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Abstract: In this paper the aero-thermo-elastic response of layered panels including the effects

of viscoelastic materials is investigated. The structural models has been developed in the frame-

works of the Carrera Unified Formulation that allows refined kinematics models to be derived

without any ad hoc formulation. The aerodynamic forces have been evaluated by means of the

piston theory that is only supersonic regimes have been considered. The aero-thermo-elastic

model has been assessed and the effects of the viscoelastic material on the aeroelastic response

have been evaluated. The results show that use of an advanced kinematics approximation leads

to accurate results also when complex multi-layered panels are considered. The introduction of

viscoelastic materials is able to modify the response of the panel and can be used to modify the

range in which the aeroelastic instabilities appear.

INTRODUCTION

Panel flutter is an aeroelastic phenomenon that can cause failure of panels of wings, fuselages

and missiles. It happens mostly at supersonic regime even though it can be observed in subsonic

ranges. The panel flutter phenomena may appear in space structures during the coasting phase.

Some non- destructive aeroelastic phenomena were detected on Saturn V rockets, and analytical

and experimental test was carried out as shown by Nichols [1]. Moreover, the supersonic flight

may lead to thermal loads due to the aerodynamic effects, these loads can afflict the aeroelastic

instability and make it appear early. During the design of aerospace structures, especially in the

case of thin-walled structure, the aeroelastic response have to be considered in order to avoid

catastrophic events. In order to avoid the panel flutter phenomena an accurate design of the

dynamic response of a structure is required. The possibility to modify the natural frequencies

of a structure may move the flutter phenomena out from the critical mission regimes. In this

sense, the use of innovative materials could lead to an improvements of the aeroelastic behavior

of a structure. In this work, the effects on the aero-thermo-elastic instabilities of the use of

viscoelastic materials in multi-layered panels have been investigated. The mechanical proper-

ties of the viscoelastic materials depend on the frequencies in which they are vibrating [2], the

dynamic response of a panel could be, therefore, modified with the use of such materials. On

the other and the analysis of these materials requires an iterative solution, see [3] that makes

the solution time consuming, the use of efficient numerical models is therefore mandatory. The

aero-thermo-elastic analysis of elastic and viscoelastic multi-layered panels is performed by us-

ing a refined one-dimensional theory based on the Carrera Unified Formulation,CUF [4–6]. The
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aerodynamic model is based on the linear piston theory [7] therefore only supersonic regimes

are considered. The results show that the use of refined structural models is able to provide ac-

curate results in the description of the aeroelastic response of a multi-layered panel. The use of

an advanced kinematics approximation, provided by the refined 1D models, through the panel

thickness leads to accurate results also when complex multi-layered panels are considered. The

introduction of viscoelastic materials is able to modify the response of the panel and can be

used to modify the range in which the aeroelastic instabilities appear.

AERO-THERMO-ELASTIC MODEL

The aero-thermo-elastic model used in the present paper can be written in its general formula-

tion using the Principle of Virtual Displacements, PVD:

δLint + δLine + δLσT = δLext (1)

where: Lint is the internal virtual work due to the elastic forces, Line is the work due to the

inertial forces, and Lext is the work due to the external forces; δ denotes virtual variations. If

none of the external loads, except the aerodynamic forces, are considered, the terms δLext can

be written as δLa where La stands for the work of the aerodynamic loads.

LσT is the work done by the initial stress distribution due to the thermal load. If the FEM is

used to solve the problem, the virtual works can be written in matrix form. Equation 1 therefore

becomes:

([K] + [Ka] + [KσT ]) {q}+ [Da] {q̇}+ [M ] {q̈} = 0 (2)

where [K] is the stiffness matrix, [M ] is the mass matrix, [Ka] is the aerodynamic stiffness

matrix and [Da] is the aerodynamic damping matrix. [KσT ] is the geometrical stiffness due ti

the thermal load. The structural damping and the flow inertia can be neglected. Each of these

matrices is derived in explicit form in the following sections. The solution of Eq. 2 in the fre-

quency domain leads to the solution of a Quadratic Eigenvalues Problem (QEP). Because of the

introduction of viscoelastic effects the mechanical properties of materials must be considered

frequency dependent, that is, the solution of the eigenvalues problem should be iterative. In

order to avoid this time consuming approach the frequency responses solution is adopted where

possible. The details of the solution approach are herein omitted for the sake of brevity, but can

be found in the works by Carrera and Zappino [5] and Carrera and Filippi [8].

