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Unified Formulation

2D approximation of mechanical displacements and electric potential
using the thickness functions

uk (α, β, z) = F0(z) uk
0 (α, β) + F1(z) uk

1 (α, β) + ... + FN(z) uk
N(α, β)

vk (α, β, z) = F0(z) vk
0 (α, β) + F1(z) vk

1 (α, β) + ... + FN(z) vk
N(α, β)

wk (α, β, z) = F0(z) wk
0 (α, β) + F1(z) wk

1 (α, β) + ... + FN(z) wk
N(α, β)

Φk (α, β, z) = F0(z) Φk
0(α, β) + F1(z) Φk

1(α, β) + ... + FN(z) Φk
N(α, β)

in compact form:

uk (α, β, z) = Fτ(z)uk
τ (α, β) ; δuk (α, β, z) = Fs(z)δuk

s (α, β) ; τ, s = 0, 1, ...,N

Φk (α, β, z) = Fτ(z)Φk
τ (α, β) ; δΦk (α, β, z) = Fs(z)δΦk

s (α, β) ; τ, s = 0, 1, ...,N
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Taylor Polynomials Legendre Polynomials

uk = F0uk
0 + F1uk

1 + . . . + FNuk
N = Fτuk

τ

Φk = F0Φk
0 + F1Φk

1 + . . . + FNΦk
N = FτΦ

k
τ

τ = 0, 1, . . . ,N

F0 = (z)0 = 1 ; F1 = (z)1 = z ; . . . ; FN = (z)N

Equivalent Single Layer Approach (ESL)

uk = Ft uk
t + Fbuk

b + Fr uk
r = Fτuk

τ

Φk = Ft Φ
k
t + Fb Φk

b + Fr Φ
k
r = FτΦ

k
τ

τ = t , b , r ; r = 2, ...,N

Ft = P0+P1
2 ; Fb = P0−P1

2 ; Fr = Pr − Pr−2

Layer Wise Approach (LW)
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Finite Element Method MITC
Approximation of variables in
the reference midplane surface
using the Langrangian shape
functions:

uτ = Ni(ξ, η) uτi

To overcome the problem of the membrane and
shear locking, the strain components are
calculated using a specific interpolation strategy:

εαα γαz εββ γβz εαβ

For example:

εαα = NA1εααA1 + NB1εααB1 + NC1εααC1 + ND1εααD1 + NE1εααE1 + NF1εααF1
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PVD for electro-mechanical problems

Static Analysis
Principle of Virtual Displacements

∫
V

{
δεk T

σk − δEk T
Dk

}
dV = δLe

σk = Ck εk − ekT
Ek

Dk = ek εk + εkEk

In compact form:

(4 × 4)

δuk
τi :

δΦk
τi :

Kuu KuΦ

KΦu KΦΦ


kτsij 

uk
sj

Φk
sj

 =

Pu

PΦ


kτi K kτsij =


Kαα Kαβ Kαz KαΦ

Kβα Kββ Kβz KβΦ

Kzα Kzβ Kzz KzΦ

KΦα KΦβ KΦz KΦΦ


kτsij
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Coupling of Different Kinematics in Literature

In literature different kinematics can be

coupled between elements with

additional equations or mathematical

artifices. The most common method to

couple different kinematics are: the

Arlequin Method, and the Lagrange

Multipliers Method.
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Node-Dependent Variable Kinematic Finite Element for Global/Local analysis

Different Kinematics are defined in the Global Nodes. Shared nodes have the same kinematics. The coupling of
different kinematics is naturally obtained inside the finite element without any mathematical artifice or additional
equations.
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Node-Dependent Variable Kinematic Finite Element for Global/Local analysis
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Finite Element assembling scheme

Carrera E, Valvano S, Kulikov G M

Node-dependent kinematic shell elements for the analysis of smart structures



Intro CUF FEM and MITC Governing Eq. Node Variable Results Conclusions

Node-Dependent Variable assembling example
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Composite Plate with Piezoelectric Skins

Sensor Case
p(x, y, ztop) = p̂0 sin

(
πx
a

)
sin

(
πy
b

)
Φ̂(z = top) = 0

Φ̂(z = bottom) = 0

Actuator Case
Φ(x, y, ztop) = Φ̂0 sin

(
πx
a

)
sin

(
πy
b

)
Φ̂(z = bottom) = 0
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Node-Dependent Variable Kinematics

Cases with Layer- Wise models
Actuator Case

w̄ σ̄xx σ̄xz σ̄zz Φ̄ D̄z DOFs
(x, y, z)

(
a
2 ,

b
2 , 0

) (
a
2 ,

b
2 ,+

h
2

) (
0, b

2 , 0
) (

a
2 ,

b
2 , 0

) (
a
2 ,

b
2 , 0

) (
a
2 ,

b
2 ,+

h
2

)
Reference solutions

3D Exact -1.471 1.1181 -0.2387 -14.612 0.4476 -
Analytical solutions

LW4a -1.4707 1.1180 -0.239 - 0.4477 -2.4184
LW1a -1.5962 3.3433 - - 0.4468 -1.3814

