
POLITECNICO DI MILANO
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Abstract

At present, numerical modeling techniques for coupled plate-cavity systems in the
low-frequency range are based on deterministic approaches. The plate structure is
often modeled by the finite element method and the Kirchhoff-Love or Mindlin 2-D
theories are almost always assumed to describe the through-the-thickness variation
of the displacement field. The simple assumptions of these plate models clearly
reduce the computational effort, but can also introduce significant errors in the
prediction of the dynamic response. When the analysis of a vibro-acoustic system
is extended in the mid-frequency range, the contribution of the higher order modes
becomes important. The characteristic wavelength of these structural modes become
comparable with the plate thickness and the kinematic hypothesis of Kirchhoff-
Love or Mindlin models are no more valid. Moreover, multilayered composite plate
solutions has incresed rapidly over the past three decades, then the modeling of
these plate structures is an important aspect. However, more accurate 2-D plate
theories must be accounted to correctly reproduce the complicated effects arising in
these complex structures.

The objective of the present work is the development of a refined Finite Element
model for composite piezoelectric plates coupled with enclosed acoustic cavities. In
the framework of the axiomatic 2-D theories, the piezo-elastic structure is described
according to the Carrera’s Unified Formulation. The powerful notation of this unified
approach permits to obtain a wide class of refined 2-D plate theories with a unique
formulation, providing an optimal tool to arbitrarily describe the complicated effects
due to complex plate layouts and higher frequency ranges. The resulting structural
finite element model is coupled with a standard pressure-based finite element for-
mulation of the acoustic field. Numerical results obtained with the modal coupling
reduction technique are presented for the case of plate backed by an air filled cavity.
Different plate layouts, like as laminated, sandwich and piezo-embedded plates, are
considered, demonstrating that a large variety of complex plate structures can be
accomplished within a unified finite element formulation.
Keywords: vibroacoustic, finite element, higher order theories, multilayer compos-
ite plates, modal reduction techniques

Sommario

Le tecniche numeriche utilizzate al giorno d’oggi per la modellazione di sistemi vi-
broacustici costituiti da pannelli strutturali in contatto con cavitá acustiche sono
principalmente di tipo deterministico. Tra queste, l’approssimazione numerica piú
utilizzata é certamente quella degli elementi finiti, la quale diventa peró inefficiente
dal punto di vista computazionale quando si cerca di estendere il campo di frequenze
di interesse. Infatti, in tal caso, dovrebbe essere utilizzato un numero eccessivo di
elementi per ottenere il grado di accuratezza desiderato, portando a dover risol-
vere un numero di equazioni troppo elevato anche per la risorse computazionali
di oggi. Di conseguenza, gran parte della ricerca vibroacustica é orientata a col-
mare il piú possibile questa problematica che affligge i metodi deterministici come
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gli elementi finiti, estendendo cośı il campo di applicazione di tali tecniche fino al
cośı detto mid-frequency range. In effetti, in questo campo di frequenze, gli approcci
energetici e statistici non sono ancora del tutto applicabili, dunque c’é grande neces-
sitá di migliorare l’efficienza di tecniche deterministiche come quella degli elementi
finiti. In questo quadro, bisogna tenere conto del fatto che estendendo il campo di
frequenze trattabili da un modello a elementi finiti, possono nascere nuove problem-
atiche legate al modello strutturale utilizzato per modellare i pannelli. Infatti, al
crescere della frequenza, la lunghezza d’onda caratteristica delle componenti modali
che partecipano alla risposta diminuisce, diventando confrontabile con le dimensioni
della sezione del pannello. In questa situazione, modelli bidimensionali di piastra
come quello di Kirchhoff-Love o Mindlin possono essere una semplificazione ecces-
siva, benché il loro utilizzo in diversi campi dell’ingegneria sia ormai affermato gra-
zie all’elevato rapporto tra grado di accuratezza e onere computazionale. In effetti,
quando devono essere risolti contributi ad alta frequanza, le ipotesi di queste teorie
possono iniziare a vacillare cosicché termini di ordine superiori devono essere con-
siderati nell’approssimazione della cinematica della piastra lungo lo spessore della
stessa. Inoltre l’avvento nelle industrie aeronautiche e automobilistiche di strutture
composite multistarto richiede un ulteriore sforzo di modellazione. Infatti, pannelli
con un elevato rapporto di ortotropia nel piano e in direzione trasversale, come
nel caso di piastre multistrato e compositi tipo sandwich, richiedono spesso modelli
strutturali piú raffinati per poter ottenere risultati numerici soddisfacenti.

L’obiettivo di questo lavoro é quello di sviluppare un modello raffinato a ele-
menti finiti per piastre composite con comportamento piezoelettrico in contatto con
cavitá acustiche. Il modello struttuarale considerato é quello della formulazione uni-
ficata proposta dal Prof. Carrera, la quale permette di ottenere una vasta gamma
di teorie di piastra bidimensionali partendo da un’unica formulazione. Questo stru-
mento puó dunque rilevarsi un importante vantaggio, potendo passare da modelli di
piastra semplici a modelli piú raffinati a seconda del caso in esame. In particolare,
in questo modo sará possibile trattare con un unica formulazione diverse tipologie
di piastre, a partire da semplici pannelli isotropi arrivando a complesse strutture
multistrato, e diversi range di frequenze. Il modello a elementi finiti della cavitá é
invece basato sulla formulazione in pressione del problema acustico. Il modello ac-
coppiato cośı ottenuto porta ad un sistema risolutivo non simmetrico. La soluzione
é ottenuta proiettando il problema di partenza su una base formata da modi strut-
turali e modi acustici disaccoppiati. Questa tecnica, detta modal coupling, permette
di ottenere buone prestazioni in termini di costo computazionale, in quanto il cal-
colo delle basi disaccoppiate richiede la soluzione di due problemi simmetrici e pochi
modi sono sufficienti per ottenere soluzioni accurate. Purtroppo questa si rivela una
tecnica efficiente solo per problemi debolmente accoppiati, i quali, tuttavia, sono i
casi considerati in questo lavoro. Alcuni esempi numerici verranno presentati per
mostrare come la formulazione unificata qui descritta permetta di modellare sistemi
pannello-cavitá anche quando il sistema struttarale é costituito da complesse piastre
composite e la forzante agisce a frequenze elevate.
Parole chiave: vibroacustica, elementi finiti, teorie di piastra di ordine elevato,
piastre multistrato, riduzione modale
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Background

Whenever an elastic solid is in contact with a fluid, the structural vibrations and
the acoustic pressure field in the fluid are influenced by the vibro-acoustic coupling
interaction: the force loading on the structure, caused by the acoustic pressure along
the fluid-structure interface, influences the structural vibrations, while at the same
time the acoustic pressure field in the fluid is affected by the structural vibrations.
In particular, in this work the interaction between plate-like structures and enclosed
fluid filled cavities is considered. This problem is very important from an engi-
neering and customer satisfaction point of view and represent a significant issue in
automobile and aerospace design, where passengers comfort is an important feature.
Over the last thirty years, a large amount of work has been published addressing
the vibratory characteristic of structure-cavity systems and, thanks to this reaserch,
the problems connected to the prediction of noise is well known. The typical vibro-
acoustic behavior can be classified into three problem classes, depending on the
excitation frequency. However, it is difficult to find a single prediction technique
which can be applied to all the three frequency ranges.

Low-frequency range is defined as the frequency region where all the system
components are small compared to the wavelength. Finite Element (FE) [5, 53]
and Boundary Element (BE) [32] methods or mixed approaches (FE/BE models
[46]) are tipically used for computing the system response over this range. Thanks
to the long wavelength shown by structural and acoustic subsystems, low order
polynomials can be selected as shape functions on the model elements providing
good accuracy and efficiency. However, as the excitation frequency increases, it can
be observed that the response becomes increasingly sensitive to minor structural
modifications, such as material properties or boundary conditions. Such a behavior
is associated with the shorter structural wavelengths, resulting in high complex mode
shapes. In order to adequately capture the dynamic behavior over this range, a large
number of elements and an accurate structural model must be adopted. However,
the use of such a deterministic approach often becomes questionable due to the large
computational time required to solve the discretized coupled equations.

At very high frequencies, energy based methods have been developed. One of the
most famous energy method is the Statistical Energy Analysis (SEA) [47], which
describes the response of the entire system in terms of space and time averaged
energy contained in each subsystem. This method requires at least two important
parameters, namely the Coupling Loss Factor (CLFs), which describes the energy
transfer between diffrent subsystems, and Damping Loss Factors (DLFs), which
describes the energy loss and their interaction between different subsystems. The
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computation of these parameters is an important feature for this class of methods
and experimental analysis or deterministic FE calculations must be accomplished
for their accurate determination.

In mid-frequency range, none of the above mentioned techniques has been found
to be adequate enough to predict the response accurately and efficiently. The use
of deterministic approaches like FE method are theoretically feasible, but the com-
putational time required to solve the coupled system of equations prohibits its use
in most pratical applications. Indeed, often re-running of the deterministic models
can be required, especially when optimization algorithms are used. To avoid the
lack of accuracy in this frequency range, a hybrid FE-SEA method [66] has been
developed. New energy based methods have been also taken in consideration for
the mid/high-frequency range. In these methods the FE approach is applied on the
governing differential equation in terms of averaged energy density, capturing the
global response of the vibro-acoustic system with less element compared to a con-
ventional FE analysis. Such methods are often called Energy Finite Element (EFE)
methods [9].

In general, summarizing the above mentioned prediction problems in vibro-
acoustic coupled analysis, the following qualitative definitions hold:

- In the low-frequency range the response spectra exhibit strong modal behavior,
and a deterministic approach can lead to satisfactory results.

- In the mid-frequency range the response spectra exhibits high irregularity and
single modal contributions are no more observable, due to the growing modal
density and damping effect. Boundary conditions, material properties and
geometry play an important role, indicating that an accurate description of
the system must be accomplished.

- In the high-frequency range the response spectra are smooth, indicating very
high modal density and damping effect. In this range, a detailed model de-
scription is no longer important and average techniques can give satisfactory
results.

It is remarked here that a specific characterization of these frequency ranges in
terms of Hz is difficult to be established because of the strong dependance from the
problem type.

Once the response is computed, noise reduction strategies such as active control
or passive damping can be employed to modify the system response for enhanc-
ing vibrations absorption characteristics over a prescribed range of frequencies. In
particular, piezoelectric inserts may be used as embedded sensors or actuators and
connected to a control device. Passive piezoelectric damping [70], contrary to active
control techniques, is achieved with a passive electrical network, that is directly con-
nected to the electrodes of the piezoelectric device. With this approach the sensing
element is not needed and the use of a passive network guarantees the stability of
the coupled system. The control effectiveness associated with passive strategies is
normally characterized by a narrowband effect, but a broadband control action can
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be obtained with periodic array of shunted piezoelectric patches [22]. For these rea-
sons the modeling of piezoelectric structure is an important feature and it has been
taken into account in this work.

Deterministic techniques in vibro-acoustic modeling

At this time, the main numerical prediction methods for vibro-acoustic analysis in
the low/mid-frequency range are based on deterministic approaches. In particu-
lar, FE, BE and mixed FE/BE methods are widely used. In these techniques, the
continuum domain is decomposed into small elements, where the field variables are
approximated by simple shape functions. As a result a substantial amount of el-
ements must be used in order to ensure a good accuracy since a fixed number of
elements per wavelenght are required to keep the prediction error within acceptable
limits. Then, for low order approximating functions, which are often an efficient
choice from a numerical point of view, the mesh density must be increased as the
frequency increases, in order to take into account the contribution of shorter wave-
lenghts. The approximated model can thus become quite large, and memory and
computing time limitations arise. This is a general characteristic of the most used
deterministic models, and these limitations are still valid for coupled systems as well
for simpler uncoupled problems. However, the looking for a compromise between
accuracy level and computational effort is more important for coupled vibro-acoustic
systems than for uncoupled structural or acoustic problems. This is mainly due to
the following considerations; first of all, the coupled system is larger than the un-
coupled ones, because the structural and fluid system must be solved simultaneusly;
secondly, the numerical solution procedure for coupled system can be less efficient
since the coupled models can lead to unsymmetric matrices; finally, the efficiency
of the modal reduction techniques is reduced for coupled system, since the modes
extraction procedure is very time consuming for large and unsymmetric problems.
In this framework, some solutions have been proposed in order to alleviate the com-
putational burden, as briefly explained in the following points (see [25] for details).

- A possible choice to reduce the model size is considering a boundary formula-
tion rather than modeling the entire continuum. However a brief comparison
between BE, FE and FE/BE models partially contradicts this statement. The
FE method is the most common prediction technique for solving engineering
problems. Considering a weighted residual formulation or a variational ap-
proach, the governing partial differential equations are transformed into a set
of algebraic equations introducing a suitable approximation of the unknowns.
Therefore the continuum domain is discretized into a number of small subdo-
mains (i.e. elements), and nodes are defined at some particular locations in
each element. A local polynomial approximation of the field variables is de-
fined on each element, and the use of Lagrangian functions permits to associate
the discrete unknowns with nodal values of the approximated solution. On the
other hand, BE methods are based on the direct or indirect boundary integral



Introduction 6

formulation of the considered problem. These formulations relate the distribu-
tions of the field variables in the continuum domain to the distribution of some
problem related boundary variables on the boundary surface of the domain.
Then, the boundary problem is transformed into a collocation or variational
formulation and the boundary surface and variables are approximated by a set
of shape functions, which are again locally defined. Mixed FE/BE methods
employ a FE approximation of the structural subsystem and a BE description
of the acoustic field. Even if mixed FE/BE methods can lead to relatively
smaller model size, the computational effort required for assembly the final
problem can be quite large, since the matrices in acoustic BE models are fully
populated, complex, frequency dependent and, for direct methods, unsym-
metric. Moreover, singular integrals must be evaluated. On the contrary, FE
matrices are always symmetric, sparse, real and frequency indipendent, even
if the final system can be quite larger. As a result, when comparing the total
computational loads of both methods, the BE method can, in general, hardly
compete with the FE method. Therfore the FE method is usually preferred
to study acoustic fields in arbitrarily complex enclosures.

- The structural FE formulation is naturally based on the displacement field as
independent variable. In fluid there exist multiple choices of independent vari-
able, e.g. fluid displacement or different scalar field such as pressure, velocity
potential or displacement potential and combination of thereof. The use of
fluid displacement field needs special attention to assure that the irrotational
displacement field is mainteined [50]. The main advantage of this formulation
is that the final system is symmetric. The disadvantage, compared to a scalar
field description, is the introduction of three nodal unknowns for a 3D acoustic
field, which can lead to a larger problem. On the other hand, scalar field can
be used in various ways with different matrix block structures, although they
all describe the same physical problem. They all automatically enforce the
irrotationality of fluid motions. However, the discretized differential coupled
equations yield unsymmetrical system matrices. The solution for this lack of
symmetry has been given a lot of attention. The standard procedure has been
to combine, in various way, the pressure and fluid displacement potential, thus
achieving symmetric systems [33, 53]; in this way, more efficent solvers can be
used for solving the coupled problem. On the other hand, the problem size
is almost doubled. It is also possible to condense statically the two-field fluid
formulations, thus producing a one-field symmetric formulation as reported in
[59] and [27]. The drawback is that the resulting system yield full matrices.
Another intresting symmetrization method is presented in [12]. However, at
present, the most used field variables are the structual displacement and fluid
pressure, which lead to the so called unsymmetric (u, p) formulation.

- When FE discretization of the coupled system is accomplished, very large
problems are typically obtained. In order to reduce the computational effort,
reduction techniques can be adopted. In the classical modal expansion tech-
nique, the dynamic field variables are expanded in terms of the natural modes
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of the system. In general a relatively small truncated set of modes yields al-
ready a level of accuracy close to that of the much larger original model. In
this framework, a rule of thumb states that a satisfactory prediction of the
correct dynamic behavior over a certain frequency range is obtained using the
modes with natural frequencies smaller than twice the upper frequency limit of
the considered range. However, the application of such a technique for coupled
vibro-acoustic system suffers from severe problems. Indeed, the extraction of
the modes from coupled FE model is much more time consuming than from
an uncoupled structural or acoustic system. Unsymmetric eigenvalue solvers,
needed for the solution of the eigenvalue problem for a (u, p) formulation, have
small computational efficiency with respect to the symmetric solvers. In order
to alleviate the high computational resources and memory requirements, the
uncoupled modal approach can be considered. In this approach a reduced basis
is obtained from the uncoupled structural and acoustic modes. The uncoupled
structural modes are the modes of the elastic structure without fluid pressure
loading at fluid-structure interface, whereas the uncoupled acoustic modes are
the cavity modes with rigid wall boundary conditions at the fluid-structure
interface. Since the uncoupled modes result from symmetric problems, the
computational effort for constructing the new truncated basis is much smaller
than for the set of coupled modes. The efficiency of the uncoupled modal ap-
proach can be, however, significantly smaller than the efficiency of the coupled
basis. This is mainly due to the inefficent way in which the displacement con-
tinuity at fluid-structure interface is approximated by the uncoupled modes.
Since the uncoupled acoustic modes are calculated with rigid walled bound-
ary conditions, the fluid displacement at fluid-structure interface is zero for
each mode. In this way, any combination of the uncoupled acoustic modes
violates the continuity conditions, thus to obtain an accurate local descrip-
tion of the fluid-structure interface a lot of high order acoustic modes must be
taken into account. Consequently, the benefits of a computationally efficient
truncated modal basis can be partially lost. However, it has been demon-
strated [49, 68, 73] that the uncoupled modal synthesis can be successfully
applied. This is particularly true in the case of weak coupled systems, where
the coupling between structural and acoustic field can be partially omitted,
obtaining a one-way interaction from the excited subsystem towards the other
one [26, 31]. More questionable is the application of the uncoupled modal
reduction technique for strong coupled systems, where the mutual interaction
is no longer negligible. Despite of these difficulties, the application of some
corrections to the uncoupled modal analysis can lead to optimal results even in
the case of strong coupled system [73]. In the last years, non-modal reduction
techinques have been also considered. In these methods, the reduced basis
is not obtained by solving an eigenvalue problem but it is extracted using a
deflation algorithm (e.g. Krylov or Lanczos iterations). The resulting orthog-
onal basis seems to efficiently reduce the size of both weak and strong coupled
systems providing accurate solutions [36, 58].



Introduction 8

- Finally, in order to reduce the high density mesh requirements of FE models,
the developement of novels deterministic techniques with enhanced conver-
gence rate and computational efficiency compared with the classical FE ap-
proach have been developed. Meshless techniques and spectral method may be
a possible solution for shifting the pratical frequency limitation towoards the
mid-frquency range. In particular the Wave Based (WB) [26] method seems to
give accurate and efficient results, mainly when an hybrid approach FE/WB
[34] is considered for the structural and acoustic field, respectively.

Structural model aspects

In the previous section the main challenges of the vibro-acoustic modeling have been
briefly discussed. However, none has been said about the adopted structural models.
At present, for what concern the coupled analysis of plate-cavity systems, which is
the main problem studied in this work, simple 2-D structural theories are often used
to model the kinematic behavior of the plate subsystem. Indeed Kirchhoff-Love
theory (Classical Plate Theory, CPT) and Mindlin’s First order Shear Deformation
Theory (FSDT) are the most used models in FE analysis of plates coupled with
acoustic domains. However, when the excitation frequency increases, the contri-
bution of the shorter wavelenghts can introduce some higher order mechanisms in
the plate behavior which cannot be captured by simple plate models. Moreover,
the application of composite materials in aerospace and automotive vehicles has
increased rapidly over the past three decades due to their high strength and low
weight. Plates made of composite materials offer many advantages with respect to
the metallic ones. However, a number of complicating effects arise in their modeling.
In particular, the interlaminar continuity conditions and the account for higher or-
der effects for the through-the-thickness description of displacement and stress fields
are important features for these structures. Therefore, it is important to consider
an accurate description of the structural behavior using an appropriate plate model,
especially when the response of vibro-acoustic systems over the mid-frequency range
is of interest. It is argued that this can be considered an important issue in the mid-
frequency range. From this point of view, the following points, which summarized
the crucial structural aspects, can be given in addition to the points outlined in the
previous section.

- The most important feature which characterizes composite plates is the C0
z

conditions [19]. Indeed, multilayerd structures can exhibit different mechan-
ical properties in the thickness direction. For this reason, layered structure
are also called transversely anisotropic. Transverse discontinous mechanical
properties cause the displacement field in the thickness direction to exhibit a
rapid change of the local slope at each layer interface. This zig-zag effect holds
for the transverse stress (i.e. stress components lie on the normal plane), which
must be continuous for equilibrium reasons. It is clear that the displacement
and stress fields are C0 in thickness direction. The fulfillment of these C0

z
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requirements is a crucial point in the modeling of composite structure, mainly
when highly transversely anisotropic plates, like sandwich structures, are con-
sidered. When a displacement based FE structural model is used, i.e. obtained
from the Principle of Virtual Displacement (PVD), only a Layer Wise (LW)
description of the field variables, which provides a local description for each
layer, can fulfill the displacement continuity condition. However, this condi-
tion cannot be satisfied by an Equivalent Single Layer (ESL) approach, since a
global description of the multilayered plate is considered. Moreover, only con-
sidering an a priori modeling of the normal stress components via Reissner’s
Mixed Variational Theorem (RMVT) [15, 18, 20, 64, 65] an exact fulfillment
of the of the continuity conditions of the stess field can be obtained.

- Another important feature involves the higher order effects arising in the dis-
placement field in the thickness direction [10]. The in-plane anisotropy of gen-
eral fiber reinforced materials and the short wavelengths considered in vibro-
acoustic applications can make the higher order terms necessary to describe
the vibration behavior, mainly for moderately thick and very thick plates.
Therefore the most used 2-D axiomatic models like as CPT and FSDT must
be refined to account for this important features, leading to the so called High
order Shear Deformation Theories (HSDT), like as the Reddy’s Third order
Shear Deformation Theory (TSDT). A comprehensive assessment of the most
common axiomatic theories for multilayered composite plates is available in
selected review articles [38, 52] and in the works of Reddy [61, 62, 63]. These
theories, from CPT to HSDT, can be summarized as ESL theories which de-
scribe the global response of the plate expanding the in-plane variables in the
thickness direction, enforcing the transverse normal stress zero condition as-
suming a constant value for the transversal displacement. However, as Koiter
demonstrates in his lecture [40], a refinement of Love’s first approximation
theory is indeed meaningless, in general, unless the effect of transverse shear
and normal stress are taken into account at the same time. Therefore, also the
transversal displacement has to be assumed axiomatically varying in the thick-
ness direction in order to consider a correct refinement of the plate kinematic
model [16, 17].

All the previously mentioned composite plates features can be easily fulfilled
employing the Carrera’s Unified Formulation (UF) [13, 14, 28]. This formulation
permits to consider a wide range of refined plate theories, accounting for ESL or
LW description of the plate variables. In this way a large variety of plate structures,
from simple thin isotropic plates to more complex thick sandwich composite plates,
and a large frequency range in their dynamic behavior, can be considered within a
unique formulation.
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Objective

The aim of this work is to study the effects of structural models in the vibro-
acoustic response of plate-cavity systems both for low and mid-frequency ranges.
The usage of refined models for the plate structure could give the correct vibro-
acoustic coupling even when shorter wavelengths become important in the dynamic
response. Moreover, the refined structural model permits to adequately modeling
different types of multilayered structures. The main issue of this study is that the
complexity of the structural models make worse the numerical difficulties, thus the
efficiency is, if possible, a more crucial aspect with respect to the approches based
on CPT and FSDT models. Clearly, all these aspects cannot be studied in only
one work, and the proposed objective can be hard-fought only with a long-term
activity. The present work is focused on the first development of refined structural
FE models for plates and on their coupling with simple pressure based acoustic FE
model. Mid-frequency analysis of complex geometries couldn’t have been obtained
due to the huge computational effort required and the limited computing capabilities.
However, accurate results can be achieved for simple geometries and for a relatively
large frequency range. Hence, the main aspects of this thesis can be summarized as
follows:

- Development of a deterministic FE method for piezoelectric structural acoustic
analysis of plate-cavity systems which is capable to predict the harmonic re-
sponse of the coupled system over a large frequency range, allowing to narrow
the currently existing mid-frequency twilight zone.

- Accounting for a refined structural model using Carrera’s UF: in this way a
large variety of plate structure can be considered with a unique formulation,
intoducing in an arbitrary manner the higher order effects induced by the high
frequency modes.

- At this stage, the computational burden is partially reduced using the un-
coupled modal reduction technique, even if this choice prevents the efficient
simulation of strong coupled systems. The linear FE approximation is consid-
ered, obtaining large sparse symmetric matrices for the structural and fluid
subsystems. Therefore the eigenvalue problem can be efficiently solved for
each subsystem with iterative solvers.

Thesis outline

In the first chapter the fluid-structure interaction problem is introduced; the gov-
erning differential equations are presented and the related variational principle is
obtained as a starting point for the numerical approximation. In chapter 2 the
UF for piezoelectric composite plates is presented and then the FE approximation
for the structural and acoustic problem is introduced. In chapter 3 the uncoupled
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modal reduction technique adopted in this work is presented. In chapter 4 and 5 the
structural FE model and the coupled FE model are validated through convergence
analysis and comparisons. In chapter 6 the potentiality of the present UF are ex-
ploited in three numerical test cases. Finally, conclusions and possible future works
are given.





CHAPTER 1

Piezoelectric Structural Acoustic Problem

This chapter presents the mathematical model which describes the dynamic behav-
ior of a piezoelectric structure in contact with an acoustic domain. The aim is to
introduce the reader in the framework of the fluid-structure interaction problem from
a general prospective. A brief introduction to the governing differential equations
is presented. Then the test-function method is applied in order to obtain the vari-
ational formulation of the coupled system. Finally, an approximation of the chosen
unknown variables, that is structural displacement si, electric potential ψ and fluid
pressure p, is introduced and the final discrete form of the coupled system is derived.
In the following the variables and physical properties of the system are assumed to
be space and time dependent, i.e. for instance si = si (xj , t) and ρs = ρs (xi, t). For
a detailed derivation of the present classical governing equations, we refer the reader
to [59] and [37] for elasticity and piezoelectric aspects, and to [57] or [45] for acoustic
theory.

ns

nf

Ωs

Γ
f
N

Rigid structure

Elastic Piezoelectric
Structure

Γfs

nsΩf

ΓsN

ΓsD

Figure 1.1: Coupled system domain.

1.1 Governing equations

In this work a linear behavior of the fluid-structure system is assumed. The structure
is described by the differential equations of motion for a continuum body assuming
small deformation and the electrostatic equilibrium equation within the hypotesis
of linear piezoelasticity. The structure is in contact with a homegeneous, inviscid
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and irrotational compressible fluid. Both the fluid and the structure are modeled
neglecting the gravity effects (i.e. body force).

Let us first consider the piezoelectric structure occupying the domain Ωs (see
figure 1.1). The structure is subjected to Dirichlet boundary conditions on ΓsD and
to Neumann boundary conditions on ΓsN , which prescribe the displacement s̄i and the
surface force fi respectively. The electric counterpart of the Dirichlet and Neumann
boundaries of the structure are denoted by ΓeD and ΓeN , where the electric potential
ψ̄ and the electric charge Q are imposed, respectively. The interior fluid domain is
denoted by Ωf and Γfs is the fluid-structure interface surface. The fluid boundary

ΓfN describes the rigid walled bounds of the fluid filled cavity, where the zero normal
pressure gradient boundary condition is imposed. The linearized deformation tensor
is denoted by εij and the corresponding stress tensor by σij . Moreover, Ei is the
electric field vector and Di denotes the electric displacement vector components.
The mass density of the structure is ρs, whereas cf and ρf are the constant speed of
sound and reference mass density of the fluid. Finally nsi is the unit normal external
to Ωs and n

f
i is the unit normal external to Ωf .

With this assumption, the equations that describes the elastic behavior of the
structure subsystem are

Elasticity :







































σij,j = ρss̈i in Ωs

σijn
s
j = fi in ΓsN

si = s̄i in ΓsD

σijn
s
j = p nfi in Γfs ,

(1.1)

where the last boundary condition indicates the coupling with the fluid field. More-
over, the zero Neumann boundary condition is implied on the structure free-surface.
Similary, the electrostatic behavior of the structure is described by the following
equations

Electrostatic :























Di,i = q in Ωs

Din
s
i = −Q in ΓeD

ψ = ψ̄ in ΓeN ,

(1.2)

where there is no direct coupling with the fluid field. Again the zero Neumann
boundary condition for the electric field is implied. Finally the acoustic field inside
the cavity in absence of sound sources is described by the wave equation and the
following boundary conditions
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Acoustic :



























p,ii =
1

c2f
p̈ in Ωf

p,in
f
i = −ρf s̈infi in Γfs

p,in
f
i = 0 in ΓfD ,

(1.3)

where the normal pressure gradient is related to the motion of the structure on
the interface surface, describing the fluid-structure coupling term in the acoustic
problem. The wave equation is obtained from the linearized version of the Euler
equations system where a homogenous reference condition is considered. The for-
mulation above with acoustic pressure p as indipendent variable is a choice of this
work, as mentioned in the introduction chapter. The same equation (with change of
dependent variable), however, holds for ρ and vi,i; also the velocity field vi satisfies
the irrotationality conditions, so the same wave equations and the relative boundary
conditions could be expressed in term of a scalar potential φ.

In the linear piezoelectric theory, the stress tensor σij and the electric displace-
ment Di are related to the linearized strain tensor εkl and the electric field Ek
through the converse and direct linear piezoelectric constitutive relations:

σij = cijklεkl − ekijEk

Di = eiklεkl + ǫikEk , (1.4)

where cijkl, ekij and ǫik denotes elastic, piezoelectric and dielectric material con-
stants. Moreover, we have the following gradient relations between the linearized
strain tensor εkl and the displacement sk, and between the electric field Ei and the
electric potential ψ:

εik =
1

2
(sk,l + sl,k)

Ek = −ψ,k . (1.5)

Now we can note that also the tensors σij and Di are a function of the derivatives
of the field variables si and ψ.

1.2 Variational formulation

The strong form of the equations described in section 1.1 are expressed in terms of
the chosen unknown fields of the fluid-structure system, i.e. the structural displace-
ment si, the electric potential ψ and the fluid pressure p. In order to obtain the



Chapter 1 16

variational formulation associated with the local equations 1.1, 1.2 and 1.3, the test
function method is applied. From a mathematical point of view we proceed with a
generic weak formulation for each subsystem, introducing arbitrary weighting func-
tions which is exactly the principal field variables that describe the evolution of
the system. In this way the weak formulation obtained for the piezoelectric struc-
ture is equivalent to the Principle of Virtual Displacement (PVD) applied on the
same system. For this reason, in this work we refer to the weak formulation of
the piezoelectric structure such as the PVD variational formulation of the problem.
This formulation differs from the Reissner’s Mixed Variational Theorem (RMVT),
where even the constitutive relations are modeled a priori introducing the stress
and electric displacement components as Lagrangian multipliers, also known as sec-
ondary variables of the problem. However, in the following only the PVD statement
is considered; the reader can refer to [53] or [5] for the details about variational
formulations and weak forms.

In the following we proceed in three steps, considering firstly the system 1.1
releted to the structure, then the system 1.2 and 1.3 releted to the electric charge
problem for a dielectric medium and to the acoustic cavity respectively. First, inte-
grating over Ωs and multiplying the dynamic equilibrium of system 1.1 by arbitrary
time-indipendent test-function (or virtual displacement) δsi, then integrating by
parts and applying Green’s formula, we obtain

∫

Ωs

δεijσij dV +

∫

Ωs

δsiρss̈i dV =

∫

∂Ωs

δsiσijn
s
j ds ,

where δεij = 1
2
(δsk,l + δsl,k). Now distributing the right hand side integrals over

the boundaries ΓsN and Γfs and using the boundary conditions of the system 1.1 we
obtain

∫

Ωs

δεijσij dV +

∫

Ωs

δsiρss̈i dV =

∫

Γs
N

δsifi ds+

∫

Γfs

δsip ni ds , (1.6)

where ni = nfi . This is the PVD statement for the mechanical variables including
the acoustic coupling term; this formulation exactly satisfy, in a weak sense, the
natural boundary conditions (i.e. Neumann type) whereas the virtual displacement
δsi must be chosen according with the essential conditions (i.e. Dirichlet type).

Secondly, multiplying the electrostatic equilibrium of system 1.2 by δψ, integrat-
ing over the piezoelectric continuum Ωs, integrating by parts and applyng Green’s
formula as above, assuming q = 0 we have

∫

Ωs

δEiDi dV = −
∫

∂Ωs

δψDin
s
i ds .

Then using the Neumann boundary conditions on ΓeN , we obtain

∫

Ωs

δEiDi dV =

∫

Γe
N

δψ Q ds . (1.7)
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Again, like the elastic counterpart, this variational form satisfy the natural boundary
conditions whereas the electric virtual displacement δψ must satisfy the essential
conditions.

Finally, multiplying the wave equation of system 1.3 by δp, integrating by parts,
applying Green’s formula and using the Neumann boundary condition on the fluid-
structure interface surface, we obtain

∫

Ωf

δp,ip,i dV +

∫

Ωf

1

c2f
δp p̈dV = −

∫

Γfs

δp ρf s̈ini ds, (1.8)

that satisfy the zero normal pressure gradient condition along the assumed rigid
wall.

Equations 1.6, 1.7 and 1.8 are the weak forms of the considered subsystems.
The fluid-structure coupling appear evident in the terms in the right hand side of
the structural and fluid equations 1.6 and 1.8. In order to obtain the final form of
the variational formulation we have to take into account the constituve piezoelectric
relations. Therefore, using relations 1.4 in equations 1.6 and 1.7 we finally obtain











































∫

Ωs

δεijcijklεkl dV −
∫

Ωs

δεijekijEk dV = −
∫

Ωs

δsi ρss̈i dV +

∫

Γs
N

δsi fi ds +

∫

Γfs

δsi p ni ds

∫

Ωs

δEieiklεkl dV +

∫

Ωs

δEiǫikEk dV =

∫

Γe
N

δψ Q ds

∫

Ωf

δp,i p,i dV +

∫

Ωf

1

c2f
δp p̈dV = −

∫

Γfs

δp ρf s̈ini ds.

(1.9)

The system of integral equations 1.9 in the field variables si, ψ and p is the starting
point for the numerical approximation.

