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ABSTRACT 

The analysis of the effects due to a failure of a structural component is of primary interest in the design 

of aerospace structures. The damages in a structure affect the displacement and stress fields, and the 

dynamic response can be strongly afflicted too. Free-vibration analyses are performed by an advanced 

1-D model to evaluate the modal behavior in a multi-component damaged structure. The present 1-D 

model, using expansions to evaluate the displacement field over the cross-section, is able to describe 

complex geometries without approximations. Moreover, it can modify the material proprieties, then 

the stiffness, at the local level. In this way, a high fidelity description of a damaged structure can be 

achieved. The results show the capability of the present model to deal with this topic making him a 

good candidate for a design processing tool.   

 

1 INTRODUCTION 

To satisfy the weight requirements, the aircraft structures are composed of several components that 

distribute the high loads which they undergo. Always more often, many components, such as the skin 

or the webs, are made of composite material in order to increase the weight saving.  

It is clear that, once a component fails, the load is redistributed on the other structural elements and 

its behavior changes according to the entity of the damage. In the design process, the knowledge of the 

behavior with the presence of damage is of primary importance. Moreover, the aircraft structures 

usually have particular shapes to ensure the aerodynamic characteristics. The structures can be tapered 

or can have a twist angle, features that influence the behavior too. In this work, the tapered shape is 

considered. In this way, considering the beam elements coincident with the y-axis, the bending 

stiffness EI(y) changes along the axis. The classical approximation introduced to deal with these 

geometries is a step-by-step approach that concerns the subdivision of the structure into several rigidly 

prismatic beams with different cross-sections. The approximation is improved by the increase of the 

subdivisions. After the introduction of the Finite Element Methods, other works [1][2] have been 

added to existing analytical methods [3][4]. 

The presence of damage affects the natural vibrations of the structure, and these alterations can be 

used to detect structural damage and to understand if the new damaged condition is suitable or not. 

Several works on the damage detection based on the dynamic behavior have been proposed. Based on 

the FEM method, the works of Wang [5], Nguyen [6] and Pollayi and Yu [7] can be found. On the 

contrary Pèrez et al. [8] performed extensive experimental analyses on the vibration of damaged 

laminates.  

The classical theories can be not suitable to deal with damaged structures, and models with 3-D-

like capability are required. 

Carrera et. al [9] used a beam model based on the Carrera Unified Formulation (CUF) to analyze 

damaged aircraft structures.  
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In the 1-D CUF models, the displacement field over the cross-section is described through 

expansion functions. In this way, no geometrical approximations are introduced in the problem, and 

the model can deal with arbitrary geometries, material, and boundary conditions. After the first class 

of models based on Taylor expansions (TE model), the Lagrange polynomials have been introduced. 

In this model, each component can be modeled using ad-hoc formulation (Component-Wise 

approach). Works about this topic and its capability in the aerospace field are [10][11]. 

 Carrera et al. [9], using the CW approach, have analysed different prismatic structures made of an 

isotropic material introducing different damage cases. For each case, the frequencies have been 

evaluated, and the modal shapes have been compared using the MAC (Modal Assurance 

Criterion)[12]. This criterion has already been used in the analyses of damaged bridges by Salawu and 

Williams [13]. 

This work presents a 1-D CUF model used to analyse tapered aircraft structures affected by 

different damage cases. After an explanation of the mathematical method used in this work, the results 

obtained from a simple reinforced structure and a complex wing structure are provided.  Finally, some 

leading remarks are drawn. 

 

2 REFINED BEAM MODEL 

In this section, the 1-D Carrera Unified Formulation is rapidly explained. For more details about 

these formulations and their capability, the book [14] is suggested. 

After the first part about some preliminaries, the present formulation is explained, and the section will 

be concluded with the approach used to introduce the damage. 

 

2.1 Preliminaries 

In this work, two different frames are used to describe the geometries and the FEM models. The 

first frame (XG, YG, ZG) is the global coordinate system of the 3-D space. In this space, different 

BEAMs are rotated and translated to create a complex structure. The second frame (x, y, z) defines the 

beam element respect the global reference system. The axis y identifies the beam axis and the plane 

(x,y) identifies the cross-section. The global frame is shown in the figure 1a that is the first case 

studied. 

