FREE-VIBRATION ANALYSIS OF TAPERED WING STRUCTURES USING REFINED ONE-DIMENSIONAL MODELS

A. Viglietti\(^1\), E. Zappino\(^1\), E. Carrera\(^1\)

\(^1\)Politecnico di Torino, Mechanical and Aerospace Engineering Dept.
Turin, Italy

andrea.viglietti@polito.it
enrico.zappino@polito.it
erasmo.carrera@polito.it

Keywords: CUF, one dimensional, tapered, thin-walled, free-vibration.

Abstract: This work presents results from free-vibration analyses on tapered wing box made of composite material. The analyses are performed through a refined one-dimensional model based on the Carrera Unified Formulation. The displacements over the beam cross-section are evaluated using polynomial expansions. In this way, no geometrical approximations are introduced in the problem and a three-dimensional result can be obtained. Two simple tapered wing boxes have been considered and different laminations have been taking into account. The results are compared with a shell model achieved by a commercial code. The results demonstrate the good accuracy of the model and his use in tailoring analyses.

INTRODUCTION

In the aeronautical field, due to their rigid requirements regarding weight and stiffness, the tapered thin-walled structures are widely used. Thanks to their proprieties and the materials which they are made of, these structures provide a high stiffness/mass ratio and make them attractive. Tapered beams are investigated with different methods. Assuming that stiffness coefficients are a function of the beam axis, the classical theories, such as Euler-Bernulli [1], provide not accurate results due to their assumption even if, ensure a low computational cost. Cicala [2] and Timoshenko-Goodyer [3] proposed analytical methods which include the shear stress giving more accurate results. An easy way to analyze tapered beam concerns the use of several rigidly joined prismatic sections to approximate the tapered shape. The accuracy of the results increases with the number of subdivisions. An example of this stepped of piece-wise approach can be found in work by Ji Yao Shen et al. [4]. With the introduction of the Finite Element Methods by Turner et al. [5] new approaches have emerged. As before said, the thin-walled structure, TWS, are very attractive for the aeronautical application. Typical TWS have closed cross-section make them good structures to deal with bending and torsional loads. Their complex behavior and the non-classical geometries such as tapered shape, make the classical theories incapable for analysing this topic providing accurate results. Some works about the extension of the classical theories are proposed by Bruhn [6] or Vlasov [7]. The Carrera Unified Formulation (CUF) presented by Carrera et al. [8] is an advanced numerical tool which allows 1-D, 2-D and 3-D refined structural models to be derived in a compact form. Different classes of refined one-dimensional models have been obtained in the past years. The 1-D CUF models are able to describe 3-D problems without introducing geometrical approximations. Through
different types of expansion polynomials, these models approximate the cross-sectional dis-
placements. The first class of models is represented by the TE model which uses the Taylor
Polynomials to describe the cross-section. The work by Carrera et al. [9] about this topic is
suggested. More recently the Lagrange polynomials are introduced to describe the displace-
ment field over the beam cross-section as presented by Carrera and Petrolo [10]. Other classes
of models have been proposed using other expansions such as Carrera et al. [11]. This work
has the aim to explore the capabilities of a refined 1-D Finite Element model based on CUF
for the free-vibration analysis of tapered structures made of composite material. This paper
is subdivided into two main parts. The first part concerns the mathematical approach and the
second part investigates the modal behavior of two tapered boxes. In the end, some conclusions
are listed.

BEAM PRESENT MODEL

In this section, an overview of the mathematical approach used in this work is introduced. The
first part concerns the explanation of the basis to define the displacement, stress and strain fields.
After some preliminaries, the Carrera Unified Formulation for 1-D models is presented followed
by the FEM solution which is used to solve the problem.

Preliminaries

Using the present 1-D model, a multi-component structure can be described at element level
with several beam formulations. The structure is oriented respect a global reference frame
\((x_G, y_G, z_G)\). Each beam formulation used to describe the structure or a component, is referred
to its own local reference system \((x, y, z)\). This last frame can be translated and rotated respect
the global one. \(y\) is the local beam axis while \(x, z\) is the plane where the beam cross-section
lies. These frames are figured in Figure 1.