1.3 Numerical approximation

In order to obtain a numerical solution of the system 1.9, an approximation of the
primary variable has to be considered. Therefore, let us introduce U, Ψ and P as
the vectorial unknowns of the discretized problem. Thus we have

si = Ns
iU ,

ψ = NψΨ ,

p = NpP , (1.10)

where Ns
i , N

ψ and Np are generic row matrices functions of the space coordinates
xi, which interpolates the continuous unknown variables. If a FE discretization is
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performed, U, Ψ and P are the nodal displacements, electric potential and pres-
sure respectively, whereas if a Ritz method is used, the same vectorial quantities
are the amplitude associated with each approximation function. In both cases the
discretized unknowns are only functions of time t. Using the relations 1.10 in the
system of equations 1.9 leads to the following submatrices:

∫

Ωs

δεijcijklεkl dV = δUTKssU

−
∫

Ωs

δεijekijEk dV = δUTKsψΨ

∫

Ωs

δsiρss̈i dV = δUTMssÜ

∫

Γs
N

δsifi ds = δUTFsU

∫

Γfs

δsip ni ds = δUTSspP

∫

Ωs

δEiekijεkl dV = δΨTKT
sψU

∫

Ωs

δEiǫikEk dV = δΨTKψψΨ

∫

Γe
N

δψ Q ds = δΨTFψΨ

∫

Ωf

δp,ip,i dV = δPTHP

1

c2f

∫

Ωf

δp p̈dV = δPTQP̈

ρf

∫

Γfs

δp s̈ini ds = δUTρfS
T
spP̈

where Mss and Kss are the mass and stiffness matrices of the structure; Kψψ is the
electric stiffness matrix; Ksψ is the electromechanical coupling matrix; Q and H

are the mass and stiffness matrices of the fluid; Ssp is the fluid structure coupling
matrix; Fs and Fψ are the applied mechanical force and charge vectors respectively.
Therefore the system 1.9 can be rewritten, in discretized form, as follows:
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



Mss 0 0
0 0 0

−ρfST
sp 0 Q











Ü

Ψ̈

P̈







+





Kss Ksψ Ssp
KT
sψ Kψψ 0
0 0 H











U

Ψ

P







=







Fs

Fψ

0







, (1.11)

with appropriate initial conditions and essential boundary conditions. Using the
second row of equation 1.11, the unknowns associated with the electric potential can
be expressed in terms of structural displacements. Through this static condensation
the unknowns of the problem are reduced to U and P, obtaining an added-stiffness
matrix and an added-load vector due to the electromechanical coupling. This is a
classical procedure, that can reduce the problem size but, at the same time, destroyes
the sparsity pattern of the system matrices. Obviously this fill-in of the matrices
could be a serious drawback when a FE approximation is used; indeed in such case
the sparsity property of the large FE matrices is an advantage from a numerical point
of view. On the other hand, if a different approximation procedure is accounted (like
as Ritz method), the static condensation can be done more easily. Then, without
loss of generality, we can rearrange the equation 1.11 to obtain

[

M 0
−ρfST Q

]

{

¨̃
U

P̈

}

+

[

K S

0 H

]{

Ũ

P

}

=

{

F

0

}

, (1.12)

where, if a static condensation of the electric variables has been accounted, Ũ ≡ U

and the matrix K and vector F are the structural stiffness matrix and loads with
added contributes due to the electromechanical coupling, instead if no condensation

has been applied Ũ =
{

UT ΨT
}T

and matrix equation 1.12 is simply a par-
titioning of the starting equation 1.11. The equation 1.12 is the classical discrete
form of the fluid structure interaction problem, also known in literature as (u, p)
formulation.





CHAPTER 2

Unified Finite Element Model

In this chapter the formulation of the piezoelectric structural acoustic problem in
terms of structural displacements si, electric potential ψ and acoustic pressure p pre-
sented in the previous chapter will be specified for generic laminated plates made
of orthotropic materials in contact with an acoustic cavity. In the first section, the
material properties of a generic piezoelectric orthotropic material are presented and
the constitutive relations 1.4 are expressed using the classical engineering notation.
In the second section a compact form of the constitutive equations is derived, follow-
ing the procedure adopted in [30] for a generic multifield problem. The kinematic
assumptions introduced by the UF for the structural subsystem are described in the
third section. Here it is shown how the powerful notation of the UF may lead to a
widely range of 2-D plate theories. Then, in the fourth section, the FE discretization
of the structural subsystem and of the fluid coupling terms is deduced in terms of
fundamental nuclei, which are the lower level of the FE assembly procedure. Thus
is also presented the much simpler FE discretization of the acoustic cavity. In the
last section, the final form of the coupled FE equation is presented.
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Figure 2.1: Material and plate reference systems.
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2.1 Constitutive equations

Equations 1.4 are the most general form of the linear constitutive relations for a
piezoelectric continuum. As stated in the previous chapter, cijkl, ekij and ǫik denotes
elastic, piezoelectric and dielectric tensors. In general, they have 81, 27 and 9
material constants respectively. However, the number of indipendent components of
the above tensors can be reduced thanks to the symmetry of the σij and εkl tensors.
Indeed, the former is symmetric from the momentum equation, whereas the latter is
symmetric by definition. Moreover, energetic considerations extend the symmetry
of the tensor cijkl from the couples ij and kl to all the four indices. This reduces
the number of indipendent material properties to 21 for cijkl. The piezoelectric ekij
indipendent constants becomes 18 thanks to symmmetry of indexes ij, whereas no
semplification can be done for the dielectric tensor ǫik.

With these assumptions, the constitutive equations can assume a more suit-
able form introducing the vector quantities σ and ε, which contain the indipendent
parameters of the related tensors. Arranging the components of the electric dis-
placement and electric field into the vector D and E respectively, the constitutive
equations 1.4 can be rewritten as

σ = C̃ε− ẽE

D = ẽTε+ ǫ̃E , (2.1)

where the symmetric matrix C̃ grouped the 21 indipendent elastic material proper-
ties, the matrix ẽ grouped the 18 piezoelectric coefficients and finally ǫ̃ contains the
9 dielectric constants. Assumed a generic material system of reference (see figure
2.1), the terms in the introduced vectors are:

σ =































σ11
σ22
σ33
σ23
σ13
σ12































, ε =































ε11
ε22
ε33
ε23
ε13
ε12































, D =







D1

D2

D3







, E =







E1

E2

E3







.

Further reduction in the number of indipendent material parameters comes from the
material symmetry. Indeed, elastic or piezoelectric material parameters can exhibit
symmetry properties about specific directions (i.e. material planes of symmetry),
and the structure of the matrices C, ǫ and e is modified consequently. In particular,
in this work, we consider composite plates made of generic orthotropic layers. For
this type of materials, three mutually orthogonal planes of symmetry exist, then
the number of indipendent elastic, piezoelectric and dielectric coefficients is reduced
from 21 to 9, from 18 to 5 and from 9 to 3, respectively. In this way the matrices
assume the following pattern in the local material system of reference:
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C̃ =



















C̃11 C̃12 C̃13 0 0 0

C̃12 C̃22 C̃23 0 0 0

C̃13 C̃23 C̃33 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃55 0

0 0 0 0 0 C̃66



















,

ǫ̃ =





ǫ̃22 0 0
0 ǫ̃22 0
0 0 ǫ̃33



 ,

ẽ =

















0 0 ẽ13
0 0 ẽ23
0 0 ẽ33
0 ẽ42 0
ẽ51 0 0
0 0 0

















,

where the piezoelectric layer is assumed to be poled in the thickness direction. The
non zero parameters Cij can be expressed through 9 engineering constants, which
are the Young’s moduli E1, E2 and E3, the shear moduli G12, G13 and G23 and the
Poisson’s moduli ν12, ν13 and ν23. When there exist no preferred directions in the
material properties, infinite number of planes of material symmetry are considered,
and the material is assumed to be isotropic; in such case, the number of indipendent
parameters reduces from 9 to 2. Indeed in this case we have E = E1 = E2 = E3,
G = G12 = G13 = G23 and ν = ν12 = ν13 = ν23 with

G =
E

2 (1 + ν)
.

The constitutive equations 2.1 with the material matrices described above are re-
ferred to the principal material directions, indicated with pedices 1, 2 and 3. There-
fore, it is necessary to describe the same relations in the plate reference system
(x, y, z), due to the fact that different layers may exhibit different material sym-
metry directions. As shown in figure 2.1, indicating with α the angle between the
in plane material coordinates (1, 2) and the plate coordinates (x, y), we can define
the rotation matrices R6×6(α) and R3×3(α), which relate the vectorial quantities
σ, ε, D and E in the material reference system with those in the plate reference
system. Therefore, indicating with C̃, ǫ̃ and ẽ the material matrices in the local
layer system of reference with the orthotropic pattern described above, we can ob-
tain the quantities C, ǫ and e in the plate reference system performing the following
transformations:
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C = RT
6×6 C̃R6×6 ,

ǫ = RT
3×3 ǫ̃R3×3 ,

e = RT
6×6 ẽR3×3 , (2.2)

where

R3×3 =





cosα sinα 0
− sinα cosα 0

0 0 1



 ,

R6×6 =

















cos2 α sin2 α 0 0 0 − sin 2α
sin2 α cos2 α 0 0 0 sin 2α
0 0 1 0 0 0
0 0 0 cosα − sinα 0
0 0 0 sinα cosα 0

− sinα cosα sinα cosα 0 0 0 cos2 α− sin2 α

















.

2.2 Condensed notation for electromechanical problems

In this section it is shown how the geometrical and the constitutive relations can be
rearranged in a more suitable form. In this way, a compact form for the electrome-
chanical PVD is introduced. First of all, let us introduce the vector Uk containing
the primary unknowns of the piezo-composite plate:

U
k =

{

sk
T

ψk
}T

=
{

uk vk wk ψk
}T

, (2.3)

where the superscript k indicates that the variables refer to the kth layer of the
plate, s is the vector containing the structural displacements si in the plate reference
system and T indicates the transposition operator. Rearranging the components of
ε and E, we have

εk =































ε11
ε22
ε12
ε33
ε13
ε23































k

=

{

εp

εn

}k

, Ek =







E11

E22

E33







k

=

{

Ep

En

}k

,

where subscript p denotes in-plane components, whereas subscript n refers to out-of-
plane (normal) components. In the same way, the stress vector σ and the electrical
displacement D can be rearranged to yield
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σk =































σ11
σ22
σ12
σ33
σ13
σ23































k

=

{

σp

σn

}k

, Dk =







D11

D22

D33







k

=

{

Dp

Dn

}k

.

Then, the components of the symmetric deformation tensor collected in ε and the
electric field vector E can be condensed in the same vectorial quantity E , which
represents a generalized deformation vector. We can also rearrange the structural
stress components σ and the electric displacement D in a generalized stress vector
S in the same way:

E
k =















εp
Ep

εn
En















k

=

{

Ep

En

}k

, Sk =















σp
Dp

σn
Dn















k

=

{

Sp

Sn

}k

. (2.4)

According to this organization of the intensive and extensive variables in the vectors
E and S, respectively, the geometrical relations 1.5 can be compactly rewritten for
each layer as

E
k = DU

k , (2.5)

with

D =





























∂x 0 0 0
0 ∂y 0 0
∂y ∂x 0 0
0 0 0 −∂x
0 0 0 −∂y
0 0 ∂z 0
∂z 0 ∂x 0
0 ∂z ∂y 0
0 0 0 −∂z





























=

[

Dp

Dnz
+Dnp

]

, (2.6)

where the differential operator that acts on the out-of-plane components is splitted
in two terms, one acting only with in-plane derivatives (i.e. ∂x and ∂y) and the other
with out-of-plane derivatives (i.e. ∂z), that is
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Dp =













∂x 0 0 0
0 ∂y 0 0
∂y ∂x 0 0
0 0 0 −∂x
0 0 0 −∂y













,

Dnz
=









0 0 ∂z 0
∂z 0 0 0
0 ∂z 0 0
0 0 0 −∂z









,

Dnp
=









0 0 0 0
0 0 ∂x 0
0 0 ∂y 0
0 0 0 0









.

Similarly, the constitutive relation can be rewritten in the plate reference system in
the following compact form:

S
k = C

k
E
k , (2.7)

with

C
k =





























C11 C12 C16 0 0 C13 0 0 e13
C21 C22 C26 0 0 C23 0 0 e23
C16 C26 C66 0 0 C36 0 0 e63
0 0 0 ǫ11 ǫ12 0 e51 e41 0
0 0 0 ǫ12 ǫ22 0 e52 e42 0
C13 C23 C36 0 0 C33 0 0 e33
0 0 0 e15 e52 0 C55 C45 0
0 0 0 e41 e24 0 C45 C44 0
e13 e23 e63 0 0 e33 0 0 ǫ33





























k

=





C
k
pp C

k
pn

C
kT
pn C

k
nn



 , (2.8)

where C
k
pp (Cknn) contains the material constants that relates the in(out-of)-plane

intensive variables with the in(out-of)-plane extensive variables, whereas Ckpn relates
the in-plane with the out-of-plane ones. The matrix in equation 2.8 is obtained from
a partion of the matricesC, ǫ and e written in the plate reference system through the
coordinate transformations 2.2. Therefore equations 2.5 and 2.7 permit to express
the extensive and intensive variables as functions of Uk in the plate reference system
for each layer.

This formalism for the treatment of the structural variables permits to rewrite the
variational formulation 1.9 in a more compact form that is useful for the introduction
of the UF and for the next numerical approximation by FE method. In particular,
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starting from equations 1.6 1.7 and 1.8 and introducing the formalism of the vectorial
notation described in this section, we have























∫

Ωk
s

δEk
T

S
k dV =

∫

Ωk
s

δUkTf km dV +

∫

Γk

δUkTf kem ds+

∫

Γfs

δU k̄Tfsf ds

∫

Ωf

δp,i p,i dV = −
∫

Ωf

1

c2f
δp p̈dV −

∫

Γfs

δp ffs ds

(2.9)

where

f km =

{

−ρss̈
0

}k

,

f kem =

{

f

−Q

}k

,

fsf = p

{

n

0

}

,

ffs = ρf
{

nT 0
}

Ü
k̄

are, respectively, the mechanical inertial load and the electromechanical external
load on each layer, and the fluid-structure mutual loads. The summation over
superscripts k is implied in system 2.9. The structural loaded area at kth layer is
detoted by Γk. It can be shown that the first term of the first equation of system
2.9 is the internal work associated with the generic orthotropic piezoelectric layer
k, while the right hand side terms are the external work done for the structural
variable U at layer k, including the inertia of the structure and the fluid loading
acting only on the displacement field s. In the second equation, the left hand side
term is the internal work of the acoustic cavity, while the acoustic inertial loading
and the fluid-structure coupling term are on the right side. The whole system can
be seen as the condition for the minimization of the total energy of the piezoelectric
structural acoustic system. Finally it is noted that the fluid-structure coupling term
refers only to the structural variables at layer k̄ and then no summation has to be
applied for this term; indeed, only the lamina in contact with the enclosed fluid
modifies the boundary condition of the acoustic field and, analogously, the acoustic
pressure works only for the displacement of the same lamina.
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y

z

x

Figure 2.2: Plate reference system.

2.3 Through-the-thickness assumption for structural

primary variables

In this section the UF is introduced as a powerful framework onto which a large
class of 2-D axiomatic theories can be derived. The application of a 2-D model
permits to express the unknown variables as a set of thickness function depending
only on the thickness coordinate z, and the correspondent coefficients depending on
the in-plane plate coordinates x and y. Then, referring to the plate reference system
of figure 2.2, the generic variable g(x, y, z, t) and its variation δg(x, y, z) are written
according to the following expansion:

g(x, y, z, t) = Fτ (z)gτ (x, y, t), δg(x, y, z) = Fτ (z)δgτ (x, y) , (2.10)

with

τ = 0, · · · , N .

The variable g can be a vectorial quantity, for instance displacement s, or a scalar, as
the electric potential ψ. The summing convention with repeated index τ is assumed.
The order of expansion goes from 1 to higher order values N and the models can
be ESL or LW. In the former the expansion variables are assumed for the whole
plate, and a Taylor expansion centered on the mid-plane is employed as thickness
funtions Fτ (z), with z that varies from − t

2
and t

2
, where t is the plate thickness,

according to figure 2.3. In the latter the variable is considered indipendent in each
layer and Lagrange polynomials are assumed as thickness funtions F (zk), where zk
is the local thickness coordinate for the kth layer and goes from −1 (i.e. the bottom
of layer k) to 1 (i.e. the top of layer k), as it is shown in figure 2.4. In this work
the fourth order is assumed as the maximum through-the-thickness expansion for
LW models; indeed, due to its local description, no more orders are required in
order to obtain a very accurate solution. Moreover, the huge computational effort
limits the expansion order N for LW, due to the fact that, considering each layer
as an indipendent subsystem, the number of unknowns depends on the number of
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layers. For what concern the ESL models, the order of expansion N is limited by
the numerical ill-conditioning when the FE approximation is considered.

2.3.1 Mechanical variables, ESL theories

z

z = t
2

z = − t
2

(x, y)

layer k − 1

layer k

layer k + 1

plate top

plate bottom

plane

Figure 2.3: ESL model.

In this case the thickness expansion for s is obtained via Taylor polynomials, then
for each scalar displacement component we have

u(x, y, z, t) = F0u0 + F1u1 + · · ·+ FNuN = Fτ (z)uτ (x, y, t) ,

v(x, y, z, t) = F0v0 + F1v1 + · · ·+ FNvN = Fτ (z)vτ (x, y, t) ,

w(x, y, z, t) = F0w0 + F1w1 + · · ·+ FNwN = Fτ (z)wτ (x, y, t) ,

with

Fτ (z) = zτ .

Therefore the indipendent variables become the mid-plane displacements u0, v0 and
w0 and their high order derivatives. In vectorial notation we can rewrite as

s(x, y, z, t) = F0s0 + F1s1 + · · ·+ FNsN = Fτ (z)sτ (x, y, t) . (2.11)

The 2-D models obtained from 2.11 are denoted by EDN , where E indicates that
an ESL approach has been employed, D indicates that the adopted variational for-
mulation in based on displacement as primary variables (i.e. PVD) and finally N
denotes the order of expansion. It is remarked here that these models do not re-
spect the C0

z conditions at the layers interface, neither in term of discontinuity of
the displacement slope nor in term of stress continuity.

The ED1 theory needs further comments, because it introduces a contradictory
behavior for the plate structure respect to the expected 3-D solution. From equation
2.11 specified for the scalar quantities, the order of the deformations ε33 and ε11 can
be easily obtained
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ε11 ∝ u,xN ,

ε33 ∝ w,z(N − 1) , (2.12)

where N is again the order of the adopted theory. From the 3-D constitutive relation
we have

ε33 ∝ νε11 , (2.13)

indicating a physical relation between the out-of-plane deformation and the in-plane
one (in this example the x-direction is considered). Now it is clear that when a first
order expansion is adopted (ED1), equations 2.12 suggest that ε33 is null, whereas
equation 2.13 says that it has at least a linear through-the-thickness variation like
as ε11. That contradiction originates the thickness locking effect or Poisson locking.
This locking behavior holds for thin and thick plates, and can be avoided using
EDN models with N ≥ 2 or modifying the elastic coefficients of the 3-D constitutive
relation introducing the σ33 = 0 conditions (see [21] for details). Such a modification
permits to obtain the 3-D solutions in thin plate analysis. Clearly, the thickness
locking does not affect classical plate theories, like as CPT, FSDT and TSDT;
indeed in these cases the plane stress assumption and the assumed constant value
for w in the thickness direction introduce no contradictory effects.

2.3.2 Mechanical variables, LW theories

layer k − 1

(x, y)

layer k

layer top

layer bottom

zk layer k + 1

zk = 1

zk = −1

plane

Figure 2.4: LW model.

When each layer of a multilayered structure is described as an indipendent plate, LW
approach is accounted for. The displacement sk is described for each layer, satisfying
naturally the zig-zag form of displacement in transverse-anisotropy structures. The
Lagrange polynomials are used for the thickness expansion obtaining

sk(x, y, zk, t) = Fts
k
t + Frs

k
r + Fbs

k
b = Fτ (zk)s

k
τ (x, y, t) , (2.14)

where, thanks to the properties of Lagrange polynomials, st is the displacement
vector at the top of the considered layer, sb is the displacement vector at the bottom
of the considered layer and sr, with r = 2, · · · , N−1 is the displacement vector in the
points associated with the Lagrange function r. As we will see in the next sections of
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the present chapter, the variables at top and bottom of each layer permit to satisfy
the displacement continuity at the layer interfaces. Moreover, a LW description of
the plate allows easily to an accurate 3-D description of the boudary conditions,
since the expansion coefficients skτ are the through-the-thickness displacements.

LDN is the notation adopted for LW models; L denotes the use of a LW descrip-
tion and D and N indicates again the PVD variational principle and the order of
the expansion. Thanks to the piecewise constant behavior for ε33 when LD1 theory
is adopted, no thickness locking effect are observed for transverse anisotropic plates.

2.3.3 Electric variables, LW theories

The electric potential is modeled always as a LW variable. Then we have

ψk(x, y, zk, t) = Ftψ
k
t + Frψ

k
r + Fbψ

k
b = Fτ (zk)ψ

k
τ (x, y, t) , (2.15)

with the notation described above.

2.3.4 Condensed notation

Using the condensed structural variable U introduced in section 2.2, the previous
kinematic and electric axiomatic assumptions can be rearranged in order to give

U
k(x, y, z, t) = Fτ (z)U

k
τ (x, y, t) , (2.16)

where, when Fτ refers to electric potential variables, a LW description is always
imposed, whereas the mechanical displacements can be described as ESL or LW.
Moreover, when ESL description is employed, z indicates the whole plate thickness
coordinate, whereas for LW assumption, z indicates the kth lamina local thickness
coordinate. It is noted that the plate reference system (x, y, z), where the thickness
exapansion is employed, does not necessarily coincide with the global sistem of
reference (X, Y, Z) which describes the entire vibro-acoustic coupled system (see
figure 2.5). This is important when the FE approximation is introduced; indeed the
mechanical degrees-of-freedom must be transformed through a rotation matrix to
obtain a description in terms of global coordinates.

2.4 Finite Element approximation

In this section the FE approximation of the variational formulation 2.9 is considered.
In the FE implementation, the unknowns can be expressed in terms of their nodal
values via appropriate shape functions Ni. Thus for the structural variable U

k
τ and

for the fluid scalar variable p we have

U
k
τ (x, y, t) = N s

i (x, y)Q
k
τi(t) , (2.17)

p(x, y, z, t) = Np
i (x, y, z)Pi(t) , (2.18)
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Figure 2.5: FE reference systems.

where i = 1, · · · , N s
n for structure variables, with N s

n denotes the number of nodes
of the considered 2-D structural element, and i = 1, · · · , Np

n for fluid variable, with
Np
n denotes the number of nodes of the considered 3-D acoustic element. From the

previous condensed notation for the structure,

Q
k
τi =

{

Qk
uτi

Qk
vτi

Qk
wτi

Qk
ψτi

}T
,

therefore Q
k
τi contains the FE nodal values of the thickness expansion coefficients

provided by UF axiomatic model for the plate subsystem. Then substituting 2.17
into 2.16 we have the final form of the approximated structural field variables in the
plate element reference system of figure 2.5:

U
k(x, y, z, t) = Fτ (z)N

s
i (x, y)Q

k
τi(t) , (2.19)

where k = 1, · · · , Nlay, with Nlay number of the plate embedded layers.
In this work the four-nodes quadrilateral element and the eight-nodes hexahedral

element with isoparametric formulation are adopted for the structural and acoustic
modeling, respectively. The integral terms of the FE matrices are calculated on the
isoparametric element through the definition of the jacobian matrix J which defines
the relation between the local and isoparametric element. Then, the final rotation
is applied on the mechanical displacement to obtain the final equations in the global
reference system (see figure 2.5).

In the following, the structural massM and stiffness matrixK, the loads vector F
and the fluid coupling matrix S are obtained in terms of fundamental nuclei, which
are indipendent from the type and the order of the considered expansion in the
thickness direction. First, the nucleus of the stiffness matrix K for the piezoelectric
orthotropic plate modeled with the UF approach is derived; then the nucleus of the
external loads vector F applied on the FE structure is presented. With the same
approach, the inertial and fluid loads are considered, bringing to the definition of
the nucleus of the mass and coupled matrices M and S. Moreover, also the classical
acoustic mass Q and stiffness H matrices are presented. Finally the assembling
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procedure from the nucleus level to the global FE matrices is described, showing the
difference between the ESL and LW description. Thus, the chapter ends with the
final FE matrix equation, which is formally the same as 1.12. In order to lighten
the notation, in the following the dependencies of the shape functions and of the
thickness functions from the x, y and z coordinates are omitted.

2.4.1 Structural stiffness matrix

Let us consider the left hand side term of the first equation of system 2.9. Using
the condensed relation 2.5 and 2.7 with the partitioning presented in equations 2.4,
2.6 and 2.8, we have

∫

Ωk
s

δEk
T

S
k dV =

∫

Ωk
s

(

δEk
T

p S
k
p + δEk

T

n S
k
n

)

dV =

=

∫

Ωk
s

δUkT
[

D
T
p C

k
pDp +D

T
p C

k
np

(

Dnz
+Dnp

)

+

+
(

Dnz
+Dnp

)T
C
k
npDp +

(

Dnz
+Dnp

)T
C
k
nn

(

Dnz
+Dnp

)

]

U
k dV .

(2.20)

Introducing the through-the-thickness integrals defined as

Ek
τs =

∫

tk

FτFs dz ,

Ek
τ,zs

=

∫

tk

Fτ,zFs dz ,

Ek
τs,z

=

∫

tk

FτFs,z dz ,

Ek
τ,zs,z

=

∫

tk

Fτ,zFs,z dz ,

and defining

Dnz
Fτ =









0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 −1









Fτ,z = ĨFτ,z ,

we can finally rewrite equation 2.20 as
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∫

Ωk
s

δEk
T

S
k dV = δQkT

τi

∫

Ak

[

Ek
τs

(

N s
iD

T
p C

k
ppDpN

s
j +N s

iD
T
p C

k
pnDnp

N s
j+

+N s
i D

T
npC

k
npDpN

s
j +N s

iD
T
npC

k
nnDnp

N s
j

)

+

+ Ek
τ,zs

(

N s
i Ĩ

T
C
k
npDpN

s
j +N s

i Ĩ
T
C
k
nnDnp

N s
j

)

+

+ Ek
τs,z

(

N s
i D

T
p C

k
pnĨN

s
j +N s

i D
T
np
C
k
nnĨN

s
j

)

+

+ Ek
τ,zs,z

(

N s
i Ĩ

T
C
k
nnĨN

s
j

)]

dsQk
sj =

= δQkT

τi K
kτsij

Q
k
sj ,

(2.21)

where the 4 × 4 stiffness nucleus Kkτsij for the piezoelectric structure has been
defined and Ak is the reference surface area of each layer. The explicit form of
Kkτsij is reported in appendix A.

2.4.2 Structural external loads

z̄

zk

plate top

plate bottom

layer k (x, y)
plane

z

fkem

Figure 2.6: External loads on layer k.

Let us consider now the generilized electromechanical load f kem applied on the kth

layer (see figure 2.6). From right hand side of the first equation of system 2.9 we
have that the work done by f kem is

∫

Γk

δUkTf kem ds ,

where

f kem(x, y) =















fu(x, y)
fv(x, y)
fw(x, y)
Q(x, y)















.
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Then substituting the FE approximation of the UF variables (equation 2.19) and
writing an energetically consistent load obtained interpolating the load with the
same shape functions N s

j , we obtain

∫

Γk

δUkTf kem ds = δQkT

τi Fτ (z̄)

∫

Ak

N s
iN

s
j ds aj , (2.22)

where Ak is the reference surface area for layer k, and the components of aj are the
loads evaluated on the considered element node j. Finally we can rewrite 2.22 as

∫

Γk

δUkTf kem ds = δQkT

τi Fτ (z̄)

∫

Ak























N s
iN

s
j fu j

N s
iN

s
j fv j

N s
iN

s
j fw j

N s
i N

s
j Qj























ds = δQkT

τi F
k
τj , (2.23)

where Fk
τj indicates the fundamental 4×1 nuclei of the external loads, and expression

2.23 indicates the energetically equivalent work done by the distributed load f kem on
the layer k. Clearly, if no loads are applied on kth lamina, expression 2.23 is null
and no contribution on the external work is given by the considered layer. Finally,
considering the case of a concentrated load f kem(x̄, ȳ) when the application point
coincides with the node i of the finite element model (i.e. (x̄, ȳ) = (xi, yi)), the work
done on the layer k is simply

∫

Γk

δUkTf kem δ(x− x̄, y − ȳ) ds = δQ
T

τiFτ (z̄)f
k
emi

,

where f kemi
is the load applied on the ith node on the kth layer, and δ(x− x̄, y− ȳ) is

the Dirac’s delta function. This term is non null only if the load is applied on the
considered node i.

2.4.3 Structural mass matrix

The virtual work done by the inertial loads of the kth layer for the structural variables
U
k can be rewritten as

∫

Ωk
s

δUkTf km ds =

∫

Ωk
s

δUkTρks Î Ü
k
ds , (2.24)

where we have introduced the Î matrix defined as

Î =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









,
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and it shows that no mass is associated with electrical degrees of freedom (an elec-
trostatic approximation is adopted for the electrical problem). Again, using the FE
approximation 2.19, we finally obtain

∫

Ωk
s

δUkTf km ds = δQkT

τi E
k
τs

∫

Ak

N s
i ρ

k
s ÎN

s
j dsQ̈

k

sj =

= δQkT

τi M
kτsij

Q̈
k

sj ,

(2.25)

where it has been introduced the 4× 4 mass matrix nucleus Mkτsij.

2.4.4 Fluid-Strucure coupling matrix

zfs

z

p

(x, y)
plane

layer k̄

zk

fluid-structure
interface

Figure 2.7: Acoustic load.

Let us consider the work done by the fluid (see figure 2.7) on the structural variables.
Again, using the FE approximation 2.19 we have

∫

Γfs

δU k̄Tfsf ds = δQk̄T

τi Fτ (zfs)

∫

Ak̄

N s
i N

p
j ds

{

n

0

}

Pj =

= δQk̄T

τi Fτ (zfs)

∫

Ak̄























N s
iN

p
j nx

N s
iN

p
j ny

N s
iN

p
j nz

0























ds Pj =

= δQk̄T

τi S
k̄τ ijPj ,

(2.26)

where the 4×1 fluid coupling nucleus Sk̄τ ij has been introduced. It is remarked that
in equation 2.26 the acoustic shape functions Np

j are evalueted at the fluid structure

interface, i.e. on the reference plane Ak (see figure 2.8). Moreover, with the same
procedure it can be demonstrated that the work made by the structure on the fluid
is
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∫

Γfs

δp ffs ds = δPi ρfS
k̄τ ijT

Q̈
k̄

τj , (2.27)

where the 1 × 4 transpose coupling matrix nucleus is obtained. A careful analysis
of the nucleus pattern show that the fluid pressure works only for the machanical
structural degrees-of-freedom, as expected.

Elements

of the plate
FE mesh

Interface

FE mesh
of the cavity

Figure 2.8: Acoustic-structure interface of a simple plate-cavity FE model.

2.4.5 Fluid stiffness and mass matrices

Concerning the fluid internal work and inertial load of system 2.9, using the FE
interpolation of the fluid variable p (equation 2.18), we obtain the acoustic stiffness
matrix

∫

Ωf

δp,l p,l dV = δPi

∫

Ωf

Np
i,l
Np
j,l
dV Pj = δPiH

ijPj , (2.28)

and the acoustic mass matrix

1

c2f

∫

Ωf

δp p̈dV = δPi
1

c2f

∫

Ωf

Np
i N

p
j dV P̈j = δPiQ

ijP̈j , (2.29)

2.5 Assembly procedure and final form of the coupled

equations

In this section the assembly procedure for the FE matrices obtained in the previous
section is presented. First of all, substituting the relations 2.21, 2.25, 2.27, 2.23,
2.28 and 2.29 into the variational formulation 2.9, we obtain the following equations
for the arbitrary virtual displacement δQk

τi and δPl:







δQk
τi : Mkτsij

Q̈
k

sj +Kkτsij
Q

k
sj − Sk̄τ imPm = Fkτij

δPl : QlmP̈m +HlmPm + ρfS
k̄sljT

Q
k
sj = 0

(2.30)
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where

τ, s = 1, · · · , N ,

k = 1, · · · , Nlay ,

i, j = 1, · · · , N s
n ,

l, m = 1, · · · , Np
n .

It is remarked that Sk̄τ im (and its transpose in the fluid equation) is non null only
for k = k̄ and for fluid and structural nodes i and m which belong on the interface
finite elements. Moreover, the term Fkτij is non null only if the considered layer k is
mechanically or electrically (or both) loaded. The system 2.30 is the starting point
for the assembly procedure. Indeed, in addition to the classical FE assembly on
the nodes ij and lm of the structural and fluid elements, the matrices which pre- or
post-multiply the structural unknown Q (or its variation) must be assembled on the
indexes τ , s and k. It is noted that the fundamental nuclei appear in system 2.30 do
not depend on the adopted LW or ESL theory; indeed, even if the correct thickness
integrals must be used, no formally dependencies are observed. Moreover, pure
mechanical cases can be easily modeled considering only the mechanical partition of
each nucleus, obtaining a 3×3 stiffness and mass nucleus and 3×1 loads nuclei. On
the other hand, the assembly procedure on the index k makes the difference between
the ESL and LW description of the multilayered plate.

Indexes τ and s indicates which coefficient of the UF expansion is considered.
This layer level assembly does not depend on the assumed kinematic description
(ESL or LW). Given the expansion order N , the degrees-of-freedom for the kth layer
and node i (or j) are:

Q
k
i =

{

Q
kT

1i Q
kT

2i · · · Q
kT

Ni

}T

. (2.31)

Then the assembly on the multilayered level has to be performed. In the following
the index k is assumed varying from the top layer (denoted by k = 1) to the bottom
one (denoted by k = Nlay). For ESL theories, the degrees-of-freedom of each layer
are the same and they refer to the description of an equivalent single layer plate.
Then we have

Qi = Q
1
i = Q

2
i = · · · = Q

Nlay

i , (2.32)

consequently the contribution of the mass and stiffness matrices and of the loads
vector of each layers are added together. On the other hand, the assembly procedure
at multilayer level for LW theories makes it possible to fulfill the C0

z continuity for
the displacement field. Indeed the assembled unknowns vector on multilayer level
for LW models is

Qi =
{

· · · Q
kT

ti Q
kT

ri Q
kT

bi = Q
k−1T

ti Q
k−1T

ri · · ·
}T

, (2.33)
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with r = 1, · · · , N−1 and the variables associated with τ = 1 and τ = N are replaced
with subscripts t and b indicating the top and the bottom of each layer. Therefore,
only the mass, stiffness and loads contributions from the top and the bottom of two
adiacent layers are added together. A clear example of an ESL and LW mass or
stiffness matrix assembly is reported in figure 2.9. In case of a mixed description
of the UF variables, like the electromechanical case with an ESL description for
the displacement s and a LW model for the electric potential ψ, we have that the
mechanical variables are assembled as 2.32 and electric degrees-of-freedom as 2.33.
In this way, the assembled unknowns vector at node level is:

Qi =
{

M
1T

i = M
2T

i = · · · = M
NT

lay

i · · · · · · Zk
ti Zk

ri Zk
bi = Zk−1

ti Zk−1
ri · · ·

}T

,

(2.34)
where M indicates the mechanical degrees-of-freedom and Z the electrical ones;
threfore the following partitioning has been assumed:

Q
k
τi =

{

M
kT

τi Zk
τi

}T

.

