CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				0000000 000000	

A free-vibration thermo-elastic analysis of laminated structures by variable ESL/LW plate finite element

Authors: Prof. Erasmo Carrera Dr. Stefano Valvano

イロト イヨト イヨト イヨト

3

Bologna, 4-7 July 2017

Erasmo Carrera, Stefano Valvano

Intro	CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
•					0000000 000000	

Research group at Politecnico di Torino

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへ(

Erasmo Carrera, Stefano Valvano

Unified Formulation

2D approximation of **mechanical displacements** and **temperature** using the *thickness functions*

$$u^{k}(x, y, z) = F_{0}(z) u_{0}^{k}(x, y) + F_{1}(z) u_{1}^{k}(x, y) + \dots + F_{N}(z) u_{N}^{k}(x, y)$$
$$v^{k}(x, y, z) = F_{0}(z) v_{0}^{k}(x, y) + F_{1}(z) v_{1}^{k}(x, y) + \dots + F_{N}(z) v_{N}^{k}(x, y)$$
$$w^{k}(x, y, z) = F_{0}(z) w_{0}^{k}(x, y) + F_{1}(z) w_{1}^{k}(x, y) + \dots + F_{N}(z) w_{N}^{k}(x, y)$$
$$\Theta^{k}(x, y, z) = F_{0}(z) \Theta^{k}_{0}(x, y) + F_{1}(z) \Theta^{k}_{1}(x, y) + \dots + F_{N}(z) \Theta^{k}_{N}(x, y)$$

in compact form:

$$\begin{aligned} \boldsymbol{u}^{k}(x,y,z) &= F_{\tau}(z)\boldsymbol{u}_{\tau}^{k}(x,y) \;\;;\;\; \delta \boldsymbol{u}^{k}(x,y,z) = F_{s}(z)\delta \boldsymbol{u}_{s}^{k}(x,y) \;\;;\;\; \tau,s = 0, 1, ..., N \\ \Theta^{k}(x,y,z) &= F_{\tau}(z)\Theta_{\tau}^{k}(x,y) \;\;;\;\; \delta \Theta^{k}(x,y,z) = F_{s}(z)\delta \Theta_{s}^{k}(x,y) \;\;;\;\; \tau,s = 0, 1, ..., N \end{aligned}$$

Erasmo Carrera, Stefano Valvano

A free-vibration thermo-elastic analysis of laminated structures by variable ESL/LW plate finite element

イロト イワト イヨト イヨト

2

Intro O	CUF o●o	FEM & MITC o	Gov. Eq. oo	PVD 000	Results 0000000 000000	Conclusions
	Taylor P	olynomials		Legend	dre Polyn	omials
$u^k = F_0$	$_{0}\boldsymbol{u}_{0}^{k}+F_{1}\boldsymbol{u}_{1}^{k}+$	$F_{\dots} + F_N \boldsymbol{u}_N^k = F_{\tau}$	u_{τ}^{k}	$\boldsymbol{u}^{k}=\boldsymbol{F}_{t}\boldsymbol{u}_{t}^{k}+\boldsymbol{F}_{b}\boldsymbol{u}$	$\boldsymbol{u}_b^k + \boldsymbol{F}_r \boldsymbol{u}_r^k = \boldsymbol{F}_r$	$-\boldsymbol{u}_{ au}^{k}$
$\Theta^k = F_0$	$\Theta_0^k + F_1 \Theta_1^k -$	$+\ldots+F_N\Theta_N^k=F$	$\overline{\tau}_{\tau}\Theta_{\tau}^{k}$	$\Theta^k = F_t \Theta^k_t + F_b \Theta^k_t$	$\Theta_b^k + F_r \Theta_r^k = K$	$=_{\tau}\Theta^k_{\tau}$
au = 0, 1,	,,N		1	r = t, b, r; $r =$	2,, N	
$F_0 = (z)$	$^{0} = 1$; $F_{1} = 0$	$(z)^1 = z; \ldots; F_N =$	= (z) ^N	$F_t = rac{P_0+P_1}{2}$; $F_b =$	$=rac{P_{0}-P_{1}}{2}$; $F_{r}=$	$P_r - P_{r-2}$