Each point has a local displacement vector \(u\) defined as:

\[
\mathbf{u}^T(x, y, z) = \{u_x \ u_y \ u_z\}
\]

(1)

The strain \(\epsilon\) and the stress vector \(\sigma\) can be written as follows:

\[
\mathbf{\sigma}^T(x, y, z) = \{\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \tau_{xy}, \tau_{xz}, \tau_{yz}\}
\]

(2)
$$\epsilon^T(x, y, z) = \{\epsilon_{xx}, \epsilon_{yy}, \epsilon_{zz}, \epsilon_{xy}, \epsilon_{xz}, \epsilon_{yz}\}$$ \hspace{1cm} (3)

To define the geometrical relations the differential operator b (a 6×3 matrix) is introduced to obtain the following linear strain-displacement relation:

$$\epsilon = bu$$ \hspace{1cm} (4)

The explicit formulation can be found in the book by Carrera et al. [8].

Using the linear form of the Hooke’s law, the stress vector is obtained as:

$$\sigma = C\epsilon$$ \hspace{1cm} (5)

Here, C is the 6×6 material stiffness matrix. It contains the elastic coefficients and it is referred to a material reference system $(1, 2, 3)$. The material properties can be arbitrarily rotated of an angle θ around the axis 1 that correspond with the z-direction. When $\theta = 0$ the longitudinal direction of the material corresponds with the beam axis. The problem is represented in fig.2.

![Figure 2: Material reference system.](image)

C is a symmetric matrix, then $C_{ij} = C_{ji}$. It is composed by 21 independent elastic coefficients if a anisotropic material is considered. If an orthotropic material is considered, the coefficients are reduced to 9 components. Other information about this topic such as the explicit form of C can be found in the books by Tsai [12] or Reddy [13]. Having regard to the possibility of having an arbitrary direction of the material frame, a transformation matrix T is introduced as follows:

$$T = \begin{bmatrix}
\cos^2 \theta & \sin^2 \theta & 0 & 0 & 0 & \sin 2\theta \\
\sin^2 \theta & \cos^2 \theta & 0 & 0 & 0 & -\sin 2\theta \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos \theta & -\sin \theta & 0 \\
0 & 0 & 0 & \sin \theta & \cos \theta & 0 \\
-\cos \theta \sin \theta & \cos \theta \sin \theta & 0 & 0 & 0 & \cos^2 \theta - \sin^2 \theta
\end{bmatrix}$$ \hspace{1cm} (6)

A transformed material stiffness matrix \tilde{C} is introduced and it is obtained as

$$\tilde{C} = TCT^T$$ \hspace{1cm} (7)
After that, the Hooke’s law can be re-written

$$\sigma = \tilde{C}\varepsilon$$

(8)

If the material has the same behavior in all directions, it is an *isotropic* material. In this case, there is no need to define a material reference system and a rotation matrix. The performance of the material can be described with only one value of the Poisson ratio and of Young’s modulus. These assumptions lead to have

$$C_{11} = C_{22} = C_{33} \quad C_{12} = C_{13} = C_{23} \quad C_{44} = C_{55} = C_{66}$$

(9)

Cross-sectional kinematic approximation

In the beam models based on the Carrera Unified Formulation, the displacement field u can be written as the product of two terms. The first term describes the displacement field over the cross-section while the second one along the beam axis. The displacement field can be written through the following form:

$$u(x, y, z) = F_\tau(x, z)u_\tau(y), \quad \tau = 1, 2 \ldots M,$$

(10)

where u_τ is the displacement vector, F_τ represents a function expansion used to approximate the behavior of the beam cross-section. M is the number of the expansion terms. The present work uses the Lagrange polynomials to describe the beam cross-section with high-order elements. The Lagrange Elements introduce as unknowns only translational displacements. In this way, an accurate description of the cross-section geometry is possible and a 3-D description of the structure behaviour can be achieved. Several sets of Lagrange Elements, more or less refined, are available. More details can be found in [14] or [8]. If a nine-point element (L9) is used over the cross-section, the formulation of the displacement becomes:

$$u_x = F_1u_{x_1} + F_2u_{x_2} + F_3u_{x_3} \ldots + F_9u_{x_9}$$
$$u_y = F_1u_{y_1} + F_2u_{y_2} + F_3u_{y_3} \ldots + F_9u_{y_9}$$
$$u_z = F_1u_{z_1} + F_2u_{z_2} + F_3u_{z_3} \ldots + F_9u_{z_9}$$

(11)

where $u_{x_1} \ldots u_{x_9}$ represent the components x of the displacement field of each node of the L9 element.