Finally the classical FE global assembly must be performed, eliminating also the
indexes ij and lm. Assuming the following organization for the system unknowns

Q =
{

Q
T
1 · · · Q

T
Ns

n

}T
, (2.35)

P =
{

P1 · · · PNp
n

}T
, (2.36)

the system 2.30 leads to the following coupled problem

[

M 0
−ρfST Q

]{

Q̈

P̈

}

+

[

K S

0 H

]{

Q

P

}

=

{

F

0

}

, (2.37)

which is formally the same (u, p) system presented at the end of the chapter 1, and
the same considerations about the condensation of the electrical degrees-of-freedom
are still valid. The matrix equation 2.37, with the related Dirichlet boundary con-
ditions on the structural variables Q, describes the coupled pizoelectric structural
acoustic system. In this work the eigenvalue problem and the frequency response
analysis associated with equation 2.37 is considered. It is anticipated here that
solving this coupled large unsymmetric system is a cumbersome task; in the next
chapter the method adopted in this work is presented.

A FE code based on the formulation presented in this chapter has been imple-
mented. In particular, even if a structural FE code based on the UF was available
at the Department of Aerospace Engineering of Politecnico di Torino, a new code
has been written in order to efficiently solve large static and dynamic problems con-
taining the computational time and memory requirements. A FE acoustic code has
been written too, and coupled with the structural FE model. A brief overview of
the important programming details are reported in appendix B.
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Figure 2.9: Example of the assembly procedure from nucleus to element level for a four-
node quadrilateral element.



CHAPTER 3

Modal Coupling Method

The system 2.37 decribing the dynamic behavior of the plate-cavity system is ana-
lyzed in the frequency domain in order to obtain the transfer functions relative to
the desired system outputs. Typically, the output parameters considered in vibro-
acoustic analysis are both local and global. The former refers to structural displace-
ment or acoustic pressure at specific points, whereas the latter refers to energy pa-
rameters such as the structural kinetic energy and the fluid potential energy. Direct
resolution of the forced system 2.37 is time consuming. To alleviate this problem,
modal approaches are often used. Unfortunately, the coupled eigenproblem is large
and unsymmetric, thus the computationl time needed to extract the modal basis
may be significant.

As it has been pointed out in the introduction of this work, alternative approaches
to the non-symmetric (u, p) formulation have been developed. Even if different
strategies can lead to a symmetric problem, the final system of equations can be
twice or more the dimension of system 2.37. A widely used technique in the acoustic-
structure interaction problems is based on the use of the uncoupled modal basis. In
this approach, the in vacuo structure modes and the rigid walled cavity modes are
considered in order to obtain a new basis to describe the coupled problem. In this
way, two smaller and symmetric eigenvalue problems must be solved. Moreover,
only few eigenvalue-eigenvector pairs are needed from the large FE structural and
acoustic models, then iterative solvers can be succesfully utilized, obtaining a further
reduction of the computational effort. Unfortunately, there is no reliable criterion for
chosing the number of kept modes for each subsystem; indeed, the uncoupled basis
does not decouple the fluid-structure system, then, theoretically, all the subsystem
modes are coupled together because of the matrix S. The poor efficiency of the
uncoupled modal basis in reducing coupled model size is due to the fact that the
modes of the uncoupled acoustic model do not fulfill the continuity condition at
the plate interface; therefore, for an accurate representation of the near-field effect
in the vicinity of the fluid-plate coupling interface, a possible large number of high
order modes in the acoustic modal basis is required. This is always true when
strong coupled system is considered, whereas the modal basis approach can lead
to satisfactory results in terms of accuracy and computational efficiency in case of
weak coupled systems. For instance, in figures 3.1 and 3.2 a simple isotropic plate
coupled with an air filled cavity is considered. The first non null coupled mode (the
system has a zero frequency eigenvalue due to the presence of a rigid cavity mode) is
computed with a reduced model obtained by considering 6 structural modes and 8
cavity modes (figure 3.1) and considering 20 structural modes and 60 cavity modes
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(figure 3.2). It is clear that, even if the natural frequency is almost the same, 8
acoustic modes are a poor basis to reproduce correctly the continuity condition at
the fluid-structure interface, demonstrating that even a poor basis can lead to a
correct prediction of the global behavior but a larger basis must be accounted for an
accurate local description of the system. In the next two sections the construction
of the modal basis and the form of the reduced coupled system are presented.

(a) plate (b) cavity

Figure 3.1: First non null coupled mode (ω = 50.13 Hz) calculated with the modal coupling
method with 6 structural modes and 8 acoustic modes.

(a) plate (b) cavity

Figure 3.2: First non null coupled mode (ω = 50.03 Hz) calculated with the modal coupling
method with 20 structural modes and 60 acoustic modes.

3.1 The uncoupled basis

Using the notation adopted for the submatrices of the system 2.37, the eigenvalue
problems relative to the uncoupled subsystems are
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(K− ω2
sM)Q̄ = 0 ,

(H− ω2
pQ)P̄ = 0 ,

where ωs and ωp are the structural and acoustic uncoupled natural frequencies, and
Q̄ and P̄ are the relative eigenvectors. Arranging the first ns eigenvectors Q̄ in
the basis matrix Xs, and the first np eigenvectors P̄ in the basis matrix Xp, the
structural and acoustic degrees-of-freedom can be expressed as a linear combination
of their respective eigenvectors:

Q = Xsηs , (3.1)

P = Xpηp , (3.2)

where ηs and ηp represents the modal unknowns (i.e. modal amplitudes). Clearly, if
Q (P) is a vector of lenght N s

n (Np
n) and Xs (Xp) is a N

s
n×ns (N

p
n ×np) basis, then

ηs (ηp) is a vector of ns (np) modal unknowns. In a more compact form, relations
3.1 and 3.2 can be rewritten as

{

Q

P

}

=

[

Xs 0
0 Xp

]{

ηs
ηp

}

. (3.3)

3.2 Reduced model

Relation 3.3 is the coordinates transformation that permits to describe the problem
in terms of the smaller modal unknowns. Considering a normalization with respect
to the corresponding mass matrix for the computed eigenvectors, substituting the
relation 3.3 in equation 2.37 and pre-mutiplying by the transpose of the uncoupled
basis matrices, we obtain

[

Is 0
−ρfXT

p S
TXs Ip

]{

η̈s
η̈p

}

+

[

Ds XT
s SXp

0 Dp

]{

ηs
ηp

}

=

{

XT
s F

0

}

, (3.4)

where Is and Ip are identity matrices of dimensions ns×ns and np×np respectively,
when Ds and Dp are diagonal matrices such that

Ds =







ω2
s1

· · · 0

0
. . . 0

0 · · · ω2
sns






= Diag

(

ω2
si

)

,

Dp =







ω2
p1

· · · 0

0
. . . 0

0 · · · ω2
pnp






= Diag

(

ω2
pi

)

,
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and XT
s F is the structural load vector projected in the structural modal basis. The

off diagonal elements account for the cross coupling between structural and fluid
kept modes, constituting a ns × np (and its transpose) submatrix S̃ = XT

s SXp.
According to this modal reduction, the response of the coupled system 3.4 to armonic
excitations in the frequency domain is

(

[

Ds S̃

0 Dp

]

+ jω

[

Cs 0
0 Cp

]

− ω2

[

Is 0

−ρf S̃
T

Ip

])

{

ηp
ηs

}

=

{

F̃

0

}

, (3.5)

where F̃ = XT
s F, j is the imaginary unit and the diagonal matrix Cs and Cp

indicates that a modal damping has been taken into account. In particular we have

Cs =







2ξs1ωs1 · · · 0

0
. . . 0

0 · · · 2ξsns
ωsns






= Diag (2ξsiωsi)

Cp =







2ξp1ωp1 · · · 0

0
. . . 0

0 · · · 2ξpnp
ωpnp






= Diag (2ξpiωpi) .

The undamped case of equation 3.5 with no applied force is the free response associ-
ated with the reduced coupled preblem. Although the obtained eigenvalue problem
is still unsymmentric, real eigenvalue and eigenvector couples exist, as demonstrated
in [68].

3.3 Energy response parameters

As it is mentioned above, in addition to local parameters, also global idexes are
used to analyzed the response of the coupled system. For what concern the acoustic
pressure response, the mean-square pressure Ef

p is introduced. Using the FE ap-
proximation presented in chapter 2 and introducing the uncoupled modal basis, the
mean-square pressure can be expressed as

Ef
p =

1

2

1

Ωf

∫

Ωf

|p|2 dV =
1

2

c2f
Ωf

η∗

pηp (3.6)

where ∗ denotes che complex conjugate operator of the vector. In some textbooks
the mean-square pressure is denoted by 〈p2〉; here it is indicated with Ef

p because
the expression 3.6 indicates the fluid potential energy for less than a scale factor
depending on the fluid properties. Analogously, the kinetic energy of the general
orthotropic multilayered plate per unit of volume is
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Es
k =

1

2

ω2

Ωs

∫

Ωs

ρs|s|2 dV =
1

2

ω2

Ωs
η∗

sηs (3.7)

thanks to the fact that no mass is associated with the electric degrees-of-freedom.
When the embedded layers has the same mass density ρs or the plate is isotropic,
the specific kinetic energy can be easily computed dividing Es

k by ρs.





CHAPTER 4

Structural Model Validation

This chapter discusses the validation of the structural FE code written to implement
the UF presented in chapter 2. The chapter is formally subdivided into three parts;
in the first, some preliminary assessments are given to analyze the convergence be-
haviour of the method; in the second part, some literature benchmarks are given in
order to validate the accuracy of the present formulation; finally, some benchmarks
are proposed and discussed in order to demonstrate the capabilities of these refined
models in predicting higher order modes. According to the aim of the present work,
this chapter verifies the capabilities of the present structural model to correctly
reproduce the dynamic response of plate structures with different layouts. An ex-
tensive validation of the structural FE model is required to guarantee the correct
formulation of the structural-acoustic coupling.

The notation assumed for the plate geometry, for the boundary conditions and
for the nondimensional parameters used for representing the numerical results are
now introduced. First, classical boundary constraints are considered in this work,
i.e. simply supported, clamped and free edge conditions. On the generic plate edge
at x = const, if a simply supported condition (S) is assumed, we have:

w = 0, v = 0 ,

then only the motion normal to the edge is permitted. The clamped (C) condition
assumes that:

u = 0, w = 0, v = 0 ,

therefore no displacement of the boundary is permitted. Finally, the completely free
condition implies no constraints on the displacement field. For the electric boundary
conditions, in an open circuit (OC) condition, the plate is assumed to be grounded
along its edges, then

ψ = 0 ,

whereas in short circuit (SC) condition, also the top and the bottom of the plate
are grounded.

Concerning the geometry of the plate, generic quadrilateral forms are considered
in the present analysis. In principle, more geomtries could be treated with the adop-
tion of an isoparamentric formulation. However quadrilateral plates are one of the
most interesting cases in the analysis of acoustic cavities. With the notation depicted
in figure 4.1, the boundary condition, for instance, SFCF denotes a quadrilateral
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plate with edges 1, 2, 3 and 4 having the simply supported, free, clamped and free
boundary condition, respectively. When the adopted plate geometry, materials and
layout with its own boundary condition are such that xz− and yz−plane are symme-
try planes, the classification of the vibration modes into distinct symmetry classes are
assumed. Namely, doubly symmetric modes (SS), symmetric-antisymmetric modes
(SA), antisymmetric-symmetric modes (AS) and doubly antisymmetric modes (AA).
In this way only one quarter of the plate can be analyzed, reducing the computa-
tional effort. Typically this classification is adopted in the related literature to sort
the modes of isotropic plates with symmetric boundary conditions. In this work we
have taken advantage from material and edge constraints symmetries even in case of
cross-ply composite plates. Furthermore if also the xy−plane is a symmetry plane,
symmetric and antisymmetric modes in the thickness direction will be introduced.

t

a

b

ed
ge

4 ed
ge

2

edge 1

edge 3

x

y

Figure 4.1: Geometry of a rectangular plate.

The following nondimensional frequency parameters are introduced:

- for isotropic plates:

λ = ω
b2

π2

√

ρt

D
(4.1)

- for laminated plates:

λ = ωb

√

ρ(1)

E
(1)
2

(4.2)

- for sandwich plates:

λ = ωb

√

(

ρ

E2

)

(f)

(4.3)

where,

D =
Et3

12 (1− ν2)
(4.4)

is the flexural rigidity of the isotropic plate. The apices (1) in laminated plates
indicates that the properties are referred to the bottom layer, while pedix (f) for
sandwich plates is referred to the material properties of the face skins.
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In the cases presented below, the results obtained with LD models are limited
to fourth order due to the huge computational effort when laminated structures
are considered. Despite this limit, it will be clear that LD4 theory can provide a
very accurate solution, capturing the 3-D elastic behavior even of complex plate
structures. On the other hand, the maximum order of ED models is limited by ill-
conditioning issues arising when the order of the adopted theory increases. Moreover,
the cases analyzed in this work suggest that ill-conditioning for ED models depends
on the thickness ratio and with less emphasis on the structural problem. This
misbehavior should not astonish the reader; indeed when plate-like structure are
modeled as a 3-D continuum (or quasi-3-D as the present ESL and LW models)
some numerical problems arise in the thin plate anlysis, as also mentioned in [76].
Probably the ill-conditioning is due to the Taylor expansion used to describe the
through-the-thickness displacement field. Fortunately this limit does not prevent
the accuracy of these models as long as the global displacement field assumption is
still valid.

In the next three sections the case of electromechanical PVD without fluid cou-
pling will be approached deeply for generic quadrilateral plates with different bound-
ary conditions in order to demonstrate the capabilities of ED and LD theories in
predicting high frequency vibrating modes for isotropic and composite plates. For
each of these layouts, convergence studies and numerical validations are presented.
Finally a brief comparison between ED and LD theories is presented, with the aim of
giving a generic view of the benefits and drawbacks of these axiomatic theories with
different plate layouts. The material properties adopted in the following analysis
are reported in appendix C. Finally, for what concern the FE integration scheme,
the selective integration [5, 53] is employed for the adopted isoparametric quadratic
element.

4.1 Convergence study

In this section, some suggestive analysis are presented to demonstrate the conver-
gence rate and the numerical stability of the present method. The convergence
behavior of several natural frequencies λ are examinated varying different param-
eters. In particular, in the next sections the effect of the order N , of the adopted
theory (LW or ESL), of the thickness ratio, of the boundary constraints, and the
effect of the lamination lay-up are briefly presented. We assume that the selected
cases are good candidates to demonstrate the numerical properties and accuracy
of the present method. The convergence tables are reported for convenience in ap-
pendix D, whereas the convergence patterns of the first bending modes varying the
aforementioned parameters are reported graphically. In these figures, the percent-
age error ε = λ−λconv

λconv
× 100 with respect to the assumed converged solution and

the number of elements nx, ny are reported along the y and x axis, respectively. In
this convergence study only squared plates are considered. The mesh sizes of the
assumed converged solutions are 120× 120 and 60× 60 for isotropic and laminated
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plates, respectively.

4.1.1 Effect of the adopted theory

In this section the effects of the adopted theory in terms of order N of the through-
the-thickness expansion and in terms of the adopted kinematic assumptions (LW or
ESL) are presented for isotropic and laminated square plates. In figure 4.2(a) the
convergence of the first bending mode of a simply supported isotropic plates with
ν = 0.3 and t

b
= 0.1 is monitored for ED2 and ED3 solutions. The convergence

behavior for ED2 and LD1 solutions of a multilayered square plate are reported in
figures 4.2(b) and 4.2(c). The former referers to a clamped plate made of material
2 (see appendix C) with lamination sequence 0◦/90◦/0◦ and t

b
= 0.01. The latter is

an electromechanical plate made of a cross-ply 0◦/90◦/0◦ core of material 2 bonded
by two PZT-4 layers. The thickness ratio is t

b
= 0.02 and the relative thickness

of the mechanical and piezoelectric layers are tm
t

= 11
45

and tp
t

= 2
15

respectively.
The plate is assumed to be clamped, electrically grounded along its edge and OC
configuration is considered. From these figures it can be pointed out that the orderN
and the through-the-thickness assumptions do not affect the convergence behavior.
A monotonic downward convergence is always observed.

4.1.2 Effect of the thickness ratio

In this section the effect of the thickness ratio on the convergence pattern is ana-
lyzed. In figures 4.3(a) and 4.3(b) the same isotropic and laminated plates described
above (see section 4.1.1) are considered for two thickness ratio, t

b
= 0.1 and t

b
= 0.01.

In figures 4.3(c) and 4.3(d) a fully clamped sandwich plate with lamination sequence
0◦/90◦/core/0◦/90◦, made of material 4 and with a soft core of material 5, is con-
sidered varying the thickness ratio t

b
and the relative core-to-faces thickness ratio

tc
tf
.

Figures 4.3(a) and 4.3(b) show that, as the thickness ratio decreases, the con-
vergence becomes slower for both ESL and LW theories, with the consequence that
a larger number of elements must be accounted to reach the desired accuracy. This
behavior, which is more effective for higher order modes (see tables D.1-D.7 and
D.8-D.25), is observed also using a Ritz method for 3-D elasticity, as mentioned in
[44] and [76]. The same conclusions can be made for a sandwich plates when ESL
assumptions are adopted (see figure 4.3(c)). On the contrary, the LW description
leads to an opposite behavior (i.e. convergence becomes faster as the thickness ra-
tio decreases). This fact show how the zig-zag form of the displacement field in the
through-the-thickness direction become an important aspect when highly transverse
anisotropic plates are considered. The ESL description cannot see, from a global
point of view, the difference between laminated and sandwich plates, then the same
effects are observed varying the thickness ratio. However, when a consistent LW de-
scription of the sandwich plate is considered, a different behavior is obtained. The
same effect is observed for the LD solution when the relative thickness ratio tc

tf
in-
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(c) piezoelectric plate

Figure 4.2: Effect of the order N and of the kinematic assumption on the convergence of
the first bending mode for different plate layouts.
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creases (see figure 4.3(d)), whreas no substantial change in the convergence pattern
is observed for the ED solution.

It is anticipated here that, as it is shown by convergence tables D.26-D.34, an
ESL description for sandwich plates cannot lead to satisfactory results, mainly when
thick plates with soft are considered.
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Figure 4.3: Effect of the thickness ratio on the convergence of the first bending mode for
different plate layouts.

4.1.3 Effect of the boundary conditions

In this section the effect of the mechanical and electric boundary conditions is ana-
lyzed. In figures 4.4(a), 4.4(b) and 4.4(c), the convergence of the first bending mode
for the same isotropic, laminated and piezoelectric plates introduced in section 4.1.1
are analyzed varying the boundary constraints. The thickness ratio of the laminated
plate is t

b
= 0.1, whereas the same values reported in 4.1.1 are used for the isotropic
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and piezoelectric cases. Figure 4.4(c) show that no differences are observed when
OC or SC electric boundary conditions are considered, whereas from figure 4.4(a)
and 4.4(b) it can be argued that a slower convergence is observed when mechanical
clamped conditions are accounted. Sure enough, when some edges is clamped, more
elements are needed to correctly reproduce the modal form due to the high gradients
exhibited by wave-forms. A monotonic downward convergence is still observed.
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Figure 4.4: Effect of the boundary conditions on the convergence of the first bending mode
for different plate layouts.

4.1.4 Effect of lamination lay-up

Finally, in this section the effect of the lamination scheme on the convergence pattern
is analyzed. The three-layered plate presented in section 4.1.1 with t

b
= 0.1 is

considered as the starting layout. Then, several lamination schemes is considered
varying the simmetry, the number of the layers and the plies angle. The convergence
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tables D.8-D.25 are difficult to comment due to the differences in the eigenvectors
wave-form; however, the first bending mode is still comparable, and figure 4.5 shows
that a slightly slower convergence is observed for unsymmetric layouts and for angle-
ply schemes.
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Figure 4.5: Effect of the lamination scheme on the convergence of the first bending mode
for different lamination schemes, t

b
= 0.1.

4.2 Accuracy

In order to evaluate the accuracy of the present method in predicting the natural fre-
quencies of various types of plates, some benchmarks available in the open literature
are presented. The accuracy is examined for plates with various thickness ratios,
layouts and boundary conditions. We argue that the selected cases demonstrate the
numerical accuracy of the present method.

4.2.1 Literature review

In this section a brief review of the relevant literature is provided with emphasis on
the works selected for the validation of the present FE structural model.

Despite the pratical importance of elastic vibration solution of plate structures,
exact 3-D elasticity solutions are limited only to few cases with simple geometries and
boundary conditions ([54, 71, 72]). In the other cases, approximate methods must
be used. The Ritz method [41] is one of the most efficient method for the analysis
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of structure. The Ritz procedure is well established, but convergence, accuracy and
stability of the solution depends greatly on the choice of the admissible functions.
Mainly we put our attention on the works of Liew et al. [44] and Zhou et al.
[76]; in the former vibration analysis of thick isotropic plates subject to generic
boundary conditions is performed using a 3-D Ritz formulation for the continuum
with polynomial functions, whereas in the latter, the same analysis is presented using
Chebyshev polynomials as admissible functions in the Ritz method. Moreover, in
the last decade, the DQ method, originated by Bellman and his co-workers [6], has
demonstrated its good performance in terms of convergence speed, accuracy and
computational effort in the 3-D elasticity [42, 43]. In particular we consider the
works of Chen and Lue [23] and of Lu et al. [48] as good references for a validation
purpose for laminated plates. It should be remarked that the FE method is the most
flexible method, in handling arbitrary geometries, boundary conditions and layouts,
but the numerical efficiency is reduced with respect to Ritz and DQ method.

Concerning the case of sandwich plates, difficuties arise due to the high transverse
anisotropy. To the best author knowledge, accurate 3-D Ritz or DQ solutions for
this kind of structures are not present in the related literature. On the other hand,
assumptions on the through-the-thickness displacement field, like as ESL or LW, are
often introduced. The ESL models, even when higher order expansion is adopted,
fail to reproduce the correct static and dynamic response of sandwich structures. In
the last decade the works of Carrera [11, 29] and Rao and his colleagues [60] have
shown the inaccuracy of ESL theories, especially when soft core sandwiches are
considered. This kind of plates are widely used in the modern aerospace structure,
and in some cases foam-type cores are employed to optimize the response of vibro-
acoustic systems. For this reason, refined structural models which can predict the
response of this kind of structures have been developed. In particular, the RMVT-
based LW solutions in [60] and [29] can be considered as good references due to their
consistent description of the 3-D displacement field (a complete fulfillment of the C0

z

conditions is provided). The theories obtained with this approach will be indicated
as LM theories. On the other hand, more practically solutions have been developed,
such as FE models based on higher order theories or other different approaches. For
example in the work of Zhen et al. [75], the author proposes a FE model based
on higher order expansion in the thickness direction with global and local terms, in
order to account the continuity conditions for the displacements and for the in-plane
stresses. A different model is adopted by Wang et al. in [74]; in this work the author
proposes a different through-the-thickness kinematic assumption for the face skins
and for the core.

In addition to these difficulties in obtaining reference solutions for pure me-
chanical problems, in the case of piezoelectric structures also the coupling with the
electrostatic field must be solved. Modeling and analysis of laminated plates with
piezoelectric layers have reached a relative maturity as attested by the numerous
reviews and surveys, like as, for instance, [69] and [7]. 3-D exact solution of the
piezoelastic coupled problem is reported in [35] for laminated plates with simple
boundary conditions. Moreover, a careful analysis of the relevant literature indi-
cates that approximate theories were often used; these mainly differs by the sim-
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plifying axiomatic assumptions concerning the piezoelectric effect representation,
i.e. the direction of electric field and/or displacement and the through-the-thickness
distibutions of the mechanical displacement and electric potential. Theoretically, at
least quadratically variation of the electric potential in the thickness direction may
provide a correct representation of the electromechanical coupling [69]. However,
simplified theory can lead to satisfactory results if thin plates are considered.

In order to provide an accurate validation of the present FE model, a lot of
attention must be used to select the reference solutions among the open literature.
In particular, considering generic layouts and boundary constraints, Ritz and DQ
methods can be considered the best accuracy level. However when these solutions
are hardly applicable, especially in case of sandwich and piezoelectric plate, RMVT
solutions can be considered accurate enough for the present validation. In these
cases, when simply supported boundary conditions are given, analytical Navier-type
solutions are available. Following these criteria, the selected reference solutions are:

- for isotropic plates, the 3-D Ritz solutions of [44] and [76],

- for laminated plates, the 3-D DQ solutions of [23] and [48],

- for sandwich plates, the analytical LM solutions of [60], the analytical solutions
of [74] and the experimental results of [51],

- for piezoelectric plates, the exact 3-D solutions of [35] and the LM solutions
of [8].

It is remarked that, only the Ritz method applied to the 3-D elasticity provides an
upper bound solution.

4.2.2 Results

The first three frequency parameters for each symmetry class for a rectangular
isotropic plate with various boundary conditions and different thickness ratios t

b

computed using the present UF are given in tables 4.1-4.3 and compared with other
published Ritz solutions. The ED3 and ED4 solutions are assumed as the optimal
models to obtain the desired accuracy and to limit the computational effort when
thin and thick plates are considered, respectively. This choice is large justified by
the results reported in tables D.1-D.7. From tables 4.1-4.3 it can be pointed out
that the present method could be quite accurate with respect to the 3-D reference
solution. In particular the results show that the accuracy of the present FE solution
tends to get worse when the plates become thinner. For example from table 4.1
it can be seen that in case of moderately thick and thick plates ( t

b
= 0.2, 0.1) the

present solutions are in very good agreement with the reference ones, whereas the
accuracy undergoes a little worsening in case of thin plates ( t

b
= 0.01). The same

tendencies can be shown in tables 4.2-4.3, and it could be a consequence of the higher
dense mesh needed when the plate become thinner, as we have pointed out in the
convergence study (see section 4.1.2). In this case the FE solution suffers the worst
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convergence rate and the locking behaviour in comparison with the Ritz method,
therefore the accuracy deteriorates. This tendency is emphasized in the case of high
aspect ratio, due to the worst spatial resolution in the stretched direction, since the
same number of elements is used for the rectangular plates.

In figures 4.6(a), 4.6(b) and 4.6(c) the comparison between the ED4 solution and
that is reported in [76] is presented in terms of percentage error ∆ for more than 50
frequency parameters for an isotropic square plate. It is clear that the error tends
to increase with the mode number, showing that higher order effect become more
and more important as the frequency increases. Furthermore, figures 4.6(a), 4.6(b)
and 4.6(c) also show that some frequency parameters are in very good agreement
(the error is nearly null) with the reference values; these frequencies correspond to
the symmetric modes in the thickness direction.

In table 4.4 the first three frequency parameters corresponding to the first two
wave numbers are compared to those reported in [23] for a simply supported lami-
nated plate with two different layout. The convergent LD solution shows very good
agreement with the reference value, whereas the performance of the ED theory dete-
riorates for wave numbers couple greater than (1, 1), probably due to the moderately
high value of t

b
. Moreover, the ill-conditioning prevents to reach a more accurate

solution for the ED models. In table 4.5 the first three mode numbers in the simply
supported direction (i.e. x direction in figure 4.1) for a symmetric laminated square
plate with different constraints on the other edge pair are compared with the solution
reported in [23]. It can pointed out that the accuracy of the ED and LD solutions
is not affected by the boundary conditions. Finally the first frequency parameter of
an angle-ply plate with simply supported and clamped conditions is compared with
the solutions reported in [48]. The table 4.6 shows that the accuracy of both ED
and LD theories deteriorates with angle-ply plates. However, it is remarked here
that DQ solutions do not provide an upper bound for the present FE solution.

In table 4.7 the case of a simply supported square sandwich plate with face
sheets made of material 4 and a soft core of material 5 is considered. The results
are compared with the reference LM solution of [60] and with the solution presented
in [74]. The table shows a good agreement of the LD solution with the reference
values, confirming the fact that a LW description can predict the correct response
of the plate. The ED solution is not reported here due to its large errors and its
inaccurate description of the displacement field. Inaccuracy of global models is
shown in figure 4.7, where two higher order ED solutions are compared with the
accurate LD4 solution; one can see that, even if an apparent convergence of the ED
solution in terms of eigenvalue λ to the LD4 one is observed as the order increases,
the computed displacement field is non physical.

In table 4.8 the present LD3 solution is compared with the theoretical and experi-
mental results reported in [51], where a sandwich plate with honeycomb core and two
identical aluminium face sheets is considered (see tables C.2 for material properties
and geometry). The table shows again the accuracy of the present method.

Finally in table 4.9, the present ED and LD electromechanical solutions are
compared with those reported in [8] and [35]. In the former exact analitical 3-D
solutions are presented, whereas in the latter an LM model is used. Despite of the
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Table 4.1: Frequency parameters for an isotropic plate with SSSS boundary conditions, ν = 0.3.

mode number
a
b

t
b

Solution method SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1 AA-2 AA-3
1 0.01 Present ED3 (120× 120) 1.9995 9.9898 9.9898 4.9971 12.978 16.973 4.9971 12.978 16.973 7.9914 19.954 19.954

3-D Ritz [44] 1.9993 9.9826 9.9826 4.9956 12.971 16.950 4.9956 12.971 16.950 7.9888 19.930 19.930
3-D Ritz [76] 1.9993 9.9826 9.9826 - - - - - - - - -

0.1 Present ED4 (120× 120) 1.9344 8.6669 8.6669 4.6234 6.5236 10.884 4.6234 6.5236 10.884 7.1048 13.048 13.048
3-D Ritz [44] 1.9342 8.6617 8.6617 4.6222 6.5234 10.879 4.6222 6.5234 10.879 7.1030 13.047 13.047

0.2 Present ED4 (120× 120) 1.7759 4.6130 6.6899 3.2618 3.8999 7.2945 3.2618 3.8999 7.2945 5.6534 6.5241 6.5241
3-D Ritz [44] 1.7758 4.6127 6.6868 3.2617 3.8991 7.2934 3.2617 3.8991 7.2934 5.6524 6.5234 6.5234
3-D Ritz [76] 1.7758 4.6127 6.6868 - - - - - - - - -

2 0.01 Present ED3 (120× 120) 1.2498 3.2499 7.2547 1.9997 5.0013 9.9900 4.2483 6.2460 10.246 4.9973 7.9952 12.999
3-D Ritz [44] 1.2497 3.2482 7.2408 1.9993 4.9956 9.9826 4.2468 6.2432 10.232 4.9956 7.9888 12.971

0.1 Present ED4 (120× 120) 1.2238 3.0841 6.5106 1.9346 4.6269 6.5236 3.2618 3.9727 5.6806 4.6235 6.5241 7.1075
3-D Ritz [44] 1.2237 3.0825 6.5003 1.9342 4.6222 6.5234 3.2617 3.9715 5.6785 4.6222 6.5234 7.1031

0.2 Present ED4 (120× 120) 1.1556 2.7208 3.6469 1.7760 3.2618 3.9023 1.6309 3.4118 4.6656 3.2621 3.8999 5.6549
3-D Ritz [44] 1.1555 2.7197 3.6467 1.7758 3.2617 3.8991 1.6309 3.4110 4.6644 3.2617 3.8991 5.6524
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Table 4.2: Frequency parameters for an isotropic plate with CFCF boundary conditions, ν = 0.3.

mode number
a
b

t
b

Solution method SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1 AA-2 AA-3
1 0.01 Present ED3 (120× 120) 2.2484 4.4061 12.165 6.2010 8.8526 18.172 2.6739 8.0647 12.823 6.8013 12.559 20.789

3-D Ritz [44] 2.2482 4.4083 12.153 6.1972 8.8531 18.171 2.6743 8.0653 12.813 6.7985 12.560 20.754
0.1 Present ED4 (120× 120) 2.1043 3.9229 9.7328 5.3864 7.3583 10.634 2.4481 5.9498 6.9693 5.8276 10.072 10.963

3-D Ritz [44] 2.1050 3.9234 9.7276 5.3859 7.3581 10.636 2.4489 5.9500 6.9678 5.8272 10.070 10.961
0.2 Present ED4 (120× 120) 1.8007 3.1922 5.8794 4.1108 5.3319 5.4665 2.0375 2.9770 5.4346 4.4128 5.4834 6.5934

3-D Ritz [44] 1.7996 3.1909 5.8790 4.1062 5.3313 5.4625 2.0363 2.9770 5.4325 4.4084 5.4824 6.5929

2 0.01 Present ED3 (120× 120) 0.5590 2.7680 3.0312 1.5421 4.0167 5.0218 0.9095 3.6663 6.6570 2.0847 5.7068 7.8149
3-D Ritz [44] 0.5589 2.7687 3.0281 1.5411 4.0182 5.0121 0.9099 3.6643 6.6554 2.0845 5.6985 7.8148

0.1 Present ED4 (120× 120) 0.5486 2.6073 2.8295 1.4803 3.6565 4.5353 0.8670 2.6554 3.3588 1.9563 5.0729 5.2170
3-D Ritz [44] 0.5492 2.6076 2.8300 1.4811 3.6575 4.5324 0.8677 2.6560 3.3596 1.9573 5.0707 5.2162

0.2 Present ED4 (120× 120) 0.5222 2.3072 2.4187 1.3369 2.6553 3.0723 0.7885 1.3289 2.8102 1.7136 2.6088 4.0499
3-D Ritz [44] 0.5224 2.3071 2.4174 1.3367 2.6556 3.0720 0.7884 1.3291 2.8090 1.7135 2.6083 4.0462
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Table 4.3: Frequency parameters for an isotropic plate with CCCC boundary conditions ν = 0.3.

mode number
a
b

t
b

Solution method SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AS-1 AS-2 AS-3 AA-1 AA-2 AA-3
1 0.01 Present ED3 (120× 120) 3.6497 13.327 13.391 7.4392 16.696 21.305 7.4392 16.696 21.305 10.959 24.478 24.581

3-D Ritz [44] 3.6429 13.315 13.379 7.4352 16.682 21.266 7.4352 16.682 21.266 10.953 24.441 24.543
0.1 Present ED4 (120× 120) 3.3205 10.503 10.603 6.3459 12.521 12.710 6.3459 12.521 12.710 8.9037 14.872 17.288

3-D Ritz [44] 3.3215 10.498 10.598 6.3457 12.522 12.706 6.3457 12.522 12.706 8.9030 14.870 17.275
3-D Ritz [76] 3.3176 10.488 10.587 6.3389 12.518 12.695 6.3389 12.518 12.695 8.8943 14.870 17.261

0.2 Present ED4 (120× 120) 2.7280 7.3344 7.4355 4.7774 6.2747 8.7088 4.7774 6.2747 8.7088 6.4250 7.4382 9.1364
3-D Ritz [44] 2.7261 7.3241 7.4249 4.7725 6.2735 8.6980 4.7725 6.2735 8.6980 6.4185 7.4370 9.1342
3-D Ritz [76] 2.7241 7.3208 7.4211 4.7696 6.2722 8.6944 4.7696 6.2722 8.6944 6.4152 7.4369 9.1323

2 0.01 Present ED3 (120× 120) 2.4936 4.5423 8.8593 3.2287 6.4275 11.821 6.4879 8.4402 12.538 7.2055 10.215 15.403
3-D Ritz [44] 2.4933 4.5396 8.8403 3.2278 6.4186 11.781 6.4836 8.4348 12.519 7.2010 10.205 15.364

0.1 Present ED4 2.3251 4.1002 7.5506 2.9715 5.6531 8.4150 5.6225 7.1312 10.128 6.1821 8.4588 11.803
3-D Ritz [44] 2.3261 4.1014 7.5448 2.9728 5.6514 8.4158 5.6221 7.1317 10.124 6.1823 8.4577 11.803
3-D Ritz [76] 2.3231 4.0954 7.5332 2.9688 5.6437 8.4139 5.6157 7.1234 10.111 6.1753 8.4480 11.801

0.2 Present ED4 (120× 120) 1.9763 3.3365 5.7090 2.4853 4.2111 4.4390 4.2810 5.3399 5.6329 4.6806 5.9100 6.2271
3-D Ritz [44] 1.9751 3.3346 5.7012 2.4842 4.2111 4.4350 4.2764 5.3356 5.6317 4.6763 5.9089 6.2218
3-D Ritz [76] 1.9735 3.3318 5.6969 2.4841 4.2104 4.4315 4.2736 5.3324 5.6304 4.6734 5.9082 6.2182
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Figure 4.6: Isotropic clamped plates with t
b
= 0.1 and ν = 0.3. On the y axis is reported

the percentage error ∆ of the present ED4 solution with respect to [76].
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Table 4.4: Comparison of the first 3 frequency parameters λ̄ = λ t
b
corresponding to several

low-order modes for SSSS square laminated plates of material 3, t
b
= 0.1.

mode number
Lamina scheme Mode (n,m) Solution method 1 2 3

0◦/90◦/0◦ 1,1 3-D DQ [23] 0.06715 0.50350 0.63776
Present LD4 (60× 60) 0.06716 0.50355 0.63782
Present ED7 (60× 60) 0.06750 0.50412 0.63851

1,2 3-D DQ [23] 0.12811 0.68880 0.95017
Present LD4 (60× 60) 0.12822 0.68893 0.95050
Present ED7 (60× 60) 0.12889 0.68966 0.95455

2,1 3-D DQ [23] 0.17228 0.58375 1.17826
Present LD4 (60× 60) 0.17230 0.58380 1.17824
Present ED7 (60× 60) 0.17427 0.58430 1.18274

2,2 3-D DQ [23] 0.20807 0.97523 1.20362
Present LD4 (60× 60) 0.20812 0.97553 1.20363
Present ED7 (60× 60) 0.21021 0.97957 1.20639

0◦/90◦/0◦/90◦ 1,1 3-D DQ [23] 0.06621 0.54596 0.59996
Present LD4 (60× 60) 0.06623 0.54602 0.60001
Present ED7 (60× 60) 0.06679 0.54664 0.60061

1,2/2,1 3-D DQ [23] 0.15203 0.63883 1.07656
Present LD4 (60× 60) 0.15206 0.63888 1.07653
Present ED7 (60× 60) 0.15473 0.63945 1.08126

2,2 3-D DQ [23] 0.20848 1.06252 1.15535
Present LD4 (60× 60) 0.20856 1.06273 1.15606
Present ED7 (60× 60) 0.21263 1.06703 1.16060

Table 4.5: Comparison of the fundamental frequency parameter λ̄ = λ b
t
for the first three

mode number (m) of a 0◦/90◦/0◦ SSSS square laminated plate of material 2,
t
b
= 0.1.

