
be treated in detail. However, for the sake of completeness, a hint of the general weak form
of Stokes-equations with mixed Dirichlet−Neumann nonhomogeneous boundary conditions
will be also concisely given.

The momentum conservation equation for the Stokes problem (first expression in
Eq. 13.58) multiplied by a test function v and integrated over Ω is:∫

Ω

[
− ν∆u • v + ∇p • v

]
dΩ =

∫
Ω

f • v dΩ (13.59)

The first term of Eq. 13.59 can be rewritten using the Green formula for the Laplacian
operator, which in terms of the generic scalar quantities u and v is:∫

Ω
(∆u) v dΩ =

∫
∂Ω

∂u

∂n
v dΓ −

∫
Ω
∇u • ∇v dΩ (13.60)

Since:

∆u • v =
3∑
i=1

(∆ui) vi (13.61)

the expression in Eq. 13.60 corresponding to vectors u and v is:∫
Ω

∆u • v dΩ =

3∑
i=1

∫
Ω

(∆ui) vi dΩ =

3∑
i=1

[∫
∂Ω

∂ui
∂n

vi dΓ −
∫

Ω
∇ui • ∇vi dΩ

]
(13.62)

In a compact form, Green formula for the Laplacian operator in terms of vectors u and v
is thus: ∫

Ω
∆u • v dΩ =

∫
∂Ω

∂u

∂n
• v dΓ −

∫
Ω
∇u :∇v dΩ (13.63)

The term ∇u :∇v is:

∇u :∇v = tr
(
∇uT ∇v

)
(13.64)

where the symbol tr stands for the trace of a square matrix, i.e. the sum of the elements on
its main diagonal. The second term of Eq. 13.59 can be rewritten using the Green formula
for the divergence operator :∫

Ω
p div v dΩ =

∫
∂Ω
pv • n dΓ −

∫
Ω
∇p • v dΩ (13.65)

Hence: ∫
Ω
∇p • v dΩ =

∫
∂Ω
pv • n dΓ −

∫
Ω
p div v dΩ (13.66)

Substituting Eqs. 13.63 and 13.66 into Eq. 13.59 and using the fact that ν is constant for
the fluid considered, the weak form of the momentum equation becomes:∫

Ω
ν∇u :∇v dΩ −

∫
Ω
p div v dΩ =

∫
∂Ω
ν
∂u

∂n
• v dΓ −

∫
∂Ω
pv • n dΓ +

∫
Ω

f • v dΩ (13.67)

∀v ∈ V . More details about the choice of V is faced later on. Collecting the intergral
terms over ∂Ω and using:

pv • n = pn • v (13.68)
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Eq. 13.67 becomes:∫
Ω
ν∇u :∇v dΩ −

∫
Ω
p div v dΩ =

∫
∂Ω

(
ν
∂u

∂n
− pn

)
• v dΓ +

∫
Ω

f • v dΩ (13.69)

∀v ∈ V .
The mass conservation Stokes equation (second expression in Eq. 13.58) multiplied by

a test function q, belonging to a suitable functional space Q, and integrated over Ω is:

−
∫

Ω
q div u dΩ = 0 (13.70)

∀ q ∈ Q. It is noteworthy that in Eq. 13.70 the negative sign “-” has been included only
for the sake of convenience, without changing the result.

Choice of test function spaces V and Q

Let the choice of the test function spaces V and Q to be now investigated. For this purpose,
a short digression about some particular functional spaces is addressed. However, more
details about functional spaces can be found in [142]. Let the space of square−integrable
functions on Ω ⊂ R3 to be considered:

L2 (Ω) =

{
f : Ω→ R s.t.

∫
Ω

(f(x))2 dΩ < +∞
}

(13.71)

The functions of L2 (Ω) are a particular distribution. However, it is not guaranteed that
their derivatives (in the sense of distributions) are still functions of L2 (Ω). Let k be a
positive integer. The Sobolev space Hk (Ω) of order k on Ω is the space formed by the
totality of functions of L2 (Ω) such that all their (distributional) derivatives up to order k
belong to L2 (Ω):

Hk (Ω) =
{
f ∈ L2 (Ω) : Dαf ∈ L2 (Ω) ∀α : |α| ≤ k

}
(13.72)

where the symbol Dα stands for the derivation in the sense of distributions, see [142]. Let
the space H1 (Ω) to be defined setting k = 1 in Eq. 13.72:

H1 (Ω) =

{
v : Ω→ R s.t. v ∈ L2, (Ω) :

∂v

∂xi
∈ L2 (Ω) , i = 1, 2, 3

}
(13.73)

As customarily, in the case of scalar test functions v : Ω→ R, the test function space V to
be used in the weak formulation of a differential problem would be chosen as a subspace of
H1 (Ω):

V = H1
ΓD

(Ω) =
{
v ∈ H1 (Ω) : v|ΓD = 0

}
(13.74)

In fact, the test function space V would be chosen in such a way that the test functions
v vanish on that boundary portion where a Dirichlet boundary condition (homogeneous
or nonhomogeneous) is prescribed on the unknown u. Similarly, in the case of vector
test functions v : Ω → R3 the test function space V would be chosen as a subspace of[
H1

ΓD
(Ω)
]3

:

V =
[
H1

ΓD
(Ω)
]3

=
{

v ∈
[
H1 (Ω)

]3
: v|ΓD = 0

}
(13.75)

In other words, the test function space V is chosen in such a way that the test functions v
vanish on that boundary portion where a Dirichlet boundary condition (homogeneous or
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nonhomogeneous) is prescribed on the velocity vector u. In general, the velocity vector u

is such that u ∈
[
H1 (Ω)

]3
. Moreover, u = gD on ΓD for the nonhomogeneous Dirichlet

boundary conditions case. On the contrary, u ∈
[
H1

ΓD
(Ω)
]3

= V (see Eq. 13.75) for the

homogeneous Dirichlet boundary conditions case (since u = 0 on ΓD). Moreover, if u = 0

on ΓD = ∂Ω (i.e. ΓN = ∅), then u ∈
[
H1

0 (Ω)
]3

= V :

V =
[
H1

0 (Ω)
]3

=
{

v ∈
[
H1 (Ω)

]3
: v|ΓD = ∂Ω = 0

}
(13.76)

As far as the scalar test function space Q is concerned, if ΓN /= ∅ then it can be chosen
Q = L2 (Ω) (see Eq. 13.71). Instead, if ΓN = ∅ (i.e. ΓD = ∂Ω) the following scalar test
function space Q is considered for the test functions q as well as the pressure p ∈ Q:

Q = L2
0 (Ω) =

{
p ∈ L2 (Ω) :

∫
Ω
pdΩ = 0

}
(13.77)

where the pressure p is assumed to have null average over the computational domain Ω.
As a summary:

Q = L2 (Ω) if ΓN /= ∅ , Q = L2
0 (Ω) if ΓN = ∅ (13.78)

More details about the choice of test function spaces V and Q can be found in [142].
As far as the choice of functional spaces depending on boundary conditions of the

problem is concerned, the Dirichlet conditions are said to be essential as they are imposed
explicitly in the functional space in which the problem is set. The Neumann conditions are
instead said to be natural, as they are satisfied implicitly by the solution of the problem.

Weak form of Stokes equations with mixed Dirichlet−Neumann nonhomoge-
neous boundary conditions

The operations so far carried out to obtain the weak formulation of the Stokes equations
have not employed the boundary conditions. Although only the Stokes problem with mixed
Dirichlet−Neumann homogeneous boundary conditions have been formulated in Eq. 13.58,
these operations are valid still in the more general case of mixed Dirichlet−Neumann
nonhomogeneous boundary conditions (Eqs. 13.51 and 13.53): u = gD on ΓD

ν
∂u

∂n
− pn = tN on ΓN

(13.79)

to be provided to the first two equations of system 13.58. Retrieving the momentum
conservation and the mass conservation in Eqs. 13.69 and 13.70 and according to the
considerations made about the choice of test function spaces, the weak form of the Stokes
equations is therefore:

Find u ∈
[
H1 (Ω)

]3
, p ∈ Q such that

∫
Ω
ν∇u :∇v dΩ −

∫
Ω
p div v dΩ =

∫
∂Ω

(
ν
∂u

∂n
− pn

)
• v dΓ +∫

Ω
f • v dΩ ∀v ∈ V

−
∫

Ω
q div u dΩ = 0 ∀ q ∈ Q

(13.80)
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where V = H1
ΓD

(Ω) and Q is given in Eq. 13.78. The weak form presented in Eq. 13.80
is valid for the general case of mixed Dirichlet− Neumann nonhomogeneous boundary
conditions. The integral term over ∂Ω has to be evaluated according to the boundary
conditions chosen on ∂Ω, as will be shown in Eq. 13.81. The sample case of mixed
Dirichlet−Neumann homogeneous boundary conditions (i.e. gD = 0 and tN = 0) will be
faced in Eq. 13.82.

Weak form of Stokes equations with mixed Dirichlet−Neumann homogeneous
boundary conditions

When mixed Dirichlet−Neumann homogeneous boundary conditions are considered in the
Stokes problem, the corresponding weak form can be seen as a particular case of Eq. 13.80.
As previously mentioned, the integral term on the boundary ∂Ω has to be evaluated and
in this section it is computed considering the homogeneous boundary conditions written
in Eq. 13.58. First af all, this term (comparing in Eq. 13.69 and 13.80 is split into two
integral terms over ΓD and ΓN :∫

∂Ω

(
ν
∂u

∂n
− pn

)
• v dΓ =

∫
ΓD

(
ν
∂u

∂n
− pn

)
• v dΓ +

∫
ΓN

(
ν
∂u

∂n
− pn

)
• v dΓ (13.81)

The Dirichlet−Neumann homogeneous boundary conditions are now considered by eliding
the integral terms:∫

∂Ω

(
ν
∂u

∂n
− pn

)
• v dΓ =

���
���

���
���

���:= 0∫
ΓD

(
ν
∂u

∂n
− pn

)
• v︸︷︷︸
=0 on ΓD

dΓ +

��
���

���
���

��:= 0
∫

ΓN

(
ν
∂u

∂n
− pn

)
︸ ︷︷ ︸

=0 on ΓN

• v dΓ
(13.82)

As a consequence, for the sample boundary conditions considered:∫
∂Ω

(
ν
∂u

∂n
− pn

)
• v dΓ = 0 (13.83)

Finally, the weak form of the Stokes equations with mixed Dirichlet−Neumann homogeneous
boundary conditions (ΓD /= ∅,ΓN /= ∅) is:

Find u ∈ V =
[
H1

ΓD
(Ω)
]3
, p ∈ Q = L2 (Ω) such that

∫
Ω
ν∇u :∇v dΩ −

∫
Ω
p div v dΩ =

∫
Ω

f • v dΩ ∀v ∈ V

−
∫

Ω
q div u dΩ = 0 ∀ q ∈ Q

(13.84)

Let the bilinear forms a : V × V → R and b : V ×Q→ R to be now defined as follows:

a (u,v) =

∫
Ω
ν∇u :∇v dΩ (13.85)

b (u, q) = −
∫

Ω
q div u dΩ (13.86)
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With these notations, the weak form in Eq. 13.84 can be written in a more compact
notation:

Find u ∈ V =
[
H1

ΓD
(Ω)
]3
, p ∈ Q = L2 (Ω) such that{

a (u,v) + b (v, p) = (f ,v) ∀v ∈ V

b (u, q) = 0 ∀ q ∈ Q

(13.87)

where (f ,v) =

∫
Ω

f • v dΩ =

3∑
i=1

∫
Ω
fi vi.

The bilinear form a ( • , • ) in Eq. 13.87 is symmetric since the space where the solution u
is sought coincides with the space of the test functions (u ∈ V and v ∈ V ). For the sake of
completeness, it is noticed that a general weak form of the Stokes equations analogous to
Eq. 13.87 can be obtained for the mixed Dirichlet−Neumann nonhomogeneous boundary
conditions case (Eq. 13.79), even though it is not reported here. In this particular case, the
bilinear form a ( • , • ) would be asymmetrical, since the space where the solution u is sought
would not coincide with the space of the test functions V . Thus, a lifting of the Dirichlet
boundary datum gD would be required in order to make a ( • , • ) symmetric. However, more
details about this procedure can be found in [142].

It is important to note that the couple (u, p) solves the Stokes problem 13.87 if and
only if it is a saddle-point of the Lagrangian functional:

L (v, q) =
1

2
a (v,v) + b (v, q) − (f,v) (13.88)

This means that:
L (u, p) = min

v∈V
max
q ∈Q

L (v, q) (13.89)

In this regard, the pressure q plays the role of Lagrange multiplier associated to the
incompressibility (i.e. divergence-free) constraint.

13.3.2 Galerkin approximation

The Galerkin approximation of the Stokes problem in Eq. 13.84 has the following form:

Find uh ∈ Vh, ph ∈ Qh such that
∫

Ω
ν∇uh :∇vh dΩ −

∫
Ω
ph div vh dΩ =

∫
Ω

f • vh dΩ ∀vh ∈ Vh

−
∫

Ω
qh div uh dΩ = 0 ∀ qh ∈ Qh

(13.90)

According to the compact notation in Eq. 13.87 which involves the bilinear forms, the
Galerkin approximation (Eq. 13.87) can be written as:

Find uh ∈ Vh, ph ∈ Qh such that{
a (uh,vh) + b (vh, ph) = (f ,vh) ∀vh ∈ Vh

b (uh, qh) = 0 ∀ qh ∈ Qh

(13.91)

where {Vh ⊂ V } and {Qh ⊂ Q} represent two families of finite dimensional subspaces
depending on a real positive discretization parameter h, such that:

dimVh = MV
h <∞ ∀h > 0

dimQh = MQ
h <∞ ∀h > 0

(13.92)
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The terms uh and ph in the Galerkin approximation in Eqs. 13.90 and 13.91 are the discrete
solutions of the Stokes problem in weak form (Eq. 13.84). An important theorem due to
Franco Brezzi guarantees uniqueness and solution of the problem in Eq. 13.91. For the
sake of completeness, the original version of this theorem can be found in [143]. The proof
of this theorem is also reported in [142] for a saddle-point problem that is more general
than the Stokes problem and within a more abstract framework.

In general, let
{
ϕj ∈ Vh, j = 1, . . . ,MV

h

}
and

{
φj ∈ Qh, j = 1, . . . ,MQ

h

}
to be denoted

as the basis functions of the spaces Vh and Qh, respectively. The discrete solutions uh and
ph with respect to these bases are:

uh (x) =

MV
h∑

j=1

uj ϕj (x) ph (x) =

MQ
h∑

j=1

pj φj (x) (13.93)

Equation 13.93 means that the discrete solutions uh and ph are linear combinations of the
bases functions by means of the coefficients uj and pj , respectively.

13.4 1D CUF model for the approximation of Stokes equa-
tions

The strong and weak forms of the Stokes problem have been introduced in section 13.3. The
corresponding Galerkin approximation in Eq. 13.90 (or Eq. 13.91) provides a discretization
of the problem. The use of the 1D CUF model as the numerical method to be considered
in the Galerkin approximation is addressed in this section.

The solution of the elasticity problem by means of the Finite Element Method (FEM)
and the Carrera Unified Formulation (CUF) has been presented in chapter 3 and discussed
in chapters 4, 5, 6, 7. Similarly to the formulation of the 1D CUF FE model introduced for
the structural problem, this section addresses the numerical modeling of the Stokes problem
through the 1D CUF FE model. This discretization method is particularly suitable for the
Stokes problem when the computational domain is similar to the computational domains
defined in chapter 3. In other words, a perfect example for the use of the 1D CUF FE
model is fluid flow in a pipe. As depicted in Fig. 13.1, the computational domain Ω, i.e.
the volume in the pipe, can be discretized by means of an arbitrary cross-section ΓS and
a one-dimensional mesh of NEL finite elements, according to the procedure followed to
discretize structurally slender bodies via the CUF model in chapter 3.

s

Figure 13.1: An example of computational domain Ω and cross-section ΓS .

13.4.1 Velocity discretization

According to the framework of Carrera Unified Formulation (CUF) introduced in section 2.4,
the discrete velocity field uh is assumed to be an expansion of a certain class of functions
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FUτ , which depend on the cross-section coordinates x and z:

uh (x, y, z) = FUτ (x, z) uτ (y) τ = 1, . . . , NU
u = NU

u (NU ) (13.94)

The compact expression is based on Einstein’s notation: repeated subscript τ indicates
summation. The vector uτ is the τ th generalized velocity unknowns vector which contains
the components {uxτ uyτ uzτ}T . The vector uτ depends on the single spatial coordinate
y and so Eq. 13.94 represents the key formulation of the one-dimensional (1D) CUF model
for the velocity field.

The number of expansion terms NU
u depends on the expansion order NU , which is a

free parameter of the formulation. The expansion order depends directly on the choice of
the cross-section functions FUτ , which is arbitrary. As mentioned at the end of section 2.4.2,
the formulation developed in the present dissertation bases on the choice of Maclaurin
polynomials instead of Lagrange polynomials. The generic τ th cross-section function is
hence a multivariate Maclaurin polynomial given by the multiplication of a monomial in x
by a monomial in z as described in Eq. 13.95:

FUτ (x, z) = xh zk h, k = 0, . . . , NU τ = 1, . . . , NU
u =

(NU + 1) (NU + 2)

2
(13.95)

which corresponds to Eq. 2.35. The relation between indices τ , h, and k in Eq. 13.95
can be found in Table 2.1, where Nu and N have to be replaced with NU

u and NU . The
multivariate Maclaurin polynomials considered for the approximation of the velocity on the
cross-section as the expansion order NU increases are depicted in Fig. 13.2, which reminds
Pascal’s triangle, also called Tartaglia’s triangle. For the sake of simplicity, the polynomials
in Fig. 13.2 refer to a rectangular domain with dimensions equal to a and b along x and z
axes, respectively. However, more details can be found in section 2.4.

According to the in-depth analysis carried out in chapter 3, the basic procedure in the
isoparametric finite element displacement-based formulation is to express both the element
coordinates and the element displacements in the form of interpolations (shape functions)
using the natural coordinate system of the element. The same procedure is applied here for
the present fluid dynamic formulation where the unknowns are the velocity and pressure
fields. The shape functions NU

i are therefore used to approximate the velocity unknowns.
According to CUF formulation in Eq. 2.34 and finite element coordinates approximation in
Eq. 3.2, generic velocities uτ lying on the longitudinal axis are expressed as:

uτ (y) = NU
i (y) q τi i = 1, . . . , NU

N (13.96)

where again repeated subscript i indicates summation based on Einstein’s notation. The
generic nodal velocity vector q τi contains the velocity degrees of freedom of the generic
τ th expansion term corresponding to the ith element node. The dimensions of this vector
are 3× 1 and its components are:

q τi =


q τix

q τiy

q τiz

 (13.97)

Combining the finite element approximation in Eq. 13.96 and CUF formulation in Eq. 13.94,
the velocity field described by the present one-dimensional model becomes:

uh (x, y, z) = FUτ (x, z)NU
i (y) q τi

τ = 1, . . . , NU
u = NU

u (NU )

i = 1, . . . , NU
N

(13.98)
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NU = 0 or NP = 0

NU = 1 or NP = 1

NU = 2 or NP = 2

NU = 3 or NP = 3

NU = 4 or NP = 4

NU = 5 or NP = 5

Figure 13.2: Higher-order Maclaurin polynomials for different values of the velocity expansion order
NU or the pressure expansion order NP .

where repeated subscripts τ and i indicate summation based on Einstein’s notation. The 1D
CUF FE approximation for uh in Eq. 13.98 is now written explicitly with the summation
operators on indices τ and i:

uh =

NU
u∑

τ=1

NU
N∑

i=1

FUτ NU
i q τi =

NU
u∑

τ=1

NU
N∑

i=1

FUτ NU
i


q τix

q τiy

q τiz


=

NU
u∑

τ=1

NU
N∑

i=1

FUτ NU
i

 q τix


1

0

0

 + q τiy


0

1

0

 + q τiz


0

0

1
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=

NU
u∑

τ=1

NU
N∑

i=1

 q τix

FUτ NU

i

0

0

 + q τiy


0

FUτ NU
i

0

 + q τiz


0

0

FUτ NU
i




=

NU
u∑

τ=1

NU
N∑

i=1

[
q τixϕτi1 + q τiy ϕτi2 + q τiz ϕτi3

]
=

3∑
e=1

NU
u∑

τ=1

NU
N∑

i=1

q τieϕτie

(13.99)

According to Eq. 13.93, which expresses the discrete solution uh as a linear combination of
the bases functions φj (x) by means of the scalar coefficients uj , the functions ϕτie:

ϕτie (x, y, z) =


δ1e F

U
τ (x, z)NU

i (y)

δ2e F
U
τ (x, z)NU

i (y)

δ3e F
U
τ (x, z)NU

i (y)

 (13.100)

are therefore the bases of the space Vh due to the 1D CUF approximation whereas q τix,
q τiy, and q τiz are the unknown scalar velocity coefficients. As a consequence, the term
q τi is the vector of the unknown velocity coefficients which identify the discrete solution
uh in the space Vh. Indices δ1e, δ2e, and δ3e in Eq. 13.100 derive from the Kronecker delta:

δ1e =

{
1 e = 1

0 e /= 1
δ2e =

{
1 e = 2

0 e /= 2
δ3e =

{
1 e = 3

0 e /= 3
(13.101)

13.4.2 Pressure discretization

According to the framework of Carrera Unified Formulation (CUF), the discrete pressure
field ph is assumed to be an expansion of a certain class of functions FPm , which depend on
the cross-section coordinates x and z:

ph (x, y, z) = FPm (x, z) pm (y) m = 1, . . . , NP
u = NP

u (NP ) (13.102)

The compact expression is based on Einstein’s notation: repeated subscript m indicates
summation. The term pm is the mth generalized pressure unknown. This term depends
on the single spatial coordinate y and so Eq. 13.102 represents the key formulation of the
one-dimensional (1D) CUF model for the pressure field.

The number of expansion terms NP
u depends on the expansion order NP , which is a

free parameter of the formulation. As done for velocity, Maclaurin polynomials are used to
discretize the pressure field. The generic mth cross-section function is hence a multivariate
Maclaurin polynomial given by the multiplication of a monomial in x by a monomial in z
as described in Eq. 13.103:

FPm (x, z) = xh zk h, k = 0, . . . , NP τ = 1, . . . , NP
u =

(NP + 1) (NP + 2)

2
(13.103)

which corresponds to Eq. 13.95. The relation between indices m, h, and k in Eq. 13.95
can be found in Table 2.1, where Nu and N have to be replaced with NP

u and Np. The
multivariate Maclaurin polynomials considered for the approximation of the pressure on
the cross-section as the expansion order NP increases are depicted in Fig. 13.2.

The finite element method is used to approximate the pressure field along the longi-
tudinal axis y. The shape functions NP

t are therefore used to approximate the pressure
unknowns. The generic pressure pm lying on the longitudinal axis is expressed as:

pm (y) = NP
t (y) pmt i = 1, . . . , NP

N (13.104)
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where again repeated subscript t indicates summation based on Einstein’s notation. Com-
bining the finite element approximation in Eq. 13.104 and CUF formulation in Eq. 13.103,
the pressure field described by the present one-dimensional model becomes:

ph (x, y, z) = FPm (x, z)NP
t (y) pmt

m = 1, . . . , NP
u = NP

u (NP )

t = 1, . . . , NP
N

(13.105)

where repeated subscripts m and t indicate summation based on Einstein’s notation. Equa-
tion 13.93 expresses the discrete solution ph as a linear combination of the bases functions
φj (x) by means of the scalar coefficients pmt. Writing the 1D CUF FE approximation for
ph in Eq. 13.105 explicitly with the summation operators on m and t and comparing with
Eq.13.93:

ph =

NP
u∑

m=1

NP
N∑

t=1

pmt F
P
m NP

t =

NP
u∑

m=1

NP
N∑

t=1

pmt φmt (13.106)

it results that the following functions φmt:

φmt (x, y, z) = FPm (x, z)NP
t (y) (13.107)

are therefore the bases of the space Qh due to the 1D CUF approximation, whereas the
terms pmt are the unknown pressure coefficients which identify the discrete solution ph in
the space Qh.