Finite Element formulation

The Finite Element model is used to solve the one-dimensional problem. Introducing the shape functions N_i the vector u can be written as

$$u(x, y, z) = F_\tau(x, z)N_i(y)u_{\tau i}$$

(12)

where $u_{\tau i}$ is the nodal displacements vector. The index i indicates the i^{th} node of the beam element. The used shape functions are reported in [8]. The governing equations can be achieved
using the PVD (Principle of Virtual Displacements). It is expressed with the following form
where the term δ denotes the virtual variation:

$$\delta L_{int} = -\delta L_{ine}$$ \hspace{1cm} (13)

The two member of 13 can be written as follow:

$$\delta L_{int} = \int_V \delta \epsilon^T \sigma dV$$ \hspace{1cm} (14)

$$\delta L_{ine} = \int_V \delta u^T \rho \ddot{u} dV$$ \hspace{1cm} (15)

From 14 and 15 the stiffness matrix K and the mass matrix M are obtained in terms of fundamental nucleus (FN), a 3x3 block with fixed form. Its components are reported in [15]. A complete description of the FN derivation and its use to achieve the global matrices are presented in [8].

Knowing the form of K and M, the 13 can be rewritten as follows:

$$M \ddot{u} + Ku = 0$$ \hspace{1cm} (16)

that is the undamped dynamic problem. Considering harmonic solutions and using the classical eigenvalue problem, the natural frequencies ω_k can be obtained.

$$(-\omega_k^2 M + K)u_k = 0$$ \hspace{1cm} (17)

where u_k is the kth eigenvector.

Rotation and Assembling Procedure

Each beam description can be rotated and translated in the space. In this way, by imposing the congruence of the displacements in some nodes defined by the geometry, a complex structure can be obtained. For more details, [16] is proposed.

RESULTS

Two wing boxes are presented in this section. The two structures are made of CFRP: Carbon Fiber Reinforced Polymer. This composite has the following proprieties: $E_{LL} = 50e9$ Pa, $E_{TT} = E_{ZZ} = 10e9$ Pa, $G = 5e9$ Pa, Poisson’s ratio $\nu = 0.25$ and density of 1700 kg/m3. E_{LL} is referred to the fiber direction. Each structure is characterized with a 2-ply laminate. The laminate will be defined from the inner layer to the external one. If a lamination of ‘$90^\circ/0^\circ$’ is considered, it identifies the inner layer with fibers rotated of 90-degree respect the X_{m0}-axis and, the external one, with no rotation. The results are compared with results obtained from shell models achieved by the commercial code NASTRAN. The CQUAD elements are used to describe the structures.
Tapered box with no sweep angle

Here, the tapered box shown in 3 is investigated. The box is simplified using only four panels to describe the geometry. The structure has the following dimensions: \(L = 2\), \(H_1 = 0.22\), \(H_2 = 0.12\), \(R_1 = 0.42\) and \(R_2 = 0.2\). The dimensions are expressed in metres. The thickness of the laminate is equal to 1 cm in order to avoid the presence of many shell-like modal shapes. In this way, the presence of global modes is facilitated. Each layer is composed of the orthotropic material before introduced. The structure is described using the layer-wise approach. In this way a three node beam element is used to describe each layer as a separated component, for a total of eight beam element. The B3 elements are placed over the thickness of the layer. The Lagrange polynomials are used to describe the cross-section of the beam, so in this case, the tapered shape of the panel. More details about the use of Lagrange elements and the use of the present formulation to describe tapered structure is given in [16]. Figure 3a shows the description used in the corners.

![Figure 3: Tapered Box with no sweep angle.](image)

Figure 4 shows the fiber direction (\(X_m\)-axis) of the panels. The fiber will be rotated of an angle equal to \(\theta\) respect \(X_{m0}\)-axis. For each panel the positive rotation of the fiber are made considering the \(Z_m\)-axis perpendicular to the panel and oriented towards the outside of the structure.

![Figure 4: Fiber direction.](image)

Table 1 shows the first ten modes obtained with the present model. Three laminations are take into account: \(90^\circ/0^\circ\), \(60^\circ/-30^\circ\) and \(45^\circ/-45^\circ\). The first angle of the lamination is referred to the internal layer. The frequencies obtained from the present model show a good correspondence with those obtained from the commercial code. Figure 5 shows the modal shapes of the mode 3,8 and 9 with the three laminations considered.

Using the first lamination, the modal shapes are well defined. The first two frequencies are pure bending mode in the plane \(yz\) and in plane \(xy\). The next bending modes are characterized by a shell-like behavior of the horizontal panels. This can be see in 5a. Then, the model detects...
Table 1: First 10 modes of the tapered box with no sweep angle with different laminations. The results are obtained from the present model (11844 Dofs) and from the Shell model (150000 Dofs).