Boundary condition type
m Solution method CSCS CSSS CSFS
1 3-D DQ [23] 19.809 17.195 7.256

Present LD4 (40× 40) 19.820 17.205 7.299
Present ED7 (40× 40) 19.830 17.213 7.304

2 3-D DQ [23] 25.085 23.289 16.998
Present LD4 (40× 40) 25.109 23.319 17.015
Present ED7 (40× 40 25.152 23.362 17.068

3 3-D DQ [23] 36.908 35.877 31.929
Present LD4 (40× 40) 37.033 36.011 32.057
Present ED7 (40× 40) 37.182 36.162 32.225
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Table 4.6: Comparison of the fundamental frequency parameter λ̄ = λ b
t
for an angle-ply

45◦/− 45◦ square laminated plate of material 2.

t
b

BC type Solution method 0.1 0.05
CCCC 3-D DQ [48] 16.9980 20.8797

FE [48] 17.4509 21.1185
Present LD4 (40× 40) 17.2799 21.0548
Present ED7 (40× 40) 17.2916 21.0621

SSSS 3-D DQ [48] 14.2123 16.7141
FE [48] 14.4099 16.7329

Present LD4 (40× 40) 14.3240 16.6624
Present ED7 (40× 40) 14.3727 16.7106

Table 4.7: Comparison of the fundamental frequency parameter λ̄ = λ b
t
for several wave

number for a 0◦/90◦/core/0◦/90◦ plate with soft core. LD4 and LD3 are use
for thick and thin plate respectively.

Solution type
m n Present LD Analytic [74] Analytic LM [60]

t
b
= 0.01

1 1 11.9479 11.9401 11.8593
1 2 23.4259 23.4017 23.3419
1 3 36.2033 36.1434 36.1150
2 2 30.9694 30.9432 30.8647
2 3 41.4951 41.4475 41.3906
3 3 49.8090 49.7622 49.7091

t
b
= 0.1

1 1 1.8492 1.8480 1.8470
1 2 3.2234 3.2196 3.2182
1 3 5.2360 5.2234 5.2286
2 2 4.2945 4.2894 4.2882
2 3 6.1071 6.0942 6.0901
3 3 7.6959 7.6762 7.6721

Table 4.8: Comparison of the first 6 frequencies [Hz] for a sandwich plate with honeycomb
core.

[51]
mode number Experiment Analysis Present LD3 (60× 60)

1 - 23 23.02
2 45 44 44.15
3 69 71 69.76
4 78 80 79.27
5 92 91 90.24
6 125 126 124.36
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Figure 4.7: LD4 and two ED solution for the plate layout considered in the validation
case. The displacement u refers to the y = 0 and x = a

2 coordinates.

limits due to the computational effort of the present LD theories, the results appear
to be in good agreement with the reference ones. However, more accurate solutions
can be obtained with smaller mesh size. Morover, no substantial differences in the
accuracy are observed varying the electrical boudary conditions; indeed, very similar
results are obtained for OC and SC conditions.

Table 4.9: Comparison of the first 5 frequency λ̄ = ωa2
√
ρ 1
2πt103 corresponding to several

low-order modes for SSSS square laminated plates bonded by two PZT-4 layers,
t
b
= 0.02.

mode number
BC Solution method 1 2 3 4 5
OC 3-D exact [35] 245.942 - - - -

LM [8] 245.937 559.406 691.731 965.191 1091.003
Present ED4 (30× 30) 246.398 562.766 696.129 971.939 1106.863
Present LD3 (30× 30) 246.251 561.951 695.095 969.956 1103.547

SC 3-D exact [35] 245.941 - - - -
LM [8] 245.936 559.402 691.727 956.179 1090.983

Present ED4 (30× 30) 246.394 562.729 696.116 971.876 1106.700
Present LD3 (30× 30) 246.251 561.945 695.091 969.942 1103.523
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4.3 Comparison among different UF theories

In this section the capabilities of the UF formulation are exploited in solving the free
vibrations problem of plate-like structure. In particular, several different theories
are compared to find out how to obtain the best compromise between accuracy and
computational effort. Note that the present section has not to be considered as
guideline for the free vibration analysis of every type of plate structures; indeed the
present FE method is not suitable for this kind of study due to its computational
inefficiency respect to other numerical method. Moreover only a few representative
number of parameters are considered in the following. It should be clear that the
present structural model could be used for several accurate analysis in the framework
of structural mechanics. However this is not the aim of this work, thus only few
pure structural case are studied.

In the following isotropic, laminated, sandwich and piezoelectric plate cases are
presented in indipendent sections.

4.3.1 Isotropic plates

In this section isotropic square plates with FE mesh size 120× 120 are considered.
Figures 4.8 and 4.9 show the percentage error ∆ =

λ−λref
λref

×100 of several higher order

theories obtained by the present UF for the first 40 modes of a simply supported
and clamped plates with different thickness ratio. The ED3 and ED4 solutions are
assumed as the reference ones for thin and thick plates respectively; section 4.2 and
tables D.1-D.7 clearly justified this assumption. Firstly, figures 4.8(a) and 4.9(a)
reveal that the accuracy depends on the mode type for both simply supported and
clamped edges; indeed when symmmetrical modes appear in the considered portion
of spectrum, higher order effects are not relevant for such modes, then low order
models could provide the same accuracy as the reference model, explaining the local
minimum of the error in thick plates cases. On the other hand, the same figures
show that for non-symmetric modes the error gets larger as the frequency increases,
demonstarting that the higher order effect get prominent when the local wave-form
becomes comparable with the dimensions of the plate section. Despite that, as
shown in figures 4.8(b) and 4.9(b), when thin plate are taken into account, this high
frequency effect becomes less prominent and the accuracy is not compromised even if
low order theories are considered. This effect can be shown also in figure 4.10, where
the thruogh-the-thickness displacement u is reported along the y axis for thin and
thick simply supported plates for two different bending modes; it is clear that, for
thick plates, the higher is the wave number the more is the warping of the section.
However, no differences are observed in the case of thin plates, demonstrating the
small percentage error accomplished by the simplest plate theory.

In addition to higher order effects, also the quasi-3-D description of the displace-
ment field is an important feature of the UF models. Indeed the CPT and the
FSDT (and also the Reddy’s TSDT) neglect the through-the-thickness variation of
the transversal displacement w. Modeling this kinematic aspect could be important
in predicting natural frequencies associated with symmetric modes in the thickness
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direction; in fact, in some cases, the vertical displacement could get prominent for
this kind of modes, becoming a prevalently thickness modes. A careful scrunity of
tables D.1-D.7 and figures 4.8 and 4.9 reveal that symmetric modes appear in the
low portion of the spectrum when the thickness ratio increases; in particular moving
from thin to moderately thick and thick plates the symmetric modes increases from
none to up to ten in the considered portion of spectrum. However, considering the
simply supported case, the observed symmetric modes are almost always membranal
modes (i.e. prevalently in-plane motion), then the assumption of zero transversal
displacement could be accurate enough. On the contrary, when clamped edges are
considered, the symmetric modes are also thickness modes, probably due to the
in-plane constaints along the plate edges, then through-the-thickness variation of w
should be taken into account. In tables D.1-D.7 symmetric modes with thickness
variation are characterized by the fact that, differently from symmetric modes with
prevalently in-plane displacement, higher order terms improve the accuracy of the
associated frequency parameter. For example, in figure 4.11 the first thickness mode
for a clamped plate is reported.

Finally, it could be observed that low order theories could provide a good ac-
curacy in the eigenfrequency analysis of isotropic plates when small thickness ratio
are considered, and no missing frequencies due to kinematic model assumptions
should be observed in a large portion of the spectrum if CPT or FSDT are used (i.e.
no prevalently thickness modes appear). However, when the plate become thicker,
high order effects have to be considered and thickness modes become important,
especially for clamped plates. From this point of view, the UF can provide a large
variety of theories and then some combinations of patrameters (such as t

b
) and larger

frequency range could be solved correctly.
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Figure 4.8: Effect of the thickness ratio on the accuracy of several ED theories. On the y
axis is reported the percentage error ∆ respect to ED4 and ED3 for thick and
thin plate respectively. Simply supported plate with ν = 0.3.
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Figure 4.9: Effect of the thickness ratio on the accuracy of several ED theories. On the y
axis is reported the percentage error ∆ respect to ED4 and ED3 for thick and
thin plate respectively. Clamped plate with ν = 0.3.
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Figure 4.11: First symmetric mode. Isotropic plate with t
b
= 0.1 and clamped edge.

4.3.2 Laminated plates

In this section laminated plates are considered. In the following anlysis we consider
the LD3 and LD4 solution as the reference ones and ∆ indicates again the relative
percentage error. This choice is largely justified by the previous validation (see 4.2).

The thickness ratio t
b
and the ply number are considered as varying parameters

in order to understand the efficiency of some theories obtained by the present UF.
Such a parametric study is not the aim of this work, thus only a representative
number of cases is analysed in order to obtain a first understanding of the correct
use (in terms of accuracy and computational effort) of the present theories; indeed
the computational effort is an important feature especially when acoustic coupling
is accounted in the elastic problem.

Figures 4.12(a)-4.12(b) show the effect of increasing the number of layers in the
accuracy of some ED and LD theories. A clamped cross-ply square plate symmet-
rically laminated with FE mesh size 60 × 60, made of material 2 and t

b
= 0.1 is

considered; the starting lay-up scheme is 0◦/90◦/0◦. First, figures 4.12(a)-4.12(b)
show a strong dependance of the accuracy with the mode number. This behavior is
partially inhibited increasing the number of layers, probably because the material
difference between x and y directions is reduced by the averaging effect induced when
the number of layers become large. After this clarification, the same figures show the
effect of increasing the plies number for the ED and LD theories. Thanks to its local
description of the plate, LD theories show a clear behavior: as the number of layers
increases, the local plies thickness decreases, then the error of LD solutions tends
to decrease for all the observed modes. For what concern the ED models, the error
in the selected frequency range seems to remains the same on average; moreover,
except for the ED2 theory, the error seems to assume a more constant value showing
a less dependence on the mode number. This observation does not demonstrate the
superiority of the LD theories with respect to ED ones; indeed, even if the LD error
decreases and ED remains approximately the same, the problem size of a LD theory
increase whereas the ED one remains the same. Moreover, a careful scrunity of
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figures 4.12(a) and 4.12(b) reveals that the odd orders are much more effective then
the even ones for ESL analysis of a simmetrically laminated plate. In figures 4.13(a)
and 4.13(b) the same parameter is studied for a thinner plate. In this case the mode
dependance of the error become less evident, and it is clearly visible the tendency
of the error to get larger as the mode number increases. Above that, the previous
analysis is still valid, even more evident for a cross-ply plate with t

b
= 0.01. There-

fore, for what concern the efficient use of these theories, figures 4.12-4.13 show that
the LW modeling of the plate is not necessary in the considered frequency range.
Indeed, assuming an accuracy limit of 0.5% the ED7 theory (24 degrees-of-freddom
per node) is more efficient then LD3 (30 and 66 degrees-of-freddom per node for
three- and seven-layered laminate) for thick plates, and ED3 (12 degrees-of-freddom
per node) is more efficient then LD1 (12 and 24 degrees-of-freddom per node for
three- and nine-layered laminate) for thin plates.

In figures 4.14 the displacement field in the thickness direction for the first bend-
ing mode is shown for the previously analyzed layout; the fact that ED theories
work well as the layer number increases and the plate become thinner (considering
a real application case) is confirmed by the tendency of the section to warping less.
Of course the warping increases with the modes number and then the error tends to
raise, as shown in figure 4.15, requiring higher order terms in the thickness direction
for a more accurate solution. This observation demonstrates the clear tendency of
the error to increase as the frequency increases (figure 4.13(a)-4.13(b)): the thinner
is the plate the more are the higher order effect as the frequency increases, whereas,
for a thick plates, even at low frequencies the section warping plays an important
role.

The 3-D description of the plate structure could play an important role when
symmetric modes in thickness direction is considered. Actually, the through-the-
thickness variation of the displacement w is prominent when the symmetric mode is
predominantly a thickness mode. Tables D.8-D.25 show that symmetric modes are
observed even in the low portion of the spectrum when thick plate are considered,
whereas they move to high frequencies when the plate becomes thinner. Further-
more, for a given thickness ratio, the simply support condition moves the symmetric
modes to low frequencies due to the unconstrained in-plane displacement along the
plate edge. Even the material properties play an important role in the position of
these modes in the frequency spectrum. In the analyzed cases with clamped edges,
the observed symmetric modes are predominantly in-plane modes, then no 3-D de-
scription is required to capturing them with good accuracy. Otherwise, considering
a simply supported cross-ply plates of material 3 (the validation case of table 4.4),
several modes with significant displacement in the thickness direction (figure 4.16)
are observed under the fiftieth mode.
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Figure 4.16: Symmetric mode. Only one quarter of the SS mode is reported.

4.3.3 Sandwich plates

As demonstrated in sections 4.1 and 4.2, ED theories are not appropiate to cor-
rectly describe the dynamic response of sandwich plates. Then, only LD results are
considered and discussed here.

In figures 4.17 and 4.18 the error ∆ with respect to the LD3 and LD4 solutions
for the cases considered in the convergence section are presented. The considered
mesh size is 60×60. It can be shown that the error increases at higher frequencies; in
particular, a clear tendency is shown in the thin plate case ( t

b
= 0.01) and for higher

core-to-face thickness ratios ( tc
tf

= 50), whereas the thick plate case with tc
tf

= 10 has

a less different trend due to the symmetric modes (mainly tickness modes) which
populates the second half of the considered frequency range. Figures 4.17 and 4.18
show the effect of the two considered parameters t

b
and tc

tf
on the accuracy of the

LD models; figure 4.17(b) demonstrates that for thinner plates even the LD1 model
provides a very accurate solution, although some higher order effects appears as the
modes number increases. On the other hand, the relative thickness ratio tc

tf
seems to

have no substantial effect on the accuracy of the first 15 frequencies (4.18), whereas
a different tendency is observed for the higher portion of the spectrum due to the
vanishing of the symmetrical modes in the thickness direction.

Figure 4.19(b) shows the through-the-thickness variation of the u component
of the displacement field for two different modes when a simply supported plate
with soft core is considered (see section 4.2). The two displacements refer to the
first (m = 1 and n = 1) and twentieth (m = 7 and n = 7) mode of the SS
class respectively, and they confirm that no higher order effects are observed in the
considered frequency range when a thin ( t

b
= 0.01) soft core is considered. Moreover

it can be pointed out that as the mode number increases the discontinuities due
to inhomogeneous material properties in thickness direction get more important.
Otherwise, when a thicker plate is considered ( t

b
= 0.1), the higher order terms plays

an important role as the considered frequency range increases (see figure 4.19(a)).
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This confirms the previous accuracy analysis.
The last two examples show how a LW description which can take into account

the non-linear effects in the displacement field of the core is really important in
modeling sandwich plates. Indeed, considering the through-the-thickness variation
of the normal displacement component could be a fundamental feature when soft
cores are taken. Especially when the thickness ratio t

b
assumes relatively high values

(in the order of 10−1), the symmetric modes in the thickness direction are always
predominantly thickness modes and populates the low portion of the spectrum (see
tables D.26-D.34). However, when the plate becomes thinner or the core becomes
thicker respect to the skin faces, the thickness modes move to higher frequency
values. In the case of t

b
= 0.01 no symmetric modes are observed in the frequency

range where the present FE analysis is still accurate; whereas the increase of the tc
tf

moves the first thickness modes to the twenty-third modes of the SS class. In figure
4.20 the first thickness modes of a thick sandwich plate ( t

b
= 0.1) is reported.
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Figure 4.17: Effect of the thickness ratio t
b
on the accuracy of LD theories. On the y axis
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Figure 4.20: Symmetric mode. Only one quarter of the SS mode is reported.

4.3.4 Laminated plates with piezoelectric materials

Finally,the electromechanical models obtained with the present UF are compared
considering the plate lay-up of section 4.2. However, due to the huge memory re-
quirements of the high order LD theories, a complete comparison can be enstablished
only over a restricted frequency range. In particular the first 10 modes are consid-
ered, and the accuracy of the ED and LD theories is compared with respect to the
LD3 solutions. The effect of the electric boundary conditions OC and SC on the
accuracy is also shown.

In figures 4.21(a) and 4.21(b) nothing new, compared to the previous considera-
tions about laminated plates, appears. A stronger dependance of ED theories from
the mode number with respect to LD models is still observable. Moreover, the elec-
tric boundary conditions seem to not affect the accuracy: only slightly larger errors
are observed for the ED2 solutions when the OC electric condition is considered.
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CHAPTER 5

Fluid-Structure Interaction Validation

This chapter deals with the validation of the whole structural-acoustic FE code
considering the acoustic FE model and the fluid-structure coupling. The organi-
zation is the following: in the first section, the acoustic elements are validated for
a simple geometry, where analytical solution is known; in the second section, the
vibro-acoustic response of a fluid loaded plate is compared with cases available in the
open literature in terms of frequency response functions (FRFs). The second section
of this chapter is prominent in this work and it is dual-purpose; indeed, not only
the validation of the interface elements is considered, but also the modal coupling
approach is studied in order to find the convergence behavior of this approach.

5.1 Acoustic model validation

Let us consider the case of a rectangular rigid walled cavity. In this simple case, the
analytical solution of the eigenvalue problem is known; in particular, if the cavity
has dimensions a× b× c, the natural circular frequencies of the acoustic system are
given by:

ωijk =

√

√

√

√c2f

[

(

iπ

a

)2

+

(

jπ

b

)2

+

(

kπ

c

)2
]

. (5.1)

The first 10 frequencies of a 0.6× 0.4× 0.5 m3 cavity are reported in table 5.1, and
compared with FE solutions with increasing number of elements in each directions.
The convergence pattern is reported in figure 5.1 for three representative modes.
Table 5.1 and figure 5.1 show the monotonic downward convergence behavior of the
8-nodes hexahedral element considered in this work. Moreover the results appear in
good agreement with the analytical solutions. Finally in figure 5.2 three eigenvectors
are shown.

5.2 Coupling validation

In this section the coupled model presented in chapter 2 is validated. Only the
mechanical case is considered, since, to the best author knowledge, no reference
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Table 5.1: First ten natural frequencies [Hz] for the rigid walled 0.6× 0.4× 0.5 m3 cavity

mode number
(nx × ny × nz) ndof 1 2 3 4 5 6 7 8 9 10

(5× 5× 5) 216 290.56 348.67 435.83 453.86 523.81 558.14 609.58 629.24 702.25 731.49
(10× 10× 10) 1331 287.01 344.41 430.52 448.32 517.41 551.33 581.11 621.57 675.51 697.33
(20× 20× 20) 9261 286.13 343.35 429.19 446.95 515.82 549.63 574.02 619.65 668.87 688.82
(40× 40× 40) 68921 285.91 343.09 428.86 446.60 515.43 549.21 572.25 619.17 667.22 686.71

exact (equation 5.1) - 285.83 343.00 428.75 446.49 515.29 549.07 571.67 619.01 666.67 686.00
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Figure 5.1: Space convergence of three modes for the 0.6×0.4×0.5 m3 cavity. The relative
percentage error ε with respect to the exact solution 5.1 is reported on the y
axis.

electromechanical cases are available in the literature. Despite that, the electrome-
chanical coupling is a structural feature and does not directly interact with the
vibro-acoustic coupling; indeed, it is remarked that the problem can be always ex-
pressed in terms of displacement s and pressure p only, via static condensation of
the electric degrees-of-freedom.

In the following, the modal coupling solution method is validated considering
two test cases; the first is referred to a weak coupled system, whereas the second
is a strong coupled case. As it is stated in the introduction chapter, the weak or
strong coupling is an important feature of a vibro-acoustic system, mainly when
the uncoupled modal basis are used to reduce the problem size. For this reason,
it is often desiderable to know before hand whether a system is weakly or strongly
coupled. Despite a dimensionless quantity is defined by Atalla [4] to classify the
vibro-acoustic system in weakly or strongly coupled, in [26] it is noted that this
measure is not fully comprehensive, since it takes into account only the mass prop-
erties of the structure and the acoustic bulk stiffness. However, as it is noted in
[39], the coupling between structural and acoustic subsystems is a more complex
function of the mass properties, geometry and excitation frequency. However, even
if it is in generally difficult to classify vibro-acoustic systems for their coupling be-
havior, the following classification for simple geometries, like those considered in
this work, holds: whenever an heavy fluid fluid, like as water, is contact with a
structure, a strong coupling behavior is observed, whereas when the cavity is filled
by a lightweight fluid, like air, a weak coupling is obtained. For this reason, two
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(a) mode 1

(b) mode 5

(c) mode 10

Figure 5.2: Some representative eigenvectors for the 0.6 × 0.4 × 0.5 m3 cavity. Mesh size
40× 40× 40.
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cases are considered in the following, consisting in an isotropic plate backed by a
rigid walled cavity filled with air and water, respectively. Unfortunately, no similar
cases with composite plates are founded in literature.

5.2.1 Weak coupling case

The case presented here is also considered in [58]. The test structure (see figure
5.3) is a square simply supported 1 × 1 m2 aluminium plate with thickness t =
0.01m, backed by a rigid walled cubic cavity of dimensions 1 × 1 × 1m3. The
mechanical properties of the plate structure are as follows: Young’s modulus E =
70GPa, mass density ρs = 2700 Kg

m3 and Poisson’s ratio ν = 0.35. The cubic cavity
is filled with air with the following properties: speed of sound cf = 343 m

s
and mass

density ρf = 1.2 Kg
m3 . A constant amplitude mechanical excitation of 1N over the

frequencies of 0 − 300Hz, is applied on the FE structural node denoted by point
A, with coordinates (0.25m, 0.35m). The following system outputs are considered:
acoustic pressure at point B of coordinates (0.75m, 0.25m, 0.75m) and at point C

(0.75m, 0.25m, 0.95m), the plate specific kinetic energy
Es

k

ρs
and the acoustic mean-

square pressure Ef
p . The convergence of the modal coupled method is analyzed by

increasing the number of the structural and acoustic modes retained in the reduced
basis. In particular the modes included in the range of fmax, 1.5fmax , 2fmax and
almost 3fmax with fmax = 300Hz are considered. A FE mesh of 20×20×20 is used,
and the ED2 theory is adopted.

Figure 5.4 shows the convergence of the pressure response at point B increasing
the number of the structural and acoustic modes of the reduced model. The reference
solution refers to the full coupling case reported in [58], where no damping effect
is considered. It can be observed that a good accuracy is obtained with only 10
structural modes and 20 acoustic modes, which are the uncoupled modes included
in the 0− 1.5fmax frequency range. A fully converged solution is achieved if all the
uncoupled modes in the frequency range below 3fmax are retained. Small differences
are observed with respect to the reference solution, because in [58] the fully coupled
solution is obtained with a different structural finite element. In particular, the
present structural element leads to a slightly overestimation of some resonance peaks,
probably due to the performance of the selective integration adopted to avoide shear
locking effects. It also can be observed that the resonance peaks are obtained with
good accuracy even considering only the modes below fmax, whereas the convergence
of the anti-resonance peaks appears slower.

Figure 5.5 shows the convergence of the pressure response at point C, which is
near the plate-fluid interface. At this point no reference solutions are available, so
the number of modes needed to achieve a fully converged solution in the previous
case (point B, ns = 20 and np = 60) is assumed as the reference basis. The
convergence appears slightly slower for the acoustic pressure near the plate surface,
confirming the fact that more acoustic modes are required to obtain an accurate
local description of the fluid-structure interface.

Finally in figure 5.6 the convergence of the energetic parameters is analyzed.
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The convergence of the structural kinetic energy and of the fluid potential energy
appears to be faster then that observed for the local response, confirming the fact
that when global response parameters are considered the modal coupling technique
provides good accuracy and efficiency.

Figure 5.3: FE model for weakly coupled validation case.
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(d) ns = 20, np = 60

Figure 5.4: Pressure response at point B. Convergence of the modal coupling reduction
technique with respect to the full coupling solution of [58].
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Figure 5.5: Pressure response at point C. Convergence of the modal coupling reduction
technique with respect to the assumed converged solution.
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Figure 5.6: Response in terms of global parameters. Convergence of the modal coupling
reduction technique with respect to the assumed converged solution.
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5.2.2 Strong coupling case

A simply supported plate backed by a water filled cavity is considered as the valida-
tion case for strong coupling. The cavity-plate system has the following dimensions
(see figure 5.7): 0.29m in x direction, 0.35m in y direction, 0.14m deep with a
1.5mm thick aluminium plate. The mechanical properties are: Young’s modulus
E = 72GPa, mass density ρs = 2700 Kg

m3 and Poisson’s ratio ν = 0.33. The cavity is
filled with water with the following properties: speed of sound cf = 1500 m

s
and mass

density ρf = 1000 Kg
m3 . The plate is discretized using 20×20 structural elements and

the cavity with 20×20×10 acoustic elements. Again, the ED2 theory is considered.
The coupled system is excited using a constant force of 1N over the entire range of
0 − 600Hz. The force is applied on plate point A (0.039m, 0.272m). The system
outputs are: colocated mid-plane transverse displacement w0, acoustic pressure at
point B of coordinates (0.135m, 0.175m, 0.07m), the plate specific kinetic energy
Es

k

ρs
and the acoustic mean-square pressure Ef

p . The convergence of the modal cou-
pled method is analyzed by increasing the number of the structural and acoustic
modes of the reduced basis. In particular, the number of uncoupled modes varies
from ns = 50 and np = 50 to ns = 1000 and np = 1000. The description of this
case can also be found in [58] and [73]. The fully coupled solution reported in [58] is
assumed as the reference for the local transfer functions. No damping is accounted
in the present analysis.

In figure 5.8 the convergence of the pressure FRF at point B is studied. As
expected, a fully converged solution is hard to be established even considering a
large number of uncoupled modes. In particular, it is observed that only considering
almost 1000 structural modes and 1000 acoustic modes gives rather satisfactory
results. However, only the modal contributions below 300Hz seems to be converged.
The same consideration can be made for figure 5.9, where the mid-plane structural
displacement at point A is considered as system output. Again the FRF is far from
convergence for the frequencies above 250Hz, even if the resonance peaks are in
good agreement with those reported in [58] up to 500Hz. Finally in figure 5.10 the
global system response in evaluated in terms of specific structural kinetic energy
and mean-square pressure. It is confirmed that, also form an energetic point of
view, the solution with 1000 acoustic modes and 1000 structural modes provides
a good approximation of the dynamic system response only in the low frequency
range. Clearly, this fact confirms the poor accuracy of the modal coupling method
when strong coupled systems are considered. However, more accurate and efficient
solution can be obtained via uncoupled basis if static corrections are accounted for.
These techniques are beyond the scope of this work and in the last part of this
dissertation, where numerical examples are presented, only weak coupled system
are considered. The reader can refer to [73] and [49] for more information about
static correction techniques.
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Figure 5.7: FE model for strongly coupled validation case.
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(d) ns = 1000, np = 1000

Figure 5.8: Pressure response at point B. Convergence of the modal coupling reduction
technique with respect to the full coupling solution of [58].
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(d) ns = 1000, np = 1000

Figure 5.9: Structural displacement response at point A. Convergence of the modal cou-
pling reduction technique with respect to the full coupling solution of [58].
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Figure 5.10: Response in terms of global parameters. Convergence of the modal coupling
reduction technique.



CHAPTER 6

Numerical Results

In order to illustrate the applicability of the present FE model in vibro-acoustic
applications, the UF is applied to different cavity-backed plate systems. Thanks to
the unified approach, a large variety of plate structures can be analyzed. The FE
model has been validated in case of simple isotropic plates in the previous chapter. In
the present chapter, more complex cases such as laminated and sandwich plates are
considered. Moreover, both mechanical and electromechanical structural systems
are taken into account.

The method adopted for the solution of the coupled piezoelectric structural
acoustic system is the modal coupling method, which has been discussed deeply
in chapter 5. Due to the bad efficiency and accuracy of this solution method in
the case of strong coupled systems, only air filled cavity cases (i.e. weak coupling
cases) are presented. Moreover, comparisons between LW and ESL description and
between different order theories represent an important focus of this chapter. There-
fore, in order to find out the effect of considering higher order theories, thin and
thick plates cases are both considered. The features of the LW description connected
to the use of Lagrange polynomials are also exploited, providing a more accurate
description of the boundary constraints.

In the next sections, three numerical cases are presented. Two cases consist
of pure mechanical structures; in section 6.1 the vibro-acoustic response of a thin
laminated plate coupled with a shallow cavity is analyzed, whereas in section 6.3
a sandwich plate with soft core is considered. In section 6.2 an electromechanical
thick plate case is presented. For each of these cases, the frequency response of
the coupled system is analyzed in terms of local and global parameters. The FRFs
obtained with different structural models are compared also in terms of relative
error. Clearly, due to the presence of resonance and anti-resonance peaks, the local
error between two different FRFs may be large even if the considered solutions are
in good agreement. However, even if the local error could be misleading, at the
same time it can be a simple tool to analyze qualitatively how the structural model
refinement effects depend on the frequency.

6.1 Test case 1

A thin laminated simply supported plate is considered as the first numerical case.
The plate structure has dimensions 0.6×0.4m2 and the shallow cavity is 0.1m deep
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(see figure 6.1). The multilayered structure consists of nine layers in symmetric cross-
ply configuration with lamination scheme [(0◦/90◦)4 /0

◦]. The plate thickness is
t = 3mm, and each lamina is 0.3̄ mm thick. The Gr-Ep reinforced fiber is considerd,
and the material properties are reported in appendix C. The cavity is air filled with
speed of sound cf = 343 m

s
and mass density ρf = 1.2 Kg

m3 . The plate is excited by
a 1N force applied at structural node A (0.13m, 0.053m) at the top of the plate
in transverse direction. The frequency range of interest is 0 − 2KHz, i.e. fmax =
2KHz. The system outputs are: structural mid-plane transverse displacement w0 at
point B of coordinates (0.52m, 0.313m), acoustic pressure at point C of coordinates
(0.346m, 0.186m, 0.07m), the plate kinetic energy Es

k and the acoustic mean-square
pressure Ef

p . A FE mesh of 90 × 60 × 10 is kept. The thin multilayerd plates
allow to use ESL theories, as we see in chapter 4; in particular ED2 and ED3
solution are compared. The modal coupling technique is used considering acoustic
and structural modes below 3fmax. The uncoupled modes included in the frequency
range 0 − 2KHz are 41 cavity modes and 42 structural modes. Finally a modal
damping factor ξs = ξf = 0.01 is assumed.

In figures 6.2 and 6.3 the FRFs of pressure and displacement outputs obtained
using ED2 and ED3 models are presented with the relative error. It is clear that
no substantial difference appears between ED2 and ED3 solutions; however, even if
the two FRFs almost coincides, the error shows a growing tendence as the frequency
increases. Moreover, this tendency appear more regular for the displacement output.
This results are in agreement with the analysis reported in chapter 4, where it has
been shown that for thin laminated plates with high number of layers, no substantial
differences among various plate theories appear in the free response up to 30 natural
frequencies. Although, the higher order effects get more important in the high
frequency range and affect both the displacement and the acoustic field.

In figures 6.4 and 6.5 the structural kinetic energy and the acoustic mean-square
pressure are reported. It can be oserved that the growing tendency shown by the
error of the local parameters (i.e. pressure p and displacement w0) is less pronounced
for the global parameters. Indeed, the error of the structural and fluid energy seems
to reach a constant maximum value.