Advanced one-dimensional elements

The structural models used in the present work are derived using the CUF. The one-dimensional

formulation is considered. More details about FE models derived via CUF can be found in

the book by Carrera et al. [4]. In the framework of the CUF [4, 9], for a 1D problem, the

displacement field u is written as the product of two functions, a cross-sectional expanding

function Fτ and the generalized displacement vector unknown uτ on the y-axis:

u(x, y, z) = Fτ (x, z)uτ (y) (3)
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where index τ ranges from 1 to the number of terms of the expansion of order N .

When the Taylor, TE, 1D models are used, an expansion that uses 2D polynomials xm zn, as

Fτ is considered, where m and n are positive integers. For instance, second-order displacement

field reads:

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(4)

Timoshenko theory (TBT) can be derived as a particular case by considering only the terms:

ux = ux1

uy = uy1 + x uy2 + z uy3 (5)

uz = uz1

It can be shown that Euler-Bernoulli beam theory (EBBT) can be derived by introducing a

penalization on the shear terms of the TBT model (see [10]).

In the case of LE models, Lagrange polynomials are used to build 1D higher-order theories. Two

types of cross-section polynomial set are adopted in this paper: nine-point LE 9, and four-point

LE 4. The isoparametric formulation is exploited to deal with arbitrary cross-section shaped

geometries. For instance, LE 4 interpolation functions are:

F1 =
1

4
(1− ξ) (1− η) F2 =

1

4
(1 + ξ) (1− z)

F3 =
1

4
(1 + ξ) (1 + η) F4 =

1

4
(1− ξ) (1 + η)

(6)

Where ξ and η are the coordinates in the natural reference system. Equation 6 coincides with

the linear Lagrange polynomial in two dimensions. Using LE the unknowns are only the dis-

placements of the cross-sectional nodes.

The FEM is used to approximate the displacement along the beam axis. In particular, the gen-

eralized displacement vector, uτ (y), is linearly interpolated using the classical shape functions.

When a beam element with NNE nodes along the axis is considered, the generalized displace-

ment vector becomes:

uτ (y) = Ni(y)qiτ ; i = 1 . . . NNE (7)

In Eq. 7 the index i ranges from 1 to the number of nodes per element NNE . Therefore, the

displacement field can be written as follows:

u(x, y, z) = Fτ (x, z)Ni(y)qiτ (8)
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Where index i indicates the node of the element along the y-axis. Three- and four-node refined

beam elements were used along the y-axis in the present work.

Stress and strain formulation

The strain vector can be written as:

ε = (εxx εyy εxy εxz εyz εzz)
T (9)

It can be written in terms of displacements using the relation:

ε = Du (10)

The matrix D contains the geometrical relations between the displacements and the strains. The

explicit form of matrix D can be found in the works by in the book by Carrera et al. [4]. The

stress vector can be derived using the constitutive equations,

σ = Cε (11)

where C is the matrix of the material coefficients and σ is the stress vector,

σ = (σxx σyy σxy σxz σyz σzz)
T (12)

When Viscoelastic material are considered, the material coefficients can be function of the

frequency of vibration. In this paper, the complex modulus approach has been used to define

the viscoelastic materials properties. According to this methodology, the usual engineering

moduli are defined as complex quantities. For example, the Youngs modulus is

E(iω) = Ec0(ω)(1 + iηc(ω)) (13)

where Ec0(ω) is the storage modulus, ηc(ω) is the corresponding material loss factor, and i =√
−1.

Thermal stresses

The initial thermal stresses can be written as:

σθ = λ∆T = Cα∆T (14)

Where ∆T is the temperature variation and α denotes the thermal expansion coefficients.
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Elastic Work: Stiffness Matrix [K]

The internal work, δLint, can be expressed in terms of elastic energy using the equations intro-

duced in the section above.

δLint =

∫

V

(δεTσ)dV =

= δqkT

τi

[

∫

V

DT
(

Ni(y)Fτ (x, z)I
)

Ck(ω)

(

Nj(y)Fs(x, z)I
)

DdV
]

qk
sj

(15)

The variation of the internal work can be written, in terms of the fundamental nucleus of the

stiffness matrix, as follows:

δLint = δqkT

τi kkijτsqk
sj (16)

where kkijτs is the stiffness matrix in the form of the fundamental nucleus. The explicit forms

of the 9 components of kkijτscan be found in the book by Carrera et al. [4].