13.4.3 Refined models with variable velocity-pressure accuracy

Thanks to the hierarchical CUF approach described in chapters 2 and 3, different higher-
order theories with a variable order of expansion for the velocity and pressure unknowns
and hence with a variable accuracy can be easily developed. According to the CUF FE
discretization introduced in the previous sections, the parameters of the analysis are the
NU
N , NP

N , NU , and NP . No assumptions have been introduced for these parameters. This
means that different expansions can be assumed to describe the velocity and pressure fields.
For instance, the sample case of NU = 4 and NP = 2 is shown in Fig. 13.3.
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Figure 13.3: Maclaurin polynomials chosen as cross-section functions of the velocity and pressure
fields for the sample case of velocity expansion order NU = 4 and pressure expansion order NP = 2.

The choice of the analysis parameters NU
N , NP

N , NU , and NP is fundamental to obtain
the correct numerical solution of the fluid problem. A key point concerns the stability of
the problem. More details will be presented in section 13.4.7.
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13.4.4 Galerkin approximation through 1D CUF model

According to the 1D CUF approximation for the velocity field (Eqs. 13.98 and 13.99) the
generic discrete test function vh ∈ Vh is:

vh =

3∑
e=1

NU
u∑

τ=1

NU
N∑

i=1

q?τieϕτie (13.108)

where q?τi is the vector of coefficients which identify the discrete test function vh in the
space Vh. According to the 1D CUF approximation for the pressure field (Eqs. 13.105
and 13.106) the generic discrete test function qh ∈ Qh is:

qh =

NP
u∑

m=1

NP
N∑

t=1

p?mt φmt (13.109)

where p?mt are the coefficients which identify the discrete test function qh in the space Qh.
It is sufficient therefore that the Galerkin approximation in Eq. 13.90 is verified for each
function of the basis of Vh and Qh, since all the functions in the space Vh and Qh are a
linear combination of the basis funcions (see Eq. 13.93). Since the functions ϕτie are the
bases chosen for the space Vh, and φmt are the bases chosen for the space Qh, the following
system of equations is thus required to be satisfied:

Find uh ∈ Vh, ph ∈ Qh such that
∫

Ω
ν∇uh :∇ϕτie dΩ −

∫
Ω
ph divϕτie dΩ =

∫
Ω

f • ϕτie dΩ ∀ τ, ∀ i, ∀ e

−
∫

Ω
φmt div uh dΩ = 0 ∀m, ∀ t

(13.110)
with τ = 1, . . . , NU

u , i = 1, . . . , NU
N , e = 1, . . . , 3, m = 1, . . . , NP

u , t = 1, . . . , NP
N . Equa-

tion 13.110 represents a system of
(
3NU

u N
U
N + NP

u N
P
N

)
equations for the single finite

element of the mesh. According to the compact notation in Eq. 13.91 which involves the
bilinear forms, the requirement of Eq. 13.110 to be satisfied can be written as follows:

Find uh ∈ Vh, ph ∈ Qh such that{
a (uh,ϕτie) + b (ϕτie, ph) = (f ,ϕτie) ∀ τ, ∀ i, ∀ e

b (uh, φmt) = 0 ∀m, ∀ t

(13.111)

Each of the contributions appearing in Eq. 13.110 (i.e. in Eq. 13.111) are now separately
considered leading to the construction of the finite element matrices A, B, BT and the vector
F related to the Stokes equations with mixed Dirichlet−Neumann homogeneous boundary
conditions (Eq. 13.58). For the sake of exposition simplicity, the formulation is written by
considering a single finite element of the mesh used to discretize the computational domain
Ω, as done for the structural analysis in chapter 3, since Eq. 13.98 refers to the single finite
element with NU

N nodes and Eq. 13.105 refers to the single finite element with NP
N nodes.

Additional considerations will be necessary in the finite element assembly procedure, which
involves the element matrices and vectors computed, when more than one finite element
are considered in the mesh discretization (see section 13.4.7). These considerations are the
same as those exposed in detail for the solid mechanics in chapter 3.
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Term a (uh,ϕτie)

The first contribution in Eqs. 13.110 and 13.111, which are equivalent expressions to the
Galerkin approximation (Eqs. 13.90 and 13.91) of the Stokes problem, is the bilinear form:

a (uh,ϕτie) =

∫
Ω
ν∇uh :∇ϕτie dΩ (13.112)

In order to compute this term which involves the discrete velocity solution and the generic
basis function of the space Vh, the corresponding term which involves the discrete velocity
solution and the generic discrete test function of the space Vh written in the Galerkin
approximation (Eqs. 13.90 and 13.91) is retrieved:

a (uh,vh) =

∫
Ω
ν∇uh :∇vh dΩ (13.113)

Using Eq. 13.64, the term ∇uh :∇vh is:

∇uh :∇vh = tr
(
∇uTh ∇vh

)
(13.114)

where the symbol tr stands for the trace of a square matrix, i.e. the sum of the elements
on its main diagonal. As a consequence:

∇uh :∇vh = tr
(
∇uTh ∇vh

)
= ∇vh :∇uh = tr

(
∇vTh ∇uh

)
(13.115)

The expression of tr
(
∇vTh ∇uh

)
can be written explicitly in the cartesian coordinate system

(x, y, z):

tr
(
∇vTh ∇uh

)
=

∂vhx
∂x

∂uhx
∂x

+
∂vhy
∂x

∂uhy
∂x

+
∂vhz
∂x

∂uhz
∂x

+

∂vhx
∂y

∂uhx
∂y

+
∂vhy
∂y

∂uhy
∂y

+
∂vhz
∂y

∂uhz
∂y

+

∂vhx
∂z

∂uhx
∂z

+
∂vhy
∂z

∂uhy
∂z

+
∂vhz
∂z

∂uhz
∂z

(13.116)

Using Eq. 13.116, Eq. 13.115 can be rewritten in a compact vectorial notation:

∇uh :∇vh =
∂vh
∂x

•
∂uh
∂x

+
∂vh
∂y

•
∂uh
∂y

+
∂vh
∂z

•
∂uh
∂z

=

[
∂vh
∂x

]T ∂uh
∂x

+

[
∂vh
∂y

]T ∂uh
∂y

+

[
∂vh
∂z

]T ∂uh
∂z

(13.117)

Comparing Eqs. 13.112 and 13.113, it is possible to write the quantity ∇uh :∇ϕτie by
replacing ϕτie with vh in Eq. 13.117:

∇uh :∇ϕτie =
∂ϕτie
∂x

•
∂uh
∂x

+
∂ϕτie
∂y

•
∂uh
∂y

+
∂ϕτie
∂z

•
∂uh
∂z

=

[
∂ϕτie
∂x

]T ∂uh
∂x

+

[
∂ϕτie
∂y

]T ∂uh
∂y

+

[
∂ϕτie
∂z

]T ∂uh
∂z

(13.118)

Hence:∫
Ω
ν∇uh :∇ϕτie dΩ =

∫
Ω
ν

[
∂ϕτie
∂x

]T ∂uh
∂x

dΩ︸ ︷︷ ︸
TERM 1

+

∫
Ω
ν

[
∂ϕτie
∂y

]T ∂uh
∂y

dΩ︸ ︷︷ ︸
TERM 2

+

∫
Ω
ν

[
∂ϕτie
∂z

]T ∂uh
∂z

dΩ︸ ︷︷ ︸
TERM 3

(13.119)
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Each of the contributions appearing in Eq. 13.119 are now separately considered.

TERM 1. For the sake of convenience, the discrete solution uh is now written with
indices s and j different from indices τ and i used in the 1D CUF FE approximation in
Eq. 13.98:

uh =

3∑
k=1

NU
u∑

s=1

NU
N∑

j=1

qsjk ϕsj k (13.120)

This choice is formally convenient and is made purely for the sake of exposition simplicity.
Using Eq. 13.99, the derivative of uh with respect to x appearing in TERM 1 of Eq. 13.119
becomes:

∂uh
∂x

=
∂

∂x

NU
u∑

s=1

NU
N∑

j=1

[
qsjxϕsj 1 + qsjy ϕsj 2 + qsjz ϕsj 3

]

=
∂

∂x

NU
u∑

s=1

NU
N∑

j=1

 qsjx

FUs NU

j

0

0

 + qsjy


0

FUs NU
j

0

 + qsjz


0

0

FUs NU
j





=

NU
u∑

s=1

NU
N∑

j=1

∂

∂x


qsjx F

U
s NU

j

qsjy F
U
s NU

j

qsjz F
U
s NU

j

 =

NU
u∑

s=1

NU
N∑

j=1

FUs,xN
U
j


qsjx

qsjy

qsjz


=

NU
u∑

s=1

NU
N∑

j=1

FUs,xN
U
j qsj

(13.121)
It is important to notice that the derivative of uh with respect to x has effect only on the
cross-section functions FUs , since they depend on the cross-section coordinates x and z,
whereas the shape functions NU

j of the present model depend only on coordinate y (see
Eq. 13.98). According to Eq. 13.110 (i.e. in Eq. 13.111), TERM 1 has to be expanded
for ∀ τ, ∀ i, ∀ e. Let the expansion on index e = 1, 2, 3 to be now considered and for this
purpose it is reminded from Eq. 13.99 that the basis functions chosen for the space Vh are:

ϕτi1 =


FUτ NU

i

0

0

 ϕτi2 =


0

FUτ NU
i

0

 ϕτi3 =


0

0

FUτ NU
i

 (13.122)

Substituting Eqs. 13.121 and 13.122 into TERM 1 of Eq. 13.119 and expanding on the
index e, it is obtained:∫

Ω
ν

[
∂ϕτi1
∂x

]T ∂uh
∂x

dΩ =

∫
Ω
ν

[
∂

∂x

{
FUτ NU

i 0 0
}]NU

u∑
s=1

NU
N∑

j=1

FUs,xN
U
j qsj

 dΩ

=

∫
Ω
ν
{
FUτ,xN

U
i 0 0

}NU
u∑

s=1

NU
N∑

j=1

FUs,xN
U
j qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{∫
Ω
ν NU

i N
U
j F

U
τ,x F

U
s,x dΩ 0 0

}
︸ ︷︷ ︸

= Aτs ij
1.1

qsj

(13.123)
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∫
Ω
ν

[
∂ϕτi2
∂x

]T ∂uh
∂x

dΩ =

∫
Ω
ν

[
∂

∂x

{
0 FUτ NU

i 0
}]NU

u∑
s=1

NU
N∑

j=1

FUs,xN
U
j qsj

 dΩ

=

∫
Ω
ν
{

0 FUτ,xN
U
i 0

}NU
u∑

s=1

NU
N∑

j=1

FUs,xN
U
j qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{
0

∫
Ω
ν NU

i N
U
j F

U
τ,x F

U
s,x dΩ 0

}
︸ ︷︷ ︸

= Aτs ij
1.2

qsj

(13.124)∫
Ω
ν

[
∂ϕτi3
∂x

]T ∂uh
∂x

dΩ =

∫
Ω
ν

[
∂

∂x

{
0 0 FUτ NU

i

}]NU
u∑

s=1

NU
N∑

j=1

FUs,xN
U
j qsj

 dΩ

=

∫
Ω
ν
{

0 0 FUτ,xN
U
i

}NU
u∑

s=1

NU
N∑

j=1

FUs,xN
U
j qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{
0 0

∫
Ω
ν NU

i N
U
j F

U
τ,x F

U
s,x dΩ

}
︸ ︷︷ ︸

= Aτs ij
1.3

qsj

(13.125)
As occurred for uh, the derivative of ϕτie with respect to x has effect only on the cross-
section functions FUτ . The quantities Aτ sij

1.1 , Aτ sij
1.2 , Aτ sij

1.3 are three row vectors with
dimensions 1× 3 which relate TERM 1 written for e = 1, 2, 3 and the generic τ and i to the
nodal velocity vector qsj . Finally, TERM 1 can be reformulated by exploiting a compact
notation:

∫
Ω
ν



[
∂ϕτi1
∂x

]T ∂uh
∂x[

∂ϕτi2
∂x

]T ∂uh
∂x[

∂ϕτi3
∂x

]T ∂uh
∂x


dΩ =

NU
u∑

s=1

NU
N∑

j=1


Aτ sij

1.1

Aτ sij
1.2

Aτ sij
1.3

 qsj =

NU
u∑

s=1

NU
N∑

j=1

Aτ sij
1 qsj (13.126)

where Aτ sij
1 is the part of the fundamental nucleus of Matrix A related to TERM 1 of the

bilinear form a (uh,ϕτie). Introducing the 3× 3 identity matrix I, it is obtained:

Aτ sij
1 =

∫
Ω
ν NU

i N
U
j F

U
τ,x F

U
s,x dΩ I (13.127)

This matrix has dimensions 3×3 and, as it will be explained later on, it has to be expanded
for every value of indices τ and i, according to Eq. 13.110 (i.e. in Eq. 13.111).

TERM 2. The procedure to obtain TERM 2 of Eq. 13.119 is similar to that followed
for TERM 1. The discrete solution uh is again written with indices s and j, as done in
Eq. 13.120. Using Eq. 13.99, the derivative of uh with respect to y appearing in TERM 2
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of Eq. 13.119 becomes:

∂uh
∂y

=
∂

∂y

NU
u∑

s=1

NU
N∑

j=1

[
qsjxϕsj 1 + qsjy ϕsj 2 + qsjz ϕsj 3

]

=
∂

∂y

NU
u∑

s=1

NU
N∑

j=1

 qsjx

FUs NU

j

0

0

 + qsjy


0

FUs NU
j

0

 + qsjz


0

0

FUs NU
j





=

NU
u∑

s=1

NU
N∑

j=1

∂

∂y


qsjx F

U
s NU

j

qsjy F
U
s NU

j

qsjz F
U
s NU

j

 =

NU
u∑

s=1

NU
N∑

j=1

FUs NU
j,y


qsjx

qsjy

qsjz


=

NU
u∑

s=1

NU
N∑

j=1

FUs NU
j,y qsj

(13.128)
It is important to notice that the derivative of uh with respect to y has effect only on the
shape functions NU

j , since they depend on coordinate y, whereas the cross-section functions

FUs of the present model depend only on cross-section coordinates x and z (see Eq. 13.98).
According to Eq. 13.110 (i.e. in Eq. 13.111), TERM 2 has to be expanded for ∀ τ, ∀ i, ∀ e.
Let the expansion on index e = 1, 2, 3 to be now considered. Substituting Eqs. 13.128
and 13.122 into TERM 2 of Eq. 13.119 and expanding on the index e, it is obtained:

∫
Ω
ν

[
∂ϕτi1
∂y

]T ∂uh
∂y

dΩ =

∫
Ω
ν

[
∂

∂y

{
FUτ NU

i 0 0
}]NU

u∑
s=1

NU
N∑

j=1

FUs NU
j,y qsj

 dΩ

=

∫
Ω
ν
{
FUτ NU

i,y 0 0
}NU

u∑
s=1

NU
N∑

j=1

FUs NU
j,y qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{∫
Ω
ν NU

i,yN
U
j,y F

U
τ FUs dΩ 0 0

}
︸ ︷︷ ︸

= Aτs ij
2.1

qsj

(13.129)

∫
Ω
ν

[
∂ϕτi2
∂y

]T ∂uh
∂y

dΩ =

∫
Ω
ν

[
∂

∂y

{
0 FUτ NU

i 0
}]NU

u∑
s=1

NU
N∑

j=1

FUs NU
j,y qsj

 dΩ

=

∫
Ω
ν
{

0 FUτ NU
i,y 0

}NU
u∑

s=1

NU
N∑

j=1

FUs NU
j,y qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{
0

∫
Ω
ν NU

i,yN
U
j,y F

U
τ FUs dΩ 0

}
︸ ︷︷ ︸

= Aτs ij
2.2

qsj

(13.130)
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∫
Ω
ν

[
∂ϕτi3
∂y

]T ∂uh
∂y

dΩ =

∫
Ω
ν

[
∂

∂y

{
0 0 FUτ NU

i

}]NU
u∑

s=1

NU
N∑

j=1

FUs NU
j,y qsj

 dΩ

=

∫
Ω
ν
{

0 0 FUτ NU
i,y

}NU
u∑

s=1

NU
N∑

j=1

FUs NU
j,y qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{
0 0

∫
Ω
ν NU

i,yN
U
j,y F

U
τ FUs dΩ

}
︸ ︷︷ ︸

= Aτs ij
2.3

qsj

(13.131)
As occurred for uh, the derivative of ϕτie with respect to y has effect only on the shape
functions NU

i and NU
j . The quantities Aτ sij

2.1 , Aτ sij
2.2 , Aτ sij

2.3 are three row vectors with
dimensions 1× 3 which relate TERM 2 written for e = 1, 2, 3 and the generic τ and i to the
nodal velocity vector qsj . Finally, TERM 2 can be reformulated by exploiting a compact
notation:

∫
Ω
ν



[
∂ϕτi1
∂y

]T ∂uh
∂y[

∂ϕτi2
∂y

]T ∂uh
∂y[

∂ϕτi3
∂y

]T ∂uh
∂y


dΩ =

NU
u∑

s=1

NU
N∑

j=1


Aτ sij

2.1

Aτ sij
2.2

Aτ sij
2.3

 qsj =

NU
u∑

s=1

NU
N∑

j=1

Aτ sij
2 qsj (13.132)

where Aτ sij
2 is the part of the fundamental nucleus of Matrix A related to TERM 2 of the

bilinear form a (uh,ϕτie). Introducing the 3× 3 identity matrix I, it is obtained:

Aτ sij
2 =

∫
Ω
ν NU

i,yN
U
j,y F

U
τ FUs dΩ I (13.133)

This matrix has dimensions 3×3 and, as it will be explained later on, it has to be expanded
for every value of indices τ and i, according to Eq. 13.110 (i.e. in Eq. 13.111).

TERM 3. The procedure to obtain TERM 3 of Eq. 13.119 is similar to that followed for
TERM 1 and TERM 2. The discrete solution uh is again written with indices s and j, as
done in Eq. 13.120. Using Eq. 13.99, the derivative of uh with respect to z appearing in
TERM 3 of Eq. 13.119 becomes:

∂uh
∂z

=
∂

∂z

NU
u∑

s=1

NU
N∑

j=1

[
qsjxϕsj 1 + qsjy ϕsj 2 + qsjz ϕsj 3

]

=
∂

∂z

NU
u∑

s=1

NU
N∑

j=1

 qsjx

FUs NU

j

0

0

 + qsjy


0

FUs NU
j

0

 + qsjz


0

0

FUs NU
j





=

NU
u∑

s=1

NU
N∑

j=1

∂

∂z


qsjx F

U
s NU

j

qsjy F
U
s NU

j

qsjz F
U
s NU

j

 =

NU
u∑

s=1

NU
N∑

j=1

FUs,z N
U
j


qsjx

qsjy

qsjz
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=

NU
u∑

s=1

NU
N∑

j=1

FUs,z N
U
j qsj (13.134)

It is important to notice that the derivative of uh with respect to z has effect only on the
cross-section functions FUs , since they depend on the cross-section coordinates x and z,
whereas the shape functions NU

j of the present model depend only on coordinate y (see
Eq. 13.98). According to Eq. 13.110 (i.e. in Eq. 13.111), TERM 3 has to be expanded for
∀ τ, ∀ i, ∀ e. Let the expansion on index e = 1, 2, 3 to be now considered. Substituting
Eqs. 13.134 and 13.122 into TERM 3 of Eq. 13.119 and expanding on the index e, it is
obtained:

∫
Ω
ν

[
∂ϕτi1
∂z

]T ∂uh
∂z

dΩ =

∫
Ω
ν

[
∂

∂z

{
FUτ NU

i 0 0
}]NU

u∑
s=1

NU
N∑

j=1

FUs,z N
U
j qsj

 dΩ

=

∫
Ω
ν
{
FUτ,z N

U
i 0 0

}NU
u∑

s=1

NU
N∑

j=1

FUs,z N
U
j qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{∫
Ω
ν NU

i N
U
j F

U
τ,z F

U
s,z dΩ 0 0

}
︸ ︷︷ ︸

= Aτs ij
3.1

qsj

(13.135)∫
Ω
ν

[
∂ϕτi2
∂z

]T ∂uh
∂z

dΩ =

∫
Ω
ν

[
∂

∂z

{
0 FUτ NU

i 0
}]NU

u∑
s=1

NU
N∑

j=1

FUs,z N
U
j qsj

 dΩ

=

∫
Ω
ν
{

0 FUτ,z N
U
i 0

}NU
u∑

s=1

NU
N∑

j=1

FUs,z N
U
j qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{
0

∫
Ω
ν NU

i N
U
j F

U
τ,z F

U
s,z dΩ 0

}
︸ ︷︷ ︸

= Aτs ij
3.2

qsj

(13.136)∫
Ω
ν

[
∂ϕτi3
∂z

]T ∂uh
∂z

dΩ =

∫
Ω
ν

[
∂

∂z

{
0 0 FUτ NU

i

}]NU
u∑

s=1

NU
N∑

j=1

FUs,z N
U
j qsj

 dΩ

=

∫
Ω
ν
{

0 0 FUτ,z N
U
i

}NU
u∑

s=1

NU
N∑

j=1

FUs,z N
U
j qsj

 dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{
0 0

∫
Ω
ν NU

i N
U
j F

U
τ,z F

U
s,z dΩ

}
︸ ︷︷ ︸

= Aτs ij
3.3

qsj

(13.137)
As occurred for uh, the derivative of ϕτie with respect to x has effect only on the cross-
section functions FUτ . The quantities Aτ sij

3.1 , Aτ sij
3.2 , Aτ sij

3.3 are three row vectors with
dimensions 1× 3 which relate TERM 3 written for e = 1, 2, 3 and the generic τ and i to the
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nodal velocity vector qsj . Finally, TERM 3 can be reformulated by exploiting a compact
notation:

∫
Ω
ν



[
∂ϕτi1
∂z

]T ∂uh
∂z[

∂ϕτi2
∂z

]T ∂uh
∂z[

∂ϕτi3
∂z

]T ∂uh
∂z


dΩ =

NU
u∑

s=1

NU
N∑

j=1


Aτ sij

3.1

Aτ sij
3.2

Aτ sij
3.3

 qsj =

NU
u∑

s=1

NU
N∑

j=1

Aτ sij
3 qsj (13.138)

where Aτ sij
3 is the part of the fundamental nucleus of Matrix A related to TERM 3 of the

bilinear form a (uh,ϕτie). Introducing the 3× 3 identity matrix I, it is obtained:

Aτ sij
3 =

∫
Ω
ν NU

i N
U
j F

U
τ,z F

U
s,z dΩ I (13.139)

This diagonal matrix has dimensions 3× 3 and, as it will be explained later on, it has to
be expanded for every value of indices τ and i, according to Eq. 13.110 (i.e. in Eq. 13.111).

