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ABSTRACT

The space structures are realized by combining skin and re-

inforced components, such as longitudinal reinforcements called

stringers and transversal reinforcements called ribs. These rein-

forced structures allow two main design requirements to be satis-

fied, the former is the light weight and the latter is a high strength.

Solid models (3D) are widely used in the Finite Element Method

(FEM) to analyse space structures because they have a high accu-

racy, in contrast they also have a high number of degrees of free-

doms (DOFs) and huge computational costs. For these reasons

the one-dimensional models (1D) are gaining success as alterna-

tive to 3D models. Classical models, such as Euler-Bernoulli or

Timoshenko beam theories, allow the computational cost to be

reduced but they are limited by their assumptions. Different re-

fined models have been proposed to overcome these limitations

and to extend the use of 1D models to the analysis of complex

geometries or advanced materials. In this work very complex

space structures are analyzed using 1D model based on the Car-

rera Unified Formulation (CUF). The free-vibration analysis of

isotropic and composite structures are shown. The effects of the

loading factor on the natural frequencies of an outline of launcher

similar to the Arian V have been investigated. The results high-

light the capability of the present refined one-dimensional model

to reduce the computational costs without reducing the accuracy

of the analysis.

∗Corresponding author e-mail:tommaso.cavallo@polito.it

INTRODUCTION

One-dimensional models are widely used in the engineer-

ing field because these models make it possible to reduce the

DOFs and the computational costs as a first consequence. The

use of 1D and 2D refined elements can reduce the computational

costs but also the accuracy of the solution. These models are

based on classical structural theories, Euler-Bernoulli [1] or Tim-

oshenko [2] in the 1D models, Love-Kirchhoff [3] or Reissner-

Mindlin [4] in the 2D models. These classical finite elements

show the same limitations of the theoretical models on which are

based. 2D elements are not able to describe the shear stresses

accurately, and the analysis of laminated plates can be not accu-

rate. 1D elements do not consider the cross-sectional deforma-

tion, therefore, when they are used as stringers, the local modes

can not be accounted for. Refined 1D and 2D structural mod-

els can improve the accuracy of the solutions with respect to the

classical models with a lower computational cost than the three-

dimensional models.

A step forward in the development of refined structural mod-

els has been done with the introduction of the Carrera Unified

Formulation (CUF) [5], a mathematical tool able to derive high-

order models in a compact form. The use of the component-

wise (CW) approach [6] makes it possible to study very com-

plex structures using a unique 1D formulation, for both static [7]

and dynamic [8] analyses. In the present paper, different com-

plex space structures have been analyzed using the CW approach.

The free-vibration analyses of complex structures have been per-

formed to highlight the capabilities of the 1D-refined models

based on the CUF. Both isotropic and composite material have

been considered. The analysis of a launcher structure has been
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finally proposed In addition a focus on the results about an out-

line of launcher are proposed. The launcher considered has a

shape similar to the European launcher Arian V composed by a

central body and two lateral boosters. The results are compared

with respect to the results from the 3D refined model analyzed

using the commercial software NASTRAN, and they highlight

the accuracy of the model proposed in terms of results and DOFs

obtained.

Refined one-dimensional models

Figure 1 shows the adopted coordinate frame, where the y−
axis is the beam axis and its ranges from 0 to L, where L is the

total length of the beam. The symbol Ω denotes the cross-section

of the beam. The transposed displacement vector can be written

x

Z
Ω

y

FIGURE 1. Reference system for the 1D CUF Model

as:

u(x,y,z) =
{

ux uy uz

}T
(1)

ux, uy and uz are the three components of the displacement vector

u(x,y,z). The superscript T denotes transposition. The stress, σ ,

and the strain, ε , can be written using the following formulation:

σT =
{

σxx σyy σzz σxy σxz σyz

}

(2)

εT =
{

εxx εyy εzz εxy εxz εyz

}

(3)

Strain can be derived from the displacements using the classical

linear geometrical equation:

ε = Du = ([Dy]+ [DΩ])u (4)

Where D is a differential operator [9]. Dy and DΩ represent the

differential operator on the beam axis y and on the beam cross-

H

FIGURE 2. Cross-section discretization and assembly with the L9 el-

ements.