Equivalent Single Layer Approach

Erasmo Carrera, Stefano Valvano

CUF ○○●	FEM & MITC o	Gov. Eq. 00	PVD 000	Results 0000000 000000	Conclusions

Layer Wise

Legendre polynomials expansion:

$$\mathbf{u}^{k} = F_{t}\mathbf{u}_{t}^{k} + F_{b}\mathbf{u}_{b}^{k} + F_{r}\mathbf{u}_{r}^{k} = F_{\tau}\mathbf{u}_{\tau}^{k}$$
$$\Theta^{k} = F_{t}\Theta^{k}_{t} + F_{b}\Theta^{k}_{b} + F_{r}\Theta^{k}_{r} = F_{\tau}\Theta^{k}_{\tau}$$
$$\tau = t, b, r \quad ; \quad r = 2, ..., N$$

$$F_t = \frac{P_0 + P_1}{2}$$
; $F_b = \frac{P_0 - P_1}{2}$; $F_r = P_r - P_{r-2}$

Interlaminar continuity condition:

$$u_t^k = u_b^{k+1}$$
; $k = 1, n_l - 1$

Variable-Kinematic Legendre polynomials expansion:

$$\mathbf{u} = F_t \mathbf{u}_t + F_b \mathbf{u}_b + F_r \mathbf{u}_r = F_\tau \mathbf{u}_\tau$$
$$\Theta = F_t \Theta_t + F_b \Theta_b + F_r \Theta_r = F_\tau \Theta_\tau$$
$$\tau = t, b, r \quad ; \quad r = 2, ..., N$$

$$F_t = \frac{P_0 + P_1}{2}$$
; $F_b = \frac{P_0 - P_1}{2}$; $F_r = P_r - P_{r-2}$

Interlaminar continuity condition is guaranteed in specified zones

Erasmo Carrera, Stefano Valvano

Finite Element Method

Approximation of variables in the reference midplane surface using the Langrangian shape functions:

MITC

To overcome the problem of the *membrane and* shear locking, the strain components are calculated using a specific interpolation strategy:

 $\epsilon_{yy} \gamma_{yz}$

 ϵ_{xy}

For example:

$$\epsilon_{xx} = N_{A1}\epsilon_{xx_{A1}} + N_{B1}\epsilon_{xx_{B1}} + N_{C1}\epsilon_{xx_{C1}} + N_{D1}\epsilon_{xx_{D1}} + N_{E1}\epsilon_{xx_{E1}} + N_{F1}\epsilon_{xx_{F1}} + N_{F1}\epsilon_{xx_{F1$$

Erasmo Carrera, Stefano Valvano

 $\mathbf{u}_{\tau} = N_i(\xi, \eta) \, \mathbf{u}_{\tau i}$

Intro C	UF 000	FEM & MITC	Gov. Eq. ●○	PVD 000	Results 0000000	Conclusions
					000000	

Governing Equations and Fundamental Nucleus

Principle of Virtual Displacements (PVD) for mechanical problems

$$\int_{V} \delta \boldsymbol{\epsilon}^{\boldsymbol{k}^{\mathsf{T}}} \boldsymbol{\sigma}^{\boldsymbol{k}} \; \mathsf{dV} = \delta L_{\boldsymbol{e}}$$

Governing equations in compact form:

$$\delta \boldsymbol{u}^{k\tau i}$$
 : $\boldsymbol{K}^{k\tau s i j} \boldsymbol{u}^{ks j} = \boldsymbol{P}^{k\tau i}$

where
$$\boldsymbol{K}^{k\tau sij} = \begin{bmatrix} K_{xx} & K_{xy} & K_{xz} \\ K_{yx} & K_{yy} & K_{yz} \\ K_{zx} & K_{zy} & K_{zz} \end{bmatrix}^{k\tau sij}$$

