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Introduction

The analysis of piezoelectric devices has to

account for many aspects that make it

challenging:

material anisotropy;

electrical and mechanical coupled

fields;

complex boundary conditions;

layered structures (interfaces);

complex three-dimensional stress

distribution.

These features make the use of refined

structural models mandatory since classical

beam and plate models are not able to deal

with complex displacements and strain fields.

Anisotropic 

material

Interfaces

complex stress

distribution (zig-zag)

V

three-dimensional

displacements field

Moscow, May 22nd , 2017 E.Zappino, E. Carrera, G. Li 3 / 24



Introduction Dode-dependent Kin. Models Results Conclusions

Introduction

The use of a refined model over the whole structural domain requires more computational

costs than those necessary. The best solution would be to use refined models only in the

region in which they are required and classical models elsewhere. The problem of mixing

or joining different structural models is a well-known topic in literature as shown in the

following Figure proposed by Kin et al.[1].

J. Kim, V.V. Varadan and

V.K.. Varadan

Finite element modelling of

structures Including

piezoelectric active devices

International journal for

numerical methods in

engineering , 40: 817-832,

1997).

The present work has the aim to improve the efficiency of the well-know refined

one-dimensional models based on Carrera Unified Formulation, CUF, introducing a

node-dependent kinematic formulation able to adopt advanced kinematics only where

required. This approach would allow refined models to be used only where they are

required, in this case, only where piezo-patches are placed.
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Refined 1D models

A generic three-dimensional field can be written as:

u = u(x , y , z)

If we introduce a one-dimensional approximation the

displacement field becomes:

u = u(y)Fτ(x , z)qτ

A functions expansion, Fτqτ, is used to represent the

cross-section behaviour. The problem on the axis is

solved using the classical Finite Element Method,

FEM:

u = Ni(y)Fτ(x , z)qiτ

Where Ni are the classical one-dimensional Lagrange

shape functions.

+
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Refined 1D models

The vector u in the mechanical problem contains only the displacement field but it may

contain many others information as the potential, φ, in the case of the electro-mechanical

case. This means that the displacement and the potential are described using the same

kinematic:

uT = (ux , uy , uz , φ)

In the case of one-dimensional problem we can consider many cross-sectional
approximation, in this work two expansion have been considered:

TE- Taylor Expansion

The Taylor Expansion can be written in the following form:

u(x , z) =
∑

x iτ z jτuτ(y)

The expansion in centred on the axis of the beam. The un-

knowns uτ has not a clear physical meaning (higher-order

moment)

LE- Lagrange Expansion

The Lagrange Expansion can be written in the following form:

u(x , z) =
∑

Lτ(x , z)uτ(y)

The expansion use the Lagrange 2D polynomials so each

function is centred in one node on the cross section. The

unknowns uτ are all displacements.
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Node-dependent kinematic models (1)

A two-node one-dimensional element is considered. A more refined kinematics can be

introduced only in one of the nodes, that is, two different expansions should be used.
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τ , τ = 1 . . .M1

u2 = u2τF
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u = u1τN1F1
τ + u2τN2F2

τ
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1

2

TE Expansion LE Expansion

u = N1

[

u1
1 + u1

2x + u1
3z
]

︸                 ︷︷                 ︸

1st node

+N2

[

u2
1L1 + u2

2L2 + u2
3L3 + u2

4L4

]

︸                                   ︷︷                                   ︸

2nd node
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Node-dependent kinematic models (2)
An example of node-dependent kinematic model could be the following:

structure 1D model cross-section

TE1 TE2LELE

u=N1u
(TE1) + N2u

 (LE) u=N1u
(LE) + N2u

 (TE2)
u=N1u

(LE) + N2u
 (LE)

ϕ=N1ϕ
(LE) + N2ϕ

(LE)

N1 N2

The kinematic is considered a property of the nodes, that is, no issues due to the need to

couple different kinematics arise using this approach.
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Node-dependent kinematic models (3)

The approach introduced in the previous section can be easily included in the CUF

formulation and extended to any order beam model. The displacement field of the

one-dimensional element with node-dependent kinematic can be written including two main

novelties:

Node-dependent kinematic introduction

Fτ(x , z) −→ F i
τ(x , z)

M −→ M i

The first equation, states that the function expansion is not a property of the element, but of

the nodes, that is, the index i is included in the notation. The second equation remarks that

the number of terms in the expansion, M, can be different at each node, and the notation M i

is used to underline this aspect. The generic displacement field can be written as:

Node-dependent kinematic element displacement field

u = uiτNi(y)F
i
τ(x , z), τ = 1 . . .M i ; i = 1 . . .Nn.
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Stiffness and Mass Matrix
The elastic work is generally expressed as:

δLint =

∫

V

(δǫTσ)dV =

∫

V

δuT
js

[

D̃
T
(

NjF
j
s I

)]

C̃

[

D̃

(

NiF
i
τI

)]

uτidV

Stiffness Matrix Fundamental Nucleus

δLint = δu
T
js

∫

V

[

Nj F
j
s I

D̃
T

︷                   ︸︸                   ︷




4 × 9





C̃
︷                   ︸︸                   ︷





9 × 9





D̃
︷       ︸︸       ︷





9 × 4





︸                                                               ︷︷                                                               ︸





4 × 4





IF i
τNi

]

dV

︸                                                                                            ︷︷                                                                                            ︸

Fundamental Nucleus [k ijτs ]

uiτ

D̃ and C̃ include both the mechanical and the electrical problem.

The work made by the Inertial forces can be written in the following form:

δLine =

∫

V

(ρδuT ü)dV =

∫

V

ρδuT
jsNi(F

j
s I)(F i

τI)Nj üiτdV
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Electro-mechanical Fundamental nucleus

δLint =






δux

δuy

δuz

δφ






T

K ijτs

︷                                           ︸︸                                           ︷








. . .

MM

. . .









.

.

.

ME

.

.

.





[

· · · EM . . .
] [

EE
]










ux

uy

uz

φ






(1)

Where:

MM (3 × 3) Mechanical problem;

EE (1 × 1) Electric problem;

EM,ME (3 × 1) Coupled Electro-Mechanical problem;

The complete matrix (4 × 4) can be used to solve the Electro-Mechanical problem.

Moscow, May 22nd , 2017 E.Zappino, E. Carrera, G. Li 11 / 24



Introduction Dode-dependent Kin. Models Results Conclusions

Assembly procedure
The Carrera Unified Formulation offers a unified approach for the matrix derivation. The

fundamental nucleus has a standard formulation for all the structural models, LW or ESL. It

works as a ’brick’ in the construction of the matrices.

Fundamental Nucleus

τ=1...Mi

s=1...Mj j=1...Nn

i=1...Nn

Node Level Element Level

kxx

kyx

kzx

kxy

kyy

kzy

kxz

kyz

kzz

K
ijτs =

kxϕ

kyϕ

kzϕ

kϕx kϕy kϕz kϕϕ

k
ijτs
xx = C22

∫

Ω
F i
τ,x

F
j
s,x

dΩ

∫

l

NiNjdy + C66

∫

Ω
F i
τ,z

F
j
s,z

dΩ

∫

l

NiNjdy+

C44

∫

Ω
F i
τF

j
sdΩ

∫

l

Ni,y Nj,y dy

k
ijτs
xy = C23

∫

Ω
F i
τ,x

F
j
sdΩ

∫

l

NiNj,y dy + C44

∫

Ω
F i
τF

j
s,x

dΩ

∫

l

Ni,y Njdy
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Assessment of the piezo-mechanic model
The model has been assessed considering a cantilevered beam with two

piezoelectric-patches placed at the top and bottom surfaces. A free vibration analysis has

been performed. The results, obtained using a full LE model and a LE/TE model, have been

compared with those form literature.

18mm

50mm

11mm

25mm

0.3mm

3.9mm

Aluminum

PZT

LE model LE-TE model

4B4  TE3 10B4 LE

3B4 TE1

17B4 LE
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Assessment of the piezo-mechanic model
The following tables report the natural frequencies for a full LE model, a LE/TE model and

the frequency published by Chevallier et al.[1].