section, respectively. The Hooke’s law of the material, if consid-

ered isotropic, can be written as:

σ = Cε (5)

Lagrange Polynomials

In the 1D problem, the displacement field u can be writ-

ten as the product of two functions, a cross-sectional expansion

function, called Fτ , and the generalized displacement vector un-

known on the beam axis, uτ :

u(x,y,z) = Fτ(x,z)uτ(y) (6)

where τ can range from 1 to the number of points of the single el-

ement used on the cross-section, four-points (L4) or nine-points

(L9) elements can be adopted. The isoparametric formulation is

exploited to deal with arbitrary cross-section shaped geometries.

In this work, the nine-points elements are used and their interpo-

lation functions are:

Fτ =
1
4
(r2 + r rτ)(s

2 + s sτ ) τ = 1,3,5,7

Fτ =
1
2
s2

τ(s
2 − s sτ)(1− r2)+ 1

2
r2

τ (r
2 − r rτ )(1− s2) τ = 2,4,6,8

Fτ = (1− r2)(1− s2) τ = 9

(7)

Where the indexes r and s range from −1 to +1. Fig.2 shows as

many L9 elements can be assembled in order to build complex

cross-section.

In the present work the models based on the Lagrange ex-

pansion will be named as LE models.

Finite Element Solution

The displacement field along the y− axis is approximated

using the Finite Element Method (FEM). The generalized dis-

placement vector, uτ(y), is linearly interpolated using the classi-

cal shape functions. NNE is the number of the nodes of a beam
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element along the axis. The generalized displacement vector be-

comes:

uτ (y) = Ni(y)qiτ ; i = 1 . . .NNE (8)

Therefore, the displacement field can be written as follows:

u(x,y,z) = Fτ(x,z)Ni(y)qiτ (9)

Where with the index i is indicated the node of the element along

the beam axis. The three-nodes (B3) refined beam elements are

used along the beam axis in the present work as shown in Fig.3.

Figure 3 shows an example of a thin-walled beam which uses

LE Modeling

Beam Element

Beam Node

Lagrange Node

(3 DOFs per node)

3D Model

FIGURE 3. Example of a LE modelling and beam configuration

four L9 element over the cross-section and two beam element

along the longitudinal axis.

The Component-Wise Approach

The component-wise approach makes it possible to model

each structural element singularly.

Stringer

Reinforced 

Structure
Component-Wise 

Approach

Z

X

y

Z

X

y

X

Z

X

y

FIGURE 4. Reinforced structure assembled using the Component-

Wise approach.

Figure4 shows a reinforced structure made by a thin-walled

cylinder reinforced with four stringer. Using the CW approach

each component, the stringers and the skin, is intended as an in-

dependent beam model, the different parts can be assembled in

a unique structural model during the assembly procedure. More

details about the LE model and the CW approach can be found

in subsequent section and in [6, 10, 11]

Governing Equation

The governing equations are derived via the Principle of Vir-

tual Displacements (PVD) that in the dynamic case assumes the

following form:

δLint = δLext − δLine (10)

Where Lint stands for the strain energy, Lext is the work of the

external loadings, and Line is the work of the inertial loadings. δ
denotes the virtual variation. Considering the free vibration anal-

ysis, the external work is equal to zero and the Eq.10 becomes:

δLint + δLine = 0 (11)

The internal work can be written as:

δLint =

∫

V
δεT σdV (12)

Using the constitutive equations and the geometrical relations

given respectively in Eq.4 and Eq.5 and introducing the displace-

ment field given in Eq. 9, the variation of the internal work be-

comes:

δLint = δqT
τi

∫

V

[

Ni(y)Fτ(x,z) DT C D Fs(x,z)N j(y)
]

dVqs j =

δqT
s jK

i jτsqτi (13)

The D matrix operates on the functions Fτ , Fs, Ni and N j. Ki jτs

is the stiffness matrix written in form of “fundamental nucleus”

that is a 3×3 matrix. qτi is the vector of the nodal unknown and

δqs j is its virtual variation. In the end I is the identity matrix.