Clearly, for the considered structure a low order theory can lead to sufficient
accuracy in the selected frequency range, and no more refined models are needed.
Moreover, figures 6.2, 6.3, 6.4 and 6.5 show that at high frequencies the damping
effects and the growing modal density become important. Despite of the simple
damping model used here, no clear modal contributes are observed above 1500KHz
and this effect is more pronounced when global parameters are observed.
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Figure 6.1: FE model for test case 1.
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Figure 6.2: Pressure response at point C and percentage error between ED2 and ED3.
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Figure 6.3: Structural displacement response at point B and percentage error between
ED2 and ED3.

frequency [Hz]

E
pf  [

d
B

]

0 500 1000 1500 2000
-10

-5

0

5

10

15

20

25

30

35

40

45

ED2 - ξ = 0.01
ED3 - ξ = 0.01

(a) FRF

frequency [Hz]

|E
D

2-
E

D
3|

/|E
D

3|
×1

00

0 500 1000 1500 2000
10-4

10-3

10-2

10-1

100

101

102

103

(b) error

Figure 6.4: Response in terms of fluid potential energy and percentage error between ED2
and ED3.
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Figure 6.5: Response in terms of structural kinetic energy and percentage error between
ED2 and ED3.
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6.2 Test case 2

A thick laminated simply supported plate bonded by two piezoelectric layers is con-
sidered as the second numerical case. The plate structure has dimensions 1.2×0.8m2

and the shallow cavity is 0.2m deep (see figure 6.6). The multilayered structure
is made of 3 layers in symmetric cross-ply configuration with lamination scheme
0◦/90◦/0◦. The plate thickness is t = 24mm, the Gr-Ep layers are 6.4mm thick,
whereas the PZT-4 top and bottom layers are 2.4mm thick. Material properties
are reported in appendix C. The plate is electrically grounded along its edge
and only the OC case is considered. The cavity is air filled with speed of sound
cf = 343 m

s
and mass density ρf = 1.2 Kg

m3 . The plate is excited by a 1N force
applied at structural node A (0.268m, 0.108m) at the top of the plate in trans-
verse direction. The frequency range of interest is 0 − 1KHz, i.e. fmax = 1KHz.
The system outputs are: structural mid-plane transverse displacement w0 at point
B of coordinates (1.038m, 0.63m), acoustic pressure at point C of coordinates
(0.684m, 0.376m, 0.13m), the plate kinetic energy Es

k and the acoustic mean-square
pressure Ef

p . A FE mesh of 45 × 30 × 10 is used. The plates structure is modeled
with ED2 and LD2 theories. The fully converged solution with the modal coupling
technique is reached with considering acoustic and structural modes below 3fmax.
The uncoupled modes included in the frequency range 0−1KHz are 41 cavity modes
and 10 structural modes. Finally a modal damping factor ξs = ξf = 0.01 is assumed.

Figures 6.7 and 6.8 show the local response of the plate and cavity subsystems in
terms of their own primary variables. Thanks to the low modal density in the con-
sidered frequency range, every single modal contribution is clear visible, mostly for
what concern the structural response; here, due to the weak coupling between fluid
and structure, only the 10 natural frequencies controlled by the plate vibrations are
visible. (For more informations about the definition of plate- and cavity-controlled
modes in coupled vibro-acoustic systems see [56] and [55]). The effect of the refined
LD2 model with respect to the ED2 solution is evident for the plate displacement
w0; in fact, figure 6.8 shows that the FRF response of the refined LW model ap-
pears shifted toward low frequencies, due to the overstiffness exhibited by the ED2
solution. As it can see, the error after 400Hz may be important.

The differences between LW and ESL solution get more prominent if we consider
the pressure response in figure 6.7. For instance, let us focus on the frequency range
between 550 and 750Hz. The natural frequencies of the coupled system over this
frequency range are reported in table 6.1. Here, only the mode 22 is controlled by
the plate vibrations, whereas the other natural frequencies are related to cavity-
controlled modes. It is evident that the structural model refinement obtained using
the LD2 theory is effective only for the mode 22, whereas the natural frequencies
controlled by the acoustic cavity remain almost the same. This is also observed
on the entire frequency range of interest. Therefore, in the pressure response, the
refinement obtained for the plate-controlled modal contributions is combined with
the unchanged cavity modal contributions, leading to a more complex behavior
than the shifted effect observed for the displacement response. Indeed, table 6.1
and figure 6.7, show that the contributions from modes 22, 23, 24, 25, 26 lead
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to a single resonance peak when ED2 theory is adopted, whereas the LD2 theory
shows the presence of two different peaks thanks to the refinement obtained for the
predominantly structural mode 22. Consequently, also the amplitude of the two
peaks is reduced. A similar case is observed between 800 and 900Hz and between
950 and 1000Hz; in the first case the refined LW theory shows different amplitude
for resonance and anti-resonance peaks due to the different combination of the local
modal contributions, whereas in the second case a larger amplitude resonance peak is
obtained. Even if the error seems to grow as the frequency increases, high frequency
analysis are difficult to be established due to the high computational effort (LD2
theory has 44 degrees-of-freedom per node). However the effect of the damping
factor and of the raising modal density could modify this tendency.

The same consideration can be made for figures 6.9 and 6.10, where global re-
sponse parameters are presented. Again, large differences are shown for the fre-
quency range 600− 1000Hz.

Figure 6.6: FE model for test case 2.
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Table 6.1: Natural frequencies of the coupled system in the frequency range 550−750 Hz.

Frequency [Hz]
mode ED2 LD2

17 573.72 573.68
18 607.39 607.37
19 612.13 612.05
20 645.77 645.73
21 661.45 661.44
22 689.68 668.22
23 706.89 706.55
24 716.5 716.38
25 718.05 717.96
26 739.13 718.89
27 749.49 749.48
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Figure 6.7: Pressure response at point C and percentage error between ED2 and LD2.
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Figure 6.8: Structural displacement response at point B and percentage error between
ED2 and LD2.
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Figure 6.9: Response in terms of fluid potential energy and percentage error between ED2
and LD2.



Chapter 6 100

frequency [Hz]

E
ks  [

d
B

]

0 200 400 600 800 1000
-100

-80

-60

-40

-20
ED2 - ξ = 0.01
LD2 - ξ = 0.01

(a) FRF

frequency [Hz]

|E
D

2-
LD

2|
/|L

D
2|

×1
00

0 200 400 600 800 1000
10-3

10-2

10-1

100

101

102

103

104

(b) error

Figure 6.10: Response in terms of structural kinetic energy and percentage error between
ED2 and LD2.



101 Numerical Results

6.3 Test case 3

A sandwich-like composite plate is considered as the last numerical case. The plate
structure has the dimensions 0.6 × 0.4m2 and the cavity is 0.5m deep (see figure
6.11). The composite structure is made of two-layered Gr-Ep skins with lamination
scheme 90◦/0◦ and a soft core made of material 5. The plate thickness is t = 12mm,
the face skins layers are 0.5mm thick and the core thickness is 10mm. Again,
material properties are reported in appendix C. The cavity is air filled with speed
of sound cf = 343 m

s
and mass density ρf = 1.2 Kg

m3 . The plate is excited by a
1N force applied at the structural node A of coordinates (0.13m, 0.053m) at the
top of the plate in transverse direction. The frequency range of interest is 0 −
1KHz, i.e. fmax = 1KHz. The system outputs are: colocated structural transverse
displacement w at core-skin top interface, acoustic pressure at point B of coordinates
(0.346m, 0.186m, 0.325m), the plate kinetic energy Es

k and the acoustic mean-square
pressure Ef

p . A FE mesh of 90×60×20 is kept. The LW description of the sandwich
plates allow to take advantage from the use of Lagrangian polynomials; two slighty
different boundary condition sets are compared. In the first case a fully clamped
condition is considered (denoted by BC1), whereas in the second case (denoted by
BC2) the tranversal displacement is free on the bottom skin which interact with the
fluid. A fully converged solution is reached considering an uncoupled modal basis
obtained with the acoustic and structural modes below 3fmax. The uncoupled modes
included in the frequency range 0 − 1KHz are 25 cavity modes and 44 structural
modes. Finally a modal damping factor ξs = ξf = 0.01 is assumed.

In figure 6.13 the colocated structural displacement at the core-skin top interface
is presented. It can be observed that a shifting effect occurs when the second set
of boundary conditions is considered. Indeed, the modified clamped condition is
less constraining, then a shifting effect towards lower frequencies is expected. On
the other hand, larger error are observed in figure 6.12, where the FRF in terms
of pressure at point B is presented. Unlike the previously analyzed piezoelectric
case, the high modal density exhibited in the second half of the considered frequency
range makes it difficult to comment the differences between the two sets of boundary
conditions in terms of modal contributions. However, a careful scrunity of table 6.2,
where the coupled natural frequencies in the range 600− 800Hz are reported, show
that a slightly different set of structural constraints has effect on both the modes
controlled by the structural and cavity vibrations. Indeed, five cavity modes are
observed over this range, but only two of these natural frequencies are not affected
by the second set of boundary conditions (modes 44 and 33).

Although a larger difference between the two set of constraints is expected as the
frequency increases, i.e. when shorter wavelengths appear, the high modal density
and the accounted damping effect tend to contain this effect. This is more clear
observing the global parameters in figures 6.14 and 6.15, where single modal con-
tributions are not yet observable above 600Hz, mainly considering the response in
terms of structural kinetic energy. In fact, in this case, the error even seems to
decrese at higher frequencies.

Finally it can be pointed out that a poor description of the boundary conditions
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can potentially lead to significant error at high frequencies range, but the high modal
density and the dissipation of the system could contain the error, mainly for what
concern the energy parameters.

Figure 6.11: FE model for test case 3.
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Figure 6.12: Pressure response at point B and percentage error between BC1 and BC2.
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Table 6.2: Natural frequencies of the coupled system in the frequency range 600−800 Hz.

Frequency [Hz]
mode BC1 BC2

26 617.45 613.72
27 621.21 615.78
28 627.91 623.08
29 629.56 626.31
30 666.47 664.54
31 678.51 671.71
32 679.23 675.76
33 691.51 691.11
34 702.76 696.47
35 714.12 711.77
36 722.87 718.85
37 739.01 731.15
38 739.92 731.72
39 745.51 742.56
40 758.77 752.35
41 786.51 777.17
42 790.181 783.28
43 794.3 786.89
44 794.92 794.85
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Figure 6.13: Structural displacement response at point B and percentage error between
BC1 and BC2.
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Figure 6.14: Response in terms of fluid potential energy and percentage error between
BC1 and BC2.
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Figure 6.15: Response in terms of structural kinetic energy and percentage error between
BC1 and BC2.



Conclusions and future works

In this work the Carrera’s UF has been extended in the framework of vibro-acoustic
coupling, providing a powerful and accurate tool for the frequency analysis of plate-
cavity systems. The main focus of this work lies on the formulation of the vibro-
acoustic coupling for composite plates with piezoelectric layers in contact with en-
closed acoustic cavity and its FE code developing. Shorter wavelength frequency
range has been considered, in order to estimate the higher order effects of the
through-the-thickness assumptions for the structural variables on the coupled sys-
tem behavior.

The need for high computational efficiency in the deterministic vibro-acoustic
analysis has been a crucial point in this work. The structural FE code has been
written in order to contain the computational effort when large model size must be
considered in mid-frequency analysis. The sparsity pattern of the FE matrices and
the high efficiency of the iterative solvers for large and sparse problems have been
exploited in order to reduce the memory requirements and the computational time.
The performance of the developed structural FE code has been demonstrated in
chapter 4, where a convergence analysis and a careful validation have been consid-
ered for mechanical and electromechanical rectangular plates with different layouts
and boundary conditions. Moreover, the flexibility of the FE model permits to con-
sider more generic plate configurations, for instance mixed boundary conditions and
skewed plates, providing an efficient tool for static and dynamic structural analysis.
The present structural model has been coupled with a pressure-based FE formula-
tion for the acoustic cavity, leading to the unsymmetric (u, p) formulation of the
vibro-acoustic problem. The drawbacks related with the lack of symmetry in the
final, large, set of equations has been limited using the uncoupled modal technique
to reduce the problem size. The uncoupled basis have been extracted with efficient
iterative solvers from the uncoupled symmetric structural and acoustic problem, and
the final reduced size model has been easily solved by dense solver. The accuracy
of the coupled model and the efficiency of the solution procedure have been vali-
dated in chapter 5, where it has been shown that the modal coupling solution can
be efficiently used in case of weakly coupled systems. In such cases, this techniques
provides an optimal reduction of the computational burden since only few uncou-
pled modes must be considered in the reduced basis to obtain the desired accuracy,
mainly when energetic parameters are of interest. More difficult is the application
of the uncoupled modal reduction in case of strong coupling.

In chapter 6 the vibro-acoustic FE code has been used in order to presenting three
representative benchmarks of plate-cavity systems. Here the fundamental features of
the UF has been exploited. Indeed, the unified approach has permitted to consider
different plate layouts, i.e. laminated, sandwich and piezo-embedded plates, differ-
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ent kinematic assumptions, i.e. ESL and LW descriptions, and different high order
refinements with a unique FE formulation. In this way the effects of these models
on the accuracy of the vibro-acoustic response have been evalueted. As expected,
the higer order effects observed for pure structural cases (section 4.3) also affect the
fluid-structure coupling behavior (sections 6.1 and 6.2). In particular, it has been
observed that no higher order theories are required when thin isotropic plates or thin
multulayered plates with a high number layers are considered (sections 4.3 and 6.1).
However, higher order terms must be taken into account as the frequency and/or
the thickness ratio increases (sections 4.3 and 6.2). Moreover, it has been observed
that the modes controlled by plate vibrations seem to be more sensitive to the plate
theory refinements than those controlled by the cavity vibrations (section 6.2). In
section 4.2 it has been shown that a refined LW description is strictly recommended
when high transverse anisotropic plates are considered. Besides, it has been shown
how the LW description can be exploited to provide a better approximation of the
boundary conditions, and that two slightly different sets of boundary conditions can
lead to different dynamic behaviors of the vibro-acoustic system, mainly as the fre-
quency increases. It has to be said that, even if all the considered refinements seem
to have more prominent effect over higher frequency ranges, the raising modal den-
sity and the damping dissipation effect could contain, or even reduce, this tendency,
mainly for what concern the global response of the coupled system.

The above conclusions are valid for the simple coupled systems and the frequency
range considered in this work. Indeed, the modal coupling approach has not permit-
ted to analyze strong coupled system, i.e. water filled cavity. Moreover, the limited
computational facilities has not permitted to consider more complex or larger mod-
els. More general analysis and a complete extension of the frequency range towards
the intrinsic limit of the deterministic approaches could be obtained only with the
following modeling and numerical improvements.

- Even if a unified formulation is powerful tool providing an arbitrary accurate
analysis of a widely variety of plate configurations, the UF can hardly provide
a computationally efficient model. The recovery of simple plate theories, such
as CPT or FSDT, can be obtained with the introduction of penalty functions
[21]. However, in this way only an approximation of these simple theories
can be obtained. On the other hand, a generalized approach to the UF could
be studied in order to freely choose the orders of each variables regardless of
the the orders used for the thickness expansion of the other variables. In this
way all classical ESL models could be obtained, as shown in [24]. Moreover,
a different expansion could be used for different layers, providing an accurate
description only where it is necessary. This type of approach could lead to
a significant reduction of the computational effort: for instance, a sandwich
plate could be modeled with higher order expansion terms only in the core
region, whereas a Kirchhoff model could be used for the plate faces.

- In order to extend the applicability of the present FE approach to the mid-
frequency range, all the numerical aspects presented in the introduction chap-
ter should be studied. A fully coupled solution of the unsymmetric eigenvalue
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problem using iterative solvers should be developed, providing the truncated
basis for the modal analysis. Moreover, static corrections for the uncoupled
modal reduction strategy and non-modal approaches should be considered.
In this way, a large variety of solution procedure could be used depending
on the considered problem. Although the FE model efficiency reduces as the
frequency increases, leading to excessively large problems, more accurate and
efficient numerical approximation techniques can be hardly compete with the
great flexibility of the FE approach. Indeed, even if meshless and spectral
methods show excellent convergence properties, they are not capable, at they
current stage of development, of combining three important aspects, i.e. en-
hanced computational efficiency together with the general applicability with
respect to geometrical complexibility and the ability to account for mutual
fluid-structure coupling effect. However the hybrid approach proposed by
Desmet [34], which combine the FE approach for the structural modeling with
the efficient WB prediction technique for the acoustic field, seems to obtain
satisfactory results. From this point of view, an extension of the present for-
mulation accounting for the coupling between the unified FE structural model
and the WB approach for the acoustic field could be a very interesting study.





APPENDIX A

Explicit form of the structural stiffness

nucleus

In this appendix the explicit form for the UF stiffness nucleus is presented. In order
to lighten the notation, the following integral operator is introduced:

∫

Ωk
s

(·) ds = ⊳ (·) ⊲

where (·) indicates the generic shape functions product on which the integral oper-
ator must be applied. The element by element explicit form of the 4 × 4 stiffness
nucleus Kkτsij is:
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APPENDIX B

Programming details

A FORTRAN code based on the FE formulation described chapter 2 has been de-
veloped. The code is subdivided into four upper level modules, which manage the
pre-processing and post-processing routines, the matrices assembly procedure and
the solver. The pre-processing module creates the FE data structure given the mesh
obtained with an external software. The post-processing module, similary, interfaces
the solution data structure with an external visualization softaware. Independent
modules are accounted for uncoupled structural, uncoupled acoustic and coupled
structural-acoustic problems. Clearly, the heart of the code are the assembly rou-
tines and the solver; indeed, as remarked in the introduction chapter, the memory
requirements and the computing time are the two major important aspects for a FE
approximation of the fluid-structure coupling. Therefore, an efficient way for the
matrix storage and for limiting the computational time has been taken into account.
In particular, sparse storage schemes have been used for the FE matrices allocation,
and efficient iterative solvers have been chosen to extract the truncated uncoupled
modal basis. These efficient solutions has permitted to run the present FE code on
a 2.8 GHz Intel core 2 Duo processor with a 4 GB ram. In figure B.1 the simplified
organization of the developed FE code is depicted, and the available analysis are
also reported. It is remarked that the coupled analysis provided by the developed
code are based on the modal coupling technique presented in chapter 3.

B.1 Sparse matrix storage

When large sparse matrices must be stored, like as in the FE codes, a great save
of memory can be obtained storing only the non null elements of the considered
matrix. One of the difficulties in sparese matrix computations is the variety of
matrices that are encountered in pratical applications. The purpose of each of these
schemes is to gain efficiency both in terms of memory utilization and arithmetic
operations. As a result many different ways of storing sparse matrices have been
developed to take advantage of the structure of the matrices or the specificity of the
problem from which they arise. For example, when regulary structured matrices,
simple vectors can be utilized for storing diagonal terms. However, if the matrix is
not regulary structured, more generic scheme must be adopted; from this point of
view, the one of the most common storage scheme in use today is the Compressed
Sparse Row (CSR) format. In this scheme all non zero entries are stored row by row
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in a one-dimensional array A together with an array JA containing their column
indices and a poiter array which contains the addresses in A and JA of the beginning
of each row. Also the Coordinate (COO) format is one of the most used schemes.
In COO format the non null entries are stored with their row and column indices.
However the efficiency is slightly reduced with respect to the CSR format. For these
reasons, the CSR format is the storage schemes selected for the present FE code.
The SPARSKIT2 library [3] has been also used to manage simple linear algebra
operations for sparse matrices in an efficient way.

B.2 Iterative solver

As an alternative to direct solution method used for dense matrix problems, the
iterative solvers, which are based on working with sequences of orthogonal vectors,
are the most effective iterative procedures for solving large sparse matrix problems.
In this context, the Scalable Library for Eigenvalue Problem Computations (SLEPc)
[2], based on the Portable Extensive Toolkit for Scientific Computation (PETSc) [1]
linear and non-linear algebra package, has been selected as the solver library in the
present FE code. SLEPc focuses on the solution of eigenvalue problem in which the
matrices are large and sparse, and only methods that preserve sparsity are consid-
ered. Most eigensolvers provided by SLEPc perform a Rayleigh-Ritz projection for
extracting the spectral approximations, that is, they project the problem onto a low-
dimansional subspace that is built appropriately. Starting from this general idea,
eigensolvers differ from each other in whic subspace is used, how it is built and other
convergence and storage requirements improving. For a detailed and comprehensive
description of these methods, the reader can refer to [67].

Even if, in contrast to direct solvers, the performance of these iterative methods
is highly problem-dependent and the convergence may deteriorate under certain
conditions, they provide an efficient solution for the uncoupled modal extraction.
Indeed, as explained in chapter 3, the structural and acoustic eigenvalue problems
are separately solved and no numerical difficulties arise for the uncoupled spectral
analysis with iterative methods. In this way the reduced basis can be efficiently
calculated, and the modal coupling matrix S̃ can be easily computed. Clearly the
reduced problem does not have the memory requirements of the starting large FE
model, then the FRF analysis can be easily computed in a MATLAB environment.
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Coupled analysis: frequency response, free-response

Pre-processing tools

Iterative sparse solver
and dense solver

Acoustic analysis: free-response

Structural analysis: static, frequency response, free-response

Strucural Acoustic Coupled

FE FE FE

External Software

External Software

Post-processing tools

Figure B.1: Organization of the developed FE code.





APPENDIX C

Properties of adopted materials

In this appendix, the physical properties of the materials used in chapters 4 and
6 are reported in tabular form. In table C.1 the mechanical properties of four
orthotropic materials and of a soft core are reported. In table C.2, the properties
of the sandwich-type plate used in [51] for experimental analysis are listed. Finally,
in tables C.3 and C.4, the electromechanical properties of the Graphite-Epoxy and
PZT-4 materials are reported.

Table C.1: Materials adopted in the present work.

materials number
1 2 3 4 5

E1 [GPa] 25 40 25.1 131 0.00689
E2 [GPa] 1 1 25.1 10.34 0.00689
E3 [GPa] 1 1 0.75 10.34 0.00689
G12 [GPa] 0.5 0.6 1.36 6.895 0.00345
G13 [GPa] 0.5 0.6 1.2 6.205 0.00345
G23 [GPa] 0.2 0.5 0.47 6.895 0.00345
ν12 [-] 0.25 0.25 0.036 0.22 0
ν13 [-] 0.25 0.25 0.25 0.22 0
ν23 [-] 0.25 0.25 0.171 0.49 0

ρ [Kg/m3] 1000 1000 1000 1627 0.097

Table C.2: Materials adopted for the honeycomb plate with dimensions a = 1.83 m and
b = 1.22 m. Values from [60].

face sheets core
E1 [GPa] 68.984 0
E2 [GPa] 68.984 0
E3 [GPa] 68.984 0.1379
G12 [GPa] 25.924 0
G13 [GPa] 25.924 0.13445
G23 [GPa] 25.924 0.05171
ν12 [-] 0.3 0
ν13 [-] 0.3 0
ν23 [-] 0.3 0

ρ [Kg/m3] 2768 121.8
t [mm] 0.4064 6.35
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Table C.3: Graphite-Epoxy material properties. ǫ0 = 8.8510−12 [F/m].

E1 [GPa] 132.38
E2 [GPa] 10.76
E3 [GPa] 10.76
G12 [GPa] 5.65
G13 [GPa] 5.65
G23 [GPa] 3.61
ν12 [-] 0.24
ν13 [-] 0.24
ν23 [-] 0.49

ρ [Kg/m3] 1578
ǫ11/ǫ0 [-] 3.5
ǫ22/ǫ0 [-] 3.0
ǫ33/ǫ0 [-] 3.0

Table C.4: PZT-4 material properties. ǫ0 = 8.8510−12 [F/m].

E1 [GPa] 81.3
E2 [GPa] 81.3
E3 [GPa] 64.5
G12 [GPa] 30.6
G13 [GPa] 25.6
G23 [GPa] 25.6
ν12 [-] 0.33
ν13 [-] 0.43
ν23 [-] 0.43

ρ [Kg/m3] 7600
e31 [Kg/m2] 7.209
e32 [Kg/m2] 7.209
e33 [Kg/m2] 15.08
e24 [Kg/m2] 12.322
e15 [Kg/m2] 12.322
ǫ11/ǫ0 [-] 1475
ǫ22/ǫ0 [-] 1475
ǫ33/ǫ0 [-] 1300



APPENDIX D

Convergence tables

In this appendix, the convergence tables of numerical cases presented in section
4.1 are reported. In the following, the superscript s indicates that the convergent
frequency parameter is associated with a symmetric mode in the thickness direction.
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Table D.1: Convergence of the first 10 frequency parameters λ for the SS modes of a SSSS isotropic square plate with ν = 0.3. Only ED
theories are considered.

mode number
t
b

(nx × ny), N ndof SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8 SS-9 SS-10

0.01 (10 × 10), 2 1089 2.0051 10.2532 10.2532 18.4188 28.0665 28.0665 36.0558 36.0558 53.3102 58.4811
(20 × 20), 2 3969 2.0008 10.0503 10.0503 18.0647 26.4106 26.4106 34.3538 34.3538 50.4982 51.6172
(30 × 30), 2 8649 2.0000 10.0135 10.0135 18.0003 26.1215 26.1215 34.0548 34.0548 50.0021 50.4867
(40 × 40), 2 15129 1.9997 10.0007 10.0007 17.9779 26.0215 26.0215 33.9513 33.9513 49.8302 50.1003
(50 × 50), 2 23409 1.9996 9.9948 9.9948 17.9675 25.9755 25.9755 33.9036 33.9036 49.7509 49.9231
(60 × 60), 2 33489 1.9995 9.9915 9.9915 17.9618 25.9505 25.9505 33.8777 33.8777 49.7080 49.8273
(60 × 60), 3 44652 1.9995 9.9898 9.9898 17.9564 25.9392 25.9392 33.8584 33.8584 49.6665 49.7856
(60 × 60), 4 55815 1.9995 9.9898 9.9898 17.9564 25.9391 25.9391 33.8584 33.8584 49.6665 49.7856

0.1 (10 × 10), 2 1089 1.9455 8.9628 8.9628 9.2469 14.8197 15.5827 20.8253 20.8253 20.8512 20.8512
(20 × 20), 2 3969 1.9416 8.8143 8.8143 9.2308 14.6240 15.5733 19.9470 19.9470 20.6843 20.6843
(30 × 30), 2 8649 1.9409 8.7872 8.7872 9.2279 14.5879 15.5715 19.7897 19.7897 20.6535 20.6535
(40 × 40), 2 15129 1.9406 8.7778 8.7778 9.2268 14.5753 15.5709 19.7350 19.7350 20.6427 20.6427
(50 × 50), 2 23409 1.9405 8.7734 8.7734 9.2263 14.5694 15.5706 19.7098 19.7098 20.6377 20.6377
(60 × 60), 2 33489 1.9404 8.7710 8.7710 9.2261s 14.5662 15.5705s 19.6961 19.6961 20.6350s 20.6350s

(60 × 60), 3 44652 1.9344 8.6683 8.6683 9.2261s 14.3182 15.5703s 19.2880 19.2880 20.6350s 20.6350s

(60 × 60), 4 55815 1.9344 8.6669 8.6669 9.2261s 14.3122 15.5703s 19.2738 19.2738 20.6350s 20.6350s
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Table D.2: Convergence of the first 10 frequency parameters λ for the AS modes of a SSSS isotropic square with ν = 0.3 (SA modes are
identical). Only ED theories are considered.

mode number
t
b

(nx × ny), N ndof AS-1 AS-2 AS-3 AS-4 AS-5 AS-6 AS-7 AS-8 AS-9 AS-10

0.01 (10× 10), 2 1089 5.0492 13.2669 17.8227 25.9129 31.0154 41.4204 43.3872 49.2799 61.3224 65.3011
(20× 20), 2 3969 5.0092 13.0456 17.1648 25.1482 29.3793 37.8633 41.3744 45.7568 54.5451 61.7999
(30× 30), 2 8649 5.0019 13.0054 17.0474 25.0109 29.0933 37.2585 41.0185 45.1550 53.4284 61.0284
(40× 40), 2 15129 4.9993 12.9914 17.0067 24.9631 28.9944 37.0505 40.8951 44.9478 53.0467 60.7620
(50× 50), 2 23409 4.9982 12.9849 16.9879 24.9410 28.9489 36.9549 40.8382 44.8525 52.8716 60.6393
(60× 60), 2 33489 4.9975 12.9814 16.9777 24.9291 28.9242 36.9031 40.8074 44.8009 52.7769 60.5728
(60× 60), 3 44652 4.9971 12.9785 16.9728 24.9186 28.9101 36.8802 40.7794 44.7672 52.7302 60.5114
(60× 60), 4 55815 4.9971 12.9785 16.9728 24.9186 28.9101 36.8802 40.7794 44.7672 52.7302 60.5114

0.1 (10× 10), 2 1089 4.6990 6.5301 11.2266 14.4233 14.6680 19.5466 19.7518 22.5008 23.8712 24.6483
(20× 20), 2 3969 4.6656 6.5251 11.0829 14.0111 14.6070 19.1787 19.6155 21.7014 23.6076 24.5825
(30× 30), 2 8649 4.6595 6.5242 11.0565 13.9367 14.5958 19.1111 19.5903 21.5577 23.5592 24.5703
(40× 40), 2 15129 4.6573 6.5238 11.0473 13.9107 14.5918 19.0874 19.5815 21.5077 23.5422 24.5661
(50× 50), 2 23409 4.6563 6.5237 11.0431 13.8987 14.5900 19.0765 19.5775 21.4846 23.5344 24.5641
(60× 60), 2 33489 4.6558 6.5236 11.0408 13.8922 14.5890s 19.0706 19.5752s 21.4721 23.5301s 24.5630s

(60× 60), 3 44652 4.6236 6.5236 10.8866 13.6633 14.5890s 18.6832 19.5752s 21.0035 23.5301s 24.5615s

(60× 60), 4 55815 4.6234 6.5236 10.8839 13.6580 14.5890s 18.6703 19.5752s 20.9854 23.5301s 24.5615s
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Table D.3: Convergence of the first 10 frequency parameters λ for the AA modes of a SSSS isotropic square plate with ν = 0.3. Only ED
theories are considered.

mode number
t
b

(nx × ny), N ndof AA-1 AA-2 AA-3 AA-4 AA-5 AA-6 AA-7 AA-8 AA-9 AA-10

0.01 (10 × 10), 2 1089 8.0821 20.8086 20.8086 33.3377 44.3215 44.3215 56.4908 56.4908 78.9750 82.8227
(20 × 20), 2 3969 8.0128 20.1486 20.1486 32.2044 40.8135 40.8135 52.7334 52.7334 70.6883 70.6883
(30 × 30), 2 8649 8.0001 20.0306 20.0306 32.0009 40.2166 40.2166 52.0864 52.0864 68.7621 68.7621
(40 × 40), 2 15129 7.9956 19.9896 19.9896 31.9302 40.0113 40.0113 51.8633 51.8633 68.1085 68.1085
(50 × 50), 2 23409 7.9936 19.9707 19.9707 31.8976 39.9169 39.9169 51.7606 51.7606 67.8095 67.8095
(60 × 60), 2 33489 7.9924 19.9604 19.9604 31.8798 39.8657 39.8657 51.7050 51.7050 67.6480 67.6480
(60 × 60), 3 44652 7.9914 19.9537 19.9537 31.8627 39.8390 39.8390 51.6602 51.6602 67.5716 67.5716
(60 × 60), 4 55815 7.9914 19.9537 19.9537 31.8627 39.8390 39.8390 51.6602 51.6602 67.5715 67.5715

0.1 (10 × 10), 2 1089 7.2433 13.1005 13.1005 16.3875 16.3875 18.6227 23.7686 26.5247 26.5247 29.4016
(20 × 20), 2 3969 7.1922 13.0602 13.0602 16.0129 16.0129 18.4937 23.3125 26.2011 26.2011 27.9375
(30 × 30), 2 8649 7.1828 13.0528 13.0528 15.9450 15.9450 18.4700 23.2276 26.1413 26.1413 27.6764
(40 × 40), 2 15129 7.1795 13.0502 13.0502 15.9213 15.9213 18.4617 23.1978 26.1205 26.1205 27.5857
(50 × 50), 2 23409 7.1780 13.0490 13.0490 15.9103 15.9103 18.4578 23.1841 26.1108 26.1108 27.5439
(60 × 60), 2 33489 7.1772 13.0483s 13.0483s 15.9044 15.9044 18.4557s 23.1766 26.1055s 26.1055s 27.5212
(60 × 60), 3 44652 7.1056 13.0483s 13.0483s 15.6170 15.6170 18.4557s 22.6478 26.1055s 26.1055s 26.8317
(60 × 60), 4 55815 7.1048 13.0483s 13.0483s 15.6093 15.6093 18.4557s 22.6254 26.1055s 26.1055s 26.7956
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Table D.4: Convergence of the first 10 frequency parameters λ for the SS modes of an isotropic square plate with t
b
= 0.1 and different

boundary conditions (ν = 0.3). Only ED theories are considered.

mode number
B.C. (nx × ny), N ndof SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8 SS-9 SS-10
CFCF (10× 10), 2 1089 2.1516 3.9868 10.2942 11.7526 11.8158 12.2031 18.3854 18.8542 19.4289 22.0151

(20× 20), 2 3969 2.1306 3.9703 10.0222 11.5477 11.7807 11.9845 18.1491 18.6200 19.5350 21.2062
(30× 30), 2 8649 2.1260 3.9667 9.9704 11.5097 11.7737 11.9426 18.1031 18.5741 19.5546 21.0076
(40× 40), 2 15129 2.1242 3.9653 9.9520 11.4963 11.7712 11.9276 18.0867 18.5575 19.5614 20.9380
(50× 50), 2 23409 2.1234 3.9646 9.9433 11.4901 11.7700 11.9206 18.0791 18.5496 19.5646 20.9057
(60× 60), 2 33489 2.1229 3.9643 9.9386 11.4868 11.7693s 11.9167 18.0749 18.5452s 19.5663 20.8881s

(60× 60), 3 44652 2.1057 3.9244 9.7431 11.3365 11.6744 11.7683s 17.6892 18.5448s 19.5663 20.3291s

(60× 60), 4 55815 2.1043 3.9229 9.7328 11.3329 11.6636 11.7678s 17.6732 18.5446s 19.5663 20.2957s

CCCC (10× 10), 2 1089 3.3934 11.0514 11.1585 16.8300 20.8573 22.8884 22.9489 23.7563 25.9166 26.9070
(20× 20), 2 3969 3.3673 10.8045 10.9062 16.5526 20.6944 21.8530 21.9093 23.6233 25.6716 26.1024
(30× 30), 2 8649 3.3614 10.7574 10.8580 16.4990 20.6635 21.6644 21.7197 23.5979 25.6258 25.9531
(40× 40), 2 15129 3.3592 10.7406 10.8409 16.4798 20.6526 21.5984 21.6533 23.5889 25.6098 25.9006
(50× 50), 2 23409 3.3581 10.7328 10.8328 16.4709 20.6475 21.5678 21.6226 23.5847 25.6023 25.8762
(60× 60), 2 33489 3.3576 10.7285 10.8284 16.4660 20.6448s 21.5512 21.6059 23.5824s 25.5983 25.8630
(60× 60), 3 44652 3.3229 10.5147 10.6145 16.0848 20.6370s 20.9814 21.0340 23.5737s 25.1604 25.3217
(60× 60), 4 55815 3.3205 10.5034 10.6030 16.0639 20.6338s 20.9461 20.9983 23.5704s 25.1134 25.2731
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Table D.5: Convergence of the first 10 frequency parameters λ for the SA modes of an isotropic square plate with t
b
= 0.1 and different

boundary conditions (ν = 0.3). Only ED theories are considered.

