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Three different approaches to the analysis of composite structures are assessed in the
present paper. These three methodologies are based on the refined one-dimensional models
developed in the framework of the Carrera Unified Formulation (CUF). The first approach,
in order to address the C0

z requirements of laminates, allows the kinematics of the model
to be enriched by using zig-zag functions. The second method is referred to as Multi-Line
and it makes use of Lagrange multipliers in the domain of higher-order and hierarchical
theories to develop variable kinematic models with layer-wise capabilities. Finally, as the
main novelty of this work, one-dimensional models with node-dependent kinematics are
presented. This new approach enables the automatic implementation of variable-kinematic
models by using hybrid/transition elements. The three models have been used for the
analysis of a laminated beam benchmark and the results have been compared in terms
of computational costs and accuracy. The proposed assessment highlights the capability
of the present models to deal efficiently with the analysis of composite structures and,
in particular, underlines the global/local features of the node-dependent kinematics beam
theories.

I. Introduction

The design of composite structures requires the use of accurate computational tools. The complex
behaviour of the material and the anisotropy of the mechanical properties may cause complex stress fields
within structures, which have to be described accurately in order to predict the arising of cracks and therefore
the failure of a given component. Classical one-dimensional structural models1,2 are widely used in the
design of structures but their employability is limited by their fundamental assumptions. Nevertheless, the
use of refined one-dimensional models allows the limitations introduced by the fundamental assumptions
of the classical models to be overcome and, eventually, the stress singularities due to local effects3,4, 5 to
be predicted. Many refined one-dimensional models have been proposed over the last few decades, see
for example the use of warping functions as proposed by Vlasov.6 Schardt7 proposed a one-dimensional
model for the thin-walled structures analysis where the displacement field was considered as an expansion
around the mid-plane of the thin-walled cross-section. The Variation Asymptotic Method, VAM, proposed
by Berdichevsky,8 uses a characteristic cross-section parameter to build an asymptotic expansion of the
solution. Volovoi9 and Yu,10,11 in particular, extended this method to composite materials and beams with
an arbitrary cross-sections.

When dealing with the modelling of laminated composite structures, one of the main issue is the fulfilment
of the so-called C0

z Requirements, i.e. the through-the-thickness continuity of the transverse shear and normal
stresses and the zig-zag behaviour of the displacement components. Many efforts have been done over the
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years in order to extend the use of classical structural models to account for these requirements. On the
other hand, the use of Layer-Wise (LW)12,13 models allows each layer of the laminate to be described
independently and in detail. However, the C0

z Requirements can be automatically satisfied a-priori by using
Mixed Formulations, which makes use of the Reissner Mixed Variational Theorem14 for displacement and
stresses.

An important step in the analysis of laminated structures was the introduction of the zig-zag function as
proposed by Murakami,15 which allows the Equivalent-Single-Layer (ESL) models to be used efficaciously in
the analysis of composite structures. This method was used by Carrera et. al.16 in the case of beam models.
A compromise between ESL and LW models has been recently proposed by Carrera and Pagani17 with the
multi-line approach that uses the Lagrange multipliers to connect different ESL models in a global/local and
variable kinematic sense.

The use of refined structural models increases the accuracy of the analyses but also the computational
costs. The use of ad-hoc or global/local formulations allows refined models to be used only in small parts
of the structure, where accurate results are required. These class of models reduces the computational costs
preserving the accuracy of the solution where accurate description of the stress/strain fields are of interest.
Examples of this approach are those based on the Arlequin method, formerly proposed by.18,19 In this
case, the compatibility in the overlapping region (a region where higher-order and lower-order formulations
co-exist) is imposed using Lagrange multipliers. This approach has also been used in the domain of Carrera
Unified Formulation (CUF), in particular in the work by Biscani et al.20

As an alternative method to those addressed above, the use of node-dependent kinematics in one-
dimensional models as presented by Carrera and Zappino,21 make it possible to vary the kinematics of
the structural theory in any beam node that is, refined beam model can be used only were an accurate
solution is requested.