The virtual variation of the work of the inertial loadings can be

written as following:

δLine =

∫

V
δuT ρ ü dV (14)

where ü means the acceleration vector and ρ stands the density

of the material. The Eq.14 can be rewritten using Eq.4:
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δLine = δqT
s j

∫

l
Ni(y)

{

∫

Ω
ρ [Fτ(x,z) I] [Fs(x,z) I]dΩ

}

N j(y)dzq̈τi

= δqT
s j Mi jτs q̈τi

(15)

Mi jτs is the 3× 3 mass matrix in the form of fundamental nu-

cleus, the indices have the same meaning of those of stiffness

matrix. The explicit form of the fundamental nucleus for both

the stiffness and the mass matrices can be found in [9]. In con-

clusion, the PVD can be written as following:

δqT
s j

(

Ki jτs qτi +Mi jτs q̈τi

)

= 0 (16)

The global stiffness and mass matrices are obtained by

means of the classical FE assembling procedure, as shown in [9].

The equation can be written as:

Mq̈+Kq = 0 (17)

Where q is the global unknowns vector. Due to the linearity of

the problem an harmonic solution is considered and the natural

frequencies, ωk, are obtained by solving the following eigenval-

ues problem:

(

−ωk
2M+K

)

qk = 0 (18)

Where qk is the k-th eigenvector, and k ranges form 1 to total

numbers of DOF of the structures.

Load factor formulation

When structures undergo to strong accelerations, the effects

of the inertial loading factors may afflict strongly the dynamic

response of the structures, as shown in the [12, 13]. The effects

of these loads can be included in the formulation presented in

the previous section considering the effect of the load factor as

an external load.

The acceleration applied to the structure can be written as:

ü0 =
(

üx0
, üy0

, üz0

)T
(19)

The external work due to the acceleration can be written as:

δLext =

∫

V
ρδuT ü0dV (20)

z
y

x

15 [m
]

FIGURE 5. Reinforced Cylinder Model.

Using the notation introduced before, the external work due

to the inertial loads can be written as:

δLext = δqT
jsM

i jτsqiτ0
= δqT

jsP
js
ine (21)

where P
js
ine is the loading vector due to the inertial load.

Numerical Assessment

This section investigates the behavior of the CUF models in

the analysis of very complex reinforced structure. In this work

the CUF models are called LE models. The free-vibration anal-

ysis of two different structures is considered. The first structure

analyzed is a reinforced cylinder made using both isotropic and

composite materials, while the second component is an outline of

launcher characterized by a central body and two lateral boosters.

All structures are reinforced using longitudinal and transversal

stringers. Two solid FE models are made using the commercial

code MSC NASTRAN. They are called Solid (3D) model and

Shell − beam (2D− 1D) model. The 3D model is build using

only solid elements, while the 2D− 1D are made using the 2D

elements for the skin and the beam element for the stringers and

ribs. in the second case the use of the correct offset is mandatory

in order to represent properly the geometry of the structure, The

3D model is used as reference model to compare the results.

Reinforced cylinder

The geometrical properties of the structure and of the cross-

section are shown in the Fig.5 and Fig.6, respectively. Between

two stringers there are two nine-nodes elements, while for each

stringer only one nine-nodes element is used and one nine-nodes

element is used to connect each stringer to the skin. In total 32

nine-nodes elements are used on the cross-section.

The structure is clamped at both ends. Three components

are assembled to build the whole structure using the component-

wise approach . Figure 7 shows the beam configuration, where

the components 1 and 3 have the same cross-section (Figure 6a).
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(a) Component 1 and 3. (b) Component 2.

FIGURE 6. Cross-Section Geometry.

FIGURE 7. Component-Wise Approach.

The components 1 and 3 are thin-walled cylinders reinforced us-

ing eight stringers while the component 2 (Figure 6b) is a cir-

cumferential reinforcement, a rib. The B3 refined beam elements

are used along the y− axis for all the three components. In par-

ticular four B3 are used for the component one and three, and 1

B3 component for the second component.