Arlequin solutions
(LW1 − LWM3)A -1.420 1.119 - - - -
(LW2 − LWM3)C -1.410 - - - - -

Present single- and multi-theory models

LW4 -1.4707 1.1248 −0.2411+ −14.732+ 0.4477 -2.4186 29988
−0.2391− −14.660−

LW3 -1.4707 1.1261 −0.2270+ −13.541+ 0.4477 -2.4183 22932
−0.2394− −15.343−

LW2 -1.4662 1.1311 −0.3592+ −20.604+ 0.4477 -2.4167 15876
−0.2505− −15.978−

LW1 -1.5962 3.3531 −0.0293+ 14.188+ 0.4468 -1.3816 8820
−0.2980− −21.879−

Case A -1.4729 1.1315 −0.0302+ −12.729+ 0.4479 -2.4183 12692
−0.2979− −14.223−

Case B -1.5916 3.3590 −0.2210+ −14.026+ 0.4467 -1.3818 19060
−0.2385− −21.913−

Case C -1.4679 1.1250 −0.3599+ −13.641+ 0.4477 -2.4183 17812
−0.2504− −15.318−
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Node-Dependent Variable Kinematics

Cases with Layer- Wise models Transverse displacement
w(x, y) : (a/2, b/2)
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Node-Dependent Variable Kinematics

Cases with Layer- Wise models Transverse electric displacement and shear stress

Dz(x, y) : σxz(x, y) : (a/2, b/2)
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Node-Dependent Variable Kinematics

Cases with Layer- Wise models Transverse electric displacement and in-plane
stress along X-axis

Dz(y, z) : σxx (y, z) : (b/2,+h/2)
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Transverse Shear Stress σxz
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Cylindrical shell with Piezoelectric Skins

Actuator Case
Upper Skin Lower Skin

Φtop = 50 V , Φbottom = 0 V Φtop = 0 V , Φbottom = 50 V

Carrera E, Valvano S, Kulikov G M

Node-dependent kinematic shell elements for the analysis of smart structures



Intro CUF FEM and MITC Governing Eq. Node Variable Results Conclusions

Node-Dependent Variable Kinematics

Cases with Layer- Wise models Transverse displacement
w(α, β) : (a, 0)
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Node-Dependent Variable Kinematics

Cases with Layer- Wise models
In-plane and transverse shear stresses

σαα(α, β) : σαz(α, β) : (0, 0)
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Transverse displacement w
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Transverse shear stress σαz
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Sandwich plate with piezoelectric patch shear actuated mode-15

Piezoelectric patch used in Actuator configuration

Φpatch top = −10 V Φpatch bottom = +10 V
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Model validation varying the patch position along the x-axis

Reference solutions:

C T Sun and X D Zhang.

Use of thickness-shear mode in adaptive sandwich structures.

Smart Materials and Structures, 4:202–206, 1995.

A Benjeddou, M Trindade, and R Ohayon.

A unified beam finite element model for extension and shear piezoelectric

actuation mechanisms.

Journal of Intelligent Material Systems and Structures, 8:1012–1025, 1997.
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Node-Dependent Variable Kinematics

Cases with Layer- Wise models
Transvserse displacement and electric potential

w(x, y) : (a, b/2) Φ(x, y) : (d = 85, b/2)
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Node-Dependent Variable Kinematics

Cases with Layer- Wise models
In-plane and Transvserse stresses

σxx (x, y) : σzz(x, y) : (d = 85, b/2)
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Transverse shear stress σαz
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Conclusions
Unified Formulation is the ideal tool for the implementation of
node-dependent variable kinematic theories. In fact, the theory
approximation order and the modelling technique (ESL, LW) are free
parameters of the FEM arrays, which are written in a compact and very
general form.
The present node-dependent variable kinematic model allows to locally
improve the solution. Two main aspects can be highlighted: a reduction of
computational costs with respect to Layer-Wise single-model solutions, and
a simultaneous multi-models global-local analysis can be performed in
one-single analysis step.
The Node-Dependent Variable Kinematic method permits to enrich
locally the theory approximation accuracy by enforcing the same kinematics
at the interface nodes between kinematically incompatible plate/shell
elements. The resulting global/local approach is very efficient because it
does not employ any mathematical artifice to enforce the displacement and
stress continuity, such as those methods based on Lagrange multipliers or
overlapping regions.
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Conclusions

An accurate representation of secondary variables (mechanical stresses
and electric displacements) in localized zones is possible with DOFs
reduction if an accurate distribution of the higher-order kinematic
capabilities is performed. On the contrary, the accuracy of the solution in
terms of primary variables (mechanical displacements and electric
potential) values depends on the global approximation over the whole
structure. The efficacy of the node-dependent variable kinematic and
global/local models, thus, depends on the characteristics of the problem
under consideration as well as on the required analysis type.

The Node-Dependent Variable Kinematic method is very promising.
Further investigations will be carried out on thermo-mechanical problems
with localized loadings, plate/shell with non-uniform thickness problems etc.
etc.
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Thanks for the attention
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