TERM 1 + TERM 2 + TERM 3. The expressions of TERMS 1, 2, and 3 appearing
in Eq. 13.119 have been explicitly computed in Eqs. 13.123− 13.125, 13.129− 13.131,
13.135− 13.137 for e = 1, 2, 3. For the sake of convenience, they have been collected in the
3× 3 matrices Aτ sij

1 , Aτ sij
2 , Aτ sij

3 , respectively. Collecting and summing these terms, the
bilinear form a (uh,ϕτie) in Eq. 13.119 expanded for e = 1, 2, 3 can be finally written in a
compact vectorial notation (∀ τ, ∀ i):

a (uh,ϕτi1)

a (uh,ϕτi2)

a (uh,ϕτi3)


=



∫
Ω
ν∇uh :∇ϕτi1 dΩ∫

Ω
ν∇uh :∇ϕτi2 dΩ∫

Ω
ν∇uh :∇ϕτi3 dΩ


=

NU
u∑

s=1

NU
N∑

j=1

[
Aτ sij

1 + Aτ sij
2 + Aτ sij

3

]
qsj =

NU
u∑

s=1

NU
N∑

j=1

Aτ sij qsj

(13.140)
where Aτ sij is the fundamental nucleus of Matrix A related to the bilinear form a (uh,ϕτie)
(e = 1, 2, 3) of the 1D CUF FE model. The fundamental nucleus multiplies the nodal
velocity vector qsj , which is related to the generic sth velocity expansion term of CUF
formulation corresponding to the jth node of the single finite element, see Eq. 13.98. The
fundamental nucleus will be expanded with respect to indices τ , s, i, and j in order to build
Matrix A of the single finite element. This nucleus is a diagonal matrix with dimensions
3× 3, since it is the result of the sum of the diagonal matrices previously computed:

Aτ sij = Aτ sij
1 + Aτ sij

2 + Aτ sij
3

=

[ ∫
Ω
ν
(
NU
i N

U
j F

U
τ,x F

U
s,x + NU

i,yN
U
j,y F

U
τ FUs + NU

i N
U
j F

U
τ,z F

U
s,z

)
dΩ

]
I

(13.141)
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As previously mentioned, it is reminded that, for the moment, the present procedure refers
to a single finite element; i.e. here the assembly procedure is not yet considered. As a
consequence, the integration in Eq. 13.141 is performed over the volume corresponding
to the domain of a single finite element. By definition, the cross-section related to the
single one-dimensional finite element is considered to be constant over the element length.
Therefore, the integral over the volume in Eq. 13.141 and in the following equations is split
into the integral over the cross-section ΓS and the integral along the axis (here indicated
generically as l) of the one-dimensional finite element, which has length LEL:∫

Ω
. . . dΩ =

∫
l

∫
ΓS

. . . dΓ dy (13.142)

By definition in Eq. 13.94, the cross-section functions FUτ and FUs depend only on the cross-
section coordinates. They and their derivatives with respect to x and z can be therefore
taken out of the integral along the element length. Similarly, the shape functions of the
present one-dimensional finite element model are independent of cross-section coordinates
x and z, see Eq. 13.102. Hence, in Eq. 13.141 the shape functions are taken out of the
integral over the cross-section ΓS . For these reasons, it is possible to split the integral
along the element length and the integral over the element cross-section into two different
contributions to be multiplied.

It is important to remind that the Stokes equations whose Galerkin approximation has
been here formulated have been derived for the case of costant kinematic viscosity ν, see
sections 13.2 and 13.3. Hence, the term ν can be taken out of the integral over ΓS as well
as the integral along the element length. The expression of Aτ sij can be finally written as
follows:

Aτ sij =

[
ν

∫
l
NU
i N

U
j dy

∫
ΓS

FUτ,x F
U
s,x dΩ + ν

∫
l
NU
i,yN

U
j,y dy

∫
ΓS

FUτ FUs dΩ +

ν

∫
l
NU
i N

U
j dy

∫
ΓS

FUτ,z F
U
s,z dΩ

]
I

(13.143)
The integrals of the products of shape functions along the element length in Eq. 13.143 are
collected in the following terms:

E i
j
U

=

∫
l
NU
i N

U
j dy E i,y

j,y

U
=

∫
l
NU
i,yN

U
j,y dy (13.144)

The three integrals of the products of cross-section functions and their derivatives over ΓS
are introduced:

J τs
U =

∫
ΓS

FUτ FUs dΓ J τ,xs,x
U =

∫
ΓS

FUτ,x F
U
s,x dΓ J τ,zs,z

U =

∫
ΓS

FUτ,z F
U
s,z dΓ (13.145)

It is noteworthy to highlight that the three terms in square brackets in Eq. 13.143 are scalar
quantities which multiply the identity matrix I. The nine components of the fundamental
nucleus Aτ sij can be computed explicitly:

Aτ sij
xx = Aτ sij

yy = Aτ sij
zz = ν E i

j
U
J τ,xs,x

U + ν E i,y
j,y

U
J τs

U + ν E i
j
U
J τ,zs,z

U

Aτ sij
xy = Aτ sij

xz = Aτ sij
yx = Aτ sij

yz = Aτ sij
zx = Aτ sij

zy = 0
(13.146)

It is important to note the symmetry of the fundamental nucleus, which derives from the
symmetric bilinear form a ( • , • ) in Eq. 13.87:

Aτ sij = Asτ ji T = Asτ ji (13.147)
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Term b (ϕτie, ph)

The second contribution in Eqs. 13.110 and 13.111, which are equivalent expressions to the
Galerkin approximation (Eqs. 13.90 and 13.91) of the Stokes problem, is the bilinear form:

b (ϕτie, ph) = −
∫

Ω
ph divϕτie dΩ (13.148)

For the sake of completeness, it comes from the bilinear form in Eq. 13.91 (i.e. 13.90) and
from the choice of the basis functions ϕτie of the space Vh containing the discrete test
functions vh, according to the 1D CUF FE model (Eq. 13.99):

b (vh, ph) = −
∫

Ω
ph div vh dΩ (13.149)

Retrieving the basis functions chosen for the space Vh written in Eq. 13.122, the term
divϕτie can be computed for e = 1, 2, 3:

divϕτi1 = div


FUτ NU

i

0

0

 =
∂

∂x

[
FUτ NU

i

]
+

∂

∂y

[
0
]

+
∂

∂z

[
0
]

= FUτ,xN
U
i (13.150)

divϕτi2 = div


0

FUτ NU
i

0

 =
∂

∂x

[
0
]

+
∂

∂y

[
FUτ NU

i

]
+

∂

∂z

[
0
]

= FUτ NU
i,y (13.151)

divϕτi3 = div


0

0

FUτ NU
i

 =
∂

∂x

[
0
]

+
∂

∂y

[
0
]

+
∂

∂z

[
FUτ NU

i

]
= FUτ,z N

U
i (13.152)

It is important to notice that in Eqs. 13.150 and 13.152 the derivatives of ϕτi1 and ϕτi3
with respect to x and z have effect only on the cross-section functions FUτ , since they depend
on the cross-section coordinates x and z. On the contrary, the derivative of ϕτi2 with
respect to y has effect only on the shape functions NU

i , since they depend on coordinate y
(see Eq. 13.98).

In order to express Eq. 13.148 in terms of the pressure unknowns, it is reminded from
Eq. 13.106 that the discrete solution ph is a linear combination of the basis functions φmt:

ph =

NP
u∑

m=1

NP
N∑

t=1

pmt φmt =

NP
u∑

m=1

NP
N∑

t=1

pmt F
P
m NP

t (13.153)

According to Eq. 13.110 (i.e. in Eq. 13.111), the term b (ϕτie, ph) has to be expanded for
∀ τ, ∀ i, ∀ e. Let the expansion on index e = 1, 2, 3 to be now considered. Subtituting
Eqs. 13.150− 13.152 and 13.153 into Eq. 13.148 and varying index e:

−
∫

Ω
ph divϕτi1 dΩ = −

∫
Ω

 NP
u∑

m=1

NP
N∑

t=1

pmt F
P
m NP

t

 FUτ,xNU
i dΩ

=

NP
u∑

m=1

NP
N∑

t=1

[
−
∫

Ω
NU
i N

P
t F

U
τ,x F

P
m dΩ

]
︸ ︷︷ ︸

=B τmit
1

pmt

(13.154)
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−
∫

Ω
ph divϕτi2 dΩ = −

∫
Ω

 NP
u∑

m=1

NP
N∑

t=1

pmt F
P
m NP

t

 FUτ NU
i,y dΩ

=

NP
u∑

m=1

NP
N∑

t=1

[
−
∫

Ω
NU
i,yN

P
t F

U
τ FPm dΩ

]
︸ ︷︷ ︸

=B τmit
2

pmt

(13.155)

−
∫

Ω
ph divϕτi3 dΩ = −

∫
Ω

 NP
u∑

m=1

NP
N∑

t=1

pmt F
P
m NP

t

 FUτ,z NU
i dΩ

=

NP
u∑

m=1

NP
N∑

t=1

[
−
∫

Ω
NU
i N

P
t F

U
τ,z F

P
m dΩ

]
︸ ︷︷ ︸

=B τmit
3

pmt

(13.156)

The quantities B τmit
1 , B τmit

2 , B τmit
3 are three scalar terms which relate the bilinear form

in Eq. 13.148 written for e = 1, 2, 3 and the generic τ and i to the nodal unknown pressure
pmt. Collecting Eqs. 13.154− 13.156, the bilinear form b (ϕτie, ph) in Eq. 13.148 expanded
for e = 1, 2, 3 can be finally written in a compact vectorial notation (∀ τ, ∀ i):

b (ϕτi1, ph)

b (ϕτi2, ph)

b (ϕτi3, ph)


=



−
∫

Ω
ph divϕτi1 dΩ

−
∫

Ω
ph divϕτi2 dΩ

−
∫

Ω
ph divϕτi3 dΩ


=

NP
u∑

m=1

NP
N∑

t=1


B τmit

1

B τmit
2

B τmit
3

 pmt =

NP
u∑

m=1

NP
N∑

t=1

Bτmit T pmt

(13.157)

where Bτmit T is the fundamental nucleus of Matrix BT related to the bilinear form
b (ϕτie, ph) (e = 1, 2, 3) of the 1D CUF FE model. The fundamental nucleus multiplies
the nodal unknown pressure pmt, which is related to the generic mth pressure expansion
term of CUF formulation corresponding to the tth node of the single finite element, see
Eq. 13.105. The fundamental nucleus will be expanded with respect to indices τ , m, i, and
t in order to build Matrix BT of the single finite element. This nucleus is a column vector
with dimensions 3× 1:

Bτmit T =



B τmit
1

B τmit
2

B τmit
3


=



−
∫

Ω
NU
i N

P
t F

U
τ,x F

P
m dΩ

−
∫

Ω
NU
i,yN

P
t F

U
τ FPm dΩ

−
∫

Ω
NU
i N

P
t F

U
τ,z F

P
m dΩ


(13.158)

As previously mentioned, it is reminded that, for the moment, the present procedure refers
to a single finite element; i.e. here the assembly procedure is not yet considered. As a
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consequence, the integration in Eq. 13.158 is performed over the volume corresponding
to the domain of a single finite element. By definition, the cross-section related to the
single one-dimensional finite element is considered to be constant over the element length.
Therefore, the integral over the volume in Eq. 13.158 and in the following equations is
split into the integral over the cross-section ΓS and the integral along the axis of the
one-dimensional finite element, which has length LEL, according to Eq. 13.142.

As done for the computation of the fundamental nucleus Aτ sij , the cross-section
functions FPm , FUτ and their derivatives can be taken out of the integral over the cross-
section, since tey depend on x and z. The shape functions NU

i , NP
t and their derivatives

can be instead taken out of the integral along the axis of the one-dimensional finite element.
Hence, it is convenient to split the terms in 13.158 into two different contributions to be
multiplied. The integrals of the products of shape functions along the element length in
Eq. 13.158 are collected in the following terms:

E i
t
UP

=

∫
l
NU
i N

P
t dy E i,y

t

UP
=

∫
l
NU
i,yN

P
t dy (13.159)

The three integrals of the products of cross-section functions and their derivatives over ΓS
are introduced:

J τm
UP =

∫
ΓS

FUτ FPm dΓ J τ,xm
UP =

∫
ΓS

FUτ,x F
P
m dΓ J τ,zm

UP =

∫
ΓS

FUτ,z F
P
m dΓ

(13.160)

The three components of the fundamental nucleus Bτmit T can be computed explicitly:

B τmit
x

T
= B τmit

1 = − E i
t
UP

J τ,xm
UP

B τmit
y

T
= B τmit

2 = − E i,y
t

UP
J τm

UP

B τmit
z

T
= B τmit

3 = − E i
t
UP

J τ,zm
UP

(13.161)

Term b (uh, φmt)

The third contribution in Eqs. 13.110 and 13.111, which are equivalent expressions to the
Galerkin approximation (Eqs. 13.90 and 13.91) of the Stokes problem, is the bilinear form:

b (uh, φmt) = −
∫

Ω
φmt div uh dΩ (13.162)

For the sake of completeness, it comes from the bilinear form in Eq. 13.91 (i.e. 13.90) and
from the choice of the basis functions φmt of the space Qh containing the discrete test
functions qh, according to the 1D CUF FE model (Eq. 13.106):

b (uh, qh) = −
∫

Ω
qh div uh dΩ (13.163)

For the sake of convenience, the discrete solution uh is now written with indices s and j
different from indices τ and i used in the 1D CUF FE approximation in Eq. 13.98:

uh =

3∑
k=1

NU
u∑

s=1

NU
N∑

j=1

qsjk ϕsj k (13.164)
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This choice, already made for the bilinear form a (uh,ϕτie), is formally convenient and is
made purely for the sake of exposition simplicity. Using Eq. 13.99, the divergence of uh is:

div uh = div

NU
u∑

s=1

NU
N∑

j=1

[
qsjxϕsj 1 + qsjy ϕsj 2 + qsjz ϕsj 3

]
=

NU
u∑

s=1

NU
N∑

j=1

[(
divϕsj 1

)
qsjx +

(
divϕsj 2

)
qsjy +

(
divϕsj 3

)
qsjz

] (13.165)

where the linear property of the divergence operator has been used (see Eq. 13.27). The
divergence of the basis functions ϕsj 1,ϕsj 2, and ϕsj 3 have been previously computed in
Eqs. 13.150, 13.151 and 13.152, respectively. The only difference in these equations is the
formal use of different indices τ and i instead of indices s and j. Thus:

div uh =

NU
u∑

s=1

NU
N∑

j=1

[
FUs,xN

U
j qsjx + FUs NU

j,y qsjy + FUs,z N
U
j qsjz

]

=

NU
u∑

s=1

NU
N∑

j=1

{
FUs,xN

U
j FUs NU

j,y FUs,z N
U
j

} 
qsjx

qsjy

qsjz


(13.166)

As far as the basis functions φmt of the discrete test funtions space Qh are concerned,
Eq. 13.107 is here retrieved:

φmt = FPm NP
t (13.167)

Substituting Eqs. 13.166 and 13.167 into Eq. 13.162, the bilinear form becomes (∀m, ∀ t):

−
∫

Ω
φmt div uh dΩ = −

∫
Ω

NU
u∑

s=1

NU
N∑

j=1

{
FUs,xN

U
j FUs NU

j,y FUs,z N
U
j

} 
qsjx

qsjy

qsjz




FPm NP
t dΩ

(13.168)
Equation 13.168 can be written in a compact vectorial notation and it is reminded that
the following equation has to be expanded for all the value of indices m and t according to
Eq. 13.110 (i.e. in Eq. 13.111):

b (uh, φmt) = −
∫

Ω
φmt div uh dΩ

=

NU
u∑

s=1

NU
N∑

j=1

{
−
∫

Ω
NP
t N

U
j F

P
m FUs,x dΩ −

∫
Ω
NP
t N

U
j,y F

P
m FUs dΩ

−
∫

Ω
NP
t N

U
j F

P
m FUs,z dΩ

} 
qsjx

qsjy

qsjz


=

NU
u∑

s=1

NU
N∑

j=1

Bmstj qsj

(13.169)
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where Bmstj is the fundamental nucleus of Matrix B related to the bilinear form b (uh, φmt)
of the 1D CUF FE model. This fundamental nucleus multiplies the nodal velocity vector
qsj , which is related to the generic sth velocity expansion term of CUF formulation
corresponding to the jth node of the single finite element, see Eq. 13.98. The fundamental
nucleus will be expanded with respect to indices m, s, t, and j in order to build Matrix B
of the single finite element. This nucleus is a row vector with dimensions 1× 3:

Bmstj =



Bmstj
x

Bmstj
y

Bmstj
z



T

=



−
∫

Ω
NP
t N

U
j F

P
m FUs,x dΩ

−
∫

Ω
NP
t N

U
j,y F

P
m FUs dΩ

−
∫

Ω
NP
t N

U
j F

P
m FUs,z dΩ



T

(13.170)

As previously mentioned, it is reminded that, for the moment, the present procedure refers
to a single finite element; i.e. here the assembly procedure is not yet considered. As a
consequence, the integration in Eq. 13.170 is performed over the volume corresponding
to the domain of a single finite element. By definition, the cross-section related to the
single one-dimensional finite element is considered to be constant over the element length.
Therefore, the integral over the volume in Eq. 13.170 and in the following equations is
split into the integral over the cross-section ΓS and the integral along the axis of the
one-dimensional finite element, which has length LEL, according to Eq. 13.142.

As done for the computation of the fundamental nuclei Aτ sij and Bτmit T , the cross-
section functions FPm , FUs and their derivatives can be taken out of the integral over
the cross-section, since tey depend on x and z. The shape functions NU

j , NP
m and their

derivatives can be instead taken out of the integral along the axis of the one-dimensional
finite element. Hence, it is convenient to split the terms in 13.170 into two different
contributions to be multiplied. The integrals of the products of shape functions along the
element length in Eq. 13.170 are collected in the following terms:

E j
t

PU
=

∫
l
NP
t N

U
j dy E j,y

t

PU
=

∫
l
NP
t N

U
j,y dy (13.171)

The three integrals of the products of cross-section functions and their derivatives over ΓS
are introduced:

J sm
PU =

∫
ΓS

FUs FPm dΓ J s,xm
PU =

∫
ΓS

FUs,x F
P
m dΓ J s,zm

PU =

∫
ΓS

FUs,z F
P
m dΓ

(13.172)
The three components of the fundamental nucleus Bmstj can be computed explicitly:

Bmstj
x = − E j

t

PU
J s,xm

PU

Bmstj
y = − E j,y

t

PU
J sm

PU

Bmstj
z = − E j

t

PU
J s,zm

PU

(13.173)

Term (f ,ϕτie)

The fourth contribution in Eqs. 13.110 and 13.111, which are equivalent expressions to the
Galerkin approximation (Eqs. 13.90 and 13.91) of the Stokes problem, is the term:

(f ,ϕτie) =

∫
Ω

f • ϕτie dΩ (13.174)
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For the sake of completeness, it comes from the term in Eq. 13.91 (i.e. Eq. 13.90)

(f ,vh) =

∫
Ω

f • vh dΩ (13.175)

and from the choice of the basis functions ϕτie of the space Vh containing the discrete
test functions vh, according to the 1D CUF FE model (Eq. 13.99). Equation 13.174 is
reformulated exploiting the scalar product as follows:

(f ,ϕτie) =

∫
Ω

f • ϕτie dΩ =

∫
Ω
ϕτie • f dΩ =

∫
Ω
ϕT
τie f dΩ (13.176)

Retrieving the basis functions chosen for the space Vh written in Eq. 13.122, their transpose
vectors for e = 1, 2, 3 are:

ϕT
τi1 =

{
FUτ NU

i 0 0
}T

(13.177)

ϕT
τi2 =

{
0 FUτ NU

i 0
}T

(13.178)

ϕT
τi3 =

{
0 0 FUτ NU

i

}T
(13.179)

It is remindend that f is the 3× 1 vector of body forces (per mass unit) applied to the fluid,
which have been defined in Eq. 13.1. Its components are referred as fx, fy, fz. According to
Eq. 13.110 (i.e. in Eq. 13.111), the term (f ,ϕτie) has to be expanded for ∀ τ, ∀ i, ∀ e. Let
the expansion on index e = 1, 2, 3 to be now considered. Subtituting Eqs. 13.177− 13.179
into Eq. 13.176 and varying index e, a compact vectorial notation is obtained:

(f ,ϕτi1)

(f ,ϕτi2)

(f ,ϕτi3)


=



∫
Ω
ϕT
τi1 f dΩ∫

Ω
ϕT
τi2 f dΩ∫

Ω
ϕT
τi3 f dΩ


=



∫
Ω
FUτ NU

i fx dΩ∫
Ω
FUτ NU

i fy dΩ∫
Ω
FUτ NU

i fz dΩ


=



F τi
x

F τi
y

F τi
z


= Fτi (13.180)

where Fτi is the fundamental nucleus of the Vector of Equivalent Nodal Forces F related
to the term (f ,ϕτie) (e = 1, 2, 3) of the 1D CUF FE model. This nucleus is written for
the generic values of the indices τ and i related to the cross-section functions FUτ and the
shape functions NU

i involved in the basis functions ϕτie used to approximate the discrete
test function vh, see Eq. 13.100. The fundamental nucleus (with dimensions 3 × 1) will
be expanded with respect to indices τ and i in order to build the Vector of Equivalent
Nodal Forces F related to the single finite element. The quantities F τi

x , F τi
y , F τi

z defined
in Eq. 13.180 are the three components of the column vector Fτi.

In general, the three components of the vector of body forces (per mass unit) applied
to the fluid f can be expressed as functions dependent on the coordinates (x, y, z) of the
three-dimensional computational space. As a consequence, in general it is not possible to
take these components out of the integral on Ω in Eq. 13.180.

For the sake of completeness, the case of constant body forces (per mass unit) applied
to the fluid on Ω (i.e. f = const) is here addressed. As previously mentioned, it is
reminded that, for the moment, the present procedure refers to a single finite element;
i.e. here the assembly procedure is not yet considered. As done for the computation of

the fundamental nuclei Aτ sij , Bτmit T , and Bmstj , the integral on the computational
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domain Ω in Eq. 13.180 can therefore be split into the integral over the cross-section ΓS
and the integral along the axis of the one-dimensional finite element, which has length
LEL, according to Eq. 13.142. The cross-section function FUτ is integrated over ΓS and the
following term is defined:

E i
U =

∫
l
NU
i dy (13.181)

On the contraty, the shape function NU
i is integrated along y and the following term is

defined:

J τU =

∫
ΓS

FUτ dΓ (13.182)

Finally, for the present simplified case of constant f (i.e. fx = const, fy = const, fz = const

on Ω), the three components of the fundamental nucleus Bτmit T can be finally computed
as follows:

F τi
x = E i

U J τU fx

F τi
y = E i

U J τU fy

F τi
z = E i

U J τU fz

(13.183)

13.4.5 System of algebraic governing equations

Substituting all the contributions appearing in Eq. 13.110 (i.e. in Eq. 13.111), the discrete
solution of the Galerkin approximation of the Stokes problem can be computed solving the
following algebraic equations in terms of the fundamental nuclei introduced previously:

NU
u∑

s=1

NU
N∑

j=1

Aτ sij qsj +

NP
u∑

m=1

NP
N∑

t=1

Bτmit T pmt = Fτi ∀ τ, ∀ i

NU
u∑

s=1

NU
N∑

j=1

Bmstj qsj = 0 ∀m, ∀ t

(13.184)

As can be seen in Eq. 13.184, the fundamental nuclei Aτ sij , Bτmit T , Bmstj , and Fτi

have to be expanded on the indices τ , i, m, and t. This expansion leads to the construction
of the finite element matrices associated to the Galerkin approximation of the Stokes
problem following the scheme depicted in Fig. 13.4.

The construction of Matrix A, Matrix BT , Matrix B, and the Vector of Equivalent
Nodal Forces F to be carried out here is equivalent to the procedure described for solid
mechanics in chapter 3. It is very important to bear in mind that the formulation leading
to Eq. 13.184 has been written so far considering a single finite element of the mesh used
to discretize the computational domain Ω, since Eq. 13.98 refers to the single finite element
with NU

N nodes and Eq. 13.105 refers to the single finite element with NP
N nodes.

When more than one finite element are considered in the 1D mesh used for discretization,
the procedure so far described has to be carried out for each finite element. Hence, at first
the matrices AEL, BT

EL, BEL, and vector FEL corresponding to the single finite element
are constructed following Eq. 13.184 and Fig. 13.4 for each of the NEL finite elements
(similarly to the procedure used to build KEL, MEL, and FEL in chapter 3). Then, a
typical assembly procedure (equivalent to the procedure used in chapter 3 for matrices K
and M and vector F, see section 3.4) is followed in order to build Matrix A, Matrix BT ,
Matrix B, and the Vector of Equivalent Nodal Forces F associated to the whole domain,
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j
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=

=

A sij
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p

F

0

p
0B

qsj

xx

yx
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A sij A sij A sij
zB mit T
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m

Figure 13.4: Procedure to build the final system of equations and the finite element matrices and
vectors expanding the fundamental nuclei.
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i.e all the NEL elements of the mesh, starting from the single element matrices and vectors
AEL, BT

EL, BEL, and FEL. For more details see section 13.4.7.
Expanding Eq. 13.184 for all the values of indices τ , i, m, and t and for all the finite

elements and considering the finite element matrices and vectors above introduced, the
final system of equations is, according to Fig. 13.4, as follows:{

A q + BTp = F

B q = 0
(13.185)

It is interesting to note that Matrix BT , which comes from the fundamental nucleus

Bτmit T , is exactly the transpose matrix of Matrix B, which comes from the fundamental
nucleus Bmstj , thanks to the following relation between the nuclei:

Bτmit = Bmstj T (13.186)

which is formally true aside from the use of different indices. The system of Eq. 13.185 can
be written collecting Matrices A, BT , and B in a single symmetric matrix S, collecting the
unknowns q and p in a single vector of unknowns q?, and collecting the column vectors F
and 0 in a single column vector F? following the scheme in Fig. 13.5.