Isotropic Structure The structure is made of aluminium

with a value of Young modulus, E, equal to 75 GPa, the Poisson

ratio, ν , equal to 0.3 and the value of density, ρ equal to 2700

kg/m3. The first two bending and torsional frequencies, com-

puted using different structural models, are shown in Tab.1. The

refined mesh as been used to build the solid model and therefore

the 3D results are used as reference and they are shown in the

first column. The mixed one- and two-dimensional FE model

allows the number of DOFs to be drastically reduced but in the

case of the first bending and torsional frequencies shows an error

greater than 10%. These differences can be due to the geometri-

cal approximations introduced by the classical FEM modelling.

In fact the reinforcements are considered as beams placed on the

skin reference surface, an appropriate offset has been used in or-

der to represent properly the mass and stiffness distribution. The

results obtained using the present LE model are very close with

respect to the reference solution. The LE model is able to rep-

resent the real geometry of the structure without introduce any

(a) F1 = 34.23[Hz]. (b) F2 = 93.85[Hz].

FIGURE 8. First and second bending frequencies of LEisotropic

model.

approximation and without the use of offset. In the case of the

bending frequencies (see Fig.8)the error is lower than the 2%

while, when the torsional frequencies are considered the error is

still lower than 10%. The DOFs of the LEisotropic are about the

2% than the 3D while the FEM2D−1D DOFs are about the 7%.

TABLE 1. Comparisons of the first two bending and torsional fre-

quencies of the reinforced cylinder using different structural model [Hz].

Mode FEM3D FEM2D−1D LEisotropic

DOF : 390192 26206 8352

Bending Frequencies:

1a 33.64 37.49 (+11.4%) 34.23 (+1.7%)

2a 94.82 91.06 (−4.0%) 93.85 (−1.0%)

Torsion Frequencies:

1a 67.67 77.83 (+15.0%) 73.18 (+8.1%)

2a 175.33 179.49(+2.4%) 174.61(−0.4%)

( )(∗%) : ∗ Percentage di f f erence with respect to the 3D FE Model

Composite Structure The geometry of the composite

structures is the same as shown in the Fig.5 and Fig.6, such as

the beam configuration shown in Fig.7. In this case, the thin-

walled skin has been built using a composite material while the

ribs and the stringers are made using the same isotropic mate-

rial used before. Table 2 shows the properties of the composite

material used. In these components, the fibers have different ori-

entations as shown in Fig.9, a two layers (+45/-45) lamination

has been used.

Table 3 shows the results of the composite model with re-

spect to the isotropic model. The use of the composite material

has increased mostly the torsional frequencies than the bending

frequency. In fact, while the bending stiffness is mainly due to

the reinforcements, that are still built in aluminum, the torsional
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TABLE 2. Component-Wise Approach.

Orthotropic Material

E33 142 [MPa]

E22 = E11 9.8 [MPa]

G32 = G31 6 [MPa]

G21 4.83 [MPa]

ν32 = ν31 0.42

ν21 0.45

ρ 1445 [kg/m3]

Fibers of the 

interior skins 

oriented at -45° 

Fibers of the 

exterior skins 

oriented at +45° 

Isotropic 

components 

FIGURE 9. Composite cylinder materials set-up.

stiffness is mainly due to the skin. That is, the use of compos-

ite material in the skin may increase the torsional frequencies, as

shown by the results.

TABLE 3. Effect of the composite material on the frequencies.

Mode LEisotropic LEcomposite

DOF : 8352 16848

Bending Frequencies:

1a 34.23 34.16 (−0.3%)

2a 93.85 101.31 (+7.9%)

Torsion Frequencies:

1a 73.18 90.90 (+24.2%)

2a 174.61 283.49(+62.3%)

Launcher Structure
The shape of the launcher used in the present section is simi-

lar to the European launcher Arian V developed by the European

Space Agency, ESA. The geometry is shown in Figure 10, it is

Comp 11

Comp 10

Comp 9

Comp 8

Comp 7

Comp 6

Comp 5

Comp 4

Comp 3

Comp 2

Comp 1

Solid Model Beam Model

Section 7

Section 6

Section 7

Section 6

Section 3

Section 4

Section 5

Section 4

Section 3

Section 2

Section 1

FIGURE 10. Launcher structure

FIGURE 11. Section 1

characterized by three main bodies, the central body used for the

cryogenic fuel and the payload and two lateral boosters where

the solid fuel is stored. The structure is made of aluminum with

a value of Young modulus, E, equal to 75 GPa, the Poisson ratio,

ν , equal to 0.3 and the value of density, ρ , equal to 2700 kg/m3.