Erasmo Carrera, Stefano Valvano

A free-vibration thermo-elastic analysis of laminated structures by variable ESL/LW plate finite element

イロト イロト イヨト イヨト

Assembling Approaches

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
			000	0000000	

Partially coupled thermo-mechanical problems

Static Analysis Principle of Virtual Displacements

$$\int_{V} \delta \boldsymbol{\epsilon}^{\boldsymbol{k}^{\mathsf{T}}} \boldsymbol{\sigma}^{\boldsymbol{k}} \; \boldsymbol{d} \boldsymbol{V} = \delta \boldsymbol{L}_{\boldsymbol{e}}$$

$$egin{aligned} \sigma^k &= \sigma^k_u - \sigma^k_\Theta = oldsymbol{\mathcal{C}}^k oldsymbol{\epsilon}^k - \lambda^k \Theta^k \ \lambda^k &= oldsymbol{\mathcal{C}}^k lpha^k \end{aligned}$$

$$\int_{V} \delta \boldsymbol{\epsilon}^{\boldsymbol{k}^{\mathsf{T}}} \boldsymbol{\sigma}_{\boldsymbol{u}}^{\boldsymbol{k}} \boldsymbol{d} \boldsymbol{V} = \int_{V} \delta \boldsymbol{\epsilon}^{\boldsymbol{k}^{\mathsf{T}}} \boldsymbol{\sigma}_{\boldsymbol{\Theta}}^{\boldsymbol{k}} \boldsymbol{d} \boldsymbol{V}$$

$$\Theta(x, y, z) = \Theta(z) sin\left(\frac{mx\pi}{a}\right) sin\left(\frac{ny\pi}{b}\right)$$

 $\Theta(z)$ is assumed linear

variable kinematic MITC9 shell element.

Journal of Thermal Stresses, 39(2), 121-141, 2016. http://dx.doi.org/10.1080/01495739.2015.1123591 イロト イロト イヨト イヨト

2

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
			000	0000000 000000	

Partially coupled thermo-mechanical problems

Static Analysis Principle of Virtual Displacements $\int_{V} \delta \boldsymbol{\epsilon}^{k^{T}} \boldsymbol{\sigma}_{u}^{k} dV = \int_{V} \delta \boldsymbol{\epsilon}^{k^{T}} \boldsymbol{\sigma}_{\Theta}^{k} dV$ 0.8 0.6 a/h=2 -----0.4 0.2 0 -0.2 -0.4 -0.6 -0 -0.3 -0.2 -0.1 0.2 0.3 0.4 0.5 0.1

$$\Theta(x, y, z) = \Theta(z) \sin\left(\frac{mx\pi}{a}\right) \sin\left(\frac{ny\pi}{b}\right)$$

 $\Theta(z)$ is calculated via the Fourier Heat

conduction equations

Erasmo Carrera, Stefano Valvano

0 000 0 00 000 000000 00 000000	CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				000	0000000	