The displacement field of a generic point can be defined as the vector u 
 

u(x,y,z)={ux uy uz}
T (1) 

 

The following linear strain-displacement relation can obtain the strain vector composed by six 

components: 
 

ε=bu(x,y,z) (2) 
 

where b is a differential operator (6x3 matrix). The stress is derived from the Hook's law through 

the following form 
 

σ=C ε (3) 
 

where C is the 6x6 material stiffness matrix. It contains the elastic coefficients. An explanation 

about this matrix for the isotropic material and also for the orthotropic material can be found in [15] 

and [16]. The explicit formulations of the matrix b, of the strain vector and the stress vector, can be 

found in the book by Carrera et al. [14]. 

 

 

2.2 One-dimensional model via CUF 

The Carrera Unified Formulation expresses the displacement field u as 
 

u = Fτ(x, z) uτ(y)     τ=1,2,…..,M. 
(4) 

 

where uτ is the displacement vector. Fτ represents an expansion used to describe the displacement 

field over the beam cross-section. M is the number of terms of the expansion. 
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Several works using the Taylor-like expansion polynomials as Fτ have been presented. Considering 

the TE model (TE: Taylor expansion) of the first order, the displacement field of the term ux for 

example, is expressed as follow: 
 

ux= ux1 + xux2 +zux3
 (5) 

 

The TE models can be deepened in [17]. 

The LE models represent another more powerful 1-D CUF model. In this class, the Lagrange 

expansions are used. They are expressed by an isoparametric formulation and can deal with any 

geometrical shape. In these models, the introduced unknowns are only translational displacements. 

Several Lagrange polynomial sets exist, and the nine-point elements (L9) are used in this work. 

Other types of polynomials sets are the four-point elements (L4). More details and the interpolation 

functions can be found in [18]. To improve the approximation, the use of more Lagrange elements to 

describe the cross-section is suggested. 

Figure 1c shows an example of the Lagrange description used in the first analysed structure of this 

work. 

 

2.3 FEM Solution 

The Finite Element theory is implemented to solve the problem. 

The shape functions Ni are introduced to approximate the displacement of the beam axis and then 

the vector u can be written as 
 

u(x,y,z)= Fτ(x, z) Ni(y)qτi     
 (6) 

 

where  qτi  is the nodal displacements vector. 

Through the PVD (Principle of Virtual Displacements), shown in 7, the stiffness matrix (from δLint)  

and the mass matrix (from δLine) are obtained in terms of Fundamental Nucleus (FN), a  3x3 matrix. 
 

δLint= -δLine
 (7) 

 

The expressions of the FN terms are shown in [9] and an exhaustive description about the 

derivation of the FN is presented in [14]. 

By substituting the terms of the FN into the PVD, the undamped dynamic problem is obtained as: 
 

Mü+Ku=0 (8) 

 

Considering harmonic solutions, the natural frequencies ωk can be obtained solving the classical 

eigenvalue problem shown in 9. 
 

(- ωk
2M+K)uk=0 (9) 

 

where uk is the kth eigenvector. 

 

2.4 Rotation & Assembly Procedure 

Trough the present formulation, different components of a complex structure can be modelled 

separately and then rotated and translated in the space in order to be joined. The rotation around the 

three axes of the beam reference frame can be done through a rotation matrix Δ. In this way a generic 

displacement u in a local reference system can be rotated in the global reference system through the 

following formulation: 
 

uGLOB= Δ uloc 

    (10) 

 

More details about the rotation matrices can be found in [19]. 

In the present LE formulation, the structures can be joined very easily because the displacements are 

the only unknowns. The assembling is done without incurring in issues by imposing the congruence of 

the displacements in the shared nodes. Figure 1c shows the connection of the panel with the stringer in 

the structure used in this work. 

 



 Carrera E., Viglietti A. and Zappino E.  

 

 

Figure  1: Three-stringer spar. 