The final condensed system of equations obtained without including boundary conditions
is thus:

S q? = F? (13.187)

=

A BT

0B

q

p

F

0

S q F**

Figure 13.5: Scheme of finite element matrices and vectors collected in the final condensed system
of equations, without including boundary conditions.

13.4.6 Boundary conditions

The final system and the final condensed system of equations written in Eqs. 13.185
and 13.187 do not include boundary conditions prescribed on the boundary of the three-
dimensional computational domain. This section shortly presents how to impose boundary
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conditions to the governing equations corresponding to the Galerkin approximation of the
Stokes problem through the 1D CUF FE model.

According to the 1D CUF approach previously described, the boundary of the com-
putational domain (∂Ω) can be split into boundary cross-sections and lateral surface,
see Fig. 13.1. The boundary cross-section is indicated with Γcs

D if a Dirichlet boundary
condition is prescribed on it. On the contrary, the boundary cross-section is indicated with
Γcs
N if a Neumann boundary condition is prescribed on it. In a similar way, the lateral

surface is indicated with Γ l
D or Γ l

N if a Dirichlet or a Neumann boundary condition is
prescribed on it, respectively. As a consequence, ΓD = Γcs

D ∪ Γ l
D and ΓN = Γcs

N ∪ Γ l
N .

An example is given for the simplified pipe in Fig. 13.6, where the two boundary
cross-sections are defined as inlet and outlet sections depending on the fluid flow direction.
For this pipe, a Dirichlet boundary condition is applied on the inlet section (hence indicated
with Γ in

D ), a Neumann boundary condition is applied on the outlet section (hence indicated
with Γout

N ) and a Dirichlet boundary condition is applied on the lateral surface (hence
indicated with Γ l

D).

N

in

D

D
l

out

Figure 13.6: Pipe with a circular cross-section. Inlet, outlet and lateral surfaces.

Homogeneous and nonhomogeneous Dirichlet boundary conditions on boundary cross-
sections or lateral surface are taken into account in this section, whereas for the sake of
brevity, nonhomogeneous Neumannn boundary conditions are not considered here. As
previously mentioned, homogeneous Neumann boundary conditions are instead “naturally”
(implicitly) satisfied by the solution of the problem in Eq. 13.185.

Dirichlet boundary conditions on cross-sections (inlet and outlet)

A Dirichlet boundary condition is prescribed on a boundary cross-section Γcs
D at y = yg

when the velocity profile, i.e. the trend of the components of the velocity vector u, is given
a priori over this section. The generic nonhomogeneous Dirichlet boundary condition is
indicated as follows:

u|Γ cs
D

= gD (13.188)

where gD is an arbitrary two-dimensional known function gD (x, z) with three components
along x, y, and z axes:

gD =


gDx

gDy

gDz

 (13.189)

Although the boundary cross-section Γcs
D can be either the inlet (yg = 0) or the outlet

(yg = L) section as depicted in Fig. 13.6, the following formulation of the Dirichlet boundary
condition (Eq. 13.188) imposition is written in a more general way such that it can be
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followed to impose additional Dirichlet velocity conditions even over a cross-section different
from the inlet and outlet sections (yg /= 0, yg /= L).

According to the 1D CUF FE velocity discretization introduced in Eq. 13.98, the
discrete velocity field uh over Γcs

D (i.e. at y = yg) is written as:

uh (x, yg, z) = FUs (x, z)NU
j (yg) qsj

s = 1, . . . , NU
u

j = 1, . . . , NU
N

(13.190)

where repeated subscripts s and j indicate summation based on Einstein’s notation and
replace subscripts τ and i purely for the sake of exposition convenience. Index s corresponds
to the NU

u cross-section functions whereas index j corresponds to the NU
N shape functions

over the single finite element ELcs of the mesh used to discretize the computational domain
Ω which passes through the cross-section Γcs

D (i.e. at y = yg) over which the condition is
imposed.

Hence, the boundary condition imposition in Eq. 13.188 becomes an imposition on the
nodal velocity vectors qsj for the single finite element ELcs. These vectors are computed
by looking for the orthogonal projection of gD over the space Vh due to the 1D CUF
approximation. As will be clear in the following section about the boundary conditions on
the lateral surface, the orthogonal projection method is equivalent to the treatment of the
Dirichlet boundary in a weak form. As a consequence:

([
gD − uh

]
|ϕτie

)
= 0 on Γcs

D ⊂ ΓD

∀ τ = 1, . . . , NU
u

∀ i = 1, . . . , NU
N

∀ e = 1, . . . , 3

(13.191)

where the scalar product ( | ) of two generic vector functions f and g is defined as:

(
f |g

)
=

∫
Γ cs
D

f • g dΓ =

∫
Γ cs
D

f T g dΓ (13.192)

For the sake of completeness, the expression in Eq. 13.192 is equivalent to those of Eqs. 13.174
and 13.175. The imposition in Eq. 13.191 has to be written for each basis function ϕτie of
the space Vh due to the 1D CUF approximation for the element ELcs. These basis functions
have been previously defined in Eq. 13.100, i.e. Eq. 13.122. A system of equations has
therefore to be written for all e indices (correspoding to the three directions x, y, and z),
for all τ indices (corresponding to the NU

u cross-section functions), and for all i indices
(corresponding to the NU

N shape functions over the element ELcs).
The 1D CUF FE approximation for uh in Eq. 13.190 is now written explicitly with the

summation operators on indices s and j and by means of the bases ϕsj k of the space Vh
due to the 1D CUF approximation:

uh =

NU
u∑

s=1

NU
N∑

j=1

FUs NU
j qsj =

3∑
k=1

NU
u∑

s=1

NU
N∑

j=1

qsjk ϕsj k (13.193)

Substituting Eq. 13.193 into Eq. 13.191, it is obtained:gD −
3∑

k=1

NU
u∑

s=1

NU
N∑

j=1

qsjk ϕsj k

 |ϕτie
 = 0 on Γcs

D ⊂ ΓD

∀ τ = 1, . . . , NU
u

∀ i = 1, . . . , NU
N

∀ e = 1, . . . , 3
(13.194)
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The left hand side term can be split into two terms and Eq. 13.194 becomes:

3∑
k=1

NU
u∑

s=1

NU
N∑

j=1

qsjk
(
ϕsj k |ϕτie

)
=
(
gD |ϕτie

)
on Γcs

D ⊂ ΓD

∀ τ = 1, . . . , NU
u

∀ i = 1, . . . , NU
N

∀ e = 1, . . . , 3
(13.195)

The scalar product
(
ϕsj k |ϕτie

)
over Γcs

D is written as follows:

(
ϕsj k |ϕτie

)
=

∫
Γ cs
D

ϕsj k • ϕτie dΓ =

∫
Γ cs
D

ϕτie • ϕsj k dΓ =

∫
Γ cs
D

ϕT
τieϕsj k dΓ =

=

 NU
i (yg)N

U
j (yg)

∫
Γ cs
D

FUτ FUs dΓ e = k

0 e /= k

on Γcs
D ⊂ ΓD

(13.196)
The scalar product

(
gD |ϕτie

)
is computed for the three directions x, y, and z and written

in the following compact form:



(
gD |ϕτi1

)
(
gD |ϕτi2

)
(
gD |ϕτi3

)


=



∫
Γ cs
D

ϕT
τi1 gD dΓ∫

Γ cs
D

ϕT
τi2 gD dΓ∫

Γ cs
D

ϕT
τi3 gD dΓ



=



NU
i (yg)

∫
Γ cs
D

FUτ gDx dΓ

NU
i (yg)

∫
Γ cs
D

FUτ gDy dΓ

NU
i (yg)

∫
Γ cs
D

FUτ gDz dΓ


=



F cs τi
BC x

F cs τi
BC y

F cs τi
BC z


= Fcs τi

BC on Γcs
D ⊂ ΓD

(13.197)
where Fcs τi

BC is the fundamental nucleus of the Vector of Equivalent Nodal Forces Fcs
BC EL

associated to the nonhomogeneous Dirichlet boundary condition imposed on the cross-
section Γcs

D . This nucleus has dimension 3× 1 and is written for the generic values of the
indices τ and i related to the cross-section functions FUτ and the shape functions NU

i for
the element ELcs which passes through Γcs

D . The quantities F cs τi
BC x , F cs τi

BC y , F cs τi
BC z defined in

Eq. 13.197 are the three components of the column vector Fcs τi
BC . .

The system of equations in Eq. 13.195 becomes the system of equations in Eq. 13.198,
which already includes the expansion over index e, by means of Eqs. 13.196 and 13.197:

NU
u∑

s=1

NU
N∑

j=1

NU
i (yg)N

U
j (yg)

∫
Γ cs
D

FUτ FUs dΓ I︸ ︷︷ ︸
= A cs τs ij

BC

qsj = NU
i (yg)

∫
Γ cs
D

FUτ gD dΓ︸ ︷︷ ︸
F cs τi
BC

∀ τ = 1, . . . , NU
u

∀ i = 1, . . . , NU
N

(13.198)
where I is the 3× 3 identity matrix. Retrieving Eq. 13.145, Acs τ sij

BC , i.e. the fundamental
nucleus of Matrix Acs

BC EL associated to the nonhomogeneous Dirichlet boundary condition
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imposed on the cross-section Γcs
D , becomes:

Acs τ sij
BC = NU

i (yg)N
U
j (yg) J

τ
s
U I (13.199)

This nucleus is a diagonal matrix with dimension 3× 3 and in Eq. 13.198 it multiplies the
nodal velocity vector qsj , which is related to the generic sth velocity expansion term of
CUF formulation corresponding to the jth node of the element ELcs.

The imposition of the nonhomogeneous Dirichlet boundary condition on the cross-section
Γcs
D is thefore given by the following system of equations:

NU
u∑

s=1

NU
N∑

j=1

Acs τ sij
BC qsj = Fcs τi

BC

∀ τ = 1, . . . , NU
u

∀ i = 1, . . . , NU
N

(13.200)

The terms of Eq. 13.200 have to be expanded on the indices τ and i. This expansion
leads to the construction of a finite element matrix Acs

BC EL and a finite element Vector of
Equivalent Nodal Forces Fcs

BC EL associated to the nonhomogeneous Dirichlet boundary
condition imposed on the cross-section Γcs

D through which the single finite element ELcs

passes.

Matrix Acs
BC EL has dimensions DOFsUEL × DOFsUEL as well as Matrix AEL. Matrix

Acs
BC EL is then included into a null matrix Acs

BC (with dimensions DOFsU ×DOFsU as well
as Matrix A) in the position corresponding to the position of the finite element ELcs along
the 1D mesh. In this way, Acs

BC presents different-from-zero terms only in the rows and
columns corresponding to the finite element ELcs. As a consequence, when the Dirichlet
boundary condition is prescribed for the inlet cross-section, Acs

BC has different-from-zero
terms only in the rows and columns corresponding to the first node (i, j = 1) of the first
finite element (in Eq. 13.199 NU

i (yg = 0) = 1 for i = 1, NU
i (yg = 0) = 0 for i /= 1,

NU
j (yg = 0) = 1 for j = 1, NU

j (yg = 0) = 0 for j /= 1). When the Dirichlet boundary
condition is instead prescribed for the outlet cross-section, Acs

BC has different-from-zero
terms only in the rows and columns corresponding to the last node (i, j = 2) of the last
finite element (in Eq. 13.199 NU

i (yg = L) = 1 for i = 2, NU
i (yg = L) = 0 for i /= 2,

NU
j (yg = L) = 1 for j = 2, NU

j (yg = L) = 0 for j /= 2).

Vector Fcs
BC EL has dimensions DOFsUEL × 1 as well as Vector FEL. Vector Fcs

BC EL is
then included into a null vector Fcs

BC (with dimensions DOFsU × 1 as well as Vector F) in
the position corresponding to the position of the finite element ELcs along the 1D mesh.
In this way, Fcs

BC presents different-from-zero terms only in the rows corresponding to the
finite element ELcs. As a consequence, when the Dirichlet boundary condition is prescribed
for the inlet cross-section, Fcs

BC has different-from-zero terms only in the rows corresponding
to the first node (i = 1) of the first finite element (in Eq. 13.198 NU

i (yg = 0) = 1 for i = 1,
NU
i (yg = 0) = 0 for i /= 1). When the Dirichlet boundary condition is instead prescribed for

the outlet cross-section, Fcs
BC has different-from-zero terms only in the rows corresponding

to the last node (i = 2) of the last finite element (in Eq. 13.198 NU
i (yg = L) = 1 for i = 2,

NU
i (yg = L) = 0 for i /= 2).

Finally, the system of equations associated to the imposition of the nonhomogeneous
Dirichlet boundary condition on the cross-section Γcs

D is as follows:

Acs
BC q = Fcs

BC (13.201)

It is interesting to note that Matrix Acs
BC is symmetric.
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Dirichlet boundary conditions on the lateral surface

A Dirichlet boundary condition is prescribed on the lateral surface Γ l
D when the values of

the components of the velocity vector u are given a priori over this surface. The generic
nonhomogeneous Dirichlet boundary condition is indicated as follows:

u|Γ l
D

= gL (13.202)

where gL is an arbitrary three-dimensional known function gL (x, y, z) with three compo-
nents along x, y, and z axes:

gL =


gLx

gLy

gLz

 (13.203)

The Dirichlet boundary condition (in general nonhomogeneous) on the lateral surface
is treated in a weak form, or better, with the corresponding Galerkin approximation
consistent with the 1D CUF finite element approach previously described. The Galerkin
approximation of the boundary condition in Eq. 13.202 has the following form:

Find uh ∈ Vh such that∫
Γ l
D

uh • vh dΓ =

∫
Γ l
D

gL • vh dΓ ∀vh ∈ Vh (13.204)

For the sake of convenience, the discrete solution uh is now written with indices s and j
different from indices τ and i used in the 1D CUF FE approximation in Eq. 13.98, purely
for the sake of exposition convenience:

uh =
3∑

k=1

NU
u∑

s=1

NU
N∑

j=1

qsjk ϕsj k =

NU
u∑

s=1

NU
N∑

j=1

FUs NU
j qsj (13.205)

According to the 1D CUF approximation for the velocity field (Eqs. 13.98 and 13.99) the
generic discrete test function vh ∈ Vh is reported in Eq. 13.206 (i.e. Eq. 13.108):

vh =
3∑
e=1

NU
u∑

τ=1

NU
N∑

i=1

q?τieϕτie (13.206)

As done for the formulation of the Galerkin approximation of the Stokes problem, it is
sufficient that the Galerkin approximation of the Dirichlet boundary condition in Eq. 13.204
is verified for each function of the basis of Vh, since all the functions in the space Vh are
a linear combination of the basis funcions (see Eq. 13.93). Since the functions ϕτie are
the bases chosen for the space Vh the following system of equations is thus required to be
satisfied:

Find uh ∈ Vh such that

∫
Γ l
D

uh • ϕτie dΓ =

∫
Γ l
D

gL • ϕτie dΓ

∀ τ = 1, . . . , NU
u

∀ i = 1, . . . , NU
N

∀ e = 1, . . . , 3

(13.207)
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Substituting Eq. 13.205 into the left hand side term of Eq. 13.207, it becomes:∫
Γ l
D

uh • ϕτie dΓ =

∫
Γ l
D

ϕτie • uh dΓ =

∫
Γ l
D

ϕT
τie uh dΓ

=

∫
Γ l
D

ϕT
τie

NU
u∑

s=1

NU
N∑

j=1

FUs NU
j qsj

 dΓ =

NU
u∑

s=1

NU
N∑

j=1

∫
Γ l
D

ϕT
τie F

U
s NU

j qsj dΓ

(13.208)
Let Eq. 13.208 to be written explicitly by varying the index e:

∫
Γ l
D

uh • ϕτi1 dΓ =

NU
u∑

s=1

NU
N∑

j=1

∫
Γ l
D

ϕT
τi1 F

U
s NU

j qsj dΓ

=

NU
u∑

s=1

NU
N∑

j=1

∫
Γ l
D

{
FUτ NU

i 0 0
}
FUs NU

j qsj dΓ

=

NU
u∑

s=1

NU
N∑

j=1

{∫
Γ l
D

NU
i N

U
j F

U
τ FUs dΓ 0 0

}
︸ ︷︷ ︸

= A l τs ij
1BC

qsj

(13.209)

∫
Γ l
D

uh • ϕτi2 dΓ =

NU
u∑

s=1

NU
N∑

j=1

∫
Γ l
D

ϕT
τi2 F

U
s NU

j qsj dΓ

=

NU
u∑

s=1

NU
N∑

j=1

∫
Γ l
D

{
0 FUτ NU

i 0
}
FUs NU

j qsj dΓ

=

NU
u∑

s=1

NU
N∑

j=1

{
0

∫
Γ l
D

NU
i N

U
j F

U
τ FUs dΓ 0

}
︸ ︷︷ ︸

= A l τs ij
2BC

qsj

(13.210)

∫
Γ l
D

uh • ϕτi3 dΓ =

NU
u∑

s=1

NU
N∑

j=1

∫
Γ l
D

ϕT
τi3 F

U
s NU

j qsj dΓ

=

NU
u∑

s=1

NU
N∑

j=1

∫
Γ l
D

{
0 0 FUτ NU

i

}
FUs NU

j qsj dΓ

=

NU
u∑

s=1

NU
N∑

j=1

{
0 0

∫
Γ l
D

NU
i N

U
j F

U
τ FUs dΓ

}
︸ ︷︷ ︸

= A l τs ij
3BC

qsj

(13.211)

The quantities A l τ sij
1BC , A l τ sij

2BC , A l τ sij
3BC are three row vectors with dimensions 1× 3 which

relate the integrals over the lateral surface for e = 1, 2, 3 and the generic τ and i to the
nodal velocity vector qsj . Finally, the matrix A l τ sij

BC , i.e. the fundamental nucleus of
Matrix Al

BC associated to the nonhomogeneous Dirichlet boundary condition imposed on
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the lateral surface Γ l
D, can be defined by exploiting a compact notation (∀ τ, ∀ i):

∫
Γ l
D


uh • ϕτi1

uh • ϕτi2

uh • ϕτi3

 dΓ =

NU
u∑

s=1

NU
N∑

j=1


A l τ sij

1BC

A l τ sij
2BC

A l τ sij
3BC

 qsj =

NU
u∑

s=1

NU
N∑

j=1

A l τ sij
BC qsj (13.212)

This nucleus is a diagonal matrix with dimension 3× 3 and in Eq. 13.212 it multiplies the
nodal velocity vector qsj , which is related to the generic sth velocity expansion term of
CUF formulation corresponding to the jth node of the single finite element, see Eq. 13.98.
Introducing the 3× 3 identity matrix I, it is obtained:

A l τ sij
BC =

∫
Γ l
D

NU
i N

U
j F

U
τ FUs dΓ I (13.213)

The present procedure refers to a single finite element; i.e. here the assembly procedure
is not yet considered. The fundamental nucleus A l τ sij

BC will be expanded with respect to
indices τ , s, i, and j in order to build Matrix Al

BC of the single finite element.

The integration in Eq. 13.213 is performed over the lateral surface Γ l
D corresponding to

a single finite element. By definition, the cross-section related to the single one-dimensional
finite element is considered to be constant over the element length. Therefore, the integral
over the lateral surface in Eq. 13.213 and in the following equations is split into the integral
along the contour of the cross-section γS and the integral along the axis (here indicated
generically as l) of the one-dimensional finite element, which has length LEL:∫

Γ l
D

. . . dΓ =

∫
l

∫
γS

. . . dγ dy (13.214)

By definition in Eq. 13.94, the cross-section functions FUτ and FUs depend only on the
cross-section coordinates. They can be therefore taken out of the integral along the element
length. Similarly, the shape functions of the present one-dimensional finite element model
are independent of cross-section coordinates x and z, see Eq. 13.102. Hence, in Eq. 13.141
the shape functions are taken out of the integral along the cross-section contour γS . For
these reasons, it is possible to split the integral along the element length and the integral
along the element cross-section contour into two different contributions to be multiplied.
The expression of A l τ sij

BC can be finally written as follows:

A l τ sij
BC =

∫
l
NU
i N

U
j dy

∫
γS

FUτ FUs dγ I = E i
j
U
∫
γS

FUτ FUs dγ I (13.215)

where Eq. 13.144 has been used. Let the right hand side term of Eq. 13.207 to be evaluated:∫
Γ l
D

gL • ϕτie dΓ =

∫
Γ l
D

ϕτie • gL dΓ =

∫
Γ l
D

ϕT
τie gL dΓ (13.216)

According to Eq. 13.207 (i.e. in Eq. 13.111), the expression of Eq. 13.216 has to be expanded
for ∀ τ, ∀ i, ∀ e. Let the expansion on index e = 1, 2, 3 to be now considered. Retrieving
the basis functions chosen for the space Vh written in Eq. 13.122 and varying index e, a
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compact vectorial notation is obtained:

∫
Γ l
D

gL • ϕτi1 dΓ∫
Γ l
D

gL • ϕτi2 dΓ∫
Γ l
D

gL • ϕτi3 dΓ


=



∫
Γ l
D

ϕT
τi1 gL dΓ∫

Γ l
D

ϕT
τi2 gL dΓ∫

Γ l
D

ϕT
τi3 gL dΓ


=



∫
Γ l
D

FUτ NU
i g

L
x dΓ∫

Γ l
D

FUτ NU
i g

L
y dΓ∫

Γ l
D

FUτ NU
i g

L
z dΓ


=



F l τi
BC x

F l τi
BC y

F l τi
BC z


= F l τi

BC

(13.217)
where F l τi

BC is the fundamental nucleus of the Vector of Equivalent Nodal Forces F l
BC EL

associated to the nonhomogeneous Dirichlet boundary condition imposed on the lateral
surface Γ l

D. This nucleus has dimension 3 × 1 and is written for the generic values of
the indices τ and i related to the cross-section functions FUτ and the shape functions
NU
i involved in the basis functions ϕτie used to approximate the discrete test function

vh, see Eq. 13.100. The quantities F l τi
BC x, F l τi

BC y, F
l τi
BC z defined in Eq. 13.217 are the

three components of the column vector F l τi
BC . In Eq. 13.217, it is important to note that

Eq. 13.214 has not been exploited to split the integral over Γ l
D, since gL is an arbitrary

three-dimensional known function gL (x, y, z).
The imposition of the nonhomogeneous Dirichlet boundary condition on the the lateral

surface Γ l
D is thefore given by the following system of equations:

NU
u∑

s=1

NU
N∑

j=1

A l τ sij
BC qsj = F l τi

BC

∀ τ = 1, . . . , NU
u

∀ i = 1, . . . , NU
N

(13.218)

The terms of Eq. 13.218 have to be expanded on the indices τ and i. It is very important to
bear in mind that the formulation leading to Eq. 13.184 has been written so far considering
a single finite element of the mesh used to discretize the computational domain Ω, since
Eq. 13.98 refers to the single finite element with NU

N nodes.
When more than one finite element are considered in the 1D mesh used for discretization,

the procedure so far described has to be carried out for each finite element. Hence, at first
Matrix Al

BC EL (with dimensions DOFsUEL ×DOFsUEL as well as Matrix AEL) and Vector
F l
BC EL (with dimensions DOFsUEL × 1 as well as Vector FEL) corresponding to the single

finite element are constructed following Eq. 13.218 for each of the NEL finite elements
(similarly to the procedure used to build AEL and FEL in subsection 13.4.5). Then, a
typical assembly procedure (equivalent to the procedure used in chapter 3 for matrices
K and M and vector F, see section 3.4) is followed in order to build Matrix Al

BC (with
dimensions DOFsU ×DOFsU as well as Matrix A) and Vector of Equivalent Nodal Forces
F l
BC (with dimensions DOFsU × 1 as well as Vector F) associated to the nonhomogeneous

Dirichlet boundary condition imposed on the lateral surface Γ l
D, starting from the single

element matrices Al
BC EL and vectors F l

BC EL.
Finally, the system of equations associated to the imposition of the nonhomogeneous

Dirichlet boundary condition on the lateral surface Γ l
D is as follows:

Al
BC q = F l

BC (13.219)

It is interesting to note that Al
BC is a symmetric and singular matrix. The reason on this

singularity is due to the fact that the equations in Eq. 13.218 are not all linear indepenedent,
since the Dirichlet boundary condition on Γ l

D does not “block” (properly) the solution over
all the computational domain, but only prescribes relations for the nodal velocity vectors
qsj in order to be satisfied on Γ l

D.