Fully coupled thermo-mechanical problems

Static Analysis $\boldsymbol{\sigma}^{k} = \boldsymbol{C}^{k} \boldsymbol{\epsilon}^{k} - \lambda^{k} \Theta^{k}$ Principle of Virtual Displacements $\boldsymbol{\eta}^{k} = \boldsymbol{\lambda}^{k} \boldsymbol{\epsilon}^{k} + \boldsymbol{\chi}^{k} \boldsymbol{\Theta}^{k}$ $\boldsymbol{h}^{k} = \boldsymbol{\kappa}^{k} \boldsymbol{\vartheta}^{k} \qquad \chi = \frac{\rho C_{v}}{\Theta_{v}}$ $\int \left\{ \delta \boldsymbol{\epsilon}^{k^{T}} \boldsymbol{\sigma}^{k} - \delta \Theta^{k} \boldsymbol{\eta}^{k} - \delta \boldsymbol{\vartheta}^{k^{T}} \boldsymbol{h}^{k} \right\} d\boldsymbol{V} = \delta \boldsymbol{L}_{\boldsymbol{\theta}}$ $\boldsymbol{\epsilon}_{mn} = \frac{\partial \boldsymbol{u}}{\partial} \qquad \boldsymbol{\vartheta}_{m} = \frac{\partial \Theta}{\partial}$ In compact form: $\boldsymbol{K}^{k\tau sij} = \begin{bmatrix} K_{xx} & K_{xy} & K_{xz} & K_{x\Theta} \\ K_{yx} & K_{yy} & K_{yz} & K_{y\Theta} \\ K_{zx} & K_{zy} & K_{zz} & K_{z\Theta} \\ K_{\Theta x} & K_{\Theta y} & K_{\Theta z} & K_{\Theta\Theta} \end{bmatrix}^{k\tau sij}$ $\begin{pmatrix} \mathbf{4} \times \mathbf{4} \\ \delta \mathbf{u}_{\tau i}^{k} : \begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{u\Theta} \\ \delta \Theta_{\tau i}^{k} : \begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{u\Theta} \\ \mathbf{K}_{\Theta u} & \mathbf{K}_{\Theta\Theta} \end{bmatrix}^{k\tau s i j} \begin{cases} \mathbf{u} \\ \Theta \end{cases}^{ksj} = \begin{bmatrix} \mathbf{P}_{u} \\ \mathbf{P}_{\Theta} \end{bmatrix}^{k\tau i}$ ◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへで

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
			000	0000000 000000	

Fully coupled thermo-mechanical problems

1 Layered Isotropic Simply-Supported Plate

Erasmo Carrera, Stefano Valvano

CUF 000	FEM & MITC O	Gov. Eq. 00	PVD 000	Results ●000000 000000	Conclusions

Mixed ESL/LW

Preliminaries Static Analysis Results

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				• 000000 000000	

Composite Square Plate [0°/90°/0°]

Mechanical Analysis

$$p(x, y, z_{top}) = \hat{p}_z \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{\pi y}{b}\right)$$

h

B.C.= Simply-Supported

Material Properties:

 $E_{I}/E_{T} = 25$ $G_{IT}/E_T = 0.5$ $G_{TT}/E_{T} = 0.2$ $v_{LT} = v_{TT} = 0,25$

Pagani A., Valvano S., and Carrera E.,

Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements.

Journal of Sandwich Structures and Materials, 2016. http://dx.doi.org/10.1177/1099636216650988

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶

Erasmo Carrera, Stefano Valvano

 $\hat{p}_{7} = 1.0$

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				000000 000000	

ESL Approach, Taylor vs Legendre Polynomials

			a/h = 4	Ļ		a/h = 100					DOFs
	ŵ ô _{xx}		$\hat{\sigma}_{xz}$	$\hat{\sigma}_{yz}$	ŵ	$\hat{\sigma}_{xx}$		$\hat{\sigma}_{xz}$	$\hat{\sigma}_{yz}$		
		top	bottom				top	bottom			
3D [Pagano 1970]	-	0.801	-0.755	0.256	0.2172	-	0.539	-0.539	0.395	0.0828	
LW4 _a [Petrolo et al. 2015]	2.1216	0.801	-0.755	0.256	0.2180	0.4347	0.539	-0.539	0.395	0.0828	
ET4a [Petrolo et al. 2015]	2.0083	0.786	-0.740	0.205	0.1830	0.4342	0.539	-0.539	0.281	0.0734	
LW4	2.1216	0.807	-0.761	0.258	0.2197	0.4347	0.544	-0.544	0.398	0.0836	17199
ET4	2.0082	0.7926	-0.7461	0.2067	0.1845	0.4342	0.5435	-0.5436	0.2830	0.0742	6615
ET3	2.0069	0.7940	-0.7479	0.2068	0.1845	0.4342	0.5436	-0.5436	0.2830	0.0742	5292
ET2	1.6499	0.4714	-0.4252	0.1219	0.1258	0.4333	0.5428	-0.5428	0.1436	0.0603	3969
ET1*	1.6574	0.4484	-0.4537	0.1234	0.1237	0.4333	0.5428	-0.5428	0.1428	0.0592	2646
ET1 ⁻	1.6448	0.4465	-0.4517	0.1227	0.1258	0.4282	0.5404	-0.5404	0.1421	0.0614	2646
EL4	2.0082	0.7926	-0.7461	0.2067	0.1845	0.4342	0.5435	-0.5436	0.2830	0.0742	6615
EL3	2.0069	0.7940	-0.7479	0.2068	0.1845	0.4342	0.5436	-0.5436	0.2830	0.0742	5292
EL2	1.6499	0.4714	-0.4252	0.1219	0.1258	0.4333	0.5428	-0.5428	0.1436	0.0603	3969
EL1	1.6448	0.4465	-0.4517	0.1227	0.1258	0.4282	0.5404	-0.5404	0.1421	0.0614	2646