Note: b=Bending Mode, t=Torsional Mode, s: Shell-Like Mode. The bending modal shapes are divided in bending mode in the plane \(yz\) and in the plane \(xy\).
Wing box with tapered edge and sweep angle.

The second structure represents a tapered wing box with a sweep angle and no variation in the box thickness. The geometry are shown in figure 6 and the geometrical characteristics are the following: $L = 2 \text{ m}$, $R = 0.4 \text{ m}$, $r = 0.2 \text{ m}$, $h = 0.08 \text{ m}$ and $t = 0.01 \text{ m}$. The structure is made of the same previous laminate, and the same description at the corners is introduced. In this problem, the first four modes are investigated varying the lamination in a range of 180°. An angle of 90° is maintained between the two layers. The orientation frames of the material are the same introduced in the previous case. In some points, the results are compared with those provided by the Nastran Shell Model. The degrees of freedom of this case is equal to those of the previous case.

The figure 7 shows the behavior of the first four modes. The lamination changes from $90^\circ/0^\circ$ to $-90^\circ/-180^\circ$. As the graph shows, the bending modes are characterized by the lowest frequency with a lamination of $45^\circ/-45^\circ$. In this case, there is no fiber parallel to the wingspan (or no fiber parallel to the chord direction). On the contrary, for the torsional mode the highest frequencies are obtained with the $45^\circ/-45^\circ$ lamination, as shown in figure 7d. In the control points, the frequencies are very close to those obtained from the commercial code and, the present model introduces an average error less than 5%.

Figure 8 shows the deformation at the tip in the first three modes in the first half of the range. From the previous pictures can be noted that in this case the behavior is symmetric. Figure 8a and figure 8b show the effects of the lamination in the first bending mode. The range of lamination is subdivided in two figure for a better representation. Due to the sweep angle, in the first bending mode with $90^\circ/0^\circ$ lamination a torsional effect can be noted. The torsional effect is deleted if the lamination is shifted to $45^\circ/-45^\circ$. Figure 8b represents the second range of the laminations. Can be noted the slight difference in the deformation between $90^\circ/0^\circ$ and $0^\circ/-90^\circ$. Figure 8c shows the deformation of the second mode. The coupling with a bending effect on the plane yz can be appreciated. Figure 8d represents the deformation in the third bending mode. A shell-effect can be noted on the top and bottom panels. In this case, a bending effect on the plane xy is added at the global deformation. In the second and third mode, the lamination $90^\circ/0^\circ$ and $0^\circ/-90^\circ$ are not reported because the results are very close to those with a $45^\circ/-45^\circ$ lamination and they would be confused on the pictures.
Figure 7: Comparison of the first 4 modes.

(a) 1st Mode: Bending xz-plane

(b) 2nd Mode: Bending xy-plane

(c) 3rd Mode: Bending xz-plane + Shell-like

(d) 4th Mode: Torsional
Figure 8: Deformation of the tip with different lamination.
CONCLUSIONS

In this work the modal behaviour of tapered thin-walled boxes is investigated using a refined 1-D model derived in the framework of the Carrera Unified Formulation. The study is performed with structures made of a 2-ply laminate. The first 10 modes of a tapered box with no sweep angle are evaluated. Three different type of lamination are considered and the difference in the frequencies and in modal shapes are presented. In the second structure the tapered shape is limited to the horizontal panels and a sweep angle is introduced. In this case the lamination varying in a range of 180° maintaining a 90° angle between the two layer of the composite. Considerations are made on the first four frequency in terms of frequencies and modal shapes. The results provide some main remarks:

- This 1-d model correctly detects the modal behaviour of thin walled structures and detects shell-like modal shapes too;
- the performed analyses show good values of frequencies compared with those obtained from a shell model of a commercial code;
- using the layer-wise approach each layer can be separately individuated and the lamina-
tion can be defined at the layer level;
- as expects, the lamination deeply influences the behaviour of the structure, and the present model is able to detect the alterations.

In short, the present models can be used as an accurate tool in the design process and in the definition of a lay-up that can satisfy the requirements.
REFERENCES

COPYRIGHT STATEMENT

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material included in this paper. The authors also confirm that they have obtained permission, from the copyright holder of any third party material included in this paper, to publish it as part of their paper. The authors confirm that they give permission, or have obtained permission from the copyright holder of this paper, for the publication and distribution of this paper as part of the IFASD-2017 proceedings or as individual off-prints from the proceedings.