 

2.5 Damage Description 

In this work to describe the damage, a simple damage modelling is adopted. In the damaged zone, 

the material is degraded according to the formula 
 

Ed=d x E         0 ≤ d ≤ 1       

 

    (11) 

 where E is Young's modulus. Considering an orthotropic material, the terms E22, E33, G12 etc. are 

degraded in the same way. In this way, the capability of the component to cooperate with the structure 

is of immediate understanding. In other words, if the parameter d=1 is applied to the whole 

component, the material is not degraded and the component is not damaged. 

Thanks to the capability of the present model, the damage can be extended from an area of the 

beam cross-section to the whole component. 

 

 

3 3-STRINGER SPAR 

The reinforced structure shown in figure 1a is considered. There are two panels with different 

tapered shapes reinforced by three metallic stringers with a square cross-section. The panels are made 

of composite material. The laminate has four layers with a lamination of 0°/90°/90°/0°. The present 

model allows each layer to be described. The material x-axis, so the direction of the fiber, coincides 

with the YG axis. The stiffeners are made of an aluminum alloy with an elastic modulus of E=71.7e9 

Pa, a Poisson's ratio of 0.3 and a density of 2810 kg/m3. The panels are made of a laminate of CFRP: 

Carbon Fibre Reinforced Polymer. This composite has the following proprieties: ELL=50e9 Pa, 

ETT=EZZ=10e9 Pa, G=5e9 Pa, Poisson’s ratio ν=0.25 and density of 1700 kg/m3. 

The dimensions of the structures are L=2, h1=0.48, h2=0.98, h3=0.2 and h4=0.4. The dimensions are 

expressed in meters. The stringers have a square cross-section with an area equal to 0.0016 m2. The 

central stiffener is parallel to the YG axis. The highest extremity of the structure is clamped.  

A Nastran Solution with a high number of degree of freedom is considered as the exact solution. 

The composite panels are described with solid elements HEX8 where each layer is described by a 

layer of solid elements. This approach leads to 179700 Dofs. 

The LE model uses six B4 elements to describe the stiffeners. One three-node beam element along 

the thickness of each layer of the laminate is used. Thus, the panel is described with four B3 elements. 

The model is characterized by 13167 degrees of freedom. The use of the present formulation to 

describe tapered structure is given in [19]. 

 

 

                          (a) Considered Structure                 (b) FEM formulation                       (c) Connection 
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Figure 2 shows the damage cases considered in this case. Thanks the capability of the present 

model, the panel is described through a Layer-wise approach. In this way, each panel can be separately 

individuated. First, an external layer as damaged component is considered (Case 1). Then, an internal 

one is damaged (Case 2). Figure 2c shows the third studied case. The area near the central stringer is 

damaged, and the damage involves all the layers of the laminate. Here Xd is equal to 0.8h2. At the tip, 

Xd will be equal to 0.8h1.   

For each case three different damage levels (DL) are considered: d=0.9, d=0.5 and d=0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 : Considered Damage Cases. 

 

Figure 3 shows the first ten modal shape while Table 1 lists the values of the first 15 frequencies. 

The first two columns present the values obtained from the Nastran Model and from the current model. 

There is a good correspondence between the two models with very low errors in most frequencies. The 

other columns show the results obtained with the three damage cases with the three values of d. The 

histograms shown in figure 4 presents a visual information of the evolution of the first ten frequencies. 

The considered damage have a weak influence on the first two modes and their frequencies remain 

about the same. The same behavior can be found in the fourth frequency. The other frequencies, due to 

their shell-like behavior, are more affected by this type of damage. For a better investigation, this 

graph has to be analysed also using the MACs shown in figure 5 where the modal shapes of the 

damaged model are compared with the undamaged ones. MAC values equal to 1 means that the two 

analysed modal shapes are the same.  

From these graphs, the less influence of the damage on the internal layer respect an external one 

can be noted. In fact, considering a DL of d=0.5 in the case 2, there are no effects on the modal 

behavior. Moreover, the effects in the case 1 are mainly present at high frequencies.  Except for a little 

variation on the fifth frequency, the first ten modes are not affected in the modal shapes although the 

frequencies decrease.  