286



13.4. 1D CUF model for the approximation of Stokes equations

It is remarkably noteworthy that the same procedure used here to impose Dirichlet
boundary conditions on the lateral surface of the computational domain can be followed
also for solid mechanics in chapter 3 to prescribe imposed displacements also on lateral
surface (not only on cross-sections) of the structure.

13.4.7 System of algebraic governing equations including boundary con-
ditions

The systems of equations associated to the imposition of the nonhomogeneous Dirichlet
boundary conditions on the cross-section Γcs

D and on the lateral surface Γ l
D have been

presented in Eqs. 13.201 and 13.219. These equations are imposed to the final system
of governing equations associated to the Galerkin approximation of the Stokes problem
through the 1D CUF FE model of Eq. 13.185 by means of a penalization method, i.e. via
two high penalty values α and β:

A q + BTp = F

Al
BC q = F l

BC

Acs
BC q = Fcs

BC

B q = 0

⇒

{
A q + αAl

BC q + βAcs
BC q + BTp = F + αF l

BC + β Fcs
BC

B q = 0

(13.220)
Finally, Eq. 13.220 can be written in a more compact notation:

[
A + αAl

BC + βAcs
BC

]
q + BTp =

[
F + αF l

BC + β Fcs
BC

]
B q = 0

(13.221)

It is interesting to note that Matrix
[
A + αAl

BC + βAcs
BC

]
is a symmetric, non-singular,

positive-definite matrix.
Similarly to the scheme of Fig. 13.5 followed to construct Eq. 13.187, the system of

Eq. 13.221 can be solved once collecting the matrices of the left hand side term in a single
symmetric matrix S̃, collecting the unknowns q and p in a single vector of unknowns q?,
and collecting the column vectors of the right hand side term in a single column vector F̃?.
As a result, the final condensed system of equations (including the boundary conditions)
to be solved is:

S̃ q? = F̃? (13.222)

Matrix S̃ is a block simmetric and indefinite matrix, featuring real eigenvalues with variable
sign (either positive and negative). More details about its singularity or non-singularity
are given in the following paragraph about the solution stability. The symmetric indefinite
L D LT factorization described in section 3.3.1 is used in the present doctoral research to
solve the final condensed system of equations in Eq. 13.222 and obtain the fluid dynamics
results presented in chapter 14.

Stability

The key point of the solution stability is now briefly discussed. When the Galerkin
approximation of the Stokes equations is solved, it is necessary to choose stable, or
compatible, finite dimensional spaces Vh and Qh. In particular, it means that these spaces
have to satisfy the inf-sup condition (see [143, 142]) related to the saddle-point problem
described in Eqs. 13.88 and 13.89. As Stokes equations are first order with respect to p
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and second order with respect to u, generally speaking it makes sense to use polynomials
of degree k ≥ 1 for the velocity space Vh and of degree k− 1 for the space Qh. Nonetheless,
this “natural” choice does not always work. The larger the velocity space Vh, the higher
the probability that the inf-sup condition be satisfied. Otherwise said, the space Vh should
be “rich” enough with respect to the space Qh. More in general, finite elements of the
same polynomial degree k ≥ 1 for both velocity and pressures are unstable.

Unstable solutions present spurious pressure modes, also known as parasitic modes.
Their presence inhibits the pressure solution to be unique, yielding numerical instabilities.
For this reason, thise finite dimensional subspaces that violate the compatibility condition,
i.e. the inf-sup condition, are said to be unstable, or incompatible. From the inf-sup
condition, it follows that Matrix S̃ is non-singular if and only if no eigenvalue is null. For
the proof of the stability results and convergence analysis, see [144]. More details about
the stability via the finite element method can be found in [142].

Degrees of freedom

For the sake of completeness, a discussion of the dimensions of the finite element matrices
and vector introduced so far and the degrees of freedom involved is faced here. As mentioned
above and depicted in Fig. 13.1, through the 1D CUF FE model introduced so far the
computational domain Ω can be discretized by means of an arbitrary cross-section ΓS and
a one-dimensional mesh of finite elements. The number of finite elements the mesh is made
of is indicated as NEL. It is pointed out that the number of elements NU

EL used for the
velocity discretization and the number of elements NP

EL used for the pressure discretization
are set to be equal: NEL = NU

EL = NP
EL. Nonetheless, the number of nodes NU

N of each
element used for velocity discretization is in general different from the number of nodes
NP
N of each element used for pressure discretization. Other parameters of the analysis are

the expansion orders NU and NP , as mentioned in section 13.4.3.
The number of degrees of freedom related to the single element for velocity discretization

is referred as DOFsUEL and its numerical value is:

DOFsUEL = 3NU
u N

U
N (13.223)

since q τi contains three components, see Eq. 13.97. Given a mesh of NU
EL connected

elements with NU
N nodes per element, the total number of nodes NU

N TOT of the FE mesh
for velocity discretization is computed as:

NU
N TOT =

(
NU
N − 1

)
NU

EL + 1 (13.224)

This formula takes into account the fact that two connected finite elements share the same
node. All the NU

u generic nodal velocity vectors q τi for each of the NU
N TOT nodes of the

mesh will be collected in the nodal velocity vector q for all values of τ (τ = 1, . . . , NU
u ) and i

(i = 1, . . . , NU
N ) of each element. As a consequence, vector q contains all the nodal velocity

degrees of freedom of the present fluid dynamic model, which are commonly referred as
DOFsU . Its dimensions are (3NU

u N
U
N TOT)× 1, therefore:

DOFsU = DOFsUN N
U
N TOT = 3NU

u N
U
N TOT (13.225)

where DOFsUN is the number of degrees of freedom related to the single element node for
velocity discretization. Retrieving Eq. 13.95:

DOFsU = 3NU
u N

U
N TOT = 3

(NU + 1) (NU + 2)

2

[(
NU
N − 1

)
NU

EL + 1
]

(13.226)
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It is important to note that DOFsU depend on the expansion order NU , the type (NU
N ),

and the number of finite elements NU
EL in the mesh used for the velocity discretization.

An analogous approach is carried out for pressure quantities. The number of degrees of
freedom related to the single element for pressure discretization is referred as DOFsPEL and
its numerical value is:

DOFsPEL = NP
u N

P
N (13.227)

since coefficients pmt are scalar, see Eq. 13.104. Given a mesh of NP
EL connected elements

with NP
N nodes per element, the total number of nodes NP

N TOT of the FE mesh for pressure
discretization is computed as:

NP
N TOT =

(
NP
N − 1

)
NP

EL + 1 (13.228)

This formula takes into account the fact that two connected finite elements share the same
node. All the NP

u generic nodal pressure coefficients pmt for each of the NP
N TOT nodes of

the mesh will be collected in the nodal pressure vector p for all values of m (m = 1, . . . , NP
u )

and t (t = 1, . . . , NP
N ) of each element. As a consequence, vector p contains all the nodal

pressure degrees of freedom of the present fluid dynamic model, which are commonly
referred as DOFsP . Its dimensions are (NP

u N
P
N TOT)× 1, therefore:

DOFsP = DOFsPN N
P
N TOT = NP

u N
P
N TOT (13.229)

where DOFsPN is the number of degrees of freedom related to the single element node for
pressure discretization. Retrieving Eq. 13.103:

DOFsP = NP
u N

P
N TOT =

(NP + 1) (NP + 2)

2

[(
NP
N − 1

)
NP

EL + 1
]

(13.230)

It is important to note that DOFsP depend on the expansion order NP , the type (NP
N ),

and the number of finite elements NP
EL in the mesh used for the pressure discretization.

In conclusion, the total number of nodal degrees of freedom DOFs of the present fluid
dynamic model is the result of the summation of velocity and pressure nodal degrees of
freedom:

DOFs = DOFsU + DOFsP = 3
(NU + 1) (NU + 2)

2

[(
NU
N − 1

)
NU

EL + 1
]

+

(NP + 1) (NP + 2)

2

[(
NP
N − 1

)
NP

EL + 1
]

(13.231)
Table 13.1 summarizes the dimensions, i.e. the number of rows Nrows and the number of
columns Ncols of the finite element matrices and vector introduced so far, which are related
to the degrees of freedom defined previously.
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Table 13.1: Dimensions of finite element matrices and vectors for the 1D CUF FE fluid dynamic
model.

Nrows Ncols

AEL DOFsUEL DOFsUEL

BT
EL DOFsUEL DOFsPEL

BEL DOFsPEL DOFsUEL

Acs
BC EL DOFsUEL DOFsUEL

Al
BC EL DOFsUEL DOFsUEL

A DOFsU DOFsU

BT DOFsU DOFsP

B DOFsP DOFsU

0 DOFsP DOFsP

Acs
BC DOFsU DOFsU

Al
BC DOFsU DOFsU

S DOFs DOFs

S̃ DOFs DOFs

FEL DOFsUEL 1

Fcs
BC EL DOFsUEL 1

F l
BC EL DOFsUEL 1

F DOFsU 1

Fcs
BC DOFsU 1

F l
BC DOFsU 1

0 DOFsP 1

F? DOFs 1

F̃? DOFs 1

q DOFsU 1

p DOFsP 1

q? DOFs 1
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Chapter 14

Results

This chapter presents some numerical fluid dynamic results achieved through the one-
dimensional CUF finite element model described in chapter 13. Despite the present model
is a reduced order model, the following results show the accuracy in analyzing Stokes flows
in pipes with a low computational cost, in terms of DOFs. Several analyses are carried
out to assess and highlight the advantages of higher-order 1D CUF models with respect
to classical one-dimensional models. Velocity and pressure trends are investigated in the
computational domain for fluid flows with different boundary conditions and the use of a
different expansion order and a different FE mesh for velocity and pressure is evaluated in
order to achieve stable solutions.

14.1 Pipe and fluid data

For all the analyses carried out in this chapter, a pipe with a circular section is considered.
In particular, this circular cross-section is constant along the longitudinal direction y and
its radius is equal to 1 m. For the sake of simplicity, the origin of the cartesian coordinate
system (x, y, z) lies on the center of the circular inlet section. The length L of the pipe is
equal to 6 m. The fluid flow passes through the pipe as sketched in Fig. 14.1.

N

in

D

D
l

out

Figure 14.1: Pipe with a circular cross-section. Inlet, outlet and lateral surfaces.

The boundary of the computational domain (∂Ω) can be split into an inlet section Γin
D ,

an outlet section Γout
N and a lateral surface Γl

D. The inlet section is the section through
which the fluid flows into the pipe, whereas the outlet section is the section through which
the fluid comes out of the pipe. As can be seen in Fig. 14.1 the following expression
describes the geometrical boundary:

∂Ω = Γin
D ∪ Γout

N ∪ Γl
D (14.1)
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In all the following analyses, a homogeneous Dirichlet boundary condition is prescribed on
the lateral surface which means a no-slip condition at the pipe wall:

u |Γl
D

= 0 (14.2)

A homogeneous Neumann boundary condition is instead prescribed on the outlet section:

ν
∂u

∂n
− pn = 0 on Γout

N = ΓN (14.3)

The two above boundary conditions remain the same for all the cases studied. On the
contrary, a nonhomogeneous Dirichlet boundary condition (different for each case) is
assigned to the inlet section. Hence, ΓD = Γin

D ∪ Γl
D and ∂Ω = ΓD ∪ ΓN , according to the

remarks about proper boundary conditions made in chapter 13. No body forces are applied
to the fluid and thus the following condition is taken into account in the Stokes equations:

f = 0 (14.4)

The computational domain Ω is a cylinder and, according to the procedure to be followed by
1D CUF FE model and described in chapter 13, it is discretized via a circular cross-section
ΓS and a one-dimensional finite element mesh along the longitudinal direction y. All the
following cases are studied via a mesh of 10 finite elements, whose type (B2, B3, or B4
elements) for velocity and pressure fields is a free parameter of the analysis. For the sake
of brevity, convergence analyses on the number of finite elements to be used in the mesh
are not reported here, whereas particular attention is payed to evaluate the proper type
(i.e. the accuracy) of elements able to properly predict the solution.

The fluid used has a kinematic viscosity ν equal to 10−2 m2/s. For the sake of clarity,
this value may represent the kinematic viscosity of a particularly viscous fluid, such as
honey. As far as the Reynold number is concerned, in chapter 13 it is explained that the
Stokes problem makes sense when the condition Re� 1 holds. Retrieving the expression of
the Reynolds number in Eq. 13.56, it depends on a representative length L of the domain
Ω and a representative fluid velocity U . The radius of the circular cross-section of the
pipe is chosen as representative length (L = 1 m), whereas the maximum value of the
velocity profile prescribed on the inlet section may be taken as representative velocity U .
As mentioned, the velocity will be prescribed differently for each case, but its maximum
will be equal to 1 · 10−4 or 2 · 10−4 m/s. As a consequence, the Reynolds number for the
following analyses will be equal to 0.01 or 0.02 and will be therefore consistent with the
condition of physical validity Re� 1 of Stokes equations. As a consequence, the hypotheses
of Stokes equations are satisfied and the analyses presented are physically plausible.

14.2 Poiseuille flow

The first case studied represents the Poiseuille flow. The Poiseuille flow is a laminar flow
in pipes with circular section that occurs for low values of Reynolds number. This flow
represents a good benchmark and therefore it is introduced here to assess the 1D CUF FE
model. In the Poiseuille flow, the fluid flow is axisymmetric and the velocity u does not
depend on the position along the longitudinal axis y. In particular, the axial velocity uy is
parabolic, or better paraboloidal on the two-dimensional cross-section, and the maximum
axial velocity uymax occurs at point (x = 0, z = 0) of each section (i.e. along the line
y = 0). In order to simulate this kind of flow, the following nonhomogeneous Dirichlet
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boundary condition is given on the inlet section:
ux = 0
uy = 10−4

(
1− x2 − z2

)
on Γin

D

uz = 0
(14.5)

According to the other boundary conditions prescribed (Eqs. 14.2 and 14.3), this paraboloidal
inlet velocity profile should remain constant along the y axis. According to the Poiseuille
flow, over the cross-section an accuracy of the second-order for the velocity and of the
“zero-order” (constant trend) for pressure should be sufficient to detect the solution. As
far as the trend along y is concerned, a “zero-order” (constant trend) for velocity and a
forst-order approximation for pressure should be sufficient. For the sake of simplicity, the
parameters of the CUF analyses are set to NU

N = 3, NP
N = 2, NU = 4, NP = 3, following

different accuracy-orders for u and p in order to obtain a stable solution (more details
are discussed later on). The velocity profiles on some sections of the pipe are depicted in
Fig. 14.2. As expected, the paraboloidal trend remains the same as y increases, according
to the Poiseuille flow.

u
y

 0  0.2  0.4  0.6  0.8  1

Figure 14.2: Velocity profiles uy [10−4 m/s] at sections y = 0, y = 0.15, y = 0.3, y = 0.45, y = 0.6
[m]. NU

N = 3, NP
N = 2, NU = 4, NP = 3. Poiseuille flow.

The pressure profiles on some sections of the pipe are depicted in Fig. 14.3. The trend
of pressure is constant over each section, but its value decreases along the longitudinal axis
y. In fact, the maximum pressure value is observed at the inlet section and the minimum
value is observed at the outlet section. In particular, it is important to note that the
pressure is equal to zero at the outlet section, exactly as prescribed by Poiseuille.

p  [10
-6

 m
2
/s

2
]

 22  22.5  23  23.5  24

Figure 14.3: Pressure profiles at sections y = 0, y = 0.15, y = 0.3, y = 0.45, y = 0.6 [m]. NU
N = 3,

NP
N = 2, NU = 4, NP = 3. Poiseuille flow.
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The zero vale of pressure at the outlet section can be clearly shown in Fig. 14.4. This
figure illustrates the values of pressure at z = 0 along the axis x at different significant
sections. As already mentioned in comments for Fig. 14.3, the pressure on each section
is constant and the decrease rate along y is constant, i.e. the pressure follows a linear
decrease. For the sake of completeness, it is noteworthy that the pressure value at the
middle section (y = 3 m) is exactly the mean value between the pressure value (maximum)
at the inlet section and the pressure value (zero) at the outlet section.

-5e-006

 0

 5e-006

 1e-005

 1.5e-005

 2e-005

 2.5e-005

 0  0.5  1  1.5  2

p 
 [m

2 /s
2 ]

x  [m]

Inlet
1/40 Length
1/20 Length

3/40 Length
1/10 Length
1/5 Length

Middle
Outlet

Figure 14.4: Pressure at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2, NU = 4, NP = 3. Poiseuille flow.

The linear decrease of the pressure along the longitudinal axis y is well highlighted in
Fig. 14.5(a). Figure 14.5 presents the pressure solution obtained with a different choice
of the element types for velocity and pressure unknowns. The key point of the solution
stability is hence discussed from results. As mentioned in chapter 13, finite elements of
the same polynomial degree for both velocity and pressures are in general unstable. This
statement is here verified for Figs. 14.5(b) and 14.5(d), where the same polynomial order
for the finite element shape functions (NU

N = NP
N = 3 or NU

N = NP
N = 4, i.e. B3 elements

or B4 elements) is chosen both for velocity and pressure fields. In fact, Figs. 14.5(b)
and 14.5(d) show typical spurious pressure modes. Of course, the shape of these spurious
modes depends on the accuracy chosen (i.e. number of nodes per element NP

N ) for the
pressure discretization along y and differs for NP

N = 3 and NP
N = 4. On the contrary, a

different choice of NU
N and NP

N leads to stable solutions and this is the case depicted in
Figs. 14.5(a) and 14.5(c). In fact, spurious pressure modes do not appear and this means
that the space Vh is “rich” enough with respect to the space Qh.

As a result, the 1D CUF FE model is able to accurately simulate the Poiseuille flow,
which is an exact solution of flow in a pipe. Moreover, the use of higher-order terms in
modeling velocity and pressure fields does not introduce numerical problems and a stable
solution is obtained. The typical considerations about stability of spaces based on the
finite element method are still valid also for the present model.
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Figure 14.5: Pressure at point (x = 0, z = 0) along the y axis for different combinations of NU
N and

NP
N . NU = 4,NP = 3. Examples of stable ((a), (c)) and unstable solutions ((b), (d)). Poiseuille

flow.

14.3 Fourth-order inlet velocity profile a

The previous case of Poiseuille flow represents a first assessment of the 1D CUF FE
model. Nonetheless, the Poiseuille flow is the most “natural” and simple flow in a pipe
due to its second-order axisymmetric velocity profile constant along y. Moreover, the
condition of constant pressure over the section is commonly taken into account by classical
one-dimensional flui dynamics models. Hence, the capabilities of the present model in
describing accurately more complex flows is now faced for other inlet velocity profiles.

The second case studied represents a different inlet velocity profile. In particular, it is
given by the square of the parabolidal inlet profile of the Poiseuille flow:

ux = 0

uy = 10−4
(
1− x2 − z2

)2
on Γin

D

uz = 0

(14.6)

The only nonzero component is again the axial velocoty uy and the profile is again
axisymmetric with its maximum at the centre of the section (x = 0, z = 0). The expansion
order for velocity is now set to NU = 6, since the fourth-order inlet velocity profile
requires at least a fourth-order expansion on ΓS to be properly detected. According to the
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considerations made previously about the choice of stable spaces, the expansion order NP

for pressure is set to a value lower than NU ; in particular, NP = 4. As far as the accuracy
along the y axis is concerned, the mesh is not changed with respect to the previous case.
Hence, NU

N is set equal to 3 and NP
N is set equal to 2.

The velocity profiles uy on some sections lying in the initial part of the pipe are depicted
in Fig. 14.6. As expected, the velocity profiles remain axisymmetric along the pipe axis
and the maximum axial velocity uymax occurs at point (x = 0, z = 0) of each section
(i.e. along the line y = 0), as occurred for the Poiseuille flow. Differently, the velocity u
now depends on the position along the longitudinal axis y, as can be seen in Fig. 14.6.
In particular, the profiles seem to approach a paraboloidal profile, which corresponds to
the “natural” Poiseuille flow studied in the previous section. The trend of uy can be seen

u
y

 0  0.2  0.4  0.6  0.8  1

Figure 14.6: Velocity profiles uy [10−4 m/s] at sections y = 0, y = 0.15, y = 0.3, y = 0.45, y = 0.6
[m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet profile a for velociy uy.

more accurately in Fig. 14.7, where the axial velocity at z = 0 is depicted along the axis x
at different significant sections. As expected, the flow approaches its natural condition,
given by the boundary conditions at the outlet section, corresponding to the Poiseuille
flow. The fourth-order inlet velocity profile changes along y and gradually transforms to
the paraboloidal profile of Poiseuille. The transition area of the pipe is the initial part,
since at y = L/5 the profile has already become parabolic.

It is very important to note that the velocity flux Q, also known as flow rate, given by:

Q =

∫
ΓS

uy dΓ (14.7)

remains constant along the longitudinal axis in order to respect the continuity equation.
More details can be found in [145]. It can be numerically demonstrated that the value of
the integral of the axial velocity uy, whose two-dimensional profiles on ΓS are given by the
revolution of the curves depicted in Fig. 14.7, remain constant along y. The capability
of the CUF model to easily detect complex flows as the present case is not typical for
“standard” 1D reduced order models.

The profiles of pressure p over some section lying in the initial part of the pipe are shown
in Fig. 14.8. As expected, the pressure trend is axisymmetric as well as the velocity one
and a transition is observed. Differently from the Poiseuille flow (see Fig.14.4), the pressure
is no more constant. As occurred for axial velocity, the pressure behavior approaches the
“natural” pressure behavior given by Poiseuille flow, i.e. constant profiles over the sections.

The transition from the inlet pressure profile to the constant pressure profile is well
shown in Fig. 14.9, where the values of pressure at z = 0 along the axis x at different
significant sections are considered. These curves describe completely the pressure field
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Figure 14.7: Velocity uy at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet profile a

for velociy uy.

p  [10
-6

 m
2
/s

2
]

 14.5  15  15.5  16  16.5  17  17.5  18

Figure 14.8: Pressure profiles at sections y = 0, y = 0.15, y = 0.3, y = 0.45, y = 0.6 [m]. NU
N = 3,

NP
N = 2, NU = 6, NP = 4. Fourth-order inlet profile a for velociy uy.

because of the axisymmetry detected in Fig. 14.8. In the transition volume, the maximum
of the pressure placed at (x = 0, z = 0) decreases as y increases and the pressure profile, not
constant along x at the inlet section, approaches gradually the constant profile typical of
Poiseuille flow. This constant pressure field over the pipe section continues with a constant
rate up to the zero value at the outlet section.