Initial thermal stress [Kθ
σ]

The effects of the initial thermal stress can be included in the analysis considering the work done

by the variation of the virtual non-linear strain, εnl, given by the von Karman Formulation, with

the thermal initial stress, σθ.:

δLσθ =δqkT

τi

∫

V

(

Fτ,xNiσ
θ
0xx

IFs,xNj + FτNi,yσ
θ
0xy

IFs,xNj + Fτ,zNiσ
θ
0xz

IFs,xNj

+ Fτ,xNiσ
θ
0xy

IFsNj,y + FτNi,yσ
θ
0yy

IFsNj,y + Fτ,zNiσ
θ
0yz

IFsNj,y

+ Fτ,xNiσ
θ
0xz

IFs,zNj + FτNi,yσ
θ
0yz

IFs,zNj + Fτ,zNiσ
θ
0zz

IFs,zNj

)

dV qk
sj

(17)

The variation of the work done by the initial stress field can be written, in terms of the funda-

mental nucleus, as follows:

δLσθ = δqkT

τi k
θ

σ

kijτs
qk
sj (18)

Where kθ

σ

kijτs
is the fundamental nucleus of the stiffness matrix due to the initial thermal stress.

Inertial Work: Mass Matrix [M ]

The mass matrix formulation id derived from the variation of the work made by the inertial

forces:

δLine =

∫

V

δuk · ük · ρk(z)dV (19)

where the dot denotes derivatives with respect to time and the double dot denotes acceleration.

After substitution of eq.8 in eq.19, one obtains:

δLine =δqkT

iτ

[

∫

V

(

Fτ (z)INi(y)ρ
k

Nj(y)Fs(x, z)I
)

dV
]

q̈k
sj =

=δqkT

iτ mkijτsq̈k
sj

(20)
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where mkijτs is the mass matrix, which is a function of the shape functions Ni, Fτ and of the

material density ρk on the k − th layer.

Aerodynamic model

The aerodynamic model used in the present work is based on the Piston Theory. This model

was first used in aeroelastic analysis by Ashley and Zartarian [7]; it has an easy formulation and

it provides accurate results in the supersonic range, for Mach numbers greater than 1.7. The

piston theory assumes that the flow on a panel is similar at a one-dimensional flow in a channel

(e.g. in a piston). The flow velocity is assumed to be parallel to the surface and the vertical

velocity u̇z can therefore be expressed in two dimensional from as:

u̇z =
∂uz

∂t
± V

∞

∂uz

∂y
(21)

There are two contributions: the former is due to the vertical displacement, and the latter is due

to the surface slope. The sign of velocity V
∞

depends on its direction: it is positive if V
∞

is in

the positive yx−direction and negative if V
∞

is in the negative y−direction. The differential

pressure across a panel can therefore be expressed as:

∆p(y, t) =
2q

M

{∂uz

∂y
+

1

V
∞

∂uz

∂t

}

. (22)

Eq.22 shows that the local differential pressure is a function of the velocity of the normal

displacement and of the slope of the surface. A refined formulation has been proposed by

Krumhaar [11] for low supersonic ranges:

∆p(y, t) =
2q√

M2 − 1

{∂uz

∂y
+

M2 − 2

M2 − 1

1

V
∞

∂uz

∂t

}

(23)

It is easy to see that when the Mach number goes to infinity, the eq.23 coincides with eq.22.

In this work, eq.23 is used to compute the virtual work related to the aerodynamic forces. The

differential pressure, acting on the panel, given by eq.23, can be expressed as the sum of two

terms:

∆p(y, t) = ±A
∂uz

∂y
+B

∂uz

∂t
(24)

where:

A = ± 2q√
M2 − 1

; B =
2q√

M2 − 1

M2 − 2

M2 − 1

1

V
∞

. (25)

The first term, (±A
∂uz

∂y
), represents a contribution to the stiffness of the problem, and it is there-

fore called aerodynamic stiffness. The second term, (B
∂uz

∂t
), depends on the vertical velocity

and it may be interpreted as a damping; it is therefore called aerodynamic damping.
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Aerodynamic Stiffness Matrix [Ka]

The aerodynamic stiffness matrix may be derived by evaluating the work, δLaer, made by a

differential pressure, ∆p, due to the slope of the surface in the flow direction.