In the third case, though the damaged area is smaller respect the entire layer, the proprieties are 

degraded on all the four layers. In this case, the effects are already identifiable in the first ten modes 

with only a DL of d=0.5. 

 

 

 

 

 

 

 

 

                          (a) Case 1                                          (b) Case 2                                  (c) Case 3 
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Figure 3: First 10 modes of the three-stringer spar. 

 

 

 NASSOLID LEMODEL Case 1 Case 2 Case 3 

 
 

 
d=0,9 d=0,5 d=0,1 d=0,9 d=0,5 d=0,1 d=0,9 d=0,5 d=0,1 

f1 7,14 7,14 7,14 7,12 7,09 7,14 7,13 7,1 7,14 7,09 6,61 

f2 7,96 7,89 7,88 7,84 7,79 7,88 7,85 7,8 7,87 7,8 7,49 

f3 13,58 12,31 12,17 11,29 9,83 12,24 11,85 11,15 12,15 10,92 7,74 

f4 14,53 13,02 12,94 12,75 12,51 12,98 12,85 12,75 12,93 12,73 10,58 

f5 20,49 18,02 17,69 16,1 13,66 17,89 17,28 16,34 17,68 15,82 12,7 

f6 26,62 23,75 23,32 21,15 17,49 23,59 22,77 21,47 23,33 20,88 14,38 

f7 30,26 28,44 27,93 25,51 21,57 8,23 27,23 25,75 27,93 24,99 16,97 

f8 32,99 32,54 32,02 29,58 24,99 32,26 30,87 28,73 31,74 27,76 22,13 

f9 38,43 36,07 35,29 31,34 26,28 35,92 35,2 34,16 35,41 31,6 22,48 

f10 42,35 41,33 40,71 37,56 31,17 41,06 39,66 37,4 40,45 35,86 29,64 

f11 46,73 46,97 46,92 42,31 32,79 46,95 46,85 46,06 46,93 43,47 30,24 

f12 47,8 47,57 47,33 45,87 39,48 47,49 47,11 46,76 47,31 44,65 37,74 

f13 50,1 49,62 48,59 46,83 41,45 4948 48,75 47,54 48,87 46,84 40,1 

f14 50,85 50,85 49,87 48,16 46,65 49,99 49,76 48,74 49,84 47,37 45,24 

f15 54,18 52,98 52,14 50,19 46,67 52,64 52,08 50,05 51,8 50,02 46,77 
 

Table 1: First 15 natural frequencies (Hz) of the three-stringer spar with different damage cases 
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 Figure 4: Histograms about the frequencies of the three damage cases.  

      

Figure 5: MAC graphs of the 3-stringer spar. 

 

                                (a) Case 1                                      (b) Case 2                                         (c) Case 3 
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4 COMPLEX WING STRUCTURE 

In this section, an example of a complex aeronautic structure is showed. A multi-component 

tapered wing is considered, and figure 6 shows its geometry. The wing has a length of L=5 m. The 

tapered shape modifies the chord that changes from a value of R1=1.48 m to a value of R2=0.782 

m. The wing thickness is constant, and it is equal to H=0.208 m. The spar is composed of two spar 

caps and the web with the thickness of tw= 3 mm. The spar caps have dimensions equal to a=8 

mm, b=5 mm, c=20 mm and d=45 mm. The spars are made of aluminum alloy with the proprieties 

before introduced. The skin is a 4-layer laminate made of CFRP and it has a thickness of ts= 4 

mm. There are three ribs made of aluminum alloy placed at Yr=1,6666667 m. Its thickness is equal 

to ts. The central spar is aligned with the YG axis. For the sake of brevity, the effects of two 

damage cases on the first bending and first torsional mode are considered. For the result 

validation, a Nastran solid model with more than 330000 Dofs is used. The LE model uses six 4-

node beam elements along the length of the spar-caps and uses one 3-node beam element placed 

over the thickness to describe the web and each layer of the skin. The same description is used for 

the ribs. The model has 42682 Degrees of Freedom. 