* thickness locking correction

- no correction

- * ロ * * @ * * 注 * * 注 * の < ?

Erasmo Carrera, Stefano Valvano

CUF 000	FEM & MITC O	Gov. Eq. 00	PVD 000	Results oo●oooo oooooo	Conclusions

Thermal loads

$$T(x, y, z) = \hat{T}(z) \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{\pi y}{b}\right)$$

Carrera E., Valvano S.,

A variable kinematic shell formulation applied to thermal stress of laminated structures,

Journal of Thermal Stresses, 40(7): 803-827, 2017. http://dx.doi.org/10.1080/01495739.2016.1253439

$$\hat{T}(z = top) = +1.0,$$

 $\hat{T}(z = bottom) = -1.0, a = b = 1,$
 $h = 0.1$

Mechanical properties: $E_1/E_2 = 25, E_2 = E_3$ $G_{12}/E_2 = 0.5, G_{23}/E_2 = 0.2 GPa$, $G_{12} = G_{13}$ $v_{12} = v_{13} = v_{23} = 0.25$

Thermal properties: $\alpha_2/\alpha_1 = 3, \alpha_1 = \alpha_3$ $\mathcal{K}_1/\mathcal{K}_2 = 36.42/0.96, \mathcal{K}_2 = \mathcal{K}_3$

Erasmo Carrera, Stefano Valvano

CUF 000	FEM & MITC o	Gov. Eq. 00	PVD 000	Results ooo●ooo oooooo	Conclusions

Transverse mechanical displacement w

Erasmo Carrera, Stefano Valvano

Transverse mechanical displacement w

Erasmo Carrera, Stefano Valvano

In-plane mechanical stress σ_{xx} , (a/h = 2)

Erasmo Carrera, Stefano Valvano

In-plane mechanical stress σ_{xx} , (a/h = 2)

Erasmo Carrera, Stefano Valvano

CUF 000	FEM & MITC O	Gov. Eq. 00	PVD 000	Results oooo●oo oooooo	Conclusions

Mixed ESL/LW

Free-Vibration Analysis Results

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Erasmo Carrera, Stefano Valvano

CUF 000	FEM & MITC o	Gov. Eq. 00	PVD 000	Results oooo●oo oooooo	Conclusions

Isotropic and Composite Simply-Supported Square Plates

F = 73 GPa, v = 0.3 $\rho = 2800 \frac{Kg}{m^3}, c_V = 897 \frac{J}{KgK}$ $\alpha = 25 E - 6 \frac{1}{\kappa}, \kappa = 130 \frac{W}{mK}$ **Composite** Properties: $E_L/E_T = 172.72/6.909$ (GPa) $G_{IT}/G_{TT} = 3.45/1.38 (GPa)$ $v_{IT} = v_{TT} = 0,25$ $\rho = 1940 \, \frac{Kg}{m^3}, \, c_V = 846 \, \frac{J}{K \, \sigma \, K}$ $\alpha_L/\alpha_T = 0.57 E - 6/35.6 E - 6(\frac{1}{\kappa})$ $\kappa_{L}/\kappa_{T} = 36.42/0.96 \left(\frac{W}{mK}\right)$ イロト イロト イヨト イヨト ъ.

