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Abstract 

This paper presents a novel component-wise (CW) approach for the finite element, dynamic response 

analysis of composite structures. In a CW model, each component of a complex structure can be 

modelled through a refined 1D model based on the Carrera Unified Formulation (CUF). The CUF allows 

the use of any order 1D structural models in a unified manner. Finite element matrices are obtained using 

a set of a few fundamental nuclei that are independent of the structural model order. The adoption of 

only 1D finite elements to model complex structures improves the multi-dimension coupling capabilities 

and reduces the computational costs to a great extent. The CW leads to finite element models in which 

fibres, matrix, and plies can be modelled through the 1D CUF models. Furthermore, the CW can be seen 

as a physics-based approach. In fact, a detailed physical description of a real structure can be obtained 

placing the problem unknown variables on the physical surfaces of the real 3D model. No artificial 

surfaces or lines are needed, and the CAD-FEM coupling is facilitated. Each component can be modelled 

with its material characteristics; that is, no homogenization techniques are required. In this paper, the 

CW is exploited for the dynamic response analysis of structures is presented. The CW capabilities are 

compared to those of classical techniques and commercial codes to prove the CW high accuracy and 

low computational cost. 
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Introduction 

The dynamic analysis of structures is of primary importance in many applications, such as impact 

problems, damage detection, and health monitoring. Such analyzes can be challenging tasks. 

Computational models have to detect very accurate displacement, strain and stress fields. Moreover, 

local effects, multi-scale and multi-dimension structural components (e.g. layers and fibers, panels and 

stringers), and anisotropy have to be considered to obtain reliable results. Currently, most of the 

techniques that have been developed for these tasks are based on very cumbersome numerical models, 

such as the 3D solid finite elements. The accurate structural analysis of complex structures is almost 

impossible due to the enormous number of degrees of freedom that is required. 

This paper presents the dynamic analysis of metallic and composite structures via refined structural 

models and the finite element modeling. In particular, 1D advanced structural models were used. 

Classical 1D models, or beams, were provided by Euler-Bernoulli [1, 2], and Timoshenko [3], hereafter 

referred to EBBT and TBT, respectively. These models are computationally cheap and, to some extent, 

reliable for many structural mechanics problems. However, EBBT and TBT cannot detect many 

mechanical behaviors; such as out-of-plane warping, in-plane distortions, torsion, coupling effects, or 

local effects. These effects are usually due to small slenderness ratios, thin walls, geometrical and 

mechanical asymmetries, and the anisotropy of the material [4]. Due to their computational efficiency, 

1D models with advanced capabilities have been developed over the last decades. Some of the most 

relevant are based on the use of higher-order displacement fields [5, 6], the Variational Asymptotic 



 

Method [7-9], the Generalized Beam Theory [10], and the Carrera Unified Formulation (CUF) [11]. 

Some works focused on the development of advanced 1D models for the dynamic response analysis 

[12-15]. 

This paper makes use of the advanced 1D models based on the CUF. The CUF [16, 17] provides refined 

1D and 2D structural theories that are extremely accurate and computationally cheap. Recently, the 1D 

CUF has led to the development of the component-wise approach (CW) [18]. Figure 1 shows an example 

of CW modeling for a layered composite plate. The CW can model the macro (layers) and microscale 

components (fibers and matrix) using 1D models only. All these components can be coupled 

straightforwardly by imposing the displacement continuity at the interfaces. A detailed, physical 

description of composites can be obtained since the problem unknowns can be placed on the physical 

surfaces of the real 3D model. Moreover, each component is modeled using its material characteristics, 

that is, no homogenization techniques are required.  

 

 

Figure 1: CW modeling of composites 

 

The CW can be exploited to model other types of complex structures, such as aircraft wings [19, 20]. 

Recently the authors have extended the CW to the analysis of damaged isotropic, thin-walled structures 

[21]. 

This paper evaluates the enhanced capabilities of the CW for the dynamic response analysis of metallic 

and composite structures. Free vibration and dynamic response analyses are carried out. The results are 

compared with those of 3D solid finite elements.  

1. Carrera Unified Formulation 

The cross-section of the beam lies on the xz-plane, and it is denoted by Ω, whereas the boundaries over 

y are 0≤y≤L. Within the framework of the CUF, the 3D displacement field is expressed as 

 𝒖(𝑥, 𝑦, 𝑧; 𝑡) = 𝐹𝜏(𝑥, 𝑧)𝒖𝜏(𝑦; 𝑡),  𝜏 = 1,2, … , 𝑀 (1) 

Where 𝑭𝝉 are the functions of the coordinates 𝑥 and 𝑧 on the cross-section. 𝒖𝜏 is the vector of the 

generalized displacements. 𝑴 stands for the number of the terms used in the expansion, and the repeated 

subscript, 𝜏 indicates summation. LE (Lagrange Expansion) 1D CUF models exploit 2D Lagrange 

polynomials to model the displacement field of the structure above the cross-section. For instance, the 

displacement field of an L9 LE model can be expressed as 

 



 

 
𝑢𝑥 = 𝐿1𝑢𝑥1

+ 𝐿2𝑢𝑥2
+ ⋯ + 𝐿9𝑢𝑥9

 (2) 

For the sake of brevity, only the x-component of the displacement field is reported. The L9 model has 

27 displacement variables that coincide with the three displacement components of the 9 Lagrange 

nodes. Two or more Lagrange elements can be conveniently assembled to discretized cross-sections, 

and improve the accuracy of the model. Figure 2 shows a typical cross-section modelling in which a 

finer modelling is used in the proximity of the applied load. 