The present paper presents a comparison between three diverse CUF-based approaches in the analysis
of composite structures. The first approach proposes the use of the zig-zag functions.16 The second ap-
proach proposes a multi-line model17 that uses the Lagrange multipliers to join different beam theories with,
eventually, incompatible kinematics. The last approach uses a node-dependent kinematic beam model that
allows the displacement field and, thus, the theory of structure to be varied in each node of the beam model.
Those three methodologies have been developed in the framework of the CUF and their formulation can be
expressed in a general, but still unified, compact form. A standard benchmark has been used to compare
the performances of the three models addressed. The computational costs and the accuracy of the solution
have been used in the comparison. Moreover, a brief theoretical introduction of three approaches has been
reported in the next sections.

II. Theoretical model

A. One-dimensional model with variable-kinematics assumptions

Classical beam models are based on fundamental assumptions that limit the use of these models to a small
number of applications. The Euler-Bernoulli beam theory, EBBT, does not consider, for example, the shear
effects and the warping of the cross-section, which is considered rigid. The displacement field of EBBT can
be written as:

ux = ux1

uy = uy1 + x
∂uz1
∂y

+ z
∂ux1

∂y
(1)

uz = uz1

On the other hand, the Timoshenko beam theory or First-order Shear Deformation Theory, FSDT, in-
cludes the effects of the shear but it is considered constant over the cross-section, therefore, it violates the
homogeneous conditions at the free edges. In this case the displacement field can be expressed as:

ux = ux1

uy = uy1 + x uy2 + z uy3 (2)

uz = uz1
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The use of a still inconsistent and non-physical shear correction factor may reduce the error due to the
constant shear assumption.

Refined models allows the range of applicability of these one-dimensional models to be extended to a large
number of applications and problems. In this work, CUF is used to formulate higher-order beam theories
with node-dependent kinematics. According to CUF, the one-dimensional approximation requires to assume
an axiomatic/asymptotic approximation over the cross-section. The three-dimensional displacement field
can be, hence, written as and arbitrary expansion of the generalized displacement unknowns uτ (y):

u = uτ (y)Fτ (x, z), τ = 1 . . .M. (3)

Where Fτ (x, z) are arbitrary function which determine the expansion and approximation over the cross-
section. M is the number of terms in the functions expansion Fτ (x, z). The choice of these functions allows
the kinematic of the model to be modified automatically. In the present work, Taylor- and Lagrange-like
expanding functions are considered and more details are given in the next sections.

A Finite Element (FE) approximation is used to describe the axial unknowns uτ (y). Using the one-
dimensional shape functions Ni(y) the generalized displacement field can be assumed as the linear combina-
tion of thereof to have:

u = uiτNi(y)Fτ (x, z), τ = 1 . . .M ; i = 1 . . . Nn. (4)

Where Ni are the shape functions introduced by the FE model and Nn is the number of nodes of the
element. uiτ are the nodal generalized unknowns. Similarly, the virtual variation of the displacement field
can be written as:

δu = δujsNj(y)Fs(x, z), s = 1 . . .M ; j = 1 . . . Nn. (5)

1. Taylor-Expansion models (TE)

The TE 1D model consists of an expansion that uses 2D polynomials xm zn, as Fτ , where m and n are
positive integers. For instance, the second-order TE beam model according to CUF is:

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6
uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(6)

It is interesting to note that classical beam models, such as EBBT abd FSDT, can be derived as degenerated
cases of the linear TE-CUF model.22

2. Lagrange-Expansion models (LE)

In the case of LE models, Lagrange polynomials are used to build 1D higher-order theories. Two types
of cross-section polynomial set are adopted in this paper: nine-point LE 9, and four-point LE 4. The
isoparametric formulation is exploited to deal with arbitrary cross-sections and complex shaped geometries.
For instance, the LE 4 interpolation functions are:

F1 = 1
4 (1− ξ) (1− η); F2 = 1

4 (1 + ξ) (1− z);

F3 = 1
4 (1 + ξ) (1 + η); F4 = 1

4 (1− ξ) (1 + η)
(7)

Where ξ and η are the coordinates in the natural reference system. Equation (7) coincides with the linear
Lagrange polynomials in two dimensions. Using LE approximations, higher-order models make use of only
pure displacement variables. Moreover, by discretizing the cross-section with a number of sub-domains and by
utilizing step-wise continuous LE expansions, models with layer-wise capabilities can be easily implemented.23
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3. Zig-Zag functions

Murakami24 introduced a zig-zag function in the first order shear deformation theory with the purpose of
reproducing the zig-zag form for the displacements through the thickness of laminated plates. Since it is
possible to use the zig-zag function in CUF framework, hereafter the theories which contain the term are
identified with the exponent (zz). For example, TE2zz:

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

+ (−1)kζkux7Z

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + (−1)kζkuy7Z

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + (−1)kζkuz7Z

Where ζk = 2zk/hk is a non-dimensional layer coordinate and hk the thickness of the k − layer. The
exponent k changes the sign of the zig-zag term in each layer.