mode number
B.C. (nx × ny), N ndof SA-1 SA-2 SA-3 SA-4 SA-5 SA-6 SA-7 SA-8 SA-9 SA-10
CFCF (10× 10), 2 1089 5.5973 7.5783 10.6929 13.8047 14.4568 15.9245 17.6642 18.0382 23.2120 25.1396

(20× 20), 2 3969 5.5012 7.5059 10.6536 13.7293 14.2671 15.3338 17.1652 17.9348 22.8185 24.6147
(30× 30), 2 8649 5.4819 7.4912 10.6452 13.7149 14.2310 15.2243 17.0722 17.9145 22.7424 24.5124
(40× 40), 2 15129 5.4750 7.4858 10.6420 13.7098 14.2182 15.1857 17.0394 17.9071 22.7154 24.4757
(50× 50), 2 23409 5.4716 7.4833 10.6404 13.7074 14.2122 15.1677 17.0241 17.9036 22.7028 24.4584
(60× 60), 2 33489 5.4698 7.4818 10.6395s 13.7061s 14.2090 15.1579 17.0158 17.9017s 22.6959 24.4489s

(60× 60), 3 44652 5.3909 7.3632 10.6359s 13.7051s 13.9628 14.7976 16.6059 17.8986s 22.1381 24.2152
(60× 60), 4 55815 5.3864 7.3583 10.6344s 13.7047s 13.9547 14.7781 16.5852 17.8973s 22.1097 24.1894

CCCC (10× 10), 2 1089 6.5648 12.5724 13.2989 16.6298 20.9105 21.4696 24.4590 25.3447 29.8490 30.5366
(20× 20), 2 3969 6.4780 12.5380 13.0709 16.0755 20.7502 21.0101 23.5285 25.1201 28.1158 29.7608
(30× 30), 2 8649 6.4604 12.5311 13.0269 15.9727 20.7204 20.9230 23.3582 25.0771 27.8030 29.6133
(40× 40), 2 15129 6.4540 12.5287 13.0111 15.9365 20.7101 20.8922 23.2985 25.0620 27.6939 29.5612
(50× 50), 2 23409 6.4510 12.5276 13.0038 15.9197 20.7052 20.8778 23.2708 25.0549 27.6435 29.5370
(60× 60), 2 33489 6.4493 12.5270s 12.9997 15.9106 20.7026s 20.8700 23.2557 25.0511s 27.6161 29.5238
(60× 60), 3 44652 6.3515 12.5227s 12.7250 15.5345 20.3406 20.7018s 22.6334 25.0418s 26.8298 28.6888
(60× 60), 4 55815 6.3459 12.5210s 12.7104 15.5135 20.3091 20.7015s 22.5938 25.0381s 26.7736 28.6277
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Table D.6: Convergence of the first 10 frequency parameters λ for the AS modes of an isotropic square plate with t
b
= 0.1 and different

boundary conditions (ν = 0.3). Only ED theories are considered.

mode number
B.C. (nx × ny), N ndof AS-1 AS-2 AS-3 AS-4 AS-5 AS-6 AS-7 AS-8 AS-9 AS-10
CFCF (10 × 10), 2 1089 2.4990 5.9803 7.1194 10.7126 14.7366 17.5305 18.1649 19.8730 22.6031 23.1079

(20 × 20), 2 3969 2.4805 5.9584 7.0621 10.4547 14.5446 17.0124 17.9532 19.7187 21.5456 22.6874
(30 × 30), 2 8649 2.4763 5.9536 7.0511 10.4055 14.5074 16.9174 17.9122 19.6894 21.3523 22.6070
(40 × 40), 2 15129 2.4747 5.9518 7.0472 10.3878 14.4940 16.8843 17.8975 19.6790 21.2845 22.5785
(50 × 50), 2 23409 2.4739 5.9509 7.0454 10.3796 14.4878 16.8689 17.8906 19.6741 21.2531 22.5653
(60 × 60), 2 33489 2.4735 5.9504s 7.0444 10.3751 14.4844 16.8606 17.8868s 19.6714s 21.2360 22.5581
(60 × 60), 3 44652 2.4495 5.9499s 6.9711 10.1669 14.1838 16.5815 17.8864s 19.6684s 20.6621 22.0510
(60 × 60), 4 55815 2.4481 5.9498s 6.9693 10.1567 14.1713 16.5728 17.8863s 19.6672s 20.6287 22.0276

CCCC (10 × 10), 2 1089 6.5648 12.5724 13.2989 16.6298 20.9105 21.4696 24.4590 25.3447 29.8490 30.5366
(20 × 20), 2 3969 6.4780 12.5380 13.0709 16.0755 20.7502 21.0101 23.5285 25.1201 28.1158 29.7608
(30 × 30), 2 8649 6.4604 12.5311 13.0269 15.9727 20.7204 20.9230 23.3582 25.0771 27.8030 29.6133
(40 × 40), 2 15129 6.4540 12.5287 13.0111 15.9365 20.7101 20.8922 23.2985 25.0620 27.6939 29.5612
(50 × 50), 2 23409 6.4510 12.5276 13.0038 15.9197 20.7052 20.8778 23.2708 25.0549 27.6435 29.5370
(60 × 60), 2 33489 6.4493 12.5270s 12.9997 15.9106 20.7026s 20.8700 23.2557 25.0511s 27.6161 29.5238
(60 × 60), 3 44652 6.3515 12.5227s 12.7250 15.5345 20.3406 20.7018s 22.6334 25.0418s 26.8298 28.6888
(60 × 60), 4 55815 6.3459 12.5210s 12.7104 15.5135 20.3091 20.7015s 22.5938 25.0381s 26.7736 28.6277
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Table D.7: Convergence of the first 10 frequency parameters λ for the AA modes of an isotropic square plate with t
b
= 0.1 and different

boundary conditions (ν = 0.3). Only ED theories are considered.

mode number
B.C. (nx × ny), N ndof AA-1 AA-2 AA-3 AA-4 AA-5 AA-6 AA-7 AA-8 AA-9 AA-10
CFCF (10 × 10), 2 1089 6.0396 10.3561 11.0299 13.2676 16.2907 19.7100 19.9823 20.5541 24.0324 25.3488

(20 × 20), 2 3969 5.9507 10.2716 10.9797 13.1963 15.7224 19.2613 19.5539 20.4025 23.6578 25.0024
(30 × 30), 2 8649 5.9328 10.2548 10.9700 13.1814 15.6168 19.1776 19.4734 20.3744 23.5829 24.9384
(40 × 40), 2 15129 5.9263 10.2487 10.9666 13.1757 15.5795 19.1482 19.4450 20.3645 23.5560 24.9159
(50 × 50), 2 23409 5.9232 10.2458 10.9650 13.1729 15.5622 19.1345 19.4317 20.3599 23.5435 24.9054
(60 × 60), 2 33489 5.9215 10.2442 10.9642s 13.1713s 15.5527 19.1271 19.4245 20.3574s 23.5366s 24.8996s

(60 × 60), 3 44652 5.8321 10.0777 10.9632s 13.1691s 15.1786 18.7504 18.9599 20.3564s 23.5349s 24.8967s

(60 × 60), 4 55815 5.8276 10.0719 10.9629s 13.1683s 15.1592 18.7356 18.9373 20.3561s 23.5343s 24.8955s

CCCC (10 × 10), 2 1089 9.2186 14.9520 18.3586 18.3661 18.5547 25.5451 27.1585 27.8455 31.0773 31.2103
(20 × 20), 2 3969 9.1097 14.8910 17.8851 18.0563 18.2847 25.0095 26.7936 27.4957 29.4999 29.6192
(30 × 30), 2 8649 9.0876 14.8796 17.7954 17.9632 18.2703 24.9070 26.7263 27.4310 29.2147 29.3311
(40 × 40), 2 15129 9.0796 14.8757 17.7638 17.9303 18.2652 24.8706 26.7028 27.4084 29.1151 29.2306
(50 × 50), 2 23409 9.0758 14.8738 17.7490 17.9150 18.2628 24.8537 26.6919 27.3980 29.0691 29.1840
(60 × 60), 2 33489 9.0737 14.8728s 17.7410 17.9066 18.2615s 24.8445 26.6860s 27.3923s 29.0441 29.1588
(60 × 60), 3 44652 8.9123 14.8724s 17.3124 17.4709 18.2556s 24.1783 26.6852s 27.3914s 28.2155 28.3203
(60 × 60), 4 55815 8.9037 14.8722s 17.2883 17.4460 18.2532s 24.1350 26.6849s 27.3911s 28.1549 28.2583
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Table D.8: Convergence of the frequency parameters λ for the first 12 modes of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10 × 10), 2 1089 2.2765 3.2248 4.3823 4.9301 5.0171 6.2124 6.9552 7.2637 7.4552 8.0989 8.2364 9.5974

(20 × 20), 2 3969 2.2590 3.1410 4.3115 4.7117 4.8514 6.0000 6.7227 6.7371 7.0913 7.6820 7.9101 9.0256
(30 × 30), 2 8649 2.2557 3.1260 4.2984 4.6584 4.8366 5.9618 6.5964 6.6968 7.0581 7.5846 7.8720 8.7838
(40 × 40), 2 15129 2.2545 3.1208 4.2938 4.6400 4.8314 5.9485 6.5529 6.6826 7.0463 7.5509 7.8584 8.7008
(50 × 50), 2 23409 2.2540 3.1184 4.2917 4.6315 4.8290 5.9423 6.5329 6.6761 7.0409 7.5353 7.8521 8.6626
(60 × 60), 2 33489 2.2537 3.1171 4.2905 4.6269 4.8277 5.9390 6.5220 6.6726 7.0379 7.5269 7.8487 8.6420
(60 × 60), 3 44652 2.1334 2.9349 4.0661 4.2872 4.5670 5.5596 5.9527 6.3362 6.6791 6.9463 7.4030 7.7963
(60 × 60), 4 55815 2.1329 2.9335 4.0651 4.2830 4.5651 5.5550 5.9428 6.3344 6.6765 6.9360 7.3977 7.7765
(60 × 60), 5 66978 2.1271 2.9049 4.0560 4.2166 4.5426 5.5025 5.8354 6.3159 6.6499 6.8452 7.3497 7.6324
(60 × 60), 6 78141 2.1271 2.9048 4.0560 4.2163 4.5425 5.5023 5.8347 6.3158 6.6498 6.8447 7.3495 7.6310
(60 × 60), 7 89304 2.1238 2.8902 4.0512 4.1842 4.5308 5.4766 5.7853 6.3076 6.6371 6.8023 7.3263 7.5677

LD (10 × 10), 1 1452 2.1956 3.0360 4.2496 4.5834 4.7305 5.8140 6.6908 6.7699 7.0365 7.5301 7.7229 8.9588
(20 × 20), 1 5292 2.1797 2.9686 4.1786 4.3370 4.6607 5.6482 6.0746 6.5451 6.8615 7.0792 7.5594 8.0670
(30 × 30), 1 11532 2.1767 2.9565 4.1654 4.2940 4.6475 5.6181 5.9698 6.5038 6.8282 7.0012 7.5259 7.8594
(40 × 40), 1 20172 2.1757 2.9523 4.1608 4.2791 4.6428 5.6075 5.9338 6.4894 6.8165 6.9743 7.5140 7.7885
(50 × 50), 1 31212 2.1752 2.9503 4.1587 4.2723 4.6407 5.6027 5.9172 6.4827 6.8110 6.9619 7.5085 7.7561
(60 × 60), 1 44652 2.1749 2.9493 4.1575 4.2686 4.6395 5.6000 5.9082 6.4791 6.8081 6.9551 7.5054 7.7385
(60 × 60), 2 78141 2.1307 2.9088 4.0693 4.2221 4.5553 5.5153 5.8436 6.3440 6.6770 6.8594 7.3759 7.6442
(60 × 60), 3 111630 2.1221 2.8822 4.0504 4.1672 4.5259 5.4640 5.7599 6.3077 6.6345 6.7815 7.3177 7.5367
(60 × 60), 4 148840 2.1217 2.8818 4.0490 4.1667 4.5246 5.4628 5.7594 6.3047 6.6316 6.7803 7.3151 7.5359
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Table D.9: Convergence of the frequency parameters λ for modes 13-24 of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10× 10), 2 1089 9.7405 9.8978 10.4047 10.4226 10.8943 11.4105 11.7609 11.8388 12.5774 12.7559 12.7971 12.9938

(20× 20), 2 3969 9.2310 9.2405 9.4924 9.7534 10.0998 10.9865 11.1342 11.5465 11.8052 11.8136 11.9977 12.1098
(30× 30), 2 8649 9.1478 9.1583 9.4145 9.5528 10.0343 10.8362 11.0622 11.1389 11.6356 11.7547 11.7989 11.8419
(40× 40), 2 15129 9.1154 9.1326 9.3872 9.4837 10.0109 10.7836 10.9992 11.0359 11.5735 11.6327 11.7873 11.7967
(50× 50), 2 23409 9.1004 9.1207 9.3745 9.4519 10.0000 10.7593 10.9351 11.0235 11.5448 11.5767 11.7620 11.7957
(60× 60), 2 33489 9.0923 9.1142 9.3676 9.4347 9.9940 10.7460 10.9004 11.0167 11.5292 11.5463 11.7482 11.7952s

(60× 60), 3 44652 8.5018 8.5942 8.6689 8.9296 9.4897 9.7473 9.8999 10.3743 10.4085 11.0530 11.2621 11.5142
(60× 60), 4 55815 8.4910 8.5741 8.6665 8.9264 9.4840 9.7128 9.8794 10.3627 10.3740 11.0501 11.2584 11.4789
(60× 60), 5 66978 8.4112 8.4465 8.6321 8.8871 9.4296 9.5409 9.7655 10.2163 10.2843 10.9931 11.1987 11.3360
(60× 60), 6 78141 8.4108 8.4454 8.6317 8.8868 9.4294 9.5386 9.7647 10.2145 10.2841 10.9923 11.1980 11.3346
(60× 60), 7 89304 8.3734 8.3886 8.6179 8.8699 9.4046 9.4668 9.7135 10.1481 10.2476 10.9702 11.1737 11.2732

LD (10× 10), 1 1452 9.2647 9.5270 9.6560 9.8568 10.0536 10.8172 10.8516 11.8075 12.1776 12.4972 12.5471 12.5472
(20× 20), 1 5292 8.6663 8.8489 9.0058 9.2313 9.7461 10.1421 10.2651 10.6029 10.8847 11.5588 11.7234 11.7746
(30× 30), 1 11532 8.6084 8.6808 8.9101 9.1509 9.6811 9.9022 10.0195 10.5387 10.5735 11.3743 11.5611 11.6915
(40× 40), 1 20172 8.5879 8.6233 8.8768 9.1226 9.6579 9.7792 9.9768 10.4672 10.5159 11.3101 11.5044 11.6088
(50× 50), 1 31212 8.5784 8.5969 8.8614 9.1096 9.6471 9.7229 9.9571 10.4190 10.5048 11.2805 11.4781 11.5709
(60× 60), 1 44652 8.5732 8.5826 8.8530 9.1025 9.6412 9.6925 9.9464 10.3929 10.4987 11.2644 11.4638 11.5504
(60× 60), 2 78141 8.4373 8.4633 8.6809 8.9344 9.4753 9.5573 9.7928 10.2371 10.3288 11.0672 11.2708 11.3660
(60× 60), 3 111630 8.3573 8.3613 8.6202 8.8700 9.3999 9.4329 9.6908 10.1172 10.2364 10.9765 11.1781 11.2463
(60× 60), 4 148840 8.3549 8.3600 8.6146 8.8647 9.3949 9.4319 9.6884 10.1158 10.2317 10.9670 11.1690 11.2439
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Table D.10: Convergence of the frequency parameters λ for modes 25-36 of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10× 10), 2 1089 13.0478 13.3747 13.6096 13.6372 13.8177 13.8458 14.0731 14.5050 14.5774 15.1413 15.4787 15.5154

(20× 20), 2 3969 12.4590 12.5275 12.5865 13.0877 13.2733 13.6905 14.2495 14.4056 14.4463 14.4616 14.5821 14.6899
(30× 30), 2 8649 12.3313 12.4721 12.5182 12.8077 13.1669 13.6182 13.6668 14.1225 14.1419 14.1997 14.3071 14.3521
(40× 40), 2 15129 12.2858 12.4302 12.5149 12.7103 13.1274 13.4019 13.6586 13.9277 14.0357 14.1251 14.2106 14.3094
(50× 50), 2 23409 12.2646 12.4105 12.5134 12.6653 13.1087 13.3028 13.6547 13.8383 13.9866 14.0902 14.1660 14.2890
(60× 60), 2 33489 12.2530 12.3997 12.5125s 12.6409 13.0985 13.2492 13.6526s 13.7899 13.9600 14.0712 14.1418 14.2777
(60× 60), 3 44652 11.5512 11.7137 11.7709 11.7950s 12.3323 12.4428 12.5124s 12.9629 13.2817 13.4395 13.4603 13.6350
(60× 60), 4 55815 11.5307 11.5794s 11.7073 11.7161 12.2766 12.3090s 12.4318 12.9280 13.2258 13.4197 13.4574 13.4654s

(60× 60), 5 66978 11.4222 11.5282 11.5794s 11.6376 12.1024 12.3090s 12.3425 12.7929 13.0642 13.3064 13.3729 13.4654s

(60× 60), 6 78141 11.4218 11.5250 11.5535s 11.6371 12.0997 12.2846s 12.3422 12.7920 13.0621 13.3061 13.3715 13.4428s

(60× 60), 7 89304 11.3730 11.4503 11.5535s 11.6068 12.0292 12.2846s 12.3025 12.7334 12.9957 13.2559 13.3385 13.4428s

LD (10× 10), 1 1452 12.5681 12.7375 12.7933 13.1440 13.3330 13.3522 13.6295 13.7888 13.9184 14.1274 15.1837 15.4117
(20× 20), 1 5292 11.8061 11.9327 12.1110 12.4985 12.6549 12.7776 13.1509 13.3340 13.6636 13.7482 13.9985 14.1903
(30× 30), 1 11532 11.7107 11.7684 11.9787 12.0720 12.4894 12.6310 12.6715 13.1570 13.5727 13.6403 13.6465 13.8745
(40× 40), 1 20172 11.6758 11.7663 11.8756 11.9319 12.4559 12.4862 12.6324 13.0940 13.4284 13.6073 13.6321 13.7646
(50× 50), 1 31212 11.6595 11.7653 11.7861 11.9100 12.3760 12.4847 12.6140 13.0647 13.3624 13.5886 13.6283 13.7139
(60× 60), 1 44652 11.6505 11.7379 11.7647s 11.8981 12.3330 12.4839s 12.6039 13.0487 13.3268 13.5782 13.6263s 13.6864
(60× 60), 2 78141 11.4665 11.5482s 11.5502 11.7075 12.1281 12.2795s 12.4103 12.8384 13.0982 13.3729 13.4381s 13.4744
(60× 60), 3 111630 11.3555 11.4165 11.5481s 11.6071 11.9977 12.2794s 12.2970 12.7114 12.9673 13.2445 13.3509 13.4380s

(60× 60), 4 148840 11.3511 11.4153 11.5481s 11.5984 11.9961 12.2794s 12.2889 12.7072 12.9649 13.2368 13.3360 13.4380s
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Table D.11: Convergence of the frequency parameters λ for the first 12 modes of a CCCC square laminated plate with t
b
= 0.01 and

stacking sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10× 10), 2 1089 0.4255 0.5221 0.7846 1.1755 1.2240 1.2900 1.3722 1.7301 2.1578 2.4156 2.4442 2.4634

(20× 20), 2 3969 0.4159 0.5031 0.7138 1.0638 1.1057 1.1523 1.2745 1.5174 1.5569 1.9151 2.1484 2.1807
(30× 30), 2 8649 0.4141 0.4997 0.7023 1.0305 1.0935 1.1397 1.2578 1.4785 1.4850 1.8436 2.0451 2.1042
(40× 40), 2 15129 0.4135 0.4985 0.6983 1.0192 1.0893 1.1354 1.2521 1.4527 1.4740 1.8200 1.9936 2.0891
(50× 50), 2 23409 0.4132 0.4980 0.6965 1.0141 1.0873 1.1334 1.2494 1.4410 1.4690 1.8093 1.9705 2.0822
(60× 60), 2 33489 0.4131 0.4977 0.6955 1.0113 1.0863 1.1323 1.2480 1.4347 1.4663 1.8036 1.9582 2.0784
(60× 60), 3 44652 0.4119 0.4964 0.6938 1.0083 1.0792 1.1252 1.2408 1.4291 1.4586 1.7941 1.9481 2.0563
(60× 60), 4 55815 0.4119 0.4964 0.6938 1.0083 1.0792 1.1252 1.2408 1.4291 1.4586 1.7941 1.9480 2.0563

LD (10× 10), 1 1452 0.4248 0.5214 0.7831 1.1705 1.2190 1.2843 1.3668 1.7215 2.1383 2.3970 2.4251 2.4422
(20× 20), 1 5292 0.4153 0.5025 0.7129 1.0613 1.1015 1.1482 1.2704 1.5124 1.5504 1.9069 2.1347 2.1669
(30× 30), 1 11532 0.4135 0.4992 0.7015 1.0283 1.0895 1.1358 1.2540 1.4731 1.4805 1.8366 2.0336 2.0912
(40× 40), 1 20172 0.4129 0.4980 0.6976 1.0172 1.0853 1.1315 1.2483 1.4477 1.4696 1.8134 1.9831 2.0764
(50× 50), 1 31212 0.4126 0.4975 0.6958 1.0122 1.0834 1.1296 1.2457 1.4362 1.4647 1.8029 1.9605 2.0695
(60× 60), 1 44652 0.4125 0.4972 0.6948 1.0094 1.0824 1.1285 1.2442 1.4300 1.4620 1.7972 1.9483 2.0658
(60× 60), 2 78141 0.4118 0.4963 0.6935 1.0075 1.0792 1.1251 1.2406 1.4272 1.4580 1.7926 1.9445 2.0562
(60× 60), 3 111630 0.4118 0.4963 0.6932 1.0067 1.0791 1.1250 1.2404 1.4254 1.4573 1.7911 1.9411 2.0560
(60× 60), 4 148840 0.4118 0.4963 0.6932 1.0067 1.0791 1.1250 1.2404 1.4254 1.4573 1.7911 1.9411 2.0560
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Table D.12: Convergence of the frequency parameters λ for modes 13-24 of a CCCC square laminated plate with t
b
= 0.01 and stacking

sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10 × 10), 2 1089 2.5285 2.7471 3.2645 3.6521 3.8529 4.2725 4.2840 4.3232 4.4055 4.4367 4.7408 5.5294

(20 × 20), 2 3969 2.2054 2.2601 2.4215 2.4894 2.7071 3.0323 3.1593 3.2612 3.5347 3.5596 3.6170 3.7310
(30 × 30), 2 8649 2.1370 2.2150 2.3408 2.3680 2.6267 2.7344 2.9787 3.0168 3.4198 3.4461 3.5047 3.5544
(40 × 40), 2 15129 2.1219 2.1996 2.2932 2.3497 2.5997 2.6415 2.8909 2.9706 3.3810 3.3983 3.4077 3.4666
(50 × 50), 2 23409 2.1151 2.1925 2.2719 2.3413 2.5873 2.6004 2.8520 2.9497 3.3298 3.3632 3.3901 3.4367
(60 × 60), 2 33489 2.1113 2.1886 2.2604 2.3367 2.5776 2.5815 2.8312 2.9385 3.2935 3.3536 3.3806 3.4173
(60 × 60), 3 44652 2.0892 2.1664 2.2472 2.3144 2.5572 2.5617 2.8116 2.9131 3.2662 3.3025 3.3294 3.3871
(60 × 60), 4 55815 2.0892 2.1664 2.2472 2.3144 2.5572 2.5617 2.8116 2.9131 3.2662 3.3025 3.3294 3.3871

LD (10 × 10), 1 1452 2.5087 2.7247 3.2316 3.5832 3.7828 4.2178 4.2283 4.2657 4.3277 4.3758 4.6709 5.4221
(20 × 20), 1 5292 2.1906 2.2463 2.4072 2.4737 2.6908 3.0024 3.1372 3.2311 3.5011 3.5259 3.5831 3.6965
(30 × 30), 1 11532 2.1240 2.2021 2.3284 2.3548 2.6121 2.7126 2.9565 2.9982 3.3889 3.4152 3.4737 3.5162
(40 × 40), 1 20172 2.1093 2.1870 2.2818 2.3369 2.5857 2.6220 2.8710 2.9531 3.3510 3.3648 3.3777 3.4366
(50 × 50), 1 31212 2.1025 2.1800 2.2609 2.3286 2.5734 2.5819 2.8330 2.9327 3.2983 3.3336 3.3605 3.4132
(60 × 60), 1 44652 2.0988 2.1762 2.2497 2.3241 2.5598 2.5675 2.8127 2.9218 3.2630 3.3242 3.3512 3.3943
(60 × 60), 2 78141 2.0890 2.1662 2.2442 2.3139 2.5542 2.5575 2.8061 2.9107 3.2564 3.3023 3.3292 3.3826
(60 × 60), 3 111630 2.0888 2.1659 2.2412 2.3133 2.5489 2.5557 2.8008 2.9082 3.2471 3.3017 3.3285 3.3779
(60 × 60), 4 148840 2.0888 2.1659 2.2412 2.3133 2.5489 2.5557 2.8008 2.9082 3.2471 3.3017 3.3285 3.3779
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Table D.13: Convergence of the frequency parameters λ for modes 25-36 of a CCCC square laminated plate with t
b
= 0.01 and stacking

sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10× 10), 2 1089 6.4164 6.5333 6.8468 6.8894 6.8896 6.9168 6.9259 6.9939 7.3735 7.5240 8.7202 9.1336

(20× 20), 2 3969 3.8165 3.9356 4.0718 4.2592 4.2745 4.7163 4.7953 5.2624 5.2816 5.3243 5.3711 5.4075
(30× 30), 2 8649 3.5547 3.6160 3.7607 3.8059 4.1021 4.2507 4.5163 4.5306 4.6941 5.0186 5.0407 5.0875
(40× 40), 2 15129 3.4730 3.5768 3.6108 3.7618 4.0448 4.1110 4.2679 4.4451 4.4533 4.8852 4.9373 4.9602
(50× 50), 2 23409 3.4491 3.5448 3.5592 3.7417 4.0187 4.0497 4.1603 4.3481 4.4078 4.7868 4.9003 4.9201
(60× 60), 2 33489 3.4397 3.5101 3.5493 3.7308 4.0047 4.0173 4.1036 4.2932 4.3874 4.7351 4.8803 4.8887
(60× 60), 3 44652 3.3884 3.4807 3.4980 3.6791 3.9519 3.9789 4.0622 4.2500 4.3316 4.6843 4.7823 4.8056
(60× 60), 4 55815 3.3883 3.4807 3.4980 3.6791 3.9519 3.9789 4.0622 4.2500 4.3316 4.6842 4.7822 4.8055

LD (10× 10), 1 1452 6.1685 6.2827 6.5905 6.7487 6.7511 6.7820 6.7934 6.8452 7.1970 7.2456 8.3919 9.0693
(20× 20), 1 5292 3.7818 3.8997 4.0156 4.2034 4.2341 4.6573 4.7451 5.1942 5.2131 5.2553 5.2703 5.3378
(30× 30), 1 11532 3.5280 3.5848 3.7227 3.7739 4.0674 4.2096 4.4535 4.4898 4.6317 4.9579 4.9798 5.0264
(40× 40), 1 20172 3.4485 3.5467 3.5774 3.7311 4.0118 4.0745 4.2143 4.3988 4.4083 4.8302 4.8789 4.9017
(50× 50), 1 31212 3.4195 3.5134 3.5295 3.7114 3.9865 4.0152 4.1103 4.2986 4.3708 4.7354 4.8429 4.8661
(60× 60), 1 44652 3.4104 3.4797 3.5200 3.7008 3.9728 3.9837 4.0556 4.2455 4.3510 4.6855 4.8235 4.8440
(60× 60), 2 78141 3.3881 3.4717 3.4975 3.6782 3.9500 3.9710 4.0473 4.2359 4.3280 4.6716 4.7819 4.8052
(60× 60), 3 111630 3.3874 3.4629 3.4966 3.6768 3.9477 3.9631 4.0331 4.2223 4.3239 4.6591 4.7807 4.8040
(60× 60), 4 148840 3.3874 3.4629 3.4966 3.6768 3.9477 3.9631 4.0331 4.2223 4.3239 4.6591 4.7806 4.8039



1
3
1

C
o
n
v
e
r
g
e
n
c
e
ta
b
le
s

Table D.14: Convergence of the frequency parameters λ for the first 12 modes of a SSSS square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10 × 10), 2 1089 1.5365 2.3281 2.4435 2.4435 4.0739 4.0835 4.4297 4.9473 4.9473 5.5297 6.5996 6.8083

(20 × 20), 2 3969 1.5272 2.2833 2.4360 2.4360 3.8598 4.0040 4.3709 4.8870 4.8870 5.3821 5.9661 6.5845
(30 × 30), 2 8649 1.5255 2.2752 2.4346 2.4346 3.8206 3.9911 4.3598 4.8758 4.8758 5.3551 5.8575 6.5434
(40 × 40), 2 15129 1.5249 2.2723 2.4341 2.4341 3.8071 3.9866 4.3558 4.8719 4.8719 5.3457 5.8202 6.5290
(50 × 50), 2 23409 1.5246 2.2710 2.4339 2.4339 3.8008 3.9845 4.3540 4.8701 4.8701 5.3414 5.8030 6.5223
(60 × 60), 2 33489 1.5245 2.2703 2.4337s 2.4337s 3.7974 3.9834 4.3530 4.8692s 4.8692s 5.3390 5.7937 6.5187
(60 × 60), 3 44652 1.4713 2.1926 2.4337s 2.4337s 3.5980 3.7413 4.1095 4.8692s 4.8692s 5.0305 5.3637 6.1098
(60 × 60), 4 55815 1.4713 2.1923 2.4337s 2.4337s 3.5965 3.7407 4.1086 4.8692s 4.8692s 5.0281 5.3580 6.1082
(60 × 60), 5 66978 1.4708 2.1800 2.4337s 2.4337s 3.5453 3.7405 4.1026 4.8692s 4.8692s 4.9937 5.2504 6.1035
(60 × 60), 6 78141 1.4708 2.1800 2.4337s 2.4337s 3.5452 3.7405 4.1026 4.8692s 4.8692s 4.9937 5.2500 6.1034
(60 × 60), 7 89304 1.4705 2.1733 2.4337s 2.4337s 3.5190 3.7397 4.0986 4.8692s 4.8692s 4.9754 5.1988 6.1006
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Table D.15: Convergence of the frequency parameters λ for modes 13-24 of a SSSS square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10 × 10), 2 1089 6.9811 7.5196 7.5727 7.5727 7.6403 9.0479 9.2671 9.6724 9.7333 10.1012 10.2784 10.3794

(20 × 20), 2 3969 6.8102 7.0514 7.3681 7.3681 7.4884 8.3995 8.7449 9.1625 9.1953 9.3158 9.8029 9.8947
(30 × 30), 2 8649 6.7776 6.9697 7.3305 7.3305 7.4572 8.1738 8.6849 9.0091 9.0684 9.2365 9.7399 9.8052
(40 × 40), 2 15129 6.7662 6.9416 7.3173 7.3173 7.4461 8.0965 8.6637 8.9452 9.0355 9.2088 9.7175 9.7739
(50 × 50), 2 23409 6.7609 6.9286 7.3112 7.3112 7.4409 8.0610 8.6539 8.9158 9.0204 9.1959 9.7070 9.7595
(60 × 60), 2 33489 6.7580 6.9216 7.3079s 7.3079s 7.4381 8.0418 8.6485 8.9000 9.0121 9.1889 9.7013 9.7517s

(60 × 60), 3 44652 6.3545 6.4333 6.9974 7.2985 7.3079s 7.3079s 8.0736 8.1311 8.5024 8.6871 9.1744 9.3196
(60 × 60), 4 55815 6.3525 6.4264 6.9936 7.2840 7.3079s 7.3079s 8.0651 8.1150 8.4998 8.6840 9.1695 9.2901
(60 × 60), 5 66978 6.3414 6.3447 6.9666 7.1208 7.3079s 7.3079s 7.9753 7.9974 8.4793 8.6623 9.0858 9.1350
(60 × 60), 6 78141 6.3411 6.3446 6.9666 7.1197 7.3079s 7.3079s 7.9744 7.9973 8.4791 8.6621 9.0836 9.1349
(60 × 60), 7 89304 6.2998 6.3398 6.9517 7.0471 7.3079s 7.3079s 7.9112 7.9636 8.4718 8.6534 8.9981 9.1189
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Table D.16: Convergence of the frequency parameters λ for modes 25-36 of a SSSS square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10 × 10), 2 1089 10.3794 11.0145 11.2500 11.8148 12.5769 12.6013 12.6979 12.7233 12.8440 13.3360 13.3633 13.3723

(20 × 20), 2 3969 9.8947 10.5206 10.7624 11.0562 11.6572 11.7631 11.7822 11.8703 12.2066 12.2331 12.4820 12.4820
(30 × 30), 2 8649 9.8052 10.3833 10.6583 10.6978 11.3104 11.5832 11.7113 11.7762 12.1011 12.1039 12.3068 12.3068
(40 × 40), 2 15129 9.7739 10.3355 10.5224 10.6742 11.1917 11.5204 11.6556 11.7741 12.0580 12.0626 12.2457 12.2457
(50 × 50), 2 23409 9.7595 10.3134 10.4601 10.6631 11.1373 11.4914 11.6298 11.7731 12.0366 12.0446 12.2174 12.2174
(60 × 60), 2 33489 9.7517s 10.3014 10.4264 10.6571 11.1079 11.4757 11.6159 11.7726s 12.0250 12.0347 12.2021s 12.2021s

(60 × 60), 3 44652 9.4877 9.7517s 9.7517s 9.9952 10.0237 10.9189 11.0679 11.1304 11.1962 11.3929 11.4581 11.7726s

(60 × 60), 4 55815 9.4700 9.7517s 9.7517s 9.9639 10.0141 10.9157 11.0641 11.0973 11.1774 11.3413 11.4526 11.5570s

(60 × 60), 5 66978 9.3525 9.7517s 9.7517s 9.7813 9.9485 10.8681 10.9374 11.0169 11.0700 11.1167 11.3972 11.5570s

(60 × 60), 6 78141 9.3520 9.7517s 9.7517s 9.7795 9.9485 10.8674 10.9362 11.0163 11.0698 11.1134 11.3968 11.5312s

(60 × 60), 7 89304 9.2979 9.7020 9.7517s 9.7517s 9.9175 10.8524 10.8671 11.0003 11.0210 11.0245 11.3753 11.5311s
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Table D.17: Convergence of the frequency parameters λ for the first 12 modes of a CCCC square laminated plate with t
b
= 0.1 and

stacking sequence 0◦/90◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10× 10), 2 1089 1.8978 3.4043 3.4043 4.4407 5.5049 5.5270 6.1957 6.1957 7.5015 8.0395 8.0395 8.4679