The behavior of the velocity along directions different from the axial one is now briefly
presented. Figs. 14.10 and 14.11 show the profiles of velocities ux and uz over the inlet
section, the outlet section and other sections lying in the transition part of the pipe. The
first consideration concerns the fact that these profiles are antisymmetric with respect to z
axis (for ux) and x axis (for uz). This is a prove of the fact that the flow is completely
axisymmetric, as expected. Although the inlet and outlet velocity maps appear coloured,
paying attention to the colour box it is easily realized that the corresponding values are
practically zeros, or better numerical zeros, with respect to the representative values
corresponding to the other sections (in the transition pipe area). In fact, it has to be
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Figure 14.9: Pressure at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet profile a

for velociy uy.

reminded that the boundary conditions are imposed numerically via the typical numerical
procedure of penalization [42]. As a consequence, an acceptable (i.e. negligible) numerical
approximation is taken into account, since in general it does not affect significantly the
results. It is verified thus that the homogeneous Dirichlet boundary condition for ux and
uz on the inlet section (Eq. 14.6) is not violated as well as the homogeneous Dirichlet
boundary conditions for ux,uy, and uz on the lateral surface of the pipe.

14.4 Fourth-order inlet velocity profile b

The third case studied represents an other fourth-order inlet profile for the axial velocity uy,
given by the product of two quadratic terms. The Dirichlet boundary conditions imposed
on the inlet section is:

ux = 0
uy = 10−4

(
1− x2 − z2

)(
2 + x2 + z2

)
on Γin

D

uz = 0
(14.8)

A letter b is employed in order to differentiate the present case and the previous fourth-order
inlet profile case, which instead is denoted with letter a. The only nonzero component is
again the axial velocoty uy and the profile is again axisymmetric with its maximum at the
centre of the section (x = 0, z = 0). The expansion orders for velocity and pressure fields
are set to the same values as the previous fourth-order inlet velocity case. The expansion
order for velocity is therefore set to NU = 6, since the fourth-order inlet velocity profile
requires at least a fourth-order expansion on ΓS to be properly detected. The expansion
order NP for pressure is instead set to a value lower than NU ; in particular, NP = 4. As
far as the accuracy along the y axis is concerned, the mesh is not changed with respect to
the previous cases. Hence, NU

N is set equal to 3 and NP
N is set equal to 2.

298



14.4. Fourth-order inlet velocity profile b

(a)

-6e-010

-4e-010

-2e-010

 0

 2e-010

 4e-010

 6e-010

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

(b)

(c)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

(d)

(e)

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

-8e-007

-6e-007

-4e-007

-2e-007

 0

 2e-007

 4e-007

 6e-007

 8e-007

(f)

Figure 14.10: Velocity profiles ux [10−4 m/s] at sections y = 0 (a), y = 0.15 (b), y = 0.3 (c),
y = 0.45 (d), y = 0.6 (e), y = 6 (f) [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet

profile a for velociy uy.

The velocity profiles uy on some sections lying in the initial part of the pipe are
depicted in Fig. 14.12. Since the inlet profile is axisymmetric, the geometrical shape of
the pipe is axisymmetric (circular cross-section) and the boundary condition on the lateral
surface Γl

D are axisymmetric (homogeneous Dirichlet BC), the flow is again expected to
be axisymmetric. In fact, the velocity profiles remain axisymmetric along the pipe axis
and the maximum axial velocity uymax occurs at point (x = 0, z = 0) of each section (i.e.
along the line y = 0). Differently from the Poiseuille and similarly to what observed for
the fourth-order inlet profile a, the velocity u changes along the longitudinal axis y, as can
be seen in Fig. 14.12. In particular, the profiles seem again to approach a paraboloidal
profile, which corresponds to the “natural” Poiseuille flow studied in the previous section.

The transition from the fourth-order profile given in Eq. 14.8 and the paraboloidal

299



Chapter 14. Results

(a)

-6e-010

-4e-010

-2e-010

 0

 2e-010

 4e-010

 6e-010

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

(b)

(c)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

(d)

(e)

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

-8e-007

-6e-007

-4e-007

-2e-007

 0

 2e-007

 4e-007

 6e-007

 8e-007

(f)

Figure 14.11: Velocity profiles uz [10−4 m/s] at sections y = 0 (a), y = 0.15 (b), y = 0.3 (c),
y = 0.45 (d), y = 0.6 (e), y = 6 (f) [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet

profile a for velociy uy.

profile for velocity is highlighted in Fig. 14.13, where the axial velocity at z = 0 is depicted
along the axis x at different significant sections. As expected, the flow gradually approaches
its natural condition, given by the boundary conditions at the outlet section, corresponding
to the Poiseuille flow. At y = L/5 the profile has already become parabolic and this shape
remains constant up to the outlet section.

From Fig. 14.13, it can be observed that the flow evolves in the pipe in a way such that
the velocity flux Q remains constant, not violating the conservation of mass (continuity
equation). The value of the intergal of the axial velocity uy, whose two-dimensional profiles
on ΓS are given by the revolution of the curves depicted in Fig. 14.13, remain constant
along y and this is an important assessment for the 1D CUF FE model, which proves its
capability to predict transition of complex flows not violating the equations governing the
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Figure 14.12: Velocity profiles uy [10−4 m/s] at sections y = 0, y = 0.15, y = 0.3, y = 0.45, y = 0.6
[m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet profile b for velociy uy.
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Figure 14.13: Velocity uy at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet profile b

for velociy uy.

fluid dynamics, despite its reduced order and the corresponding low computation cost.

The profiles of pressure p over some section lying in the initial part of the pipe are shown
in Fig. 14.14. As expected, the pressure trend is axisymmetric as well as the velocity one
and a transition is observed. Differently from the Poiseuille flow (see Fig.14.4), the pressure
is no more constant. As occurred for axial velocity, the pressure behavior approaches the
“natural” pressure behavior given by Poiseuille flow, i.e. constant profiles over the sections.

The transition from the inlet pressure profile to the constant pressure profile is well
shown in Fig. 14.15, where the values of pressure at z = 0 along the axis x at different
significant sections are considered. These curves describe completely the pressure field
because of the axisymmetry detected in Fig. 14.14. In the transition volume, the minimum of
the pressure (it was the maximum for the fourt-order inlet profile a) placed at (x = 0, z = 0)
decreases as y increases and the pressure profile, not constant along x at the inlet section,
approaches gradually the constant profile typical of Poiseuille flow. This constant pressure
field over the pipe section continues with a constant rate up to the zero value at the outlet
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Figure 14.14: Pressure profiles at sections y = 0, y = 0.15, y = 0.3, y = 0.45, y = 0.6 [m]. NU
N = 3,

NP
N = 2, NU = 6, NP = 4. Fourth-order inlet profile b for velociy uy.
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Figure 14.15: Pressure at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet profile b

for velociy uy.

Figures 14.16 and 14.17 present the coloured maps of transversal velocities ux and uz
for the inlet section, the outlet section and other sections lying in the transition part of
the pipe. As observed for the fourth-order inlet profile a, the transversal velocity fields
result antisymmetric with respect to z axis (for ux) and x axis (for uz). The flow is again
completely axisymmetric, as already concluded by the axial velocity profiles (see Fig. 14.12).
The same numerical consideration made in the previous case concerning the inlet and
outlet profiles are still valid. According to an acceptable numerical approximation of
boundary conditions, the profiles of ux and uz on the inlet and outlet sections are constant
despite the coloured maps in subfigures (a) and (f). Moreover, the homogeneous Dirichlet
boundary condition for ux and uz on the inlet section (Eq. 14.8) is verificated as well as
the homogeneous Dirichlet boundary conditions for ux,uy, and uz on the lateral surface of
the pipe.In conclusion, the choice of the parameters NU

N = 3, NP
N = 2, NU = 6, NP = 4
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has led to stable solutions not affected by spurious pressure modes.

(a)

-2.5e-009

-2e-009

-1.5e-009

-1e-009

-5e-010

 0

 5e-010

 1e-009

 1.5e-009

 2e-009

 2.5e-009

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

(b)

(c)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

(d)

(e)

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

-1.5e-006

-1e-006

-5e-007

 0

 5e-007

 1e-006

 1.5e-006

(f)

Figure 14.16: Velocity profiles ux [10−4 m/s] at sections y = 0 (a), y = 0.15 (b), y = 0.3 (c),
y = 0.45 (d), y = 0.6 (e), y = 6 (f) [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet

profile b for velociy uy.

14.5 Fifth-order inlet velocity profile

The fourth case studied considers a more complex velocity inlet profile. In particular, a
fifth-order nonhomogeneous Dirichlet boundary condition is prescribed on the axial velocity
uy as follows: 

ux = 0
uy = 10−4

(
1− x2 − z2

)(
1/4 + xz + x3

)
on Γin

D

uz = 0
(14.9)
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Figure 14.17: Velocity profiles uz [10−4 m/s] at sections y = 0 (a), y = 0.15 (b), y = 0.3 (c),
y = 0.45 (d), y = 0.6 (e), y = 6 (f) [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 4. Fourth-order inlet

profile b for velociy uy.

This boundary condition is again homgeneous for the transversal components of the inlet
velocity. Unlike the previous three cases, the inlet velocity profile uy for the present case
is no more axisymmetric. As a consequence, the flow obtained through this boundary
condition is expected to be not axisymmetric. The expansion order for velocity is set to
NU = 6, since the fifth-order inlet velocity profile requires at least a fifth-order expansion
on ΓS to be properly detected. According to the considerations made previously about the
choice of stable spaces, the expansion order NP for pressure is set to a value lower than
NU ; in particular, NP = 4. As far as the accuracy along the y axis is concerned, the mesh
is not changed with respect to the previous cases. Hence, NU

N is set equal to 3 and NP
N is

set equal to 2.

The velocity profiles uy on some sections lying in the initial part of the pipe are depicted
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in Fig. 14.6. As expected, the velocity profiles are not axisymmetric along the pipe axis and
a flow transition occurs downline of the inlet section. Nonetheless, the profiles of velocity
uy gradually smooth and seem to approach the more natural condition of axisymmetry,
given the outlet Neumann boundary condition (Eq. 14.3) and the lateral homogeneous
Dirichelt boundary condition (that is axysimmetric). Similarly to what observed for the
fourth-order inlet profiles a and b, the velocity u changes along the longitudinal axis y
and approach the paraboloidal behavior typical of the Poiseuille flow, as can be seen in
Fig. 14.12.

u
y

-0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

Figure 14.18: Velocity profiles uy [10−4 m/s] at sections y = 0, y = 0.15, y = 0.3, y = 0.45, y = 0.6
[m]. NU

N = 3, NP
N = 2, NU = 6, NP = 3. Fifth-order inlet profile for velociy uy.

The transition from the fifth-order profile given in Eq. 14.9 and the paraboloidal profile
for axial velocity uy is highlighted in Fig. 14.19, where the axial velocity at z = 0 is
depicted along the axis x at different significant sections. As expected, the flow gradually
approaches its natural condition, given by the boundary conditions at the outlet section
and corresponding to the Poiseuille flow. The transition area appears more extended
with respect to the previous fourth-order cases a and b, since at y = L/5 the profile has
not become parabolic yet. For the sake of completeness, it is important to note that the
maximum value of ux decreases along y. For increasing values of y the profile becomes
parabolic and then conserves its shape up to the outlet section according to the Poiseuille
flow.

As highlighted for the fourth-order inlet velocity cases, it can be numerically demon-
strated that the value of the flux Q, given by the integral of uy over the section (see
Eq. 14.7), is conserved along y, not violating the continuity equation. Since the flow is now
not axisymmetric, the velocity profiles uy are no more given by the revolution of curves
depicted in Fig. 14.19. This is an important assessment for the 1D CUF FE model, which
proves its capability to predict the evolution of complex flows (not violating the equations
governing the fluid dynamics) also in case of non-axisymmetric flows. The key point is that
this feature is not typical for “standard” 1D reduced order models and, furthermore, the
accuracy desired in the analysis is a free parameter of the CUF model.

The profiles of pressure p over some section lying in the transition part of the pipe
are shown in Fig. 14.20. As expected, the pressure trend is non-axisymmetric as well as
the velocity one. Since the expansion order for pressure is set to NP = 4, at maximum a
fourth-order approximation of the pressure over ΓS is taken into account. As occurred for
the previous cases and for the axial velocity of the present case, the profiles in Fig. 14.20
approach the “natural” pressure behavior given by Poiseuille flow, i.e. constant profiles
over the sections.

The transition from the inlet pressure profile to the constant pressure profile is well
shown in Fig. 14.21, where the values of pressure at z = 0 along the axis x at different
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Figure 14.19: Velocity uy at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 3. Fifth-order inlet profile for

velociy uy.
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Figure 14.20: Pressure profiles at sections y = 0, y = 0.15, y = 0.3, y = 0.45, y = 0.6 [m]. NU
N = 3,

NP
N = 2, NU = 6, NP = 3. Fifth-order inlet profile for velociy uy.

significant sections are considered. Again, these curves do not provide the complete trend
of p over the section since it is not axisymmetric, unlike the previous cases. The pressure
approaches gradually the constant profile typical of Poiseuille flow, firstly uniforming its
trend and then decreasing linearly up to the outlet.

Figures 14.22, 14.23 and 14.24 present the coloured maps of velocities ux, uy and uz
for the inlet section, the outlet section and other sections lying in the transition part of
the pipe. This flow case is very interesting, since it presents different features con the
three components of the velocity field. The only component of the velocity which presents
a antisymmetry is uz, i.e. the component along the z axis; in fact, it is antisymmetric
with respect to the z axis. This symmetrical behavior was the same as that observed
for transversal velocities ux and uz in the previous fourth-order cases a and b. On the
contrary, the component of the velocity along the x axis, i.e. ux, shows a symmetric
behavior with respect to the z axis. Finally, the component uy does not present symmetry
(as ux), axisymmetry (as uy in the previous cases), or antisymmetry (as uz). This arbitrary
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Figure 14.21: Pressure at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 3. Fifth-order inlet profile for

velociy uy.

behavior has been already discussed and is coherent with Figs. 14.18 and 14.19. It is
interesting to note that uy is completely paraboidal at the outlet section, see subfigure (f)
of Fig. 14.23. The same numerical considerations made in the previous cases concerning the
inlet and outlet profiles are still valid for ux and uy. According to an acceptable numerical
approximation of boundary conditions, the profiles of ux and uz on the inlet and outlet
sections are constant despite the coloured maps in subfigures (a) and (f).

For the sake of completeness, the pressure field is presented also by Fig. 14.25, which
shows the coloured maps of pressure for the inlet section, the outlet section and other
sections lying in the transition part of the pipe. Unlike the previous inlet velocity cases,
p does not present symmetry, axisymmetry, or antisymmetry (as uz). This fact is due to
the particular Dirichlet boundary condition imposed (for velocity) on the inlet section.
Again, the pressure decreases up to the outlet section, where its value is, according to an
acceptable numerical approximation, constant and equal to zero.

The last result concerns the choice of stable spaces Vh and Qh. In genearl, the stability
is obtained by means of an appropriate choice of the parameters NU

N , NP
N , NU , and NP .

The stability dependent on paramenters NU
N and NP

N has been already faced in the section
of Poiseuille flow of this chapter. For the sake of brevity, the problem of stability dependent
of parameters NU and NP . Figure 14.26 presents the pressure solution at z = 0 along the
x axis (as done in Fig. 14.19) obtained with a different choice of the expansion order for
pressure field, by taking constant NU

N = 6. It is briefly reminded that the expansion order
(NU for velocity and NP for pressure) identifies the accuracy chosen to approximate the
solution of the problem only over the cross-section ΓS . This is the key point of the CUF
model.

As occurred for the choice of the finite element types, in general the choice of an
equal expansion order for velocity and pressure unknowns leads to unstable solutions. The
corresponding case is depicted in Fig. 14.26(f), where NU

N = NP
N = 6. For the present

particular case, where the choice of NP
N = 6 is identical to NP

N = 5, an unstable solution
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Figure 14.22: Velocity profiles ux [10−4 m/s] at sections y = 0 (a), y = 0.15 (b), y = 0.3 (c),
y = 0.45 (d), y = 0.6 (e), y = 6 (f) [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 3. Fifth-order inlet

profile for velociy uy.

is not clearly detectable for NU
N = NP

N = 6. In fact, with a choice of NU
N = NP

N = 5, the
solution would become unstable, with the presence of spurious pressure modes, as can be
seen in Fig. 14.27.

For the sake of completeness, the non-recommended cases of an expansion order
for pressure higher than the expansion order for velocity is illustrated in Figs. 14.26(g)
and 14.26(h). This choice leads to unstable solutions, since spurious pressure modes appear.
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Figure 14.23: Velocity profiles uy [10−4 m/s] at sections y = 0 (a), y = 0.15 (b), y = 0.3 (c),
y = 0.45 (d), y = 0.6 (e), y = 6 (f) [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 3. Fifth-order inlet

profile for velociy uy.
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Figure 14.24: Velocity profiles uz [10−4 m/s] at sections y = 0 (a), y = 0.15 (b), y = 0.3 (c),
y = 0.45 (d), y = 0.6 (e), y = 6 (f) [m]. NU

N = 3, NP
N = 2, NU = 6, NP = 3. Fifth-order inlet

profile for velociy uy.
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Figure 14.26: Pressure at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2. Examples of stable ((a), (b), (c), (d), (e), (f))

and unstable solutions ((g), (h)). Fifth-order inlet profile for velociy uy.
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Figure 14.27: Pressure at z = 0 along the x axis at sections y = 0, y = 0.15, y = 0.3, y = 0.45,
y = 0.6, y = 1.2, y = 3, y = 6 [m]. NU

N = 3, NP
N = 2, NU = 5, NP = 5 Example of unstable

solution with spurious pressure modes. Fifth-order inlet profile for velociy uy.
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Chapter 15

Conclusions

15.1 Remarks on free vibration analysis

The free vibration analysis of nonhomogeneous cylindrical shells through refined one-
dimensional models has been addressed in Chapter 4. Hierarchical 1D finite elements were
formulated on the basis of Carrera Unified Formulation (CUF) and assessed by comparison
with exact solutions of the three-dimensional governing elasticity equations and solid finite
element solutions. As far as the use of higher-order 1D models is concerned, the following
main conclusions can be drawn:

1. a different higher-order expansion is required depending on the kind of vibrational
mode investigated. Some structural models are not even able to detect all the kinds
of vibrational modes because of the a priori displacement field used. For instance,
none of the lobe-type modes was computed by first- and second-order theories;

2. the introduction of higher-order terms in the displacement field is not always necessary.
For example, the first-order model was accurate enough to provide correct natural
frequency values for radial and axial modes;

3. classical beam theories are not able to detect radial and lobe-type vibrational modes,
whereas axial frequencies are correctly computed. Although Euler−Bernoulli’s and
Timoshenko’s are basically bending beam theories, for this thin-walled short structure
they are not able to accurately detect even bending natural frequencies;

4. the enrichment of the displacement field enables the structure to deform in a more
realistic way and thus leads to capture vibrational modes that require in-plane and
warping deformation to be detected. Higher-order models are required especially
for the evaluation of lobe-type modes, which are typical of shell structures and not
detectable by standard one-dimensional models;

5. in general, an increase of the expansion order corresponds to a decrease of the overall
structural stiffness and thus to a reduction of the frequency values by approaching
the three-dimensional results.

As far as the present hierarchical one-dimensional approach is concerned, the results point
out that:

a. CUF is the ideal tool to easily compare different higher-order theories. The expansion
order of the model, i.e. its accuracy, is a free parameter of the analysis by exploiting
a systematic procedure that leads to governing FE matrices whose form does not
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depend on the order of expansion used for the displacement unknowns over the
cross-section;

b. despite its one-dimensional approach, the CUF model proved its accuracy in the
free vibration analysis of even short, nonhomogeneous thin- and thick-walled shell
structures. Both the modal shapes and natural frequency values are in well agreement
with those obtained by three-dimensional models;

c. a convergent trend of natural frequency values approaching the three-dimensional
results as the expansion order increases is achieved. This proves that the proposed
hierarchical model does not introduce additional numerical problems in the free
vibration analysis of layered structures with respect to classical beam theories;

d. the refined 1D CUF model presents a sizeable reduction in computational cost in
terms of DOFs with respect to the solid FE model.

The accurate dynamic study of thin- and thick-walled layered structures can be faced
through the present refined 1D approach. The excellent agreement with exact and quasi-
exact solutions of the three-dimensional elasticity equations highlights the shell-type
capabilities of the 1D CUF model and the importance of refining the axiomatic displacement
field with higher-order terms.

The free vibration analysis of classical and joined wings, based on higher-order beam
theories, has been presented in Chapter 5. Carrera Unified Formulation, CUF, has been
used for the systemic implementation of refined models. According to CUF, the element
stiffness and mass matrices are obtained in a compact form, named fundamental nucleus,
that does not depend on the theory approximation order, that is, the order of the model
is assumed as a free parameter of the modeling. Elements based on classical theories
have been derived as particular cases. A preliminary static analysis has been conducted
to validate the present formulation in comparison with 3D solid element models. The
analysis conducted has shown an excellent match between the models. The numerical
analysis has been the conducted for the investigation of dynamic behavior in terms of
natural frequencies and vibration modes. Comparisons with shell and solid wing models of
commercial FE codes have been made. The following main conclusions can be drawn.

The present one-dimensional formulation permits to deal in an unified manner with:

1. arbitrary cross-sections geometries;

2. compact and thin-walled structures;

3. straight as well as arbitrary orientated structures;

4. unconventional joined wing configurations;

The use of higher-order theories has permitted classical beam model limitations to be
overcome. The comparison with shell and solid models has shown the shell capabilities of
the refined beam theories, that is, accurate modal shapes for thin-walled structures can be
obtained by means of significantly less cumbersome 1D elements. Furthermore, the effects
of the higher-order terms become significant when:

1. thin walled cross-section geometries are adopted;

2. the beam is not slender;
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3. the aim of the structural dynamics analysis is the proper prediction of vibration
modes such as torsional ones.

The use of the proposed beam models appears suitable for aeroeleatic applications that
include airfoil in-plane deformations, and for extensions to wings made of advanced
composite materials.

15.2 Remarks on static and dynamic response analysis

Chapter 6 has presented the extension of refined one-dimensional models to the dynamic
response analysis of isotropic thin-walled structures. The static and dynamic analysis of
structures with arbitrary cross-section geometries and nonhomogeneous materials through
refined one-dimensional models has been addressed in Chapter 7. Variable kinematic
1D finite elements were formulated on the basis of Carrera Unified Formulation, CUF,
by exploiting a systematic procedure that leads to governing FE matrices whose form
does not depend on the order of expansion used for the displacement unknowns over the
cross-section.

Several analyses were carried out to assess and enhance the advantages of higher-order
1D CUF models in evaluating the dynamic response of slender structures. In particular,
a cylinder with a thin-walled circular cross-section subjected to harmonic out of phase
loadings was studied. Comparing results with three-dimensional elasticity solutions and
shell-type solutions obtained by commercial FE software, the following main conclusions
can be drawn:

1. the effectiveness of higher-order terms over the cross-section deformation is enhanced
when thin-walled geometries are adopted;

2. since classical beam theories assume an undeformed section, they become ineffective
in the case of thin-walled geometries;

3. in-plane deformations due to time-dependent internal loadings are accurately detected
by the proposed 1D models.

As far as numerical implementation is concerned:

a. the proposed models did not introduce additional numerical problems in direct time
integration with respect to classical beam theories;

b. the convergence of the Newmark method was achieved for both the classical and
higher-order FE models.

According to works involving 1D CUF models, the results presented confirm that the
increase of the expansion order is not only important for static and free vibration analyses;
it is also crucial for the dynamic response of beam-like structures. The implementation
of 1D CUF models in the Newmark time integration scheme has revealed the shell-type
capabilities of such refined models in accurately describing the dynamic behavior of thin-
walled structures with a sizeable reduction in computational cost.

As far as the use of 1D higher-order models to analyze nonhomogeneous structures is
concerned, the following main conclusions can be drawn:

1. the introduction of higher-order terms in the displacement field is important even
for the analysis of structures with conventional cross sections. Higher-order models
are required especially for structures with significant material nonhomogeneity and
arbitrary geometry;
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2. classical beam theories were completely ineffective in studying the kind of structures
considered. Although Euler−Bernoulli’s and Timoshenko’s are basically bending
beam theories, they were not able to accurately detect even the axial strain and stress,
which are not neglected by the kinematic hypotheses of undeformed cross-section
shape they are based on;

3. a convergent trend of displacement, strain and stress values approaching the three-
dimensional results as the expansion order increases is achieved. This proves that the
proposed 1D hierarchical model does not introduce additional numerical problems in
the analysis of arbitrary nonhomogeneous structures with respect to classical beam
theories.