Aluminum Properties:

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				0000000 000000	

1 Layered Isotropic Plates

		a/h = 2				<i>a/h</i> = 100				
	$EL4_M$	EL4 _T	$EL1_M$	EL1⊤		EL4 _M	EL4 _T	$EL1_M$	EL1⊤	
Ref Analytical [1] Frequencies	763.94	766.03				0.4852	0.4875			
1	763.94	763.95	791.65	791.66		0.4856	0.4856	0.5374	0.5374	
2	791.65	791.65	791.65	791.66		1.2165	1.2166	1.3458	1.3459	
3	791.65	791.65	829.01	829.03		1.2165	1.2166	1.3458	1.3459	
4	1119.6	1119.6	1119.6	1119.6		1.9440	1.9440	2.1507	2.1508	
5	1414.8	1414.8	1522.2	1522.3		2.4457	2.4458	2.7033	2.7034	
6	1414.8	1414.8	1522.2	1522.3		2.4457	2.4458	2.7033	2.7034	
7	1583.3	1583.3	1583.3	1583.3		3.1673	3.1674	3.5023	3.5025	
8	1583.3	1583.3	1583.3	1583.3		3.1673	3.1674	3.5023	3.5025	
9	1770.2	1770.2	1770.2	1770.2		4.1896	4.1897	4.6253	4.6255	
10	1770.2	1770.2	1770.2	1770.2		4.1896	4.1897	4.6253	4.6255	
DOFs	16335	21780	6534	8712		16335	21780	6534	8712	

[1] Brischetto S., Carrera E., "Coupled thermo-mechanical analysis of one-layered and multilayered plates", Composite

Structures (2010) 92, 1793-1812

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				000000 000000	

		<i>a/h</i> = 2							a/h = 100							
	$LW4_M$	$LW4_T$	$LW1_M$	LW1 _T	$EL4_M$	EL4 _T	$EL1_M$	EL1 _T	LW4 _M	$LW4_T$	$LW1_M$	$LW1_T$	$EL4_M$	$EL4_T$	$EL1_M$	EL1 _T
Ref Analytical [1] Frequencies	324.36	324.40			329.04	329.08			0.2909	0.2910			0.2909	0.2910		
1	324.30	324.31	333.39	333.39	328.99	328.99	333.39	333.39	0.2908	0.2908	0.2919	0.2919	0.2908	0.2908	0.2945	0.2945
2	333.39	333.39	333.39	333.39	333.39	333.39	333.39	333.39	0.8040	0.8040	0.8069	0.8069	0.8042	0.8042	0.8128	0.8128
3	333.39	333.39	337.85	337.85	333.39	333.39	341.13	341.13	0.8040	0.8040	0.8069	0.8069	0.8042	0.8042	0.8128	0.8128
4	552.49	552.49	578.59	578.59	561.17	561.17	583.26	583.26	1.1616	1.1616	1.1665	1.1665	1.1618	1.1618	1.1769	1.1769
5	552.49	552.49	578.59	578.59	561.17	561.17	583.26	583.26	1.7176	1.7176	1.7240	1.7240	1.7181	1.7181	1.7353	1.7353
6	595.49	595.49	635.14	635.14	609.19	609.19	666.78	666.78	1.7176	1.7176	1.7240	1.7240	1.7181	1.7181	1.7353	1.7353
7	595.49	595.49	635.14	635.14	609.19	609.19	666.78	666.78	1.9709	1.9709	1.9800	1.9800	1.9716	1.9716	1.9958	1.9958
8	666.78	666.78	666.78	666.78	666.78	666.78	699.67	699.67	1.9709	1.9709	1.9800	1.9800	1.9716	1.9716	1.9958	1.9958
9	666.78	666.78	666.78	666.78	666.78	666.78	699.67	699.67	2.6078	2.6078	2.6204	2.6204	2.6088	2.6088	2.6436	2.6436
10	698.85	698.85	733.75	733.75	715.01	715.01	756.41	756.41	3.0059	3.0059	3.0191	3.0191	3.0076	3.0076	3.0382	3.0383
DOFs	29403	39204	9801	13068	16335	21780	6534	8712	29403	39204	9801	13068	16335	21780	6534	8712