4. Multi-line beam

The use of the Lagrange Multipliers allows the displacement equivalence to be imposed in a finite number
of points. This approach can be used to join two or more beams with different kinematics as shown by
Carrera and Pagani.17 The model obtained, which is called multi-line model, allows the beam to be divided
in many sub-domain, e.g. the layers of a composite beam. Each of the sub-domain can be modelled with
different kinematics and finally the displacement congruence can be imposed in a finite number of point via
the Lagrange multipliers. This approach allow to have a local approximation of the displacement field, that
is it is able to provide an accurate description of the laminated structures.

5. Node-dependent kinematics

In most of the cases, a refined kinematics is required just in some parts of the domain, where local and
complex effects are present, while, classical models could be used elsewhere.

A generic configuration and example is shown in Fig. 1. Depending on the geometry and the boundary
conditions, some sections of a beam can be just involved in pure bending phenomena. Thus, in this case,
a classical model could be used. Other sections may be slightly deformed, therefore, a low-order but still
refined beam model can be used there. Finally, some sections could show a large warping in- and out-of-plane
and, in these parts of structure, a higher order model is required.

Section rotation

Section Warping

Section deformation

Figure 1. Beam undergoing a general deformed configuration.

In this work a new class of node-dependent kinematics elements is introduced in order to refine the
kinematics only where it is strictly required. The approach introduced in this section can be easily included
in the CUF formulation and extended to any order beam model. The node-dependent kinematics in one-
dimensional model displacement field can be written including two main novelties:

Fτ (x, z) −→ F iτ (x, z) (8)

M −→M i (9)

The first equation, Eq. (8), says that the functions expansion is not a property of the finite element but
is a property of the node. For this reason the index i is included in the notation. Equation (9), moreover,
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remarks that the number of the terms in the expansion, M , can be different in each node and the notation
M i is used to underline this aspect. Hence, the generic displacement field can be written as:

u = uiτNi(y)F iτ (x, z), τ = 1 . . .M i; i = 1 . . . Nn. (10)

B. Governing equations

The governing equations can be derived using the Principle of Virtual Displacements (PVD) that in the case
of static response assumes the following form:

δLint = δLext (11)

Where Lint stands for the strain energy and Lext is the work of the external loadings. δ denotes the virtual
variation. The virtual variation of the internal work can be written as:

δLint =

∫
V

δεTσdV (12)

By introducing the constitutive equations for elastic materials and the linear geometrical relations and
introducing the displacement field given in Eq. (10), the variation of the internal work becomes:

δLint = δuTjs

∫
V

[
Nj(y)F js (x, z) DT C D F iτ (x, z)Ni(y)

]
dV uiτ (13)

= δuTjs K
ijτs uiτ (14)

Where Kijτs is the stiffness matrix expressed in form of fundamental nucleus that is a 3× 3 array.
The work done by the external loads can be written, in the case of a point load, as:

δLext =

∫
V

δuTP dV (15)

Where u is the displacement vector in one point and P is the load applied in that point. By substituting
CUF one has:

δLext = δuTjs

∫
V

Nj(y)F js (x, z)P dV = δuTjsP
js (16)

Other loading conditions can be treated similarly.

C. The matrix assembly

The formulation and the use of the fundamental nucleus as introduced in the last section is widely discussed
in Carrera et. al..25 It can be used as a fundamental brick to build the matrix of the complete structure for
any arbitrarily refined theory. Figure 2 shows the procedure used to build the stiffness matrix starting from
the fundamental nucleus.

Fundamental Nucleus

τ=1...Mi

s=1...Mj i=1...Nn

j=1...Nn

Node Level Element Level

k11

k21

k31

k12

k22

k32

k13

k23

k33

K
ijτs =

Figure 2. Stiffness matrix assembly.

This approach has been introduced in many works by the authors25 considering the structural model
constant in each beam element. In the present paper the approximation used in each beam node can be
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Figure 3. laminated beam geomentry.