(20× 20), 2 3969 1.8714 3.3080 3.3080 4.3276 5.2250 5.2449 5.9567 5.9567 7.2420 7.4056 7.4056 7.9352
(30× 30), 2 8649 1.8665 3.2904 3.2904 4.3063 5.1747 5.1941 5.9121 5.9121 7.1906 7.2933 7.2933 7.8382
(40× 40), 2 15129 1.8647 3.2842 3.2842 4.2988 5.1571 5.1764 5.8965 5.8965 7.1724 7.2543 7.2543 7.8044
(50× 50), 2 23409 1.8639 3.2813 3.2813 4.2954 5.1490 5.1682 5.8893 5.8893 7.1639 7.2364 7.2364 7.7887
(60× 60), 2 33489 1.8634 3.2797 3.2797 4.2935 5.1446 5.1638 5.8853 5.8853 7.1593 7.2266 7.2266 7.7802
(60× 60), 3 44652 1.8441 3.2301 3.2301 4.2256 5.0445 5.0626 5.7765 5.7765 7.0239 7.0559 7.0559 7.6104
(60× 60), 4 55815 1.8085 3.1583 3.1583 4.1372 4.9296 4.9477 5.6571 5.6571 6.8867 6.9017 6.9017 7.4565
(60× 60), 5 66978 1.7988 3.1391 3.1391 4.1123 4.8993 4.9175 5.6233 5.6233 6.8461 6.8617 6.8617 7.4137
(60× 60), 6 78141 1.7981 3.1378 3.1378 4.1108 4.8975 4.9157 5.6216 5.6216 6.8442 6.8595 6.8595 7.4115
(60× 60), 7 89304 1.7967 3.1356 3.1356 4.1082 4.8950 4.9133 5.6187 5.6187 6.8411 6.8571 6.8571 7.4087

LD (10× 10), 1 1089 1.8773 3.3566 3.3566 4.3819 5.4193 5.4415 6.1101 6.1101 7.4032 7.9142 7.9142 8.3479
(20× 20), 1 3969 1.8519 3.2633 3.2633 4.2724 5.1446 5.1645 5.8755 5.8755 7.1468 7.2851 7.2851 7.8188
(30× 30), 1 8649 1.8472 3.2463 3.2463 4.2518 5.0953 5.1148 5.8320 5.8320 7.0963 7.1743 7.1743 7.7231
(40× 40), 1 15129 1.8455 3.2403 3.2403 4.2446 5.0781 5.0975 5.8167 5.8167 7.0785 7.1359 7.1359 7.6898
(50× 50), 1 23409 1.8447 3.2375 3.2375 4.2413 5.0702 5.0895 5.8096 5.8096 7.0702 7.1182 7.1182 7.6744
(60× 60), 1 33489 1.8443 3.2360 3.2360 4.2394 5.0659 5.0852 5.8058 5.8058 7.0656 7.1086 7.1086 7.6660
(60× 60), 2 55815 1.8336 3.2104 3.2104 4.2040 5.0150 5.0335 5.7498 5.7498 6.9971 7.0199 7.0199 7.5781
(60× 60), 3 78141 1.7956 3.1339 3.1339 4.1062 4.8932 4.9114 5.6169 5.6169 6.8395 6.8565 6.8565 7.4079
(60× 60), 4 100467 1.7954 3.1331 3.1331 4.1051 4.8913 4.9096 5.6148 5.6148 6.8368 6.8529 6.8529 7.4043
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Table D.18: Convergence of the frequency parameters λ for modes 13-24 of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10 × 10), 2 1089 8.4937 9.3841 9.3841 10.7923 10.9464 10.9537 11.2137 11.2137 11.7661 11.7881 12.7026 12.7026

(20 × 20), 2 3969 7.9556 8.9536 8.9536 9.7410 9.7479 10.1649 10.1649 10.3800 10.9578 10.9734 12.1407 12.1407
(30 × 30), 2 8649 7.8577 8.8674 8.8674 9.5292 9.5359 9.9761 9.9761 10.2844 10.7989 10.8134 11.8482 11.8482
(40 × 40), 2 15129 7.8235 8.8369 8.8369 9.4561 9.4628 9.9107 9.9107 10.2499 10.7430 10.7571 11.7264 11.7264
(50 × 50), 2 23409 7.8077 8.8227 8.8227 9.4225 9.4291 9.8805 9.8805 10.2337 10.7171 10.7311 11.6703 11.6703
(60 × 60), 2 33489 7.7992 8.8150 8.8150 9.4042 9.4108 9.8642 9.8642 10.2249 10.7030 10.7169 11.6399 11.6399
(60 × 60), 3 44652 7.6264 8.6311 8.6311 9.1433 9.1491 9.6086 9.6086 10.0094 10.4483 10.4591 11.2680 11.2680
(60 × 60), 4 55815 7.4748 8.4695 8.4695 8.9622 8.9688 9.4315 9.4315 9.8312 10.2650 10.2797 11.0792 11.0792
(60 × 60), 5 66978 7.4323 8.4210 8.4210 8.9157 8.9224 9.3825 9.3825 9.7755 10.2104 10.2253 11.0302 11.0302
(60 × 60), 6 78141 7.4302 8.4189 8.4189 8.9132 8.9199 9.3801 9.3801 9.7732 10.2080 10.2230 11.0271 11.0271
(60 × 60), 7 89304 7.4275 8.4159 8.4159 8.9109 8.9176 9.3775 9.3775 9.7702 10.2051 10.2201 11.0244 11.0244

LD (10 × 10), 1 1089 8.3751 9.2639 9.2639 10.6641 10.7866 10.7946 11.0640 11.0640 11.6224 11.6477 12.5656 12.5656
(20 × 20), 1 3969 7.8403 8.8329 8.8329 9.5807 9.5880 10.0123 10.0123 10.2435 10.8055 10.8232 11.9810 11.9810
(30 × 30), 1 8649 7.7436 8.7476 8.7476 9.3704 9.3776 9.8248 9.8248 10.1481 10.6472 10.6636 11.6556 11.6556
(40 × 40), 1 15129 7.7099 8.7175 8.7175 9.2980 9.3050 9.7599 9.7599 10.1138 10.5916 10.6076 11.5340 11.5340
(50 × 50), 1 23409 7.6944 8.7035 8.7035 9.2646 9.2717 9.7300 9.7300 10.0977 10.5659 10.5817 11.4781 11.4781
(60 × 60), 1 33489 7.6859 8.6958 8.6958 9.2466 9.2536 9.7138 9.7138 10.0889 10.5519 10.5676 11.4478 11.4478
(60 × 60), 2 55815 7.5962 8.6030 8.6030 9.1070 9.1135 9.5779 9.5779 9.9829 10.4208 10.4345 11.2404 11.2404
(60 × 60), 3 78141 7.4269 8.4154 8.4154 8.9132 8.9200 9.3797 9.3797 9.7707 10.2072 10.2226 11.0318 11.0318
(60 × 60), 4 100467 7.4232 8.4113 8.4113 8.9073 8.9141 9.3738 9.3738 9.7654 10.2010 10.2163 11.0230 11.0230
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Table D.19: Convergence of the frequency parameters λ for modes 25-36 of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10 × 10), 2 1089 13.0103 13.0103 13.4992 13.4992 13.4998 13.7993 14.0294 14.2559 14.2559 14.3788 14.3836 14.5517

(20 × 20), 2 3969 12.2004 12.2004 12.5384 12.5459 13.0280 13.0280 13.1914 13.1914 13.5214 13.6481 13.8383 14.1540
(30 × 30), 2 8649 12.0005 12.0005 12.2142 12.2225 12.9113 12.9113 13.0181 13.0181 13.4986 13.5138 13.8323 13.9227
(40 × 40), 2 15129 11.9495 11.9495 12.1021 12.1104 12.8141 12.8141 13.0148 13.0148 13.4425 13.5114 13.8288 13.8410
(50 × 50), 2 23409 11.9256 11.9256 12.0505 12.0588 12.7691 12.7691 13.0134 13.0134 13.4159 13.5104 13.7997 13.8099
(60 × 60), 2 33489 11.9125 11.9125 12.0226 12.0309 12.7446 12.7446 13.0126 13.0126 13.4013 13.5098 13.7787 13.7886
(60 × 60), 3 44652 11.6416 11.6416 11.6628 11.6694 12.3937 12.3937 12.5937 12.5937 13.0942 13.1138 13.4247 13.4250
(60 × 60), 4 55815 11.4484 11.4484 11.4761 11.4852 12.2054 12.2054 12.5724 12.5724 12.8888 13.0941 13.2296 13.2409
(60 × 60), 5 66978 11.3866 11.3866 11.4243 11.4337 12.1481 12.1481 12.5531 12.5531 12.8204 13.0753 13.1644 13.1761
(60 × 60), 6 78141 11.3840 11.3840 11.4212 11.4307 12.1451 12.1451 12.5488 12.5488 12.8176 13.0713 13.1613 13.1730
(60 × 60), 7 89304 11.3811 11.3811 11.4184 11.4279 12.1420 12.1420 12.5451 12.5451 12.8147 13.0678 13.1583 13.1699

LD (10 × 10), 1 1089 12.9981 12.9981 13.4864 13.4979 13.4979 13.7764 13.8984 14.0784 14.0784 14.2160 14.2272 14.4217
(20 × 20), 1 3969 12.0092 12.0092 12.3527 12.3624 13.0049 13.0049 13.0209 13.0209 13.4740 13.5105 13.8272 13.9699
(30 × 30), 1 8649 11.8404 11.8404 12.0287 12.0386 12.7306 12.7306 13.0064 13.0064 13.3216 13.5038 13.7357 13.7483
(40 × 40), 1 15129 11.7893 11.7893 11.9170 11.9268 12.6332 12.6332 13.0036 13.0036 13.2648 13.5015 13.6520 13.6642
(50 × 50), 1 23409 11.7654 11.7654 11.8656 11.8753 12.5882 12.5882 13.0024 13.0024 13.2380 13.5004 13.6129 13.6251
(60 × 60), 1 33489 11.7523 11.7523 11.8377 11.8475 12.5638 12.5638 13.0018 13.0018 13.2232 13.4997 13.5916 13.6039
(60 × 60), 2 55815 11.6186 11.6186 11.6392 11.6477 12.3759 12.3759 12.5416 12.5416 13.0648 13.0753 13.3763 13.4135
(60 × 60), 3 78141 11.3842 11.3842 11.4253 11.4350 12.1490 12.1490 12.5377 12.5377 12.8200 13.0608 13.1656 13.1775
(60 × 60), 4 100467 11.3769 11.3769 11.4166 11.4263 12.1400 12.1400 12.5375 12.5375 12.8110 13.0606 13.1558 13.1676
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Table D.20: Convergence of the frequency parameters λ for the first 12 modes of a CCCC square laminated plate with t
b
= 0.1 and

stacking sequence 0◦/90◦/0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10 × 10), 2 1089 2.5176 4.0306 4.4509 5.4221 6.2588 6.9416 7.1728 7.5400 8.7703 8.9258 9.5008 9.6905

(20 × 20), 2 3969 2.4955 3.9428 4.3778 5.3424 5.9953 6.7213 6.9907 7.3773 8.3353 8.6263 9.0652 9.1868
(30 × 30), 2 8649 2.4914 3.9266 4.3642 5.3271 5.9472 6.6805 6.9557 7.3454 8.2277 8.5938 8.9824 9.0936
(40 × 40), 2 15129 2.4900 3.9210 4.3595 5.3217 5.9305 6.6663 6.9433 7.3341 8.1903 8.5821 8.9533 9.0610
(50 × 50), 2 23409 2.4893 3.9184 4.3573 5.3192 5.9227 6.6597 6.9376 7.3289 8.1730 8.5766 8.9398 9.0460
(60 × 60), 2 33489 2.4889 3.9170 4.3561 5.3178 5.9185 6.6561 6.9345 7.3261 8.1636 8.5736 8.9325 9.0378
(60 × 60), 3 44652 2.3405 3.5024 4.1630 4.9288 5.1407 6.2155 6.3917 6.9201 6.9690 7.8077 7.8922 8.7021
(60 × 60), 4 55815 2.3398 3.4998 4.1618 4.9258 5.1337 6.2080 6.3894 6.9159 6.9543 7.7923 7.8837 8.6984
(60 × 60), 5 66978 2.3142 3.4388 4.1257 4.8658 5.0350 6.1153 6.3338 6.8246 6.8458 7.6702 7.7875 8.6184
(60 × 60), 6 78141 2.3142 3.4386 4.1256 4.8657 5.0347 6.1150 6.3337 6.8241 6.8456 7.6697 7.7873 8.6181
(60 × 60), 7 89304 2.3114 3.4354 4.1216 4.8613 5.0315 6.1107 6.3288 6.8207 6.8405 7.6655 7.7821 8.6133

LD (10 × 10), 1 2178 2.3663 3.5751 4.2694 5.0178 5.3882 6.3877 6.7050 7.1493 7.5858 8.0695 8.2547 9.4064
(20 × 20), 1 7938 2.3486 3.5119 4.1992 4.9544 5.1820 6.2526 6.4837 6.9897 7.0869 7.9006 7.9472 8.8898
(30 × 30), 1 17298 2.3453 3.5002 4.1862 4.9420 5.1446 6.2266 6.4431 6.9587 6.9986 7.8353 7.9199 8.7954
(40 × 40), 1 30258 2.3441 3.4961 4.1816 4.9377 5.1315 6.2173 6.4289 6.9476 6.9681 7.8125 7.9100 8.7625
(50 × 50), 1 46818 2.3436 3.4941 4.1795 4.9356 5.1255 6.2130 6.4223 6.9421 6.9543 7.8019 7.9053 8.7473
(60 × 60), 1 66978 2.3433 3.4931 4.1784 4.9345 5.1222 6.2107 6.4187 6.9388 6.9472 7.7961 7.9028 8.7390
(60 × 60), 2 122793 2.3108 3.4337 4.1221 4.8609 5.0284 6.1089 6.3317 6.8160 6.8423 7.6619 7.7827 8.6207
(60 × 60), 3 178608 2.3090 3.4295 4.1172 4.8546 5.0192 6.0988 6.3216 6.7994 6.8315 7.6451 7.7693 8.6028
(60 × 60), 4 234423 2.3088 3.4293 4.1168 4.8542 5.0189 6.0982 6.3209 6.7988 6.8307 7.6444 7.7685 8.6015
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Table D.21: Convergence of the frequency parameters λ for modes 12-24 of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦/0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10 × 10), 2 1089 10.0474 10.5941 10.8483 11.9378 12.1351 12.2617 12.6869 12.8648 12.9161 13.0083 13.3125 13.4360

(20 × 20), 2 3969 9.6633 10.3499 10.6202 10.8439 11.3964 11.7368 12.0223 12.0959 12.4063 12.8405 12.9685 13.4633
(30 × 30), 2 8649 9.5888 10.2926 10.5655 10.6421 11.2305 11.5582 11.9452 11.9724 12.2893 12.7295 12.9610 13.1256
(40 × 40), 2 15129 9.5625 10.2718 10.5456 10.5719 11.1724 11.4959 11.8923 11.9532 12.2473 12.6895 12.9584 13.0082
(50 × 50), 2 23409 9.5504 10.2620 10.5363 10.5396 11.1456 11.4672 11.8678 11.9440 12.2277 12.6708 12.9540 12.9572
(60 × 60), 2 33489 9.5437 10.2567 10.5220 10.5312 11.1310 11.4515 11.8545 11.9390 12.2170 12.6606 12.9247 12.9565s

(60 × 60), 3 44652 8.8903 9.1003 9.2015 9.5718 9.8610 10.7409 10.8626 10.9373 11.0601 11.3767 11.4353 11.9928
(60 × 60), 4 55815 8.8632 9.0947 9.1848 9.5440 9.8509 10.7117 10.8184 10.9191 11.0548 11.3694 11.3903 11.9810
(60 × 60), 5 66978 8.7197 9.0046 9.0630 9.4063 9.7421 10.5747 10.6772 10.7894 10.9476 11.2532 11.2556 11.8533
(60 × 60), 6 78141 8.7190 9.0044 9.0627 9.4057 9.7418 10.5742 10.6765 10.7891 10.9471 11.2525 11.2552 11.8530
(60 × 60), 7 89304 8.7140 8.9993 9.0575 9.4001 9.7366 10.5680 10.6664 10.7839 10.9429 11.2424 11.2507 11.8483

LD (10 × 10), 1 2178 9.4722 9.6554 10.1446 10.2205 10.5634 11.1575 11.3580 12.3869 12.4885 12.5266 12.7648 13.0037
(20 × 20), 1 7938 9.1444 9.2539 9.2769 9.7812 9.9740 10.8947 11.0298 11.3267 11.3956 11.6666 11.8359 12.2173
(30 × 30), 1 17298 8.9707 9.1777 9.2322 9.6419 9.9188 10.7991 10.9837 11.0231 11.2129 11.5101 11.5778 12.0986
(40 × 40), 1 30258 8.9107 9.1510 9.2160 9.5936 9.8989 10.7651 10.9190 10.9662 11.1493 11.4554 11.4890 12.0563
(50 × 50), 1 46818 8.8830 9.1386 9.2083 9.5713 9.8896 10.7492 10.8712 10.9578 11.1200 11.4301 11.4481 12.0366
(60 × 60), 1 66978 8.8681 9.1318 9.2042 9.5592 9.8845 10.7405 10.8453 10.9532 11.1041 11.4163 11.4260 12.0258
(60 × 60), 2 122793 8.7071 9.0059 9.0563 9.3945 9.7418 10.5647 10.6575 10.7872 10.9581 11.2348 11.2649 11.8610
(60 × 60), 3 178608 8.6806 8.9876 9.0375 9.3684 9.7217 10.5376 10.6190 10.7629 10.9288 11.1973 11.2356 11.8305
(60 × 60), 4 234423 8.6794 8.9864 9.0365 9.3672 9.7205 10.5362 10.6171 10.7616 10.9267 11.1953 11.2335 11.8285
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Table D.22: Convergence of the frequency parameters λ for modes 25-36 of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 0◦/90◦/0◦/90◦/0◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10× 10), 2 1089 13.5898 13.6801 13.8922 14.0800 14.8394 15.1972 15.2239 15.3468 15.5086 15.6223 15.7111 15.9021

(20× 20), 2 3969 13.6229 13.7816 13.8903 13.9739 14.3523 14.6283 14.6885 14.7063 14.9566 15.1218 15.2138 15.4510
(30× 30), 2 8649 13.5995 13.6122 13.7067 13.8999 14.0475 14.3604 14.4697 14.6817 15.0048 15.2769 15.3940 15.4450
(40× 40), 2 15129 13.4978 13.6085 13.6775 13.8710 13.9411 14.2664 14.3915 14.6731 14.9299 15.3683 15.3924 15.4759
(50× 50), 2 23409 13.4508 13.6067 13.6635 13.8571 13.8920 14.2229 14.3551 14.6692 14.8950 15.3555 15.3921 15.4465
(60× 60), 2 33489 13.4253 13.6058 13.6558 13.8494 13.8654 14.1993 14.3353 14.6670s 14.8760 15.3465 15.3485 15.4760
(60× 60), 3 44652 12.2601 12.4318 12.8792 12.8903 12.9564s 13.3726 13.4368 13.6057s 13.6987 13.7644 14.0270 14.2131
(60× 60), 4 55815 12.2292 12.3851 12.8129 12.8704 12.9475s 13.3052 13.4298 13.5972s 13.6899 13.7159 13.9945 14.1658
(60× 60), 5 66978 12.0862 12.2476 12.6876 12.7262 12.9474s 13.1823 13.2947 13.5505 13.5723 13.5971s 13.8395 14.0409
(60× 60), 6 78141 12.0858 12.2470 12.6869 12.7259 12.9039s 13.1816 13.2940 13.5499 13.5556s 13.5719 13.8391 14.0403
(60× 60), 7 89304 12.0797 12.2369 12.6672 12.7211 12.9038s 13.1626 13.2898 13.5454 13.5556s 13.5623 13.8335 14.0219

LD (10× 10), 1 2178 13.1013 13.2669 13.3191 13.3843 13.5719 13.6755 13.7414 14.0744 14.3872 14.8350 15.2809 15.3607
(20× 20), 1 7938 12.3801 12.7393 12.9638 13.0525 13.6184 13.6414 13.9828 13.9862 14.0530 14.1599 14.1911 14.6160
(30× 30), 1 17298 12.3153 12.5477 12.9564 12.9704 13.1519 13.6078 13.6200 13.6718 13.8569 13.9109 14.0959 14.3899
(40× 40), 1 30258 12.2904 12.4806 12.9393 12.9537 12.9851 13.4721 13.5626 13.6040 13.8101 13.8131 14.0692 14.3098
(50× 50), 1 46818 12.2784 12.4496 12.9088 12.9245 12.9525 13.4043 13.5122 13.6023 13.7679 13.7880 14.0560 14.2684
(60× 60), 1 66978 12.2719 12.4327 12.8675 12.9164 12.9519s 13.3677 13.4849 13.6013s 13.7434 13.7759 14.0487 14.2387
(60× 60), 2 122793 12.0808 12.2315 12.6563 12.7318 12.8701s 13.1529 13.3160 13.5233s 13.5610 13.5706 13.8418 14.0145
(60× 60), 3 178608 12.0495 12.1937 12.6050 12.6981 12.8701s 13.1028 13.2716 13.5202 13.5232s 13.5264 13.8023 13.9646
(60× 60), 4 234423 12.0478 12.1917 12.6020 12.6960 12.8701s 13.0999 13.2683 13.5180 13.5232 13.5232s 13.8001 13.9617
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Table D.23: Convergence of the frequency parameters λ for the first 12 modes of a CCCC square laminated plate with t
b
= 0.1 and

stacking sequence 45◦/− 45◦/45◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10× 10), 2 1089 2.1395 3.3904 4.0227 4.7245 5.7474 6.1262 6.2311 7.1786 7.8593 8.3388 8.4812 8.9692

(20× 20), 2 3969 2.1160 3.2962 3.9423 4.5716 5.4729 5.9231 5.9730 6.8940 7.4937 7.7425 7.9777 8.4474
(30× 30), 2 8649 2.1115 3.2789 3.9272 4.5423 5.4231 5.8869 5.9240 6.8333 7.4201 7.6372 7.8947 8.3465
(40× 40), 2 15129 2.1098 3.2728 3.9219 4.5320 5.4057 5.8742 5.9068 6.8115 7.3940 7.6007 7.8664 8.3109
(50× 50), 2 23409 2.1091 3.2700 3.9194 4.5272 5.3977 5.8684 5.8988 6.8013 7.3819 7.5839 7.8534 8.2943
(60× 60), 2 33489 2.1087 3.2685 3.9181 4.5246 5.3933 5.8652 5.8944 6.7957 7.3753 7.5748 7.8464 8.2853
(60× 60), 3 44652 1.9958 3.0845 3.6874 4.2432 5.0702 5.4881 5.5126 6.3568 6.8155 7.1107 7.3869 7.7146
(60× 60), 4 55815 1.9952 3.0832 3.6859 4.2404 5.0671 5.4828 5.5097 6.3512 6.8059 7.1048 7.3821 7.7049
(60× 60), 5 66978 1.9879 3.0615 3.6726 4.1960 5.0347 5.4097 5.4882 6.2965 6.7025 7.0577 7.3489 7.6233
(60× 60), 6 78141 1.9878 3.0614 3.6725 4.1959 5.0345 5.4093 5.4881 6.2962 6.7019 7.0575 7.3487 7.6228
(60× 60), 7 89304 1.9837 3.0499 3.6653 4.1736 5.0179 5.3742 5.4771 6.2699 6.6545 7.0345 7.3330 7.5856

LD (10× 10), 1 1452 2.0555 3.2279 3.8555 4.4474 5.4741 5.8017 5.8711 6.8076 7.2577 7.9366 8.1255 8.4503
(20× 20), 1 5292 2.0339 3.1408 3.7790 4.3070 5.2122 5.5642 5.6759 6.5182 6.9131 7.3687 7.6518 7.9273
(30× 30), 1 11532 2.0298 3.1249 3.7647 4.2803 5.1649 5.5195 5.6410 6.4583 6.8455 7.2684 7.5730 7.8281
(40× 40), 1 20172 2.0284 3.1193 3.7597 4.2709 5.1484 5.5039 5.6289 6.4369 6.8217 7.2336 7.5461 7.7932
(50× 50), 1 31212 2.0277 3.1167 3.7574 4.2665 5.1408 5.4966 5.6233 6.4269 6.8106 7.2176 7.5337 7.7770
(60× 60), 1 44652 2.0273 3.1153 3.7561 4.2642 5.1366 5.4926 5.6202 6.4214 6.8046 7.2089 7.5270 7.7682
(60× 60), 2 78141 1.9902 3.0664 3.6801 4.2042 5.0469 5.4216 5.5039 6.3144 6.7187 7.0799 7.3765 7.6469
(60× 60), 3 111630 1.9812 3.0435 3.6613 4.1618 5.0095 5.3567 5.4718 6.2575 6.6319 7.0241 7.3269 7.5689
(60× 60), 4 148840 1.9810 3.0431 3.6607 4.1611 5.0085 5.3556 5.4706 6.2560 6.6304 7.0223 7.3247 7.5668
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Table D.24: Convergence of the frequency parameters λ for modes 13-24 of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 45◦/− 45◦/45◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10 × 10), 2 1089 9.4749 9.5723 10.5681 10.5777 11.1978 11.2398 11.3891 11.7077 11.9156 12.4413 12.8740 13.0047

(20 × 20), 2 3969 9.0926 9.0939 10.0603 10.0891 10.1868 10.3408 10.7565 10.8022 11.2014 11.7208 12.3684 12.4112
(30 × 30), 2 8649 8.9906 9.0110 9.8887 9.9315 10.0083 10.2882 10.6216 10.6347 11.0780 11.5527 12.1766 12.2125
(40 × 40), 2 15129 8.9540 8.9805 9.8198 9.8845 9.9480 10.2683 10.5728 10.5761 11.0346 11.4912 12.0725 12.1519
(50 × 50), 2 23409 8.9369 8.9661 9.7881 9.8624 9.9205 10.2587 10.5490 10.5498 11.0143 11.4623 12.0224 12.1028
(60 × 60), 2 33489 8.9276 8.9582 9.7710 9.8503 9.9057 10.2534s 10.5343 10.5373 11.0032 11.4464 11.9950 12.0748
(60 × 60), 3 44652 8.1915 8.3856 9.1265 9.1859 9.3308 9.6168 9.8244 10.2533s 10.3562 10.5597 11.0168 11.2585
(60 × 60), 4 55815 8.1756 8.3767 9.1108 9.1763 9.3216 9.5934 9.8093 10.1356s 10.3448 10.5360 10.9821 11.2360
(60 × 60), 5 66978 8.0447 8.3114 9.0037 9.1135 9.2570 9.4506 9.7153 10.1356s 10.2718 10.4076 10.8143 11.1196
(60 × 60), 6 78141 8.0436 8.3110 9.0028 9.1132 9.2565 9.4492 9.7145 10.1210s 10.2712 10.4062 10.8122 11.1184
(60 × 60), 7 89304 7.9862 8.2815 8.9561 9.0840 9.2243 9.3925 9.6735 10.1210s 10.2405 10.3524 10.7433 11.0699

LD (10 × 10), 1 1452 8.8029 9.0546 9.9831 10.3412 10.5487 10.7219 10.8264 11.0930 11.4279 11.7185 12.0045 12.3410
(20 × 20), 1 5292 8.3263 8.6410 9.3897 9.6165 9.6874 9.8627 10.1838 10.3236 10.7248 10.8966 11.2833 11.6583
(30 × 30), 1 11532 8.2298 8.5511 9.2570 9.4248 9.5446 9.7101 10.0163 10.2715 10.5926 10.7187 11.1112 11.4712
(40 × 40), 1 20172 8.1955 8.5183 9.2093 9.3589 9.4948 9.6576 9.9577 10.2517 10.5449 10.6547 11.0488 11.4017
(50 × 50), 1 31212 8.1796 8.5029 9.1870 9.3286 9.4718 9.6335 9.9307 10.2422 10.5225 10.6248 11.0196 11.3688
(60 × 60), 1 44652 8.1709 8.4944 9.1748 9.3122 9.4594 9.6204 9.9160 10.2370s 10.5103 10.6084 11.0036 11.3509
(60 × 60), 2 78141 8.0657 8.3432 9.0340 9.1493 9.2956 9.4796 9.7530 10.1180s 10.3225 10.4450 10.8462 11.1665
(60 × 60), 3 111630 7.9602 8.2697 8.9366 9.0729 9.2114 9.3701 9.6580 10.1180s 10.2322 10.3319 10.7156 11.0536
(60 × 60), 4 148840 7.9582 8.2670 8.9338 9.0698 9.2081 9.3671 9.6545 10.1179s 10.2274 10.3281 10.7123 11.0489
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Table D.25: Convergence of the frequency parameters λ for modes 25-36 of a CCCC square laminated plate with t
b
= 0.1 and stacking

sequence 45◦/− 45◦/45◦. Material 2 is used.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10× 10), 2 1089 13.4411 13.5695 13.8651 13.9200 14.3491 14.5262 14.5283 14.5527 14.7703 14.8917 15.1590 15.3452

(20× 20), 2 3969 12.6022 12.6024 13.1238 13.1854 13.3671 13.4188 13.9062 14.0975 14.1682 14.5302 14.9719 15.0905
(30× 30), 2 8649 12.2680 12.3259 12.8983 12.9536 13.1370 13.2174 13.7881 13.8606 13.9712 14.3501 14.6245 14.6654
(40× 40), 2 15129 12.1546 12.2502 12.7996 12.8897 13.0612 13.1410 13.7404 13.7749 13.8959 14.2803 14.4389 14.4803
(50× 50), 2 23409 12.1228 12.2169 12.7543 12.8592 13.0269 13.1047 13.7166 13.7346 13.8600 14.2463 14.3532 14.3956
(60× 60), 2 33489 12.1067 12.1991 12.7297 12.8423 13.0085 13.0847 13.7031s 13.7126 13.8402 14.2274 14.3069 14.3500
(60× 60), 3 44652 11.3344 11.3876 11.9264 12.0285 12.2782 12.5173 12.7134 12.8422s 13.3442 13.4118 13.5266 13.5690
(60× 60), 4 55815 11.3189 11.3744 11.9061 11.9947 12.2587 12.4729 12.6633s 12.6809 13.3176 13.3768 13.5064 13.5365
(60× 60), 5 66978 11.2314 11.2933 11.8023 11.8513 12.1470 12.3172 12.5467 12.6633s 13.1975 13.2366 13.3971 13.4114
(60× 60), 6 78141 11.2310 11.2929 11.8014 11.8495 12.1454 12.3151 12.5450 12.6415s 13.1961 13.2348 13.3966 13.4104
(60× 60), 7 89304 11.1924 11.2575 11.7576 11.7913 12.0949 12.2590 12.4906 12.6415s 13.1477 13.1765 13.3495 13.3592

LD (10× 10), 1 1452 13.2277 13.4146 13.5126 13.5631 13.8248 13.8817 13.9247 14.1078 14.2601 14.3388 14.4183 14.7820
(20× 20), 1 5292 11.9921 12.0225 12.4639 12.5086 12.7252 12.9407 13.0948 13.2290 13.8865 13.8974 14.0044 14.3860
(30× 30), 1 11532 11.6640 11.7186 12.2231 12.2322 12.5269 12.7099 12.9270 12.9690 13.6497 13.7115 13.7797 13.9737
(40× 40), 1 20172 11.5519 11.6160 12.1247 12.1481 12.4559 12.6290 12.8640 12.8755 13.5568 13.5970 13.7321 13.8034
(50× 50), 1 31212 11.5005 11.5693 12.0794 12.1086 12.4227 12.5915 12.8317 12.8339 13.5120 13.5409 13.7084 13.7255
(60× 60), 1 44652 11.4728 11.5441 12.0549 12.0870 12.4045 12.5712 12.8078 12.8173s 13.4872 13.5095 13.6836 13.6931
(60× 60), 2 78141 11.2824 11.3488 11.8575 11.8966 12.2039 12.3687 12.6013 12.6370s 13.2667 13.2920 13.4675 13.4764
(60× 60), 3 111630 11.1804 11.2480 11.7453 11.7714 12.0790 12.2438 12.4746 12.6368s 13.1380 13.1591 13.3393 13.3466
(60× 60), 4 148840 11.1755 11.2425 11.7396 11.7666 12.0734 12.2377 12.4686 12.6368s 13.1301 13.1530 13.3316 13.3394
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Table D.26: Convergence of the frequency parameters λ for the first 12 modes of CCCC square composite plate with t
b
= 0.1, tc

tf
= 10

and stack sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10 × 10), 2 1089 2.3306 3.9625 3.9625 5.0910 6.1641 6.1893 6.9095 6.9095 7.5861 7.5861 8.2429 8.2846

(20 × 20), 2 3969 2.3060 3.8822 3.8822 5.0110 5.9324 5.9561 6.7424 6.7424 7.5562 7.5562 8.1016 8.2056
(30 × 30), 2 8649 2.3012 3.8672 3.8672 4.9954 5.8897 5.9131 6.7097 6.7097 7.5504 7.5504 8.0697 8.1099
(40 × 40), 2 15129 2.2994 3.8618 3.8618 4.9898 5.8747 5.8981 6.6982 6.6982 7.5483 7.5483 8.0582 8.0766
(50 × 50), 2 23409 2.2985 3.8593 3.8593 4.9872 5.8678 5.8911 6.6927 6.6927 7.5473 7.5473 8.0527 8.0611
(60 × 60), 2 33489 2.2981 3.8579 3.8579 4.9857 5.8640 5.8873 6.6898 6.6898 7.5468 7.5468 8.0498 8.0527
(60 × 60), 3 44652 0.5501 0.8828 0.8828 1.1286 1.2871 1.2873 1.4743 1.4743 1.7383 1.7383 1.7629 1.8893
(60 × 60), 4 55815 0.5483 0.8789 0.8789 1.1225 1.2795 1.2798 1.4644 1.4644 1.7252 1.7252 1.7488 1.8736
(60 × 60), 5 66978 0.2582 0.4370 0.4370 0.5737 0.6844 0.6849 0.7932 0.7932 0.9824 0.9998 0.9998 1.0903
(60 × 60), 6 78141 0.2579 0.4364 0.4364 0.5729 0.6836 0.6841 0.7922 0.7922 0.9813 0.9989 0.9989 1.0894
(60 × 60), 7 89304 0.2574 0.4357 0.4357 0.5720 0.6826 0.6830 0.7911 0.7911 0.9800 0.9975 0.9975 1.0879