 

Figure 2: Multiple L9 discretization 

 

 A compact form of the virtual variation of the strain energy can be obtained as shown in [17], 

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝒒𝑠𝑗
𝑇 𝑲𝑖𝑗𝜏𝑠𝒒𝜏𝑖 (3) 

Where 𝑲𝑖𝑗𝜏𝑠 is the stiffness matrix written in the form of the fundamental nuclei whose components 

can be found in [17]. 𝛿indicates the virtual variation.  𝒒𝜏𝑖 is the nodal vector. Superscripts indicate the 

four indexes exploited to assemble the matrix: 𝑖 and 𝑗 are related to the shape functions, 𝜏 and 𝑠 are 

related to the expansion functions. The fundamental nucleus is a 3 × 3 array that is formally independent 

of the order of the beam model. It should be underlined that the formal expression of 𝑲𝑖𝑗𝜏𝑠  does not 

depend on the expansion order and on the choice of the 𝐹𝜏 expansion polynomials.  All the other FEM 

matrices can be obtained in a similar manner. 

The advanced capabilities of CUF 1D models can be particularly convenient in the case of 

multicomponent structures (MCS). The Component-Wise approach exploits LE 1D elements to model 

each component of a structure separately and independently of their geometrical and material 

characteristics. In other words, each 1D, 2D, 3D or micro and macro component can be modeled via LE 

1D models with no need for ad hoc coupling and interface techniques. Figure 1 shows a typical CW 

strategy for a composite plate; 1D LE models can be simultaneously adopted to model layers 

(macroscale), matrix and fibers (microscale). This methodology can be very powerful when, for 

instance, detailed stress fields are required in a specific portion of the structures. Similar strategies can 

be used for aircraft structures as in [20]. 

2. Numerical Example 

A clamped-clamped, thin-walled, isotropic cylinder was considered to highlight the enhanced 

capabilities of the present formulation. The outer diameter d is equal to 0.1 (m), the thickness is equal 

to 0.001 (m), and the span-to-diameter ratio (L=d) is equal to 10. The material is aluminum (E = 69 GPa, 

ν = 0:33, ρ = 2700 kg/m3). Four points were considered over the mid-span cross-section as shown in 

Fig. 3. Four concentrated forces were applied as time-dependent sinusoids with amplitude Pz0 = 10000 

(N) and a phase shift, 



 

𝑃𝑧𝐴(𝑡) = 𝑃𝑧0 sin(𝜔𝑡 +  𝜑𝐴), 𝑃𝑧𝐵(𝑡) = 𝑃𝑧0 sin(𝜔𝑡 +  𝜑𝐵), 

𝑃𝑧𝐶(𝑡) = 𝑃𝑧0 sin(𝜔𝑡 + 𝜑𝐶) , 𝑃𝑧𝐷(𝑡) = 𝑃𝑧0 sin(𝜔𝑡 +  𝜑𝐷), 

𝜑𝐴 = 0, 𝜑𝐵 = 30, 𝜑𝐶 = 60, 𝜑𝐷 = 90 

  

 

Figure 3: Thin walled cross-section 

 

Where the angular frequency is 𝜔 = 100 rad/s. The dynamic response of the structure was evaluated 

over the time interval [0; 0.025] s. The Newmark integration scheme was exploited. Table 1 shows the 

transverse displacements of point A at t = 0 s. A 44 L9 model was used in this paper. The configuration 

at the final time instant t = 0.025 s is shown in Fig. 4 (mid-span cross-section). The results show how 

the present 1D formulation can detect severe cross-section deformations and match 3D solid results with 

much lower computational costs. 

 

Table 1: Transverse displacement of point A 

 CW (44 L9) Solid 

DOFs  24552 268440 

uzA  -9.5388 -9.8840 

 

 

Figure 4: Deformation of the mid-span circular cross-section, t = 0:025s, 44 L9 

 

3. Conclusions 

This paper has presented a brief overview of the Component-Wise approach (CW) for the high-fidelity 

dynamic analysis of metallic and composite structures. The CW is based on the 1D CUF models. Such 



 

structural models are computationally efficient and accurate. 1D CUF, in fact, can provide 3D-like 

accuracy with 10-100 times fewer degrees of freedom. A numerical example has been carried out on a 

thin-walled structure undergoing a dynamic load. The present approach could be useful for impact 

problems in which high accuracy is needed, and a low computational cost is desirable.  
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