As far as the present hierarchical one-dimensional approach is concerned, the results point
out that:

a. the enrichment of the displacement field enables the structure to deform in a more
realistic way and a very good agreement with the three-dimensional solution was
achieved; in-plane cross-section deformations are well-described by the present 1D
CUF models.

b. despite its one-dimensional approach, the proposed higher-order formulation proved
its accuracy in the analysis of even short structures made of homogeneous or non-
homogeneous materials with classical or arbitrary cross-section geometries. Local
effects and complete three-dimensional displacement, strain and stress fields were
computed in well agreement with those obtained by three-dimensional models;

c. the refined 1D CUF model shows a remarkable reduction in computational cost in
terms of DOFs with respect to the solid FE model.

Comparing results with three-dimensional solutions, the present 1D finite element formula-
tion proved to be a valid alternative to shell and solid methods, which necessarily require a
higher computational cost, and a promising numerical tool for the analysis of arbitrary
nonhomogeneous structures in biomechanical applications. In this respect, further work
should be done in order to take into account material anisotropy and nonlinearity typical
of biological soft tissues.

15.3 Remarks on aeroelastic analysis

Chapter 11 has proposed the aeroelastic model that couples the Vortex Lattice Method
and a refined one-dimensional structural model with in-plane warping and plate/shell
capabilities. The model has been assessed in excellent agreement with available results
from literature as well as MD NASTRAN software. Classical beam theories such as Euler-
Bernoulli and Timoshenko have been obtained as particular cases. Therefore, this has
made the comparison with higher-order models to be easily achieved for the structural and
aeroelastic response as well as the divergence instability identification. Moreover, the CUF
model has been able to detect in which case the first-order beam theories are accurate
enough to describe the structural behavior of a beam-like system and in which case the use
of refined theories is mandatory.

In general, the model here formulated can handle arbitrary cross-section geometries for
moderate and high aspect ratio beam-like structures, with no limitations on the composite
lamination properties. However, for multilayered cross-sections an expansion of Lagrange
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polynomials for CUF and a layerwise approach may be preferred to detect local effects of
composite materials. Both the static structural and aeroelastic analyses can be performed
with a limitated number of DOFs in a good agreement with commercial software. Future
works will investigate even more the method’s capabilities especially in case of complex
cross-section layouts and unconventional wing configurations. The choice of the cross-
section geometrical shape will not affect the number of DOFs of the present model, unlike
shell and solid finite elements codes.

In Chapter 12 an innovative approach for the static aeroelastic analysis of wings is
presented. The coupled analyses here reported are performed by means of a panel method
for the evaluation of the aerodynamic loads and by means of refined beam model (CUF
1D) for the evaluation if the structural static response. The influence of the expansion
order N and the influence of the freestream velocity has been investigated. Few conclusions
can be drawn:

1. in the case the wing is rather flexible the wing distortion has a great impact on the
alteration of the aerodynamic loads compared with the undeformed wing configuration;

2. CUF 1D model is able to evaluate properly the distortion of a wing but since a
particular expansion order, in this case the order is the fourteenth;

3. higher the freestream velocity is much more marked the distortion effect is.

The linear approach for the analysis of the distortion of a cross-section of a wing can
profitably employed in order to evaluate the perfomance and the structural response of an
aircraft. Comparing to the usual approch (CFD analysis coupled with a shell FE analysis)
the use of panel method allows a reduction of computationl cost which is further reduced
thanks to the use of CUF 1D model. This approach offers an effective tool for the analysis
of a smart wing. The recent scientific literature starts to consider the so called smart wing
configuration. The possible mechanisms that can be used employ actuators realized with
piezoelectric materials (PZM), shape memory alloys (SMA) or shape memory polymer
(SMP). Carrera Unified Formulation has the possibility to include in its formulation the
induced displacement by one of usually employed actuators: for this reason CUF offers a
performing tool for the analysis for such wing configurations.

Another possibilty offered by the CUF 1D is the reduction of computational cost in
case a optimization process is needed. The optimization process of a complex structure
such as a wing in general requires high computational cost: it requires a lot of executions
in order to find the desidered optimum condition given the constraint conditions. The
reduction of computational cost in terms of reduction of DOFs offered by the CUF allows
to implement an accurate and light optimization tool.
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Appendix A

Material and physical coordinate
systems

A material coordinate system (1, 2, 3) and a physical coordinate system (x, y, z) have been
introduced in section 2.3. Relations between the components of the stress and strain vectors
referred to the material system and the components referred to the physical system have
been presented in Eqs. 2.20 and 2.22, respectively. The aim of this appendix chapter is to
show how Eqs. 2.20 and 2.22 can be obtained starting from the coordinate transformation
equations between material and physical systems.

According to Fig. 2.4, material axes 2 and 3 are rotated by a positive counterclockwise
angle θ about the z axis, coincident to axis 1, from physical x and y axes. The coordinate
transformation from the physical system to the material system occurs by means of a
matrix, identified as L. Its dimensions are 3× 3 since the space used is three-dimensional.
The construction of L is carried out introducing three points A, B, and C as can be seen in
Fig. A.1.

x

z 1

2

3

y

cos

cos

sin

sin-

A
B

C

0

Figure A.1: Coordinate transformation from the physical reference system to the material reference
system.

Their coordinates in the two reference systems are:

Point A :


x = 1
y = 0
z = 0

 ;


x1 = 0
x2 = cos θ
x3 = − sin θ
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Point B :


x = 0
y = 1
z = 0

 ;


x1 = 0
x2 = sin θ
x3 = cos θ


Point C :


x = 0
y = 0
z = 1

 ;


x1 = 1
x2 = 0
x3 = 0


(A.1)

The coordinates of points A, B, and C in the material system are the first, second, and
third columns of matrix L. As a consequence, the coordinates (components) (x1, x2, x3)
of a generic point (vector) written in the material system (xm) can be derived from its
coordinates (components) (x, y, z) written in the physical system (xp) by means of matrix
L as follows:

xm = Lxp (A.2)

which is: 
x1

x2

x3

 =

 0 0 1
cos θ sin θ 0
− sin θ cos θ 0

 
x
y
z

 (A.3)

Similarly, the coordinate transformation from the material system to the physical system
occurs by means of a 3× 3 matrix, identified as L−1. The construction of L−1 is carried
out introducing three points D, E, and E as can be seen in Fig. A.2.

x

2

3

y

cos

sin

sin-

E

F

D

0

z 1

cos

Figure A.2: Coordinate transformation from the material reference system to the physical reference
system.

Their coordinates in the two reference systems are:

Point D :


x1 = 1
x2 = 0
x3 = 0

 ;


x = 0
y = 0
z = 1


Point E :


x1 = 0
x2 = 1
x3 = 0

 ;


x = cos θ
y = sin θ
z = 0


Point F :


x1 = 0
x2 = 0
x3 = 1

 ;


x = − sin θ
y = cos θ
z = 0

 (A.4)
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The coordinates of points D, E, and F in the physical system are the first, second, and
third columns of matrix L−1. As a consequence, the coordinates (components) (x, y, z)
of a generic point (vector) written in the physical system (xp) can be derived from its
coordinates (components) (x1, x2, x3) written in the material system (xm) by means of
matrix L−1 as follows:

xp = L−1 xm = LT xm (A.5)

which is: 
x
y
z

 =

 0 cos θ − sin θ
0 sin θ cos θ
1 0 0

 
x1

x2

x3

 (A.6)

As expected, it can be demonstrated that L−1 is the inverse of matrix L. Furthermore,
L is an orthogonal matrix and its transpose LT is equal to its inverse L−1, as shown in
Eq. A.5.

Now the relationship between the components of stress in physical and material coordi-
nate systems is considered. Let the 3× 3 arrays σ?m and σ?p of the stress components in
the material and physical coordinate systems to be introduced:

σ?m =

 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 = Lσ?p LT (A.7)

σ?p =

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 = LTσ?m L (A.8)

Their relationships via matrices L and LT derive from the transformations between second-
order tensors. More details can be found in [95]. Equations A.7 and A.8 hold for any
general coordinate transformation, and hence it holds for the particular transformation
in Fig. 2.4, i.e. Figs. A.1 and A.2. Carrying out the matrix multiplications in Eq. A.8,
Eq. A.9 is obtained:

σ?p =


σ22 cos2 θ − σ23 sin 2θ
+σ33 sin2 θ

σ22 sin θ cos θ + σ23 cos2 θ
−σ23 sin2 θ − σ33 sin θ cos θ

σ12 cos θ
−σ13 sin θ

σ22 sin θ cos θ + σ23 cos2 θ
−σ23 sin2 θ − σ33 sin θ cos θ

σ22 sin2 θ + σ23 sin 2θ
+σ33 cos2 θ

σ12 sin θ
+σ13 cos θ

σ12 cos θ − σ13 sin θ σ12 sin θ + σ13 cos θ σ11


(A.9)

Rearranging the components of σ?p in Eq. A.9 in terms of the single-subscript stress
components, the (physical) stress vector σ and the material stress vector σm defined in
section 2.3 are obtained:

σyy
σxx
σzz
σxz
σyz
σxy


=



cos2 θ sin2 θ 0 0 0 sin 2θ
sin2 θ cos2 θ 0 0 0 − sin 2θ

0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− sin θ cos θ sin θ cos θ 0 0 0 cos2 θ − sin2 θ





σ33

σ22

σ11

σ21

σ31

σ23


(A.10)
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Appendix A. Material and physical coordinate systems

In a compact vectorial notation, Eq. A.10 is:

σ = Tσm (A.11)

where T is the 6× 6 transformation matrix, already defined in Eq. 2.21. Equation A.11
corresponds to Eq. 2.20. For the sake of completeness, the transformation of the stress
vector components from the physical system to the material system is:

σm = T−1 σ (A.12)

where T−1 is the inverse of the transformation matrix T.

The relationship between the components of strain in physical and material coordinate
systems is obtained through a procedure analogous to that above followed for stress
components. Let the 3× 3 arrays ε?m and ε?p of the strain components in the material and
physical coordinate systems to be introduced:

ε?m =

 ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 = L ε?p LT (A.13)

ε?p =

 εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 = LTε?m L (A.14)

Their relationships via matrices L and LT are the same as the relationships for stress
components in Eqs. A.7 and A.8. Carrying out the matrix multiplications in Eq. A.13,
Eq. A.15 is obtained:

ε?m =


εzz εxz cos θ + εyz sin θ − εxz sin θ + εyz cos θ

εxz cos θ
+ εyz sin θ

εxx cos2 θ + εxy sin 2θ
+ εyy sin2 θ

− εxx sin θ cos θ + εxy cos2 θ
− εxy sin2 θ + εyy sin θ cos θ

− εxz sin θ
+ εyz cos θ

−σxx sin θ cos θ + σxy cos2 θ
−σxy sin2 θ + σyy sin θ cos θ

εxx sin2 θ − εxy sin 2θ
+ εyy cos2 θ


(A.15)

Rearranging the components of ε?m in Eq. A.15 in terms of the single-subscript strain
components, the vectorial relationships between the physical “modified” strain vector εp
and the material “modified” strain vector εm are obtained:



ε33

ε22

ε11

ε21

ε31

ε23


=



cos2 θ sin2 θ 0 0 0 − sin 2θ
sin2 θ cos2 θ 0 0 0 sin 2θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos2 θ − sin2 θ





εyy
εxx
εzz
εxz
εyz
εxy


(A.16)

which is:

εm = T−1 εp (A.17)

where T−1 is the inverse of the transformation matrix T. Rearranging the components
of εm and εp in Eq. A.16 in order to introduce the material strain vector εm and the
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(physical) strain vector ε defined in section 2.3, the following relationship is obtained:

ε33

ε22

ε11

2 ε21

2 ε31

2 ε23


=



cos2 θ sin2 θ 0 0 0 − sin θ cos θ
sin2 θ cos2 θ 0 0 0 sin θ cos θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin 2θ − sin 2θ 0 0 0 cos2 θ − sin2 θ





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(A.18)

In a compact vectorial notation, Eq. A.18 is:

εm = TT ε (A.19)

where TT is the transpose of the transformation matrix T. Equation A.19 corresponds to
Eq. 2.22.
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Appendix B

Poisson’s locking correction

Constant and linear approximations of the displacement along the negligible direction do
not yield accurate models even in the case of slender beams if full material constitutive
equations are considered. Classical plates and beam theories adopt a modified version of
such equations, in which the stiffness coefficients are opportunely reduced. The lack of
accuracy is due to the coupling among the normal deformations along the spatial directions
x, y, and z quantified by Poisson’s coefficients:

νij = − εjj
εii

i, j = x, y, z i /= j (B.1)

This phenomenon is thus known as Poisson’s Locking (PL). In the case of plates modelling,
it is also named as Thickness Locking, see Carrera and Brischetto [120, 121]. Classical
plates theories correct the PL by imposing the out-of-plane normal stress to be zero. This
hypothesys yields reduced material stiffness coefficients to be taken into account in the
Hooke’s law for the in-plane stress and strain components. According to Carrera and
Giunta [44], the same Poisson’s locking correction is obtained for the 1D CUF model (i.e.
beam theory) in a similar way, assuming the transversal stress components σxx and σzz
equal to zero in the Hooke’s law, for both orthotropic and isotropic materials.

Thanks to this correction, classical models and the refined first-order theory yield
accurate results in the case of slender beams (compatibly to their kinematic limitative
hypotheses).

B.1 Orthotropic Material

The vectorial notation of the stress-strain relations referred to the physical coordinate
system of Eq. 2.25 for the orthotropic material case is retrieved here:

σyy
σxx
σzz
σxz
σyz
σxy


=



C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃16

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(B.2)

The transversal stress components σxx and σzz are imposed to zero. According to Eq. B.2,
they are: {

σxx = C̃12 εzz + C̃22 εxx + C̃23 εyy + C̃26 (2 εxy) = 0

σzz = C̃11 εzz + C̃12 εxx + C̃13 εyy + C̃16 (2 εxy) = 0
(B.3)
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Appendix B. Poisson’s locking correction

An algebraic linear system in εxx and εyy is obtained, whose solution is:
εxx =

C̃12 C̃13 − C̃23 C̃11

C̃11 C̃22 − C̃2
12

εyy +
C̃12 C̃16 − C̃26 C̃11

C̃11 C̃22 − C̃2
12

(2 εxy)

εzz =
C̃12 C̃23 − C̃13 C̃22

C̃11 C̃22 − C̃2
12

εyy +
C̃12 C̃26 − C̃16 C̃22

C̃11 C̃22 − C̃2
12

(2 εxy)

(B.4)

Substituting Eq. B.4 into the Hooke’s equation for σyy from Eq. B.2,

σyy = C̃33 εyy + C̃23 εxx + C̃13 εzz + C̃36 (2 εxy) (B.5)

it is obtained:
σyy = Q̃33 εyy + Q̃36 (2 εxy) (B.6)

where the corrected elastic coefficients Q̃33 and Q̃36 are:

Q̃33 = C̃33 + C̃13
C̃12 C̃23 − C̃13 C̃22

C̃11 C̃22 − C̃2
12

+ C̃23
C̃12 C̃13 − C̃23 C̃11

C̃11 C̃22 − C̃2
12

(B.7)

Q̃36 = C̃36 + C̃13
C̃12 C̃26 − C̃16 C̃22

C̃11 C̃22 − C̃2
12

+ C̃23
C̃12 C̃16 − C̃26 C̃11

C̃11 C̃22 − C̃2
12

(B.8)

From Eqs. B.3 and B.4 the stress component σzz can be rewritten as:

σzz = Q̃13 εyy + Q̃16 (2 εxy) (B.9)

where the corrected elastic coefficients Q̃13 and Q̃16 are:

Q̃13 = 0 (B.10)

Q̃16 = 0 (B.11)

Similarly, from Eqs. B.3 and B.4 the stress component σxx can be rewritten as:

σxx = Q̃23 εyy + Q̃26 (2 εxy) (B.12)

where the corrected elastic coefficients Q̃23 and Q̃26 are:

Q̃23 = 0 (B.13)

Q̃26 = 0 (B.14)

As a consequence, it can be demonstrated that the stress component σxy, whose expression
from Eq. B.2 is:

σxy = C̃36 εyy + C̃26 εxx + C̃16 εzz + C̃66 (2 εxy) (B.15)

can be rewritten in the following corrected form:

σxy = Q̃36 εyy + Q̃26 εyy + Q̃16 εzz + Q̃66 (2 εxy) (B.16)

where the corrected elastic coefficient Q̃66 is:

Q̃66 = C̃66 + C̃16
C̃12 C̃26 − C̃16 C̃22

C̃11 C̃22 − C̃2
12

+ C̃26
C̃12 C̃16 − C̃26 C̃11

C̃11 C̃22 − C̃2
12

(B.17)
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B.2. Isotropic Material

Summarizing the “corrected” equations written above for the stress components, when
Poisson’s locking correction is enabled the stress-strain relations of Eq. B.2 become:

σyy
σxx
σzz
σxz
σyz
σxy


=



Q̃33 0 0 0 0 Q̃36

Q̃23 = 0 0 0 0 0 Q̃26 = 0

Q̃13 = 0 0 0 0 0 Q̃16 = 0

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

Q̃36 Q̃26 = 0 Q̃16 = 0 0 0 Q̃66





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(B.18)

The following corrected material stiffness matrix Q̃ can be thus defined as a summary of
Poisson’s locking correction:

σ = Q̃ ε (B.19)

that is: 

σyy
σxx
σzz
σxz
σyz
σxy


=



Q̃33 0 0 0 0 Q̃36

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

Q̃36 0 0 0 0 Q̃66





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(B.20)

In conclusion, the following instructions for the orthotropic elastic coefficients have to be
prescribed in order to correct Poisson’s locking:

C̃33 ⇒ Q̃33

C̃23 ⇒ Q̃23 = 0

C̃13 ⇒ Q̃13 = 0

C̃36 ⇒ Q̃36

C̃22 ⇒ Q̃22 = 0

C̃12 ⇒ Q̃12 = 0

C̃26 ⇒ Q̃26 = 0

C̃11 ⇒ Q̃11 = 0

C̃16 ⇒ Q̃16 = 0

C̃66 ⇒ Q̃66

(B.21)

As can be noticed in Eq. B.21 the elastic coefficients C̃44, C̃45, and C̃55 of the transformed
material stiffness matrix C̃ of Eq. B.2 are not affected by Poisson’s locking correction.

B.2 Isotropic Material

When an isotropic material is used, Poisson’s locking correction is easily obtained as a
particular case of the procedure previously described for orthotropic materials. First of all,
the Hooke’s law for an isotropic material is here retrieved from Eq. 2.29:

σyy
σxx
σzz
σxz
σyz
σxy


=



C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(B.22)
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Appendix B. Poisson’s locking correction

Following the same procedure explained for the orthotropic material case, the corrected
elastic coefficients Q33 and Q36, which are particular cases of Q̃33 in Eq. B.7 and Q̃36 in
Eq. B.8, become:

Q33 = E (B.23)

Q36 = 0 (B.24)

On the contrary, the corrected elastic coefficient Q66, which is a particular case of Q̃66 in
Eq. B.17, remains unchanged:

Q66 = C66 = G (B.25)

It can be demonstrated that the other corrected elastic coefficients are equal to zero. The
corrected material stiffness matrix Q can be thus defined as a summary of Poisson’s locking
correction for the isotropic material case:

σ = Q ε (B.26)

that is: 

σyy
σxx
σzz
σxz
σyz
σxy


=



E 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(B.27)

In conclusion, the following instructions for the isotropic elastic coefficients have to be
prescribed in order to correct Poisson’s locking:

C33 ⇒ Q33 = E
C23 ⇒ Q23 = 0
C13 ⇒ Q13 = 0
C22 ⇒ Q22 = 0
C12 ⇒ Q12 = 0
C11 ⇒ Q11 = 0

(B.28)

As can be noticed in Eq. B.28 the isotropic elastic coefficients C44, C55, and C66 of the
material stiffness matrix C of Eq. B.22 are not affected by Poisson’s locking correction.
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Appendix C

Shape functions integration

The integrals of the products of shape functions along the finite element length LEL in
Eq. 3.41 have been introduced and collected in Eq. 3.44. The present appendix chapter
addresses the different kinds of numerical integrations of these quantities. In particular,
full, reduced or selective numerical integrations are faced.

C.1 Integration along natural coordinate

The expressions of integrals E i
j , E

i
j,y, E

i,y
j , and E i,y

j,y in Eq. 3.44 are written with respect to
the physical coordinate y. The integration of the products of shape functions results very
easier along the natural coordinate r than the physical coordinate y, which is related to
the geometrical position of the finite element in the mesh (i.e. y1 and y2). As mentioned in
Chapter 3, shape functions Ni (y) or Nj (y) can be transformed to the equivalent forms Ni (r)
or Nj (r) referred to the natural coordinate r by means of the coordinate transformation
from the natural coordinate r to the physical coordinate y:

y =
y1

2
(1− r) +

y2

2
(1 + r) = y1 +

LEL

2
(1 + r) (C.1)

which is computed inverting Eq. 3.1. For the sake of cmpleteness, the 1D Lagrange
polynomials with respect to the natural coordinate r have been defined in Eq. 3.4 and also
written for B2, B3, and B4 elements in Eqs. 3.7, 3.10, and 3.13.

Let the first term E i
j to be considered:

E i
j =

∫
l
NiNj dy =

∫ y2

y1

Ni (y)Nj (y) dy (C.2)

where y2 = y1 + LEL. The integral E i
j is now transformed from the physical coordinate

y to the natural coordinate r considering Eq. C.1 and computing the Jacobian of the
transofmation:

dy

dr
= − y1

2
+
y2

2
=

y2 − y1

2
=

LEL

2
⇒ dy =

LEL

2
dr (C.3)

Thus, Eq. C.2 becomes in a form independent of y1 and y2, but only dependent on the
element length LEL:

E i
j =

LEL

2

∫ 1

−1
Ni (r)Nj (r) dr (C.4)
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where the boundary values:
y = y1 ⇒ r = −1
y = y2 ⇒ r = 1

(C.5)

are computed exploiting the coordinate transformation from the physical coordinate y
along the finite element to the natural coordinate r in Eq. 3.1.

The second term E i
j,y is now considered:

E i
j,y =

∫
l
NiNj,y dy =

∫ y2

y1

Ni (y)
dNj (y)

dy
dy (C.6)

The derivative of Nj (y) with respect to y is:

dNj (y)

dy
=

dNj (r)

dr

dr

dy
=

dNj (r)

dr

2

LEL
(C.7)

Thus, Eq. C.6 with respect to r becomes:

E i
j,y =

�
��

LEL

2 �
�
�2

LEL

∫ 1

−1
Ni (r)

dNj (r)

dr
dr =

∫ 1

−1
Ni (r)Nj,r (r) dr (C.8)

Similarly to Eq. C.8, the third term E i,y
j with respect to the natural coordinate r is:

E i,y
j =

∫
l
Ni,yNj dy =

∫ 1

−1
Ni, r (r)Nj (r) dr (C.9)

The fourth term E i,y
j,y is:

E i,y
j,y =

∫
l
Ni,yNj,y dy =

∫ y2

y1

dNi (y)

dy

dNj (y)

dy
dy (C.10)

Using Eq. C.7, the derivative of Ni (y) with respect to y is:

dNi (y)

dy
=

dNi (r)

dr

dr

dy
=

dNi (r)

dr

2

LEL
(C.11)

Considering Eqs. C.7 and C.11, Eq. C.10 with respect to r becomes:

E i,y
j,y =

�
��

LEL

2 �
�
�2

LEL

2

LEL

∫ 1

−1

dNi (r)

dr

dNj (r)

dr
dr =

2

LEL

∫ 1

−1
Ni, r (r)Nj,r (r) dr (C.12)

The following section faces the numerical integration of integrals in Eqs. C.4, C.8, C.9,
and C.12.