LD (10 × 10), 1 2178 0.2321 0.4129 0.4129 0.5484 0.7093 0.7100 0.8112 0.8112 1.0288 1.1797 1.1797 1.2576
(20 × 20), 1 7938 0.2300 0.3996 0.3996 0.5297 0.6492 0.6498 0.7523 0.7523 0.9431 0.9874 0.9874 1.0721
(30 × 30), 1 17298 0.2295 0.3970 0.3970 0.5261 0.6391 0.6397 0.7423 0.7423 0.9287 0.9585 0.9585 1.0443
(40 × 40), 1 30258 0.2292 0.3960 0.3960 0.5248 0.6355 0.6361 0.7387 0.7387 0.9235 0.9486 0.9486 1.0347
(50 × 50), 1 46818 0.2291 0.3955 0.3955 0.5241 0.6338 0.6344 0.7369 0.7369 0.9211 0.9440 0.9440 1.0302
(60 × 60), 1 66978 0.2290 0.3953 0.3953 0.5237 0.6328 0.6334 0.7360 0.7360 0.9197 0.9415 0.9415 1.0278
(60 × 60), 2 122793 0.2275 0.3922 0.3922 0.5191 0.6274 0.6280 0.7291 0.7291 0.9108 0.9335 0.9335 1.0185
(60 × 60), 3 178608 0.2275 0.3921 0.3921 0.5190 0.6273 0.6279 0.7290 0.7290 0.9106 0.9332 0.9332 1.0182
(60 × 60), 4 234423 0.2275 0.3921 0.3921 0.5190 0.6273 0.6279 0.7290 0.7290 0.9106 0.9332 0.9332 1.0182
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Table D.27: Convergence of the frequency parameters λ for modes 13-24 of CCCC square composite plate with t
b
= 0.1, tc

tf
= 10 and stack

sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10 × 10), 2 1089 8.7262 8.7262 8.7366 8.8157 9.1796 9.1924 10.0299 10.0299 10.0822 10.0822 11.4157 11.5503

(20 × 20), 2 3969 8.2056 8.2269 8.7608 8.7906 8.8022 9.1665 9.8527 9.8527 9.8776 9.8776 10.5818 10.5884
(30 × 30), 2 8649 8.1099 8.2161 8.7139 8.7270 8.7520 9.2499 9.7992 9.7992 9.8485 9.8485 10.4017 10.4083
(40 × 40), 2 15129 8.0766 8.2123 8.6878 8.7005 8.7481 9.2794 9.7797 9.7797 9.8384 9.8384 10.3389 10.3455
(50 × 50), 2 23409 8.0611 8.2105 8.6756 8.6882 8.7463 9.2931 9.7705 9.7705 9.8338 9.8338 10.3099 10.3165
(60 × 60), 2 33489 8.0527 8.2095 8.6689 8.6815 8.7453 9.3005 9.7654 9.7654 9.8312 9.8312 10.2942 10.3008
(60 × 60), 3 44652 1.8895 2.1340 2.1340 2.2388 2.2389 2.3663 2.3663 2.4635 2.5778 2.5784 2.7925 2.7925
(60 × 60), 4 55815 1.8738 2.1137 2.1137 2.2183 2.2184 2.3429 2.3429 2.4368 2.5496 2.5501 2.7630 2.7630
(60 × 60), 5 66978 1.0916 1.2552 1.2552 1.3853 1.3857 1.4656 1.4656 1.5013 1.5352s 1.5496s 1.5496s 1.5700s

(60 × 60), 6 78141 1.0906 1.2542 1.2542 1.3845 1.3848 1.4648 1.4648 1.5005 1.5346s 1.5485s 1.5485s 1.5686s

(60 × 60), 7 89304 1.0891 1.2526 1.2526 1.3825 1.3828 1.4627 1.4627 1.4985 1.5276s 1.5419s 1.5419s 1.5623s

LD (10 × 10), 1 2178 1.2596 1.3333 1.3673 1.3673 1.4073 1.4326 1.4326 1.4776 1.4783 1.5259 1.5259 1.6539
(20 × 20), 1 7938 1.0738 1.2363 1.2363 1.3329 1.3630 1.3630 1.3988 1.4275 1.4279 1.4468 1.4473 1.4904
(30 × 30), 1 17298 1.0459 1.2063 1.2063 1.3328 1.3603 1.3607 1.3622 1.3622 1.3972 1.4367 1.4367 1.4419
(40 × 40), 1 30258 1.0363 1.1960 1.1960 1.3328 1.3379 1.3383 1.3619 1.3619 1.3966 1.4149 1.4149 1.4402
(50 × 50), 1 46818 1.0318 1.1911 1.1911 1.3276 1.3280 1.3328 1.3617 1.3617 1.3964 1.4049 1.4049 1.4347
(60 × 60), 1 66978 1.0294 1.1884 1.1884 1.3220 1.3224 1.3328s 1.3617s 1.3617s 1.3962s 1.3994 1.3994 1.4309
(60 × 60), 2 122793 1.0199 1.1771 1.1771 1.3107 1.3110 1.3268s 1.3485s 1.3485s 1.3768s 1.3867 1.3867 1.4162s

(60 × 60), 3 178608 1.0196 1.1767 1.1767 1.3100 1.3104 1.3257s 1.3473s 1.3473s 1.3755s 1.3861 1.3861 1.4147s

(60 × 60), 4 234423 1.0196 1.1767 1.1767 1.3100 1.3104 1.3257s 1.3473s 1.3473s 1.3755s 1.3861 1.3861 1.4147s
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Table D.28: Convergence of the frequency parameters λ for modes 25-36 of CCCC square composite plate with t
b
= 0.1, tc

tf
= 10 and stack

sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10 × 10), 2 1089 11.5563 11.8066 11.8066 11.9481 12.0034 12.3271 12.3317 12.7278 12.7278 13.1535 13.1535 14.2770

(20 × 20), 2 3969 11.0350 11.0350 11.3020 11.5749 11.6351 11.8611 11.8663 13.0378 13.0378 13.0444 13.0444 13.3865
(30 × 30), 2 8649 10.8853 10.8853 11.2535 11.5062 11.5670 11.7529 11.7581 12.7354 12.7354 12.9726 12.9726 13.1240
(40 × 40), 2 15129 10.8328 10.8328 11.2349 11.4822 11.5433 11.7139 11.7191 12.6300 12.6300 12.9447 12.9447 13.0320
(50 × 50), 2 23409 10.8085 10.8085 11.2260 11.4711 11.5323 11.6957 11.7008 12.5813 12.5813 12.9313 12.9313 12.9894
(60 × 60), 2 33489 10.7953 10.7953 11.2210 11.4651 11.5263 11.6857 11.6909 12.5549 12.5549 12.9239 12.9239 12.9663
(60 × 60), 3 44652 2.8722 2.8722 2.9035 2.9038 3.0910 3.0910 3.2468 3.3554 3.3564 3.4024 3.4025 3.5015
(60 × 60), 4 55815 2.8372 2.8372 2.8711 2.8713 3.0535 3.0535 3.2033 3.3111 3.3118 3.3636 3.3637 3.4596
(60 × 60), 5 66978 1.6014s 1.6022s 1.6101 1.6122 1.6302s 1.6302s 1.7015s 1.7218s 1.7218s 1.7580s 1.7600s 1.8331
(60 × 60), 6 78141 1.5999s 1.6008s 1.6094 1.6113 1.6287s 1.6287s 1.6999s 1.7201s 1.7201s 1.7562s 1.7584s 1.8322
(60 × 60), 7 89304 1.5938s 1.5947s 1.6072 1.6091 1.6230s 1.6230s 1.6947s 1.7147s 1.7147s 1.7511s 1.7533s 1.8298

LD (10 × 10), 1 2178 1.7651 1.7651 1.7755 1.8185 1.8209 1.9401 1.9405 1.9518 1.9518 2.0037 2.0037 2.1393
(20 × 20), 1 7938 1.4904 1.4977 1.5022 1.5022 1.5916 1.6261 1.6261 1.6430 1.6457 1.6759 1.6776 1.7858
(30 × 30), 1 17298 1.4424 1.4558 1.4847 1.4847 1.5775 1.5801 1.5817 1.6068 1.6068 1.6558 1.6575 1.7617
(40 × 40), 1 30258 1.4407 1.4414 1.4827 1.4827 1.5557 1.5582 1.5781 1.6004 1.6004 1.6490 1.6506 1.7535
(50 × 50), 1 46818 1.4394 1.4399 1.4817 1.4817 1.5457 1.5481 1.5764 1.5974 1.5974 1.6459 1.6475 1.7496
(60 × 60), 1 66978 1.4389s 1.4394s 1.4812s 1.4812s 1.5402 1.5426 1.5755s 1.5957s 1.5957s 1.6441s 1.6457s 1.7475s

(60 × 60), 2 122793 1.4169 1.4170s 1.4534s 1.4534s 1.5254 1.5275 1.5407s 1.5630s 1.5630s 1.6069s 1.6092s 1.7047s

(60 × 60), 3 178608 1.4156s 1.4164 1.4519s 1.4519s 1.5248 1.5268 1.5389s 1.5610s 1.5610s 1.6048s 1.6071s 1.7023s

(60 × 60), 4 234423 1.4156s 1.4164 1.4519s 1.4519s 1.5248 1.5268 1.5389s 1.5610s 1.5610s 1.6048s 1.6071s 1.7023s
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Table D.29: Convergence of the frequency parameters λ for the first 12 modes of CCCC square composite plate with t
b
= 0.01, tc

tf
= 10

and stack sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10× 10), 2 1089 0.3542 0.7615 0.7615 1.0450 1.5156 1.5188 1.7044 1.7044 2.2047 2.7211 2.7211 2.8463

(20× 20), 2 3969 0.3459 0.7177 0.7177 0.9822 1.3420 1.3450 1.5289 1.5289 1.9594 2.2135 2.2135 2.3511
(30× 30), 2 8649 0.3443 0.7099 0.7099 0.9710 1.3134 1.3164 1.4997 1.4997 1.9185 2.1363 2.1363 2.2756
(40× 40), 2 15129 0.3437 0.7072 0.7072 0.9671 1.3035 1.3065 1.4896 1.4896 1.9043 2.1102 2.1102 2.2500
(50× 50), 2 23409 0.3434 0.7059 0.7059 0.9652 1.2990 1.3019 1.4849 1.4849 1.8978 2.0983 2.0983 2.2382
(60× 60), 2 33489 0.3432 0.7052 0.7052 0.9642 1.2965 1.2994 1.4823 1.4823 1.8942 2.0918 2.0918 2.2318
(60× 60), 3 44652 0.2876 0.5240 0.5240 0.6927 0.8424 0.8456 0.9651 0.9651 1.1817 1.2031 1.2031 1.2943
(60× 60), 4 55815 0.2876 0.5239 0.5239 0.6927 0.8423 0.8455 0.9650 0.9650 1.1815 1.2030 1.2030 1.2941

LD (10× 10), 1 2178 0.1602 0.2605 0.2605 0.3316 0.3938 0.3943 0.4409 0.4409 0.5209 0.5444 0.5444 0.5746
(20× 20), 1 7938 0.1593 0.2572 0.2572 0.3292 0.3815 0.3821 0.4337 0.4337 0.5147 0.5147 0.5161 0.5540
(30× 30), 1 17298 0.1591 0.2565 0.2565 0.3286 0.3793 0.3799 0.4323 0.4323 0.5093 0.5093 0.5150 0.5500
(40× 40), 1 30258 0.1590 0.2562 0.2562 0.3284 0.3785 0.3791 0.4317 0.4317 0.5074 0.5074 0.5145 0.5486
(50× 50), 1 46818 0.1590 0.2561 0.2561 0.3283 0.3781 0.3787 0.4315 0.4315 0.5065 0.5065 0.5143 0.5480
(60× 60), 1 66978 0.1590 0.2560 0.2560 0.3282 0.3779 0.3785 0.4313 0.4313 0.5060 0.5060 0.5141 0.5476
(60× 60), 2 122793 0.1589 0.2560 0.2560 0.3281 0.3777 0.3783 0.4311 0.4311 0.5057 0.5057 0.5139 0.5473
(60× 60), 3 178608 0.1589 0.2560 0.2560 0.3281 0.3777 0.3783 0.4311 0.4311 0.5057 0.5057 0.5139 0.5473
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Table D.30: Convergence of the frequency parameters λ for modes 13-24 of CCCC square composite plate with t
b
= 0.01, tc

tf
= 10 and

stack sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10 × 10), 2 1089 2.8537 3.2017 3.2017 3.9780 4.5747 4.5758 4.6621 4.6621 4.8876 4.9025 5.4345 5.4345

(20 × 20), 2 3969 2.3569 2.6858 2.6858 3.2881 3.3388 3.3398 3.4531 3.4531 3.7107 3.7188 4.2028 4.2028
(30 × 30), 2 8649 2.2811 2.6052 2.6052 3.1682 3.1692 3.1798 3.2856 3.2856 3.5447 3.5520 4.0218 4.0218
(40 × 40), 2 15129 2.2554 2.5778 2.5778 3.1116 3.1126 3.1429 3.2300 3.2300 3.4893 3.4963 3.9610 3.9610
(50 × 50), 2 23409 2.2435 2.5652 2.5652 3.0858 3.0868 3.1260 3.2046 3.2046 3.4640 3.4710 3.9333 3.9333
(60 × 60), 2 33489 2.2371 2.5583 2.5583 3.0719 3.0729 3.1168 3.1910 3.1910 3.4504 3.4573 3.9183 3.9183
(60 × 60), 3 44652 1.2978 1.4685 1.4685 1.5820 1.5829 1.6577 1.6577 1.7105 1.7972 1.7996 1.9715 1.9715
(60 × 60), 4 55815 1.2976 1.4683 1.4683 1.5817 1.5826 1.6574 1.6574 1.7102 1.7969 1.7993 1.9711 1.9711

LD (10 × 10), 1 2178 0.5747 0.6290 0.6290 0.7087 0.7179 0.7180 0.7353 0.7353 0.7675 0.7676 0.8180 0.8180
(20 × 20), 1 7938 0.5541 0.6192 0.6192 0.6545 0.6547 0.6853 0.6853 0.7053 0.7372 0.7373 0.8018 0.8018
(30 × 30), 1 17298 0.5502 0.6167 0.6167 0.6437 0.6438 0.6766 0.6766 0.7033 0.7312 0.7313 0.7823 0.7823
(40 × 40), 1 30258 0.5488 0.6158 0.6158 0.6399 0.6400 0.6735 0.6735 0.7025 0.7291 0.7291 0.7755 0.7755
(50 × 50), 1 46818 0.5481 0.6154 0.6154 0.6381 0.6382 0.6721 0.6721 0.7021 0.7281 0.7281 0.7724 0.7724
(60 × 60), 1 66978 0.5477 0.6151 0.6151 0.6371 0.6373 0.6713 0.6713 0.7018 0.7275 0.7275 0.7707 0.7707
(60 × 60), 2 122793 0.5474 0.6147 0.6147 0.6367 0.6369 0.6708 0.6708 0.7013 0.7269 0.7270 0.7701 0.7701
(60 × 60), 3 178608 0.5474 0.6147 0.6147 0.6367 0.6369 0.6708 0.6708 0.7013 0.7269 0.7270 0.7701 0.7701
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Table D.31: Convergence of the frequency parameters λ for modes 25-36 of CCCC square composite plate with t
b
= 0.01, tc

tf
= 10 and

stack sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10× 10), 2 1089 6.5411 7.4047 7.4047 7.4447 7.4486 7.5682 7.5682 7.6076 7.6076 7.8543 7.8890 8.2958

(20× 20), 2 3969 4.7416 4.7416 4.8357 4.8387 4.9829 5.0496 5.0496 5.4401 5.4507 6.0951 6.0951 6.4461
(30× 30), 2 8649 4.4108 4.4108 4.5100 4.5128 4.7300 4.7300 4.7488 5.1192 5.1281 5.7427 5.7427 5.8627
(40× 40), 2 15129 4.3032 4.3032 4.4040 4.4067 4.6257 4.6257 4.6703 5.0138 5.0221 5.6259 5.6259 5.6768
(50× 50), 2 23409 4.2546 4.2546 4.3561 4.3588 4.5786 4.5786 4.6344 4.9660 4.9741 5.5728 5.5728 5.5936
(60× 60), 2 33489 4.2285 4.2285 4.3304 4.3331 4.5532 4.5532 4.6150 4.9403 4.9483 5.5442 5.5442 5.5491
(60× 60), 3 44652 2.0024 2.0024 2.0343 2.0356 2.1530 2.1530 2.2573 2.3261 2.3275 2.3653 2.3656 2.4204
(60× 60), 4 55815 2.0019 2.0019 2.0338 2.0351 2.1525 2.1525 2.2567 2.3255 2.3269 2.3647 2.3650 2.4197

LD (10× 10), 1 2178 0.8929 0.9222 0.9222 0.9293 0.9294 0.9432 0.9432 0.9659 0.9672 1.0054 1.0054 1.0749
(20× 20), 1 7938 0.8086 0.8086 0.8263 0.8263 0.8681 0.8681 0.8972 0.9269 0.9269 0.9586 0.9586 0.9783
(30× 30), 1 17298 0.8048 0.8048 0.8095 0.8096 0.8553 0.8553 0.8941 0.9183 0.9183 0.9260 0.9260 0.9490
(40× 40), 1 30258 0.8034 0.8034 0.8037 0.8038 0.8508 0.8508 0.8927 0.9149 0.9149 0.9151 0.9151 0.9391
(50× 50), 1 46818 0.8010 0.8011 0.8026 0.8026 0.8487 0.8487 0.8920 0.9098 0.9099 0.9136 0.9136 0.9346
(60× 60), 1 66978 0.7996 0.7996 0.8022 0.8022 0.8476 0.8476 0.8915 0.9071 0.9071 0.9127 0.9127 0.9321
(60× 60), 2 122793 0.7989 0.7989 0.8015 0.8015 0.8468 0.8468 0.8907 0.9062 0.9062 0.9118 0.9118 0.9311
(60× 60), 3 178608 0.7989 0.7989 0.8015 0.8015 0.8468 0.8468 0.8907 0.9062 0.9062 0.9118 0.9118 0.9311
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Table D.32: Convergence of the frequency parameters λ for the first 12 modes of CCCC square composite plate with t
b
= 0.1, tc

tf
= 50

and stack sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10 11 12
ED (10 × 10), 2 1089 1.7365 2.9263 2.9263 3.7501 4.5228 4.5398 5.0648 5.0648 5.2895 5.2895 5.4506 5.4506

(20 × 20), 2 3969 1.7194 2.8705 2.8705 3.6962 4.3601 4.3763 4.9507 4.9507 5.4304 5.4304 5.9151 5.9314
(30 × 30), 2 8649 1.7161 2.8601 2.8601 3.6856 4.3301 4.3461 4.9283 4.9283 5.4263 5.4263 5.9075 5.9102
(40 × 40), 2 15129 1.7148 2.8564 2.8564 3.6819 4.3196 4.3355 4.9204 4.9204 5.4248 5.4248 5.9024 5.9048
(50 × 50), 2 23409 1.7142 2.8546 2.8546 3.6801 4.3147 4.3306 4.9167 4.9167 5.4241 5.4241 5.8941 5.8941
(60 × 60), 2 33489 1.7139 2.8537 2.8537 3.6791 4.3120 4.3279 4.9147 4.9147 5.4237 5.4237 5.8882 5.8882
(60 × 60), 3 44652 0.3006 0.4761 0.4761 0.6036 0.6782 0.6783 0.7737 0.7737 0.8903 0.8903 0.9133 0.9658
(60 × 60), 4 55815 0.2990 0.4732 0.4732 0.5995 0.6733 0.6734 0.7676 0.7676 0.8825 0.8825 0.9050 0.9566
(60 × 60), 5 66978 0.2987 0.4726 0.4726 0.5988 0.6725 0.6725 0.7666 0.7666 0.8813 0.8813 0.9038 0.9553
(60 × 60), 6 78141 0.2986 0.4725 0.4725 0.5987 0.6723 0.6724 0.7664 0.7664 0.8811 0.8811 0.9036 0.9551
(60 × 60), 7 89304 0.2847 0.4505 0.4505 0.5706 0.6407 0.6407 0.7302 0.7302 0.8393 0.8393 0.8606 0.9096

LD (10 × 10), 1 2178 0.2675 0.4269 0.4269 0.5368 0.6211 0.6211 0.6944 0.6944 0.8117 0.8416 0.8416 0.8890
(20 × 20), 1 7938 0.2672 0.4238 0.4238 0.5361 0.6060 0.6060 0.6881 0.6881 0.8006 0.8006 0.8101 0.8631
(30 × 30), 1 17298 0.2671 0.4232 0.4232 0.5359 0.6032 0.6033 0.6867 0.6867 0.7933 0.7933 0.8094 0.8582
(40 × 40), 1 30258 0.2671 0.4229 0.4229 0.5357 0.6022 0.6023 0.6862 0.6862 0.7907 0.7907 0.8091 0.8565
(50 × 50), 1 46818 0.2670 0.4228 0.4228 0.5357 0.6018 0.6018 0.6860 0.6860 0.7895 0.7895 0.8089 0.8556
(60 × 60), 1 66978 0.2670 0.4227 0.4227 0.5356 0.6015 0.6015 0.6858 0.6858 0.7888 0.7888 0.8088 0.8552
(60 × 60), 2 122793 0.2657 0.4203 0.4203 0.5321 0.5972 0.5972 0.6804 0.6804 0.7818 0.7818 0.8014 0.8470
(60 × 60), 3 178608 0.2656 0.4202 0.4202 0.5320 0.5971 0.5972 0.6803 0.6803 0.7817 0.7817 0.8013 0.8468
(60 × 60), 4 234423 0.2656 0.4202 0.4202 0.5320 0.5971 0.5971 0.6803 0.6803 0.7816 0.7816 0.8012 0.8468
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Table D.33: Convergence of the frequency parameters λ for modes 13-24 of CCCC square composite plate with t
b
= 0.1, tc

tf
= 50 and stack

sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 13 14 15 16 17 18 19 20 21 22 23 24
ED (10× 10), 2 1089 5.9544 6.0026 6.0237 6.3148 6.3199 6.3266 6.3412 6.3626 6.3626 6.4356 6.6911 6.6993

(20× 20), 2 3969 5.9960 5.9960 6.2864 6.4210 6.4290 6.6302 7.0833 7.0833 7.1840 7.1840 7.2090 7.2090
(30× 30), 2 8649 5.9286 5.9286 6.2795 6.3689 6.3768 6.6901 7.0641 7.0641 7.1476 7.1476 7.5663 7.5706
(40× 40), 2 15129 5.9050 5.9050 6.2770 6.3505 6.3584 6.7113 7.0573 7.0573 7.1344 7.1344 7.5220 7.5263
(50× 50), 2 23409 5.8988 5.9036 6.2758 6.3420 6.3498 6.7211 7.0542 7.0542 7.1281 7.1281 7.5016 7.5059
(60× 60), 2 33489 5.8968 5.9029 6.2751 6.3373 6.3452 6.7265 7.0524 7.0524 7.1247 7.1247 7.4905 7.4948
(60× 60), 3 44652 0.9658 1.0818 1.0818 1.1098 1.1098 1.1719 1.1719 1.2285 1.2702 1.2702 1.3359 1.3359
(60× 60), 4 55815 0.9566 1.0703 1.0703 1.0978 1.0978 1.1585 1.1585 1.2136 1.2543 1.2543 1.3185 1.3185
(60× 60), 5 66978 0.9554 1.0688 1.0688 1.0963 1.0963 1.1569 1.1569 1.2119 1.2525 1.2525 1.3166 1.3166
(60× 60), 6 78141 0.9551 1.0685 1.0685 1.0960 1.0960 1.1566 1.1566 1.2116 1.2521 1.2522 1.3162 1.3162
(60× 60), 7 89304 0.9097 1.0173 1.0173 1.0436 1.0436 1.1011 1.1011 1.1531 1.1917 1.1917 1.2528 1.2528

LD (10× 10), 1 2178 0.8891 0.9700 0.9700 1.0876 1.0990 1.0991 1.1264 1.1264 1.1749 1.1753 1.2508 1.2508
(20× 20), 1 7938 0.8631 0.9611 0.9611 1.0070 1.0070 1.0558 1.0558 1.0886 1.1349 1.1349 1.2266 1.2266
(30× 30), 1 17298 0.8582 0.9587 0.9587 0.9914 0.9914 1.0438 1.0438 1.0870 1.1272 1.1272 1.1977 1.1977
(40× 40), 1 30258 0.8565 0.9577 0.9577 0.9860 0.9860 1.0395 1.0395 1.0862 1.1244 1.1244 1.1878 1.1878
(50× 50), 1 46818 0.8556 0.9572 0.9572 0.9835 0.9835 1.0375 1.0375 1.0858 1.1231 1.1231 1.1832 1.1832
(60× 60), 1 66978 0.8552 0.9569 0.9569 0.9821 0.9821 1.0364 1.0364 1.0855 1.1223 1.1223 1.1807 1.1807
(60× 60), 2 122793 0.8470 0.9467 0.9467 0.9714 0.9714 1.0245 1.0245 1.0722 1.1081 1.1081 1.1652 1.1652
(60× 60), 3 178608 0.8468 0.9465 0.9465 0.9712 0.9712 1.0243 1.0243 1.0719 1.1078 1.1079 1.1649 1.1649
(60× 60), 4 234423 0.8468 0.9464 0.9464 0.9711 0.9711 1.0242 1.0242 1.0719 1.1077 1.1078 1.1648 1.1648



1
5
1

C
o
n
v
e
r
g
e
n
c
e
ta
b
le
s

Table D.34: Convergence of the frequency parameters λ for modes 25-36 of CCCC square composite plate with t
b
= 0.1, tc

tf
= 50 and stack

sequence 0◦/90◦/core/0◦/90◦. Material 4 and 5 are used for faces and core respectively.

mode number
theory (nx × ny), N ndof 25 26 27 28 29 30 31 32 33 34 35 36
ED (10 × 10), 2 1089 6.7999 6.7999 7.1295 7.1787 7.1787 7.2720 7.3346 7.3346 7.3602 7.3602 7.3826 7.3826

(20 × 20), 2 3969 7.2316 7.2316 7.2684 7.2684 7.3187 7.3187 7.3821 7.3821 7.4589 7.4590 7.5502 7.5502
(30 × 30), 2 8649 7.9156 7.9156 8.1820 8.2324 8.2723 8.5340 8.5375 8.6708 8.6708 8.6957 8.6957 8.7368
(40 × 40), 2 15129 7.8789 7.8789 8.1697 8.2163 8.2564 8.5073 8.5107 9.1479 9.1479 9.3771 9.3771 9.4362
(50 × 50), 2 23409 7.8619 7.8619 8.1638 8.2089 8.2491 8.4947 8.4982 9.1137 9.1137 9.3682 9.3682 9.4064
(60 × 60), 2 33489 7.8526 7.8526 8.1606 8.2048 8.2451 8.4879 8.4914 9.0951 9.0951 9.3632 9.3632 9.3903
(60 × 60), 3 44652 1.3887 1.3887 1.3986 1.3986 1.4737 1.4737 1.5516 1.5691 1.5691 1.5870 1.5870 1.6150
(60 × 60), 4 55815 1.3697 1.3698 1.3791 1.3791 1.4521 1.4521 1.5274 1.5451 1.5451 1.5618 1.5619 1.5894
(60 × 60), 5 66978 1.3677 1.3677 1.3771 1.3771 1.4499 1.4499 1.5250 1.5426 1.5426 1.5593 1.5594 1.5868
(60 × 60), 6 78141 1.3673 1.3673 1.3767 1.3767 1.4495 1.4495 1.5246 1.5421 1.5421 1.5588 1.5589 1.5863
(60 × 60), 7 89304 1.3012 1.3012 1.3096 1.3096 1.3789 1.3789 1.4497 1.4672 1.4672 1.4823 1.4823 1.5089

LD (10 × 10), 1 2178 1.3646 1.4107 1.4107 1.4221 1.4224 1.4437 1.4437 1.4788 1.4811 1.5413 1.5413 1.6559
(20 × 20), 1 7938 1.2416 1.2416 1.2654 1.2654 1.3296 1.3296 1.3740 1.4183 1.4183 1.4628 1.4628 1.4938
(30 × 30), 1 17298 1.2374 1.2374 1.2410 1.2410 1.3114 1.3114 1.3706 1.4064 1.4065 1.4134 1.4134 1.4500
(40 × 40), 1 30258 1.2327 1.2327 1.2357 1.2357 1.3051 1.3051 1.3690 1.3968 1.3968 1.4021 1.4021 1.4352
(50 × 50), 1 46818 1.2288 1.2288 1.2348 1.2348 1.3021 1.3021 1.3681 1.3892 1.3892 1.4000 1.4000 1.4284
(60 × 60), 1 66978 1.2266 1.2266 1.2343 1.2343 1.3005 1.3005 1.3676 1.3851 1.3851 1.3989 1.3989 1.4247
(60 × 60), 2 122793 1.2098 1.2098 1.2169 1.2169 1.2812 1.2812 1.3459 1.3637 1.3637 1.3762 1.3763 1.4019
(60 × 60), 3 178608 1.2093 1.2093 1.2165 1.2165 1.2808 1.2808 1.3454 1.3632 1.3632 1.3755 1.3756 1.4013
(60 × 60), 4 234423 1.2093 1.2093 1.2164 1.2164 1.2807 1.2807 1.3453 1.3630 1.3630 1.3755 1.3756 1.4012
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Table D.35: Convergence of the frequency parameters λ for the first 10 modes of a SSSS square laminated plate in OC configuration with
t
b
= 0.02 ( tm

t
= 11

45 ,
tp
t
= 2

15 ) and stacking sequence PZT-4/0◦/90◦/0◦/PZT-4. Material 2 is used.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10
ED (10× 10), 2 2178 249.8234 587.6812 733.9164 1026.2299 1233.4125 1622.0382 1628.4465 1886.6525 2291.7155 2412.0327

(20× 20), 2 7938 247.6534 569.3481 709.2811 991.1413 1135.6307 1498.7293 1518.3593 1754.1383 1955.3309 2231.7959
(30× 30), 2 17298 247.2547 566.0729 704.8763 984.8435 1119.0054 1476.5650 1500.4837 1731.3244 1901.8979 2200.5886
(40× 40), 2 30258 247.1154 564.9351 703.3458 982.6537 1113.2879 1468.9351 1494.3181 1723.4585 1883.7683 2189.8177
(50× 50), 2 46818 247.0510 564.4100 702.6394 981.6426 1110.6590 1465.4256 1491.4800 1719.8383 1875.4744 2184.8587
(60× 60), 2 66978 247.0160 564.1251 702.2562 981.0940 1109.2356 1463.5250 1489.9425 1717.8772 1870.9947 2182.1718
(30× 30), 3 26908 246.4327 562.7952 696.3089 972.0996 1106.9028 1437.5473 1476.1638 1685.4886 1867.8400 2139.2431
(30× 30), 4 34596 246.3982 562.7665 696.1291 971.9387 1106.8626 1437.0805 1476.0010 1685.0380 1867.7622 2138.7915

LD (10× 10), 1 2904 249.1560 584.1443 724.0922 1010.9604 1215.6781 1576.3503 1587.7951 1824.1113 2225.7965 2321.9932
(20× 20), 1 10584 247.0111 566.1745 700.3596 977.5683 1121.6448 1456.3968 1490.4677 1703.7313 1912.0941 2161.8507
(30× 30), 1 23064 246.6170 562.9616 696.1102 971.5580 1105.6018 1435.7740 1473.5896 1682.8223 1861.7239 2133.7076
(40× 40), 1 40344 246.4793 561.8453 694.6333 969.4669 1100.0810 1428.6664 1467.7618 1675.6011 1844.6016 2123.9680
(50× 50), 1 62424 246.4156 561.3300 693.9515 968.5012 1097.5419 1425.3957 1465.0781 1672.2756 1836.7632 2119.4793
(60× 60), 1 89304 246.3810 561.0505 693.5816 967.9772 1096.1669 1423.6240 1463.6239 1670.4736 1832.5281 2117.0462
(30× 30), 2 42284 246.2520 561.9550 695.1006 969.9622 1103.5655 1433.0408 1470.9969 1679.6405 1858.3014 2129.7030
(30× 30), 3 61504 246.2515 561.9515 695.0954 969.9560 1103.5472 1433.0145 1470.9795 1679.6157 1858.2434 2129.6729
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Table D.36: Convergence of the frequency parameters λ for the first 10 modes of a SSSS square laminated plate in SC configuration with
t
b
= 0.02 ( tm

t
= 11

45 ,
tp
t
= 2

15 ) and stacking sequence PZT-4/0◦/90◦/0◦/PZT-4. Material 2 is used.

mode number
theory (nx × ny), N ndof 1 2 3 4 5 6 7 8 9 10
ED (10 × 10), 2 2178 249.6910 586.9856 732.5894 1023.8809 1230.2645 1616.2488 1621.4544 1877.7914 2280.3254 2397.8324

(20 × 20), 2 7938 247.5252 568.7181 708.0802 989.0838 1133.1341 1493.1213 1513.7825 1747.1660 1947.9200 2221.3193
(30 × 30), 2 17298 247.1273 565.4541 703.6969 982.8347 1116.6093 1471.1732 1496.0929 1724.6430 1895.0153 2190.6561
(40 × 40), 2 30258 246.9883 564.3202 702.1739 980.6615 1110.9257 1463.6163 1489.9900 1716.8752 1877.0589 2180.0668
(50 × 50), 2 46818 246.9240 563.7969 701.4709 979.6581 1108.3123 1460.1402 1487.1805 1713.2997 1868.8433 2175.1904
(60 × 60), 2 66978 246.8891 563.5130 701.0895 979.1137 1106.8972 1458.2576 1485.6584 1711.3628 1864.4056 2172.5480
(30 × 30), 3 26908 246.4286 562.7573 696.2950 972.0351 1106.7391 1437.5053 1475.9428 1685.3725 1867.3590 2138.9293
(30 × 30), 4 34596 246.3942 562.7290 696.1157 971.8756 1106.7001 1437.0406 1475.7832 1684.9258 1867.2850 2138.4852

LD (10 × 10), 1 2904 249.1550 584.1367 724.0862 1010.9424 1215.6411 1576.3238 1587.7363 1824.0624 2225.6553 2321.8825
(20 × 20), 1 10584 247.0102 566.1678 700.3544 977.5530 1121.6175 1456.3770 1490.4242 1703.6947 1912.0125 2161.7743
(30 × 30), 1 23064 246.6161 562.9551 696.1051 971.5431 1105.5759 1435.7552 1473.5484 1682.7875 1861.6497 2133.6360
(40 × 40), 1 40344 246.4784 561.8389 694.6282 969.4522 1100.0555 1428.6479 1467.7213 1675.5670 1844.5298 2123.8981
(50 × 50), 1 62424 246.4147 561.3236 693.9465 968.4866 1097.5166 1425.3774 1465.0380 1672.2417 1836.6926 2119.4101
(60 × 60), 1 89304 246.3801 561.0441 693.5766 967.9627 1096.1418 1423.6058 1463.5840 1670.4398 1832.4580 2116.9773
(30 × 30), 2 42284 246.2511 561.9490 695.0959 969.9486 1103.5416 1433.0236 1470.9589 1679.6086 1858.2332 2129.6373
(30 × 30), 3 61504 246.2507 561.9455 695.0907 969.9423 1103.5233 1432.9972 1470.9415 1679.5838 1858.1752 2129.6072
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