Material 1 Material 2

EL [GPa] 30 5

ET [GPa] 1 1

νLT 0.25 0.25

GLT [GPa] 0.5 0.5

Table 1. Materials properties

different. This aspect can be seen at the node level, that is, the loop on the indices τ and s can have a
different number of terms therefore the matrix may appear rectangular at this level. The dimensions of this
block depends by the number of terms in the expansions in the nodes i and j. When i = j the matrix at the
node level is always square because M i = M j .

III. Numerical Results

The following section aims at presenting a number of results obtained with different beam models devel-
oped in the CUF framework. The considered structure is an 8-layer cantilevered beam, whose dimensions
and lamination scheme are shown in Figure 3. The properties of the materials ’1’ and ’2’ are listed in Table
1. The beam is subjected to a point load of 0.2 N that is applied at its tip. The results have been reported
in terms of transverse displacement (at y = 0.09 m) and through-the-thickness distributions of normal and
shear stress, which are evaluated at the mid-span.

A. One-dimensional model assessment

The capabilities of the Taylor- and Lagrange-like expansions have been first evaluated. For the equivalent
single layer approach, different kinematic theories based on the Taylor-like expansions (TEN) of arbitrary
orders, N , have been considered. These models also encompassed the classical beam theories, namely the
Euler-Bernoulli model (EBBT) and the first-order shear deformation theory (FSDT). As far as the layer-
wise approach is concerned, eight 9-node Lagrange elements (L9) have been used to build the mathematical
model.

Table 2 reports the numerical results obtained using the considered theories. The comparisons with
other solutions taken from the literature have revealed that all models predicted the normal stress with a
significant accuracy. However, it should be noted that the classical theories underestimated the transverse
displacement.

Figures 4 and 5 show the through-the-thickness distributions of shear and normal stresses. The results
are compared with the analytical solution proposed by Lekhnitskii.30 As far as the normal stress distribution
is concerned, all kinematic theories have provided results in strong agreement with the reference solution.
However, the TE models did not provide an accurate description of the shear stress distribution due to the
significant anisotropy of the structure. On the contrary, the layer-wise CUF model is able to accurately
reproduce the stress profile.
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Model σ∗
yy × 103 σ∗∗

yz × 103 u∗∗∗z × 10−2 DOFs

[MPa] [MPa] [mm]

Surana and Nguyen26 720 -3.03

Davalos and KimBarbero27 700 -3.03

Xiaoshan Lin28 750 -3.06

Vo and Thai29 -3.02

EBBT 730 0.00 -2.62 93

FSDT 730 -2.00 -2.98 155

TE1 730 -2.00 -2.98 279

TE3 730 -2.82 -3.03 930

TE5 730 -2.75 -3.03 1953

TE7 729 -2.86 -3.04 3348

TE9 730 -2.88 -3.04 5115

LE 730 -2.79 -3.05 4743

* evaluated at y=0.045, x=0.0 , z=0.005

** evaluated at y=0.045, x=0.0 , z=0.0

*** evaluated at y=0.09, x=0.0 , z=0.00

Table 2. Refined one-dimensional models results

-30
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-20

-15

-10

-5

 0
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-4 -2  0  2  4

τ y
z

z

Analytical 
FSDT

TE3
TE9

LE

Figure 4. Shear stress evaluated at y=0.045 and x=0
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Figure 5. Normal stress evaluated at y=0.045 and x=0

B. CUF-based models for composite material analysis

The previous section showed how the use of refined structural models can lead to accurate results. However,
these theories require a higher computational effort with respect to the beam classical models. In order to
reduce the number of degrees of freedom (DOFs), the node-dependent kinematic models have been developed.
The main idea of this approach is the use of refined structural theories only in few structural sub-domains,
where an accurate solution is required, while simpler mathematical models can be adopted elsewhere. The
capabilities of different node-dependent kinematic models have been compared with other two approaches,
which are the zig-zag higher-order theories and the multi-line method. The results have been obtained
considering the previous structural problem. Different models have been conceived in order to refine the
solution at the mid-span of the beam. Figure 6 shows these models. The FEM model consists of ten 4-node
beam elements. The TE3 model has been used for the external parts of the beam (from node 1 to 12 and
from node 20 to 31), while the central sub-domain (from node 13 to 19) has been modeled using different
kinematic combinations:

• in models TE
3/5
M1, TE

3/7
M1, and TE

3/9
M1, higher order TE models have been adopted in all seven central

nodes;

• in models TE
3/5
M2, TE

3/7
M2, and TE

3/9
M2, higher order TE models have been adopted only in the central

node (node 16);

• in model TE/LEM1 the Lagrange discretization is used in the seven central nodes;

• in model TE/LEM2 the Lagrange discretization is only used in the central node.