 [1] Brischetto S., Carrera E., "Coupled thermo-mechanical analysis of one-layered and multilayered plates", Composite Structures (2010) 92, 1793-1812

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				0000000 •00000	

3 layered Composite

Mixed ESL/LW Variable Kinematic

Case 1

Case 2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				000000 00000	

	a/h = 100										
	LW4 _M	LW4 _T	$EL4_M$	EL4 _T	EL4 Case 1_M	EL4 Case 1_T	EL4 Case 2_M	EL4 Case 2_T			
Frequencies											
1	0.4549	0.4549	0.4552	0.4552	0.4550	0.4550	0.4550	0.4550			
2	0.6853	0.6853	0.6856	0.6856	0.6854	0.6854	0.6854	0.6854			
3	1.2117	1.2117	1.2122	1.2122	1.2119	1.2119	1.2119	1.2119			
4	1.6785	1.6785	1.6822	1.6822	1.6793	1.6793	1.6793	1.6793			
5	1.7990	1.7990	1.8028	1.8028	1.7998	1.7998	1.7998	1.7998			
6	2.0156	2.0156	2.0167	2.0167	2.0161	2.0161	2.0161	2.0161			
7	2.1198	2.1198	2.1237	2.1237	2.1207	2.1207	2.1207	2.1207			
8	2.7289	2.7289	2.7329	2.7329	2.7300	2.7300	2.7300	2.7300			
9	3.0816	3.0816	3.0839	3.0839	3.0828	3.0828	3.0828	3.0828			
10	3.6518	3.6518	3.6566	3.6566	3.6535	3.6535	3.6535	3.6535			
DOFs	42471	56628	16335	21780	29403	39204	29403	39204			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	PVD	Results	Conclusions
			000000 00000	

		a/h = 2						
	LW4 _M	LW4 _T	$EL4_M$	EL4 _T	EL4 Case 1_M	EL4 Case 1_T	EL4 Case 2_M	EL4 Case 2_T
Frequencies								
1	316.93	316.93	323.17	323.17	319.92	319.92	319.92	319.92
2	333.39	333.39	333.39	333.39	333.39	333.39	333.39	333.39
3	333.39	333.39	333.39	333.39	333.39	333.39	333.39	333.39
4	512.55	512.55	520.41	520.42	517.22	517.22	517.22	517.22
5	583.46	583.46	598.31	598.31	589.72	589.72	589.72	589.72
6	585.39	585.39	624.88	624.88	590.96	590.96	590.96	590.96
7	621.14	621.14	655.86	655.86	628.20	628.20	628.20	628.20
8	666.78	666.78	666.78	666.78	666.78	666.78	666.78	666.78
9	666.78	666.78	666.78	666.78	666.78	666.78	666.78	666.78
10	712.56	712.56	726.41	726.41	719.40	719.40	719.40	719.40
DOFs	42471	56628	16335	21780	29403	39204	29403	39204