Open circuit

LE model LE-TE model Ref.[1]

DOFs 9170 7950 29001

1 493.28 0.04% 494.29 0.25% 493.07

2 2803.9 0.21% 2804.7 0.24% 2797.9

3 3112.0 2.23% 3157.6 3.73% 3044.1

4 3247.2 −0.06% 3256.9 0.24% 3249.0

Short circuit

LE model LE-TE model Ref.[1]

DOFs 9170 7950 29001

1 496.69 0.22% 497.73 0.43% 495.61

2 2812.1 0.51% 2813.0 0.54% 2797.9

3 3113.6 2.28% 3160.7 3.83% 3044.1

4 3321.2 2.22% 3334.5 2.63% 3249.0

G. Chevallier, S. Ghorbel and A. Benjeddou

A benchmark for free vibration and effective coupling of thick piezoelectric smart structures

Smart Materials and Structures , 17(6): 1-11, 2008.
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Analysis of a beam with piezo-patches
Model Description

100mm

20mm

Aluminum

PZT

1���

10~90mm

10mm

1mm

Piezo Patch

16B4  TE2

4B4 LE

A cantilevered beam with a local

piezo-patch has been considered.

Two models have been taken into

account, the first uses only LE

models, while the second uses both

TE and LE models. Static, dynamic

and frequency response analyses

have been performed. The model

has been assessed using results

from literature.
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Analysis of a beam with piezo-patches
Static analysis
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F. Kpeky, F. Abed-Meraim , H. Boudaoud and E.M. Daya

Linear and quadratic solidshell finite elements SHB8PSE and SHB20E for the modeling of piezoelectric sandwich

structures

Mechanics of Advanced Materials and Structures, DOI:10.1080/15376494.2017.1285466. In press.
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Analysis of a beam with piezo-patches
Free Vibration analysis

The free-vibration analysis has been performed to compare the performances of the two

models, the Full LE and the mixed LE/TE.

Full LE LE-TE2 % Error

1 1363.1 1365.1 0.1%
2 1637.2 1640.7 0.2%
3 7214.3 7500.8 4.0%
4 7460.0 7586.2 1.7%
5 8744.9 8810.0 0.7%
6 12941.5 12941.6 0.0%
7 18080.8 18240.9 0.9%
8 20658.1 20885.9 1.1%
9 21308.1 22464.8 5.4%

DOFs 5765 3317 −42.5%
TIME(s) 14.55 10.08 −30.7%

The results show that the use of a variable kinematic model may reduce the computational

cost of the 30% in term of computational time.
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Analysis of a beam with piezo-patches
Frequency response analysis
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Complex structure analysis
Model description

Since the previous cases showed the accuracy and the efficiency provided by the present

approach, a truss structure has been here considered to show how, the present model, can

be applied to complex geometries.

F

Piezo-Patche�
1

2

3

����

0���

0���

0�0	�

0�0�
�

The structure is reported in

the Figure. Three

piezo-patches have been

placed in three different

positions. At first a

free-vibration analysis and

a frequency response

analysis have been

performed, then a time

dependent force,

F=1000N, has been

considered. Full LE and

midex LE/TE3 models have

been used in the analysis

and compared each others.
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Complex structure analysis
Free Vibration analysis and Frequency Response

LE-TE model Full LE model

DOFs 8733 13143

1 41.55 38.69

2 68.44 65.66

3 91.75 90.15

4 123.72 123.64

5 141.66 140.85

6 211.72 211.58

7 213.42 213.28

8 214.79 214.65

9 215.28 215.13

10 216.35 216.21
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Time response analysis

A time repose analysis has been performed. A positive step load has been placed at 0.01s

and a negative one , with the same magnitude, at 0.07s. The simulation covers 0.2s and

400 time steps have been considered. The damping as been assumed as a linear

combination of K and M.
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The figures show the time evolution of the displacements and voltage in the patch number

1. It can be seen that the node-dependent kinematic model provide results close to the full

LE model but it take 51.91s to run instead to 114.80s.
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Complex structure analysis
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Conclusions

The following considerations can be drawn from the obtained results:

The node-dependent kinematic elements allow a different kinematic model to be

used at each node of the structure. These models can be derived in the CUF

framework, without the use of a specific approach.

The node-dependent kinematic formulation can be easily extended to the

electro-mechanical problem.

The use of node-dependent kinematic elements allows to obtain accurate results

where complex phenomenons appear (e.g. piezo-patches) using refined models

while low order or classical models can be used elsewhere.

The variation in the kinematics allows the number of unknowns and the

computational time to be reduced because refined models are only used where they

are really needed.

In short, the present node-dependent kinematic model can be considered a breakthrough

with respect to uniform kinematic elements. The use of these elements could lead to

benefits in several applications. Their accuracy a and their low computational cost make

them suitable for optimization problem, health monitoring applications, virtual testing, etc.
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Thank you for your attention!
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