The related results are shown in Table 3 and they are compared with the zig-zag and multi-line solutions. The
transverse displacement and the stress values are in good agreement. As far as the shear stress distributions

are concerned, Figure 7 shows that the model TE
3/9
M1 reproduced the results obtained with the complete TE9

model, but with a lower computational effort. On the other hand, the TE
3/9
M2 solution is in close agreement

with the TE3 distribution.
A further improvement in the solution can be obtained using the layer-wise approach. In fact, Figure 8

shows that the TE/LEM1 model provided a solution comparable to the full LE model. If the LE model is
used only in the central node, model TE/LEM2, slight differences are observed with respect to the reference
solutions. Moreover, it must be noted that the computational cost has been strongly reduced using the node
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13 14 15 16 17 18 191         .....                     .....          31 

TEM1

3/9

TEM1

3/7

TEM1

3/5

TEM2

3/9

TEM2

3/7

TEM2

3/5

TE/LEM1

TE/LEM2

TE5 TE5 TE5 TE5 TE5 TE5TE5

TE7 TE7 TE7 TE7 TE7 TE7TE7

TE9 TE9 TE9 TE9 TE9 TE9TE9

TE3 TE3 TE3 TE3 TE3 TE3TE5

TE3 TE3 TE3 TE3 TE3 TE3TE7

TE3 TE3 TE3 TE3 TE3 TE3TE9

LE LE LE LE LE LELE

TE3 TE3 TE3 TE3 TE3 TE3LE

Figure 6. Node-dependent kinematic models.

Model σ∗
yy × 103 σ∗∗

yz × 103 u∗∗∗z × 10−2 DOFs

[MPa] [MPa] [mm]

N9zz16 661 - -3.04 5208

N3zz16 729 - -3.04 1023

Multi-Line17 731 - 3.026 6696

TE
3/5
M1 730 -2.77 -3.03 1161

TE
3/7
M1 731 -2.87 -3.03 1476

TE
3/9
M1 730 -2.89 -3.03 1875

TE
3/5
M2 736 -2.80 -3.03 963

TE
3/7
M2 755 -2.86 -3.03 1008

TE
3/9
M2 760 -2.84 -3.04 1065

TE/LEM1 731 -2.80 -3.04 1791

TE/LEM2 750 -2.80 -3.05 1053

* evaluated at y=0.045, x=0.0 , z=0.005

** evaluated at y=0.045, x=0.0 , z=0.0

*** evaluated at y=0.09, x=0.0 , z=0.00

Table 3. Refined one-dimensional models results
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Figure 7. Shear stress evaluated at y=0.045 and x=0
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Figure 8. Normal stress evaluated at y=0.045 and x=0
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dependent kinematic. In fact, the full LE model requires almost 5000 DOFs, while the TE/LEM1 has less
than 2000 DOFs.

IV. Conclusions

The present paper compared the node-dependent kinematic one-dimensional models with multi-line mod-
els and higher-order zig-zag theories for the stress analysis of laminated structures. All considered structural
theories have been derived using the Carrera Unified Formulation. Different combined models have been
presented in order to investigate the capabilities of the node-dependent structural models. In the light of
the obtained results, it is possible to drawn the following remarks:

• Refined one-dimensional models are able to provide accurate results when composite structures are
considered.

• The Carrera Unified Formulation can be used to derive node-dependent kinematic models without any
’ad hoc’ assumptions.

• The use of node-dependent kinematic allows refined models to be used only where an accurate solution
is required.

• The computational cost can be significantly reduced.

In conclusion, the node-dependent kinematics method is a valuable trade-off between accuracy and com-
putational cost in the study of complex structures. In particular, the use of the higher-order zig-zag theories
and the multi-line method within the node-dependent kinematics approach can represent an effective solution
for the analysis of laminated structures.
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