C.2 Gauss numerical one-dimensional integration

A numerical integration procedure typically evaluates a generic integral numerically by
means of weighting factors. Considering for the sake of simplicity the generic one-
dimensional integral of the generic function p (r) along the coordinate r in the interval
from a to b: ∫ b

a
p (r) dr =

∑
k

wk p (rk) (C.13)
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C.2. Gauss numerical one-dimensional integration

the integral is computed numerically as a linear combination (summation over index k) of
the generic quantities p (rk), i.e. the values of function p (r) evaluated at particular sampling
points, through the corresponding weights wk. Important issues are the integration accuracy
that is needed, i.e. the number of sampling points required in the element formation, the
positions of the sampling points, and hence the corresponding error of numerical integration.

Gauss quadrature is a very useful numerical integration procedure in which both the
positions of the sampling points and the weights are optimized. According to Eq. C.13,
the expression to compute numerically an integral via Gauss procedure is:∫ b

a
p (r) dr =

NGP∑
k=1

wk p (rk) (C.14)

where NGP is the number of Gauss points, i.e. sampling points, to be considered in
the integration. In the present section the particular case of a polynomial function p (r)
is considered, since the one-dimensional functions to be integrated in Eqs. C.4, C.8,
C.9, and C.12 are products of shape functions (i.e. Lagrange polynomials) and hence
are themselves polynomial functions. More details about integration of non-polynomial
functions can be found in [42], where also the weights and the position of Gauss points to
be used in Gauss quadrature procedure are presented.

Given a number of Gauss points NGP , a polynomial p (r) of order at most (2NGP − 1)
is integrated exactly. Polynomials of orders less than (2NGP − 1) are also integrated
exactly. As a consequence, given a polynomial p (r) of order n, the minimum number
of Gauss points NGP necessary to compute exactly the integral of p (r) is given by the
following equation:

NGP = 1 +
⌊n

2

⌋
(C.15)

where the floor function bxc maps a real number x to the largest integer not greater than
x.

C.2.1 Full numerical integration

When the full integration is active, all the integrals of the products of shape functions
E i
j , E

i
j,y, E

i,y
j , and E i,y

j,y are computed numerically with a number of Gauss points NGP

sufficient to compute integrals in Eqs. C.4, C.8, C.9, and C.12 exactly. For these integrals,
the number of Gauss points NGP is set to NN , i.e. 2 for B2 elements, 3 for B3 elements
and 4 for B4 elements. In fact, the order of the shape functions of an element is equal to
(NN − 1) and thus the products of two shape functions (or derivatives of shape functions)
to be integrated is at most 2(NN − 1). Replacing n in Eq. C.15 with 2(NN − 1), it is
verified that choice of NGP = NN guarantees the exact integral computation:

NGP = 1 +

⌊
2(NN − 1)

2

⌋
= 1 + bNN − 1c = NN (C.16)

C.2.2 Reduced numerical integration

The displacement formulation of finite element analysis yelds a strain energy smaller
than the exact strain energy of the mechanical model being considered, and physically, a
displacement formulation results in overestimating the system stiffness. Therefore, it is
expected that by not evaluating the displacement-based element stiffness matrices accurately
in the numerical integration, better overall solution results can be obtained. This should
be the case if the error in the numerical integration compensates appropriately for the
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overestimation of structural stiffness due to the finite element discretization. In other words,
a reduction in the order of the numerical integration from the order that is required to
evaluate the element stiffness matrices exactly may be expected to lead to improve results.
When such a reduction is used for all the integrals of the products of shape functions, this
procedure is called reduced integration. More details can be found in [42].

When the reduced integration is active, all the integrals of the products of shape
functions E i

j , E
i
j,y, E

i,y
j , and E i,y

j,y are therefore computed numerically with a number
of Gauss points NGP one lower than the number of Gauss points necessary to compute
integrals in Eqs. C.4, C.8, C.9, and C.12 exactly. In particular, for these integrals, the
number of Gauss points NGP is set to (NN − 1), i.e. 1 for B2 elements, 2 for B3 elements
and 3 for B4 elements, differently from full numerical integration.

For the sake of simplicity, the terms E i?
j , E i?

j,y, E
i,y ?
j , and E i,y ?

j,y integrated via reduced

integration are introduced instead of the terms E i
j , E

i
j,y, E

i,y
j , and E i,y

j,y, which are fully
(exactly) integrated. Hence, the latter terms have to be replaced with the former terms in
Eqs. 3.115, 3.116, 3.124, and 3.125. It can be verified that:

E i?
j ≤ E i

j

E i?
j,y = E i

j,y

E i,y ?
j = E i,y

j

E i,y ?
j,y = E i,y

j,y

(C.17)

since the polynomial functions to be integrated in E i
j,y, E

i,y
j have one order lower than the

polynomial functions to be integrated in E i
j (i.e. 2(NN − 1)− 1 instead of 2(NN − 1)) and

thus NGP = (NN−1) is sufficient to compute the integrals exactly. Similarly, the polynomial
functions to be integrated in E i,y

j,y have two orders lower than the polynomial functions

to be integrated in E i
j (i.e. 2(NN − 1)− 2 instead of 2(NN − 1)) and NGP = (NN − 1) is

therefore sufficient to compute the integrals exactly.

C.2.3 Selective numerical integration

This is the numerical quadrature procedure used to obtain the results presented in this
dissertation. A selective integration is widely used in finite element analysis as numerical
correction to the well-known problem of shear locking. For more details see [42]. When the
selective integration is active, strain terms are integrated with different orders of integration.
In particular, the technique here presented uses a reduced integration for all the terms in
fundamental nuclei which derive from shear strain or virtual shear strain quantities in the
expression of virtual strain energy δLint (Eqs. 3.33 and 3.38) and a full integration for all
the other terms.

For the orthotropic material case, the integrals E i
j , E

i
j,y, E

i,y
j , and E i,y

j,y in the terms
appearing in the fundamental nucleus components of Eqs. 3.115 and 3.124 which involve
the red-coloured elastic coefficients of Eq. C.18 (cf. Eq. 2.25) have to be integrated via
reduced integration.

σyy
σxx
σzz
σxz
σyz
σxy


=



C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃16

0 0 0 C̃44 C̃45 0

0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(C.18)
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C.2. Gauss numerical one-dimensional integration

The red-coloured elastic coefficients above mentioned are distributed in matrices C̃pn, C̃np,

and C̃nn as follows:

C̃pn =

 0 C̃16 C̃13

0 C̃26 C̃23

C̃45 0 0

 ; C̃np =

 0 0 C̃45

C̃16 C̃26 0

C̃13 C̃23 0

 ;

C̃nn =

 C̃55 0 0

0 C̃66 C̃36

0 C̃36 C̃33


(C.19)

For the isotropic material case, the integrals E i
j , E

i
j,y, E

i,y
j , and E i,y

j,y in the terms appearing
in the fundamental nucleus components of Eqs. 3.116 and 3.125 which involve the red-
coloured elastic coefficients of Eq. C.20 (cf. Eq. 2.29) have to be integrated via reduced
integration. 

σyy
σxx
σzz
σxz
σyz
σxy


=



C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





εyy
εxx
εzz

2 εxz
2 εyz
2 εxy


(C.20)

The red-coloured elastic coefficients above mentioned are distributed in matrix C̃nn as
follows:

Cnn =

 C55 0 0
0 C66 0
0 0 C33

 (C.21)

As a consequence, some terms E i
j , E

i
j,y, E

i,y
j , and E i,y

j,y have to be replaced with terms E i?
j ,

E i?
j,y, E

i,y ?
j , and E i,y ?

j,y (integrated via reduced integration) in Eqs. 3.115, 3.116, 3.124,
and 3.125, paying attention to the important note in Eq. C.17.

For a cross-section made of homogeneous orthotropic material, the components of the
fundamental nucleus Kτ sij in Eq. 3.115 are here written in Eq. C.22 with indication of
the terms integrated via full or reduced integration (written in red):

K τ sij
xx = C̃22E

i
j J

τ,x
s,x + C̃44E

i
j J

τ,z
s,z + C̃26E

i?
j,y J

τ,x
s + C̃26E

i,y ?
j J τs,x + C̃66E

i,y ?
j,y J τs

K τ sij
xy = C̃23E

i
j,y J

τ,x
s + C̃45E

i?
j J τ,zs,z + C̃26E

i?
j J τ,xs,x + C̃36E

i,y ?
j,y J τs + C̃66E

i,y ?
j J τs,x

K τ sij
xz = C̃12E

i
j J

τ,x
s,z + C̃44E

i
j J

τ,z
s,x + C̃45E

i?
j,y J

τ,z
s + C̃16E

i,y ?
j J τs,z

K τ sij
yx = C̃23E

i,y
j J τs,x + C̃45E

i?
j J τ,zs,z + C̃26E

i?
j J τ,xs,x + C̃36E

i,y ?
j,y J τs + C̃66E

i?
j,y J

τ,x
s

K τ sij
yy = C̃33E

i,y
j,y J

τ
s + C̃55E

i?
j J τ,zs,z + C̃36E

i?
j,y J

τ,x
s + C̃36E

i,y ?
j J τs,x + C̃66E

i?
j J τ,xs,x

K τ sij
yz = C̃13E

i,y
j J τs,z + C̃55E

i?
j,y J

τ,z
s + C̃45E

i?
j J τ,zs,x + C̃16E

i?
j J τ,xs,z

K τ sij
zx = C̃12E

i
j J

τ,z
s,x + C̃44E

i
j J

τ,x
s,z + C̃45E

i,y ?
j J τs,z + C̃16E

i?
j,y J

τ,z
s

K τ sij
zy = C̃13E

i
j,y J

τ,z
s + C̃55E

i,y ?
j J τs,z + C̃45E

i?
j J τ,xs,z + C̃16E

i?
j J τ,zs,x

K τ sij
zz = C̃11E

i
j J

τ,z
s,z + C̃44E

i
j J

τ,x
s,x + C̃55E

i,y ?
j,y J τs + C̃45E

i?
j,y J

τ,x
s + C̃45E

i,y ?
j J τs,x

(C.22)
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Appendix C. Shape functions integration

For a cross-section made of homogeneous isotropic material, the components of the fun-
damental nucleus Kτ sij in Eq. 3.116 are here written in Eq. C.23 with indication of the
terms integrated via full or reduced integration (written in red):

K τ sij
xx = C22E

i
j J

τ,x
s,x + C44E

i
j J

τ,z
s,z + C66E

i,y ?
j,y J τs

K τ sij
xy = C23E

i
j,y J

τ,x
s + C66E

i,y ?
j J τs,x

K τ sij
xz = C12E

i
j J

τ,x
s,z + C44E

i
j J

τ,z
s,x

K τ sij
yx = C23E

i,y
j J τs,x + C66E

i?
j,y J

τ,x
s

K τ sij
yy = C33E

i,y
j,y J

τ
s + C55E

i?
j J τ,zs,z + C66E

i?
j J τ,xs,x

K τ sij
yz = C13E

i,y
j J τs,z + C55E

i?
j,y J

τ,z
s

K τ sij
zx = C12E

i
j J

τ,z
s,x + C44E

i
j J

τ,x
s,z

K τ sij
zy = C13E

i
j,y J

τ,z
s + C55E

i,y ?
j J τs,z

K τ sij
zz = C11E

i
j J

τ,z
s,z + C44E

i
j J

τ,x
s,x + C55E

i,y ?
j,y J τs

(C.23)

For a cross-section made of nonhomogeneous orthotropic material, the components of the
fundamental nucleus Kτ sij in Eq. 3.124 are here written in Eq. C.24 with indication of
the terms integrated via full or reduced integration (written in red):

K τ sij
xx = E i

j / Fτ,x C̃22 Fs,x . Ω + E i
j / Fτ,z C̃44 Fs,z . Ω + E i?

j,y / Fτ,x C̃26 Fs . Ω +

E i,y ?
j / Fτ C̃26 Fs,x . Ω + E i,y ?

j,y / Fτ C̃66 Fs . Ω

K τ sij
xy = E i

j,y / Fτ,x C̃23 Fs . Ω + E i?
j / Fτ,z C̃45 Fs,z . Ω + E i?

j / Fτ,x C̃26 Fs,x . Ω +

E i,y ?
j,y / Fτ C̃36 Fs . Ω + E i,y ?

j / Fτ C̃66 Fs,x . Ω

K τ sij
xz = E i

j / Fτ,x C̃12 Fs,z . Ω + E i
j / Fτ,z C̃44 Fs,x . Ω + E i?

j,y / Fτ,z C̃45 Fs . Ω +

E i,y ?
j / Fτ C̃16 Fs,z . Ω

K τ sij
yx = E i,y

j / Fτ C̃23 Fs,x . Ω + E i?
j / Fτ,z C̃45 Fs,z . Ω + E i?

j / Fτ,x C̃26 Fs,x . Ω +

E i,y ?
j,y / Fτ C̃36 Fs . Ω + E i?

j,y / Fτ,x C̃66 Fs . Ω

K τ sij
yy = E i,y

j,y / Fτ C̃33 Fs . Ω + E i?
j / Fτ,z C̃55 Fs,z . Ω + E i?

j,y / Fτ,x C̃36 Fs . Ω +

E i,y ?
j / Fτ C̃36 Fs,x . Ω + E i?

j / Fτ,x C̃66 Fs,x . Ω

K τ sij
yz = E i,y

j / Fτ C̃13 Fs,z . Ω + E i?
j,y / Fτ,z C̃55 Fs . Ω + E i?

j / Fτ,z C̃45 Fs,x . Ω +

E i?
j / Fτ,x C̃16 Fs,z . Ω

K τ sij
zx = E i

j / Fτ,z C̃12 Fs,x . Ω + E i
j / Fτ,x C̃44 Fs,z . Ω + E i,y ?

j / Fτ C̃45 Fs,z . Ω +

E i?
j,y / Fτ,z C̃16 Fs . Ω

K τ sij
zy = E i

j,y / Fτ,z C̃13 Fs . Ω + E i,y ?
j / Fτ C̃55 Fs,z . Ω + E i?

j / Fτ,x C̃45 Fs,z . Ω +

E i?
j / Fτ,z C̃16 Fs,x . Ω
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C.2. Gauss numerical one-dimensional integration

K τ sij
zz = E i

j / Fτ,z C̃11 Fs,z . Ω + E i
j / Fτ,x C̃44 Fs,x . Ω + E i,y ?

j,y / Fτ C̃55 Fs . Ω +

E i?
j,y / Fτ,x C̃45 Fs . Ω + E i,y ?

j / Fτ C̃45 Fs,x . Ω

(C.24)
For a cross-section made of nonhomogeneous isotropic material, the components of the
fundamental nucleus Kτ sij in Eq. 3.125 are here written in Eq. C.25 with indication of
the terms integrated via full or reduced integration (written in red):

K τ sij
xx = E i

j / Fτ,xC22 Fs,x . Ω + E i
j / Fτ,z C44 Fs,z . Ω + E i,y ?

j,y / Fτ C66 Fs . Ω

K τ sij
xy = E i

j,y / Fτ,xC23 Fs . Ω + E i,y ?
j / Fτ C66 Fs,x . Ω

K τ sij
xz = E i

j / Fτ,xC12 Fs,z . Ω + E i
j / Fτ,z C44 Fs,x . Ω

K τ sij
yx = E i,y

j / Fτ C23 Fs,x . Ω + E i?
j,y / Fτ,xC66 Fs . Ω

K τ sij
yy = E i,y

j,y / Fτ C33 Fs . Ω + E i?
j / Fτ,z C55 Fs,z . Ω + E i?

j / Fτ,xC66 Fs,x . Ω

K τ sij
yz = E i,y

j / Fτ C13 Fs,z . Ω + E i?
j,y / Fτ,z C55 Fs . Ω

K τ sij
zx = E i

j / Fτ,z C12 Fs,x . Ω + E i
j / Fτ,xC44 Fs,z . Ω

K τ sij
zy = E i

j,y / Fτ,z C13 Fs . Ω + E i,y ?
j / Fτ C55 Fs,z . Ω

K τ sij
zz = E i

j / Fτ,z C11 Fs,z . Ω + E i
j / Fτ,xC44 Fs,x . Ω + E i,y ?

j,y / Fτ C55 Fs . Ω

(C.25)
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Appendix D

Constraints

Boundary conditions of different kind can be handled by the present one-dimensional
CUF model. For the sake of brevity, the imposition of the classical constraints widely
used in beam modeling is presented here. These classical constraints represents boundary
conditions on a boundary cross-section lying on the beam with length L either at yc = 0 or
at yc = L. Nonetheless, general conditions on the displacement field over any arbitrary
cross-section of the structure can be imposed.

Moreover, it is important to remark that with the 1D CUF FE model, based on the
choice of Maclaurin polynomials as cross-section functions (see chapter 3), it is possible
to impose Dirichlet boundary conditions, i.e. prescribed displacements, not only on cross-
sections, but also on the lateral surface of the structural domain. For this purpose, the
procedure described in section 13.4.6 for the Galerkin approximation of fluid dynamic
Stokes equations through the 1D CUF FE model has to be followed. This capability is
not standard in classical beam modeling and supports the promising potentiality of the
proposed reduced order approach.

The displacement field described by 1D CUF model combined to the finite element
approximation is here retrieved (see Eq. 3.20):

u (x, y, z) = Fτ (x, z)Ni (y) q τi
τ = 1, . . . , Nu

i = 1, . . . , NN
(D.1)

where repeated subscripts τ and i indicate summation based on Einstein’s notation and the
dependence on time is neglected. For the sake of simplicity, a constraint on the displacement
of the cross-section at yc = 0 is considered here. The constrained cross-section at yc = 0
lies thus on the first node of the first finite element of the 1D mesh used to discretize the
structure. According to Eq. 3.3, the numerical value of the generic ith shape function Ni is:

Ni (y = yc = 0) =

{
1 i = 1

0 i /= 1
(D.2)

Using Eq. D.2, the displacement field over the constrained cross-section at yc = 0 becomes:

u (x, y = yc = 0, z) = Fτ (x, z) q τ1 τ = 1, . . . , Nu (D.3)

The most used classical constraints in beam modeling, such as clamped, hinge and roller
supports, prescribe different conditions on the displacement field of the cross-section to be
constrained in Eq. D.3. Their treatment via the 1D CUF approach acts directly on the
nodal displacement unknowns and is now briefly presented.
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Appendix D. Constraints

D.1 Clamped cross-section

y

z

y

x

Figure D.1: Clamped cross-section.

The clamped cross-section constraint depicted in Fig. D.1 prescribes a null displacement
of the cross-section at yc = 0 along all the three directions x, y, z, i.e. u (x, y = yc = 0, z) =
0. Hence, at yc = 0: 

ux = 0

uy = 0

uz = 0

(D.4)

According to the displacement field in Eq. D.3 of the cross-section at yc = 0, the clamped
cross-section constraint is obtained by the following imposition on the nodal displacement
unknowns: 

qux τ1 = 0 ∀ τ = 1, . . . , Nu

quy τ1 = 0 ∀ τ = 1, . . . , Nu

quz τ1 = 0 ∀ τ = 1, . . . , Nu

(D.5)

D.2 Hinge supported cross-section

y

z

y

x

Figure D.2: Hinge supported cross-section.

According to the displacement field in Eq. D.3 of the cross-section at yc = 0, a first
condition to obtain the hinge supported constraint depicted in Fig. D.2 is imposed on the
nodal displacement unknowns as follows:

qux τ1 = 0 ∀ τ = 1, . . . , Nu

quy 11 = 0

quz τ1 = 0 ∀ τ = 1, . . . , Nu

(D.6)

It is noteworthy that with the constraint in Eq. D.6 the cross-section at yc = 0 can
rotate remaining planar (since quy 21 and quy 31 are not constrained) but can also assume
a non-planar configuration due to the higher-order terms when the expansion order N is
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D.3. Roller supported cross-section

higher than 1. In fact, also the components quy τ1 for τ = 4, . . . , Nu are not constrained.
In order to simulate a planar deformation of the cross-section at yc = 0 in the case of an
expansion order N > 1 (higher-order theories), the following condition on the y-component
of the nodal displacement vectors has to be added to the conditions of Eq. D.6:

quy τ1 = 0 ∀ τ = 4, . . . , Nu (D.7)

Moreover, in order to simulate a pure rotation of the cross-section at yc = 0 about the
transversal x axis, the following condition on quy 21 has to be added to the conditions of
Eqs. D.6 and D.7:

quy 21 = 0 (D.8)

On the contrary, in order to simulate a pure rotation of the cross-section at yc = 0 about
the transversal z axis, the following condition on quy 31 has to be added to the conditions
of Eqs. D.6 and D.7:

quy 31 = 0 (D.9)

D.3 Roller supported cross-section

y

z

y

x

Figure D.3: Roller supported cross-section.

The treatment of this constrain is very similar to the treatment of the hinge supported
constraint in section D.2. According to the displacement field in Eq. D.3 of the cross-section
at yc = 0, a first condition to obtain the roller supported constraint depicted in Fig. D.3 is
imposed on the nodal displacement unknowns as follows:{

qux τ1 = 0 ∀ τ = 1, . . . , Nu

quz τ1 = 0 ∀ τ = 1, . . . , Nu
(D.10)

It is noteworthy that with the constraint in Eq. D.10 the cross-section at yc = 0 can
traslate along the y direction (since quy 11 is not constrained), can rotate remaining planar
(since quy 21 and quy 31 are not constrained), but can also assume a non-planar configuration
due to the higher-order terms when the expansion order N is higher than 1. In fact,
also the components quy τ1 for τ = 4, . . . , Nu are not constrained. In order to simulate
a planar deformation of the cross-section at yc = 0 in the case of an expansion order
N > 1 (higher-order theories), the following condition on the y-component of the nodal
displacement vectors has to be added to the conditions of Eq. D.10:

quy τ1 = 0 ∀ τ = 4, . . . , Nu (D.11)

Moreover, in order to simulate a pure rotation of the cross-section at yc = 0 about the
transversal x axis, the following condition on quy 21 has to be added to the conditions of
Eqs. D.10 and D.11:

quy 21 = 0 (D.12)
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Appendix D. Constraints

On the contrary, in order to simulate a pure rotation of the cross-section at yc = 0 about
the transversal z axis, the following condition on quy 31 has to be added to the conditions
of Eqs. D.10 and D.11:

quy 31 = 0 (D.13)
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[74] W. Flügge. Statik und Dynamik der Schalen. Springer-Verlag, Berlin, 1934.

[75] A. I. Lur’e. The general theory of thin elastic shells. Prikladnaya Matematika i
Mekhanika, 4(2):7–34, 1940.

[76] R. Byrne. Theory of small deformations of a thin elastic shell. University of California,
Publications in Mathematics, 2(1):103–152, 1944.

[77] A. E. H. Love. A treatise on the mathematical theory of elasticity. Dover Publications,
4th edition, 2011.

347



Bibliography

[78] J. L. Sanders. Nonlinear theories for thin shells. Quarterly of Applied Mathematics,
21(1):21–36, 1963.

[79] M. S. Qatu. Recent research advances in the dynamic behavior of shells: 1989–2000,
Part 1: Laminated composite shells. Applied Mechanics Reviews, 55(4):325–350,
2002.

[80] M. S. Qatu. Recent research advances in the dynamic behavior of shells: 1989–2000,
Part 2: Homogeneous shells. Applied Mechanics Reviews, 55(5):415–434, 2002.

[81] M. S. Qatu, R. W. Sullivan, and W. Wenchao. Recent research advances in the
dynamic behavior of composite shells: 2000–2009. Composite Structures, 93(1):14–31,
2010.

[82] G. Herrmann and I. Mirsky. Three-dimensional and shell-theory analysis of axially
symmetric motions of cylinders. Journal of Applied Mechanics, 23(4):563–568, 1956.

[83] I. Mirsky and G. Herrmann. Nonaxially symmetric motions of cylindrical shells.
Journal of the Acoustical Society of America, 29(10):1116–1123, 1957.

[84] D. C. Gazis. Three-dimensional investigation of the propagation of waves in hollow
circular cylinders. i. analytical foundation. Journal of the Acoustical Society of
America, 31(5):568–573, 1959.
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