δLA
aer =

∫

Λ

(δuk∆pA) dΛ (26)

where index A indicates that only the contribution of the slope is considered, and Λ is the surface

where the pressure acts. Considering the formulation proposed in eq.24, and introducing the

displacement formulation reported in eq.8, differential pressure can be written as:

∆pA = A
∂uz

∂y
= A · I∆p

∂Ni

∂y
Fτq

k
iτ (27)

where:

I∆p =





0 0 0
0 0 0
0 0 1



 (28)

Since dΛ = dx · dy, and substituting eq.27 in eq.26, the virtual work of the differential pressure

can be written as:

δLA
aer = δqk

T

js

[

A
(

∫

x

FτFsdx
)

∫

L

Nj

∂Ni

∂y
I∆p dy

]

qkiτ = δqk
T

js k
kijτs
a qkiτ (29)

where kkijτs
a is the aerodynamic stiffness matrix which may be written in the form:

kkijτs
a =

2q√
M2 − 1

∫

x

FτFsdx









0 0 0
0 0 0

0 0

∫

L

Nj

∂Ni

∂y
dy









(30)

Aerodynamic Damping Matrix [Da]

The aerodynamic damping matrix may be derived by evaluating the work, δLaer, made by a

differential pressure, ∆p, due to the vertical displacement velocity of the surface.

δLB
aer =

∫

Λ

(δuk∆pB) dΛ (31)

where index B indicates that only the contribution of the vertical displacement velocity is con-

sidered. Considering the formulation proposed in eq.24 and introducing the displacement for-

mulation reported in eq.8 , differential pressure can be written as:
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Figure 1: Panel geometrical configuration ans System of reference

∆pB = B
∂uk

z

∂t
= B · FτNiI∆p

∂qkiτ
∂t

(32)

δLB
aer = δqk

T

js

[

B
(

∫

x

FτFsdx
)

∫

L

NiNjI∆p dy

]

∂qkiτ
∂t

= δqk
T

js d
kijτs
a

∂qkiτ
∂t

(33)

where Dijτs
a is the aerodynamic damping matrix which may be written in the following form:

dkijτs
a =

2q√
M2 − 1

1

V
∞

(M2 − 2

M2 − 1

)

∫

x

(

FτFs

)

dx









0 0 0
0 0 0

0 0

∫

Λ

NiNj dxdy









(34)

NUMERICAL RESULTS

This section shows some results obtained using the aero-visco-elastic model introduced in the

sections above. Two main problem are considered. The first concern the aeroelastic response of

a thin panel. The aero-elastic has been assessed in order to prove the accuracy of the proposed

approach. The second problem considers the aero-visco-elastic response of a multi-layered

panel.

Aero-elastic response of an isotropic panel

In order to assess the present aeroelastic model, a simply supported panel has been investigated

and the results have been compared with those from literature [12]. The panel has the geometry

reported in fig.1. The length, b, is considered equal to 0.5 [m], the width, a, is equal to 1

[m] and the thickness, t, is equal to 0.002 [m]. The trailing edge and the leading edge are

simply supported, while the side edges are free. The model is made of 12 beam elements. Two

different displacement formulations have been used to describe the displacement on the cross

section, a third order Taylor expansion (TE3) and a Lagrange formulation using 2 Q9 elements.

The analyses were carried out considering a flow with a temperature, T , equal to 228 [K] and

a density of 0.3639 [Kg/m3]. Fig.2 show the frequencies and the damping at different Mach

numbers, between 1.5 and 8. It is possible to see that there are three points of instability: P-

1, P-2 and P-3. The values of the critical Mach numbers and frequencies of each point are

8
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Figure 2: Simply supported panel, frequencies and damping at different Mach number, advanced TE and LE theory

Instability Point EBBM TE3 LE Ref. [12]

Mach Freq.[Hz] Mach Freq.[Hz] Mach Freq.[Hz] Mach Freq.[Hz]