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				000000 00000	

Three-dimensional view of the Temperature θ

Erasmo Carrera, Stefano Valvano

5 Layered Composite Sandwich Plates

5 layered Composite Sandwich

Mixed ESL/LW Variable Kinematic

Case 1 Case 2

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				000000 000000	

5 Layered Composite Sandwich Plates

	<i>a</i> / <i>h</i> = 100							
	LW4 _M	LW4 _T	$EL4_M$	EL4 _T	EL4 Case 1_M	EL4 Case 1_T	EL4 Case 2_M	EL4 Case 2_T
Frequencies								
1	0.6482	0.6482	0.6487	0.6487	0.6487	0.6487	0.6482	0.6482
2	1.7432	1.7432	1.7469	1.7469	1.7466	1.7466	1.7432	1.7432
3	1.8982	1.8982	1.9007	1.9007	1.9003	1.9003	1.8983	1.8983
4	2.5557	2.5557	2.5606	2.5606	2.5601	2.5601	2.5557	2.5557
5	3.6833	3.6833	3.6987	3.6987	3.6977	3.6977	3.6834	3.6834
6	4.0545	4.0545	4.0645	4.0645	4.0625	4.0625	4.0547	4.0547
7	4.1880	4.1880	4.2040	4.2040	4.2028	4.2028	4.1880	4.1880
8	4.4544	4.4544	4.4662	4.4662	4.4641	4.4641	4.4546	4.4546
9	5.6201	5.6201	5.6405	5.6405	5.6382	5.6382	5.6202	5.6202
10	6.3103	6.3103	6.3530	6.3530	6.3505	6.3505	6.3103	6.3103
DOFs	68607	91476	16335	21780	42471	56628	42471	56628
Δ DOFs %	0	0	76.2	76.2	38.1	38.1	38.1	38.1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				000000 000000	

5 Layered Composite Sandwich Plates

	a/h = 2							
	LW4 _M	LW4 _T	EL4 _M	EL4 _T	EL4 Case 1_M	EL4 Case 1_T	EL4 Case 2_M	EL4 Case 2_T
Frequencies								
1	322.15	322.15	322.17	322.17	322.17	322.17	322.15	322.15
2	322.16	322.16	322.20	322.20	322.19	322.19	322.16	322.16
3	324.31	324.31	336.31	336.31	334.98	334.98	324.44	324.44
4	480.74	480.74	487.59	487.59	486.63	486.63	480.78	480.78
5	481.92	481.92	493.18	493.18	492.16	492.16	481.95	481.95
6	514.01	514.01	533.00	533.00	531.82	531.82	514.22	514.22
7	536.55	536.55	552.02	552.02	549.78	549.78	537.00	537.00
8	643.14	643.14	643.33	643.33	643.30	643.30	643.14	643.14
9	643.19	643.19	643.54	643.54	643.45	643.45	643.19	643.19
10	663.70	663.70	684.52	684.52	682.33	682.33	664.20	664.20
DOFs	68607	91476	16335	21780	42471	56628	42471	56628
Δ DOFs %	0	0	76.2	76.2	38.1	38.1	38.1	38.1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Erasmo Carrera, Stefano Valvano

CUF	FEM & MITC	Gov. Eq.	PVD	Results	Conclusions
				000000 00000	

Three-dimensional view of the Temperature θ

Erasmo Carrera, Stefano Valvano

CUF 000	FEM & MITC o	Gov. Eq. 00	PVD 000	Results 0000000 000000	Conclusions ●○

Conclusions

- Unified Formulation is the ideal tool for the implementation of variable kinematic theories. In fact, the theory approximation order and the modelling technique (ESL, LW) are free parameters of the FEM arrays, which are written in a compact and very general form.
- The present variable kinematic models, in general for static and free-vibration analysis, allow to locally improve the solution with a reduction of computational costs with respect to Layer-Wise solutions.
- The Mixed ESL/LW variable kinematic is effective for the free-vibration analysis of sandwich structures. Strong computational cost reductions can be obtained with high solution accuracy, respect to the full Layer-Wise model.
- The results show confidence for future extension of the present variable-kinematic methodology to thermography investigations analysis, and to the free-vibration analysis of multilayered piezoelectric components.

Erasmo Carrera, Stefano Valvano

CUF 000	FEM & MITC O	Gov. Eq. 00	PVD 000	Results 0000000 000000	Conclusions ○●

Thanks for the attention

Temperature for a/h=2 plates

▲□▶▲□▶▲□▶▲□▶ = のQで

Erasmo Carrera, Stefano Valvano