 

 

 

Figure 6: Complex wing structure. 
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The first case of damage considers only the top spar caps. The second case considers as damaged 

component the complete spar, so the two spar caps and the web. The condition is implemented for 

each one of the three spars of the structure, and the damage involves the entire component, from YG=0 

to YG=5 m. The DL is equal to d=0.1. Table 2 shows the frequencies of the two considered modes. 

The first two columns are the frequencies of the present model compared with those obtained from the 

Nastran Model. The other six columns are the six damage cases. In the first row there is the case 

number and in the second row the considered damaged component In the first mode, considering the 

damage of the spar caps, the decrease of the frequencies are very weak, and the case 2 introduces the 

largest effect. 

On the contrary, the deformations show more details about the behavior. Figures 7 shows the 

deformation at the tip of the first mode. A damage of the top spar cap in the first spar deletes the 

torsional effect due to the tapered shape (see figure on the left). On the contrary, the case 3 increases 

this effect on the deformation. More interesting the case where the whole spar is damaged.  

    Although the difference in the frequency in the damage cases 4, 5 and 6 is very low, the effects on 

the deformation are very different (right picture in figure 7). The spar n.2 has a weak effect on the 

deformation although the frequency has the largest decrease (7%) respect the other two cases. The spar 

n.1 reverses the torsional effect contrariwise the case 6 increases this behavior (the third spar is 

damaged).  

    Figure 8 shows the deformation at the tip of the first torsional mode. Obviously, the damage about 

the spar cap has less influence respect the whole spar. The largest effects on the frequency can be 

found if the damage is located in the first spar. Case 1 and Case 4 introduce a decrease of 1.2% and 

9.4% in the frequency respectively. 

    In the first three cases, the deformation at the tip is only influenced by the third case. Here, the 

torsional effect is increased with largest displacements of the displacements along the z-axis of the 

first spar, as shown in the picture on the left of figure 8. The picture on the right presents the effects if 

the whole spar is damaged. Case 4 and Case 6 introduce the most significant alterations in the 

deformation.                         

 

 

Table 2: First bending and torsional natural frequencies (Hz) of the wing structure. 

 

Figure 7: Deformation at the tip in the first bending mode. 

    

 Damage case 
  

 

NASSOLID LEMODEL 

Case 1 
Spar Caps 1 

Case 2 
Spar Caps 2 

Case 3 
Spar Caps 3 

Case 4 
Spar 1 

Case 5 
Spar 2 

Case 6 
Spar 3 

1ST Bending 9,57 9,58 9,35 9,3 9,35 8,96 8,87 9,01 

1ST Torsional 38,5 39,4 38,91 39,15 39,18 35,7 37,73 37,67 
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Figure 8: Deformation at the tip in the first torsional mode. 

 

 

 

 

 

5 CONCLUSION 

Using an advanced 1-D model based on the Carrera Unified Formulation, an High-Fidelity description 

of tapered multicomponent aerospace structures is performed introducing different types of damage. 

Through free-vibration analyses, the capability of the present model to deal with complex structures 

made of composite material is investigated also evaluating the alterations in the dynamic behavior due 

to the presence of damage. The damage is introduced through the degradation of the mechanical 

proprieties of the material. Aerospace structures are good candidates for this work because of their no-

classical geometry and the presence of several components. 

Considering the obtained results, the following remarks can be made: 

•    The present 1-D model is able to describe multicomponent structures without geometrical 

approximations. In this way, quasi-3D results can be achieved maintaining a great reduction in the 

computational cost. 

•    The present model provides the possibility to modify the material proprieties at the local level. 

Moreover, being able to describe each layer of a laminate, a local and global layer damage can be 

introduced in the composite material.  

•    There is the possibility to have damages that affect only the highest frequencies. For this reason, 

for a damage detection purpose, a model able to detect with accuracy a wide range of frequencies is 

suggested. 

•    A damage introduces an alteration in the dynamic behavior that can be suitable or not, depending 

on the structure functionality. For example, the deformation in an aeronautical structure may not 

exceed determined values for aerodynamic and aero elastic reasons. 
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