P-1 4.03 60.04 4.47 66.08 4.47 66.09 4.5 66.00

P-2 - - 4.92 70.35 4.91 70.37 - -

P-3 - - 7.89 92.68 6.89 87.48 - -

Table 1: Critical Mach number and flutter Frequencies for a simply supported panel, comparisons with literature

results

reported in tab.1, while the literature results are reported in the last column. In fig.s3, the modes

involved in the first aeroelastic instability and the flutter mode are reported. Because of the

quasi-3D solution achieved using the present model, the results can be given through a full 3D

visualization. The results are very close to the results found in literature. The present higher-

order models give a critical Mach number of 4.47 versus the 4.5 found in literature and the

frequency is also similar, with 66.09 [Hz] for the present model and 66 [Hz] from literature.

Different Flutter modes could appear: P-1 instability (fig.3) involves two bending modes. The

classical structural model, EBBM, and the one used by [12] are not able to detect all the flutter

modes, since they are not able to predict the torsional and shell-like modes. The TE3 model

is able to predict this instability, but does not provide good accuracy because the third-order

model does not offer a proper description of the involved modes; a higher order model needs

to be used to obtain a better solution. The present assessment highlights that the TE and LE

models are suitable for aeroelastic application and provide results that are in agreement with

those from literature. Moreover, higher-order models can detect torsional and shell-like flutter

instabilities.

(a) Mode 1, Mach number 1.5,

29.79 [Hz]

(b) Mode 5, Mach number 1.5,

79.21 [Hz]

(c) Instability P-1, Mach number 4.47,

66.09 [Hz]

Figure 3: Simply supported panel, modes involved in the aeroelastic instabilities P-1

9



IFASD-2017-229

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350 400

A
m

p
lit

u
d

e

Frequency [Hz]

 Ma=0
Mach=2
Mach=3
Mach=5

(a) No visco effect

0.0001

0.001

0.01

0.1

1

10

0 50 100 150 200 250 300 350 400

A
m

p
lit

u
d

e

Frequency [Hz]

 Ma=0
Mach=2
Mach=3
Mach=4
Mach=6

Mach=6.4

(b) With visco effect

Figure 4: Frequency response and aeroelastic modes of the panel with and without the visco-elastic effect

Aero-visco-elastic response of an isotropic panel

The aero-visco-elastic response of a layered panel has been investigated in the present section.

The panel has the geometry reported in fig.1. The length, b, is considered equal to 0.33 [m],

the width, a, is equal to 0.39 [m] A three layers layup has been considered. From the bottom

the layers have a thickness of, 0.0015 [m], 0.0000254 [m] and 0.0004 [m] respectively. The

outer layers have been built in aluminum while the middle layer is a viscoelastic layer (material

M3ISD112TM ). The model is fully clamped. Figure 4 show the aero-visco-elastic frequency

response of the panel at different Mach numbers including the modal shapes involved in the

instability. Table 2 show the critical Mach numbers and the critical frequencies for the plate

Model Critical Mach Freq.[Hz]

Multilayered panel (without visco effects) ∼ 5.0 ∼ 204

Multilayered panel (with visco efect) ∼ 6.4(+28%) ∼ 235(+15%)

Table 2: Critical velocities of the viscoelastic panel with and without the viscoelastic effect.

with and without the viscoelastic effect. When the viscoelastic effect is not considered the

properties of the material have been considered constant and equal to the properties at zero

frequency. The results show that the introduction of the viscoelastic material may change the

critical flutter condition, in this case the critical Mach number has been increased of the 28%
while the critical frequency of the 15%.

CONCLUSION

An advanced structural model able to deal with the aero-elastic and aero-visco-elastic problem

has been developed in this work. The formulation has been developed in the framework of the

Carrera Unified Formulaiton that allows the matrices to be written in compact form. Different

structural models, Equivalent Single Layer and Layer-Wise, have been considered. From the

results it is possible to state that:

• The present model is able to provide accurate results for the aeroelastic response of thin

panel;

• The use of refined model permits to obtain quasi-3D solution;

• Multi-layered panel including viscoelastic material can be easily investigated using a

layer-wise approach;

• The use of the visco-elastic materials may be used to control the flutter phenomena.

10



IFASD-2017-229

In conclusion the present model appears to be very promising in the analysis of viscoelastic

materials and it could be used to evaluate their effects on the aeroelastic instabilities.
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