The beam configuration is shown in Fig.10 where the seven

main longitudinal sections are highlighted. In sections 1, 3, 5

and 7 only one B3 is used, while the other sections are modelled

using two B3 elements. Figures 11, 12, 13, 14, 15, 16 and 17

show the 7 different cross-sections used to build the model, with

their geometrical properties reported in Table 4.

Two Solid FE models have been used to compare the results.

The main Re f ined FE − 3D model has refined mesh that a high

number of degrees of freedom (DOFs), equal to 197436. The

other FE − 3D model has been built having the same number of

DOFs than the LE model, equal to 29628.

The correspondences between the LE model and the
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FIGURE 12. Section 2

Connection 

Points

FIGURE 13. Section 3

FIGURE 14. Section 4

FIGURE 15. Section 5

FIGURE 16. Section 6

FIGURE 17. Section 7

TABLE 4. Geometrical data of the launcher structure

ID Sec Comp Cross− Section [m] Lenght [m]

1 (Fig.11) 1 Re1 = 1.50 h = 0.25

Se1 = 0.13

Le1 = 9.00

2 (Fig.12) 2 Re2 = 1.50 h = 3.50

Se2 = 0.03

Le2 = 9.00

3 (Fig.13) 3 / 7 Re3 = 1.50 Ri3 = 2.70 h = 0.25

Se3 = 0.13 Si3 = 0.20

Le3 = 9.00 Li3 = 4.50

4 (Fig.14) 4 / 6 Re4 = 1.50 Ri4 = 2.70 h = 13.50

Se4 = 0.03 Si4 = 0.04

Le4 = 9.00 Li4 = 4.50

5 (Fig.15) 5 Re5 = 1.50 Ri5 = 2.70 h = 0.25

Se5 = 0.13 Si5 = 0.20

Le5 = 9.00 Li5 = 4.50

6 (Fig.16) 8 / 10 Ri6 = 2.70 h = 13.50

Si6 = 0.04

7 (Fig.17) 9 / 11 Ri7 = 2.70 h = 0.25

Si7 = 0.20

h : Component size along the y−axis

Re f ined FE − 3D model, and between the FE − 3D model and

the Re f ined Solid model is further investigated by means of the

Modal Assurance Criterion (MAC), which is represented graph-

ically in Figure 18a and Figure 18b, respectively.

The MAC is defined as a scalar representing the degree of

consistency (linearity) between two modes (see Ref.22) as fol-

lows:
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REFINED FEM 3D
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9.23

9.70

10.55
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LE

M
A

C
(a) LE Model Vs Re f ined FE3D Model.

0.73
0.90

4.55
6.60

7.76
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8.38
8.66

9.00
9.45

10.21
10.35

12.06

12.09
13.49

REFINED FEM 3D

0.75

0.93

5.20

7.65

7.96

8.02

9.23

9.65

10.08

10.83

11.54

11.59

12.37

12.54

15.31

F
E

M
 3

D

M
A

C

(b) FE3D Model Vs Re f ined FE3D Model.

FIGURE 18. Comparison of first 15 no rigid modes using the MAC.

MACi j =
|{φAi

}T {φB j
}|

2

{φAi
}T {φAi

}{φB j
}{φB j

}T
(22)

where, {φAi
} is the ith-eigenvector of model A, while

{

φB j

}

is the jth-eigenvector of model B. The MAC can range from zero

(no correspondence with white block) to 1 (full correspondence

with a full black block). When there are same blocks with dif-

ferent tonalities of gray, it means that there are different similar

modes and, in this case, the best dark block is considered.

Figure 18a shows how for the first ten modes, there is an

almost perfect matching between the LE model and the Re f ined

FE − 3D model.

In contrast, Fig18b shows how there is no a perfect matching

between mode 5 and mode 6 when the FE − 3D model and the

Re f ined FE −3D model are considered. In particular mode 5 of

the FE − 3D model is mode 6 of the Re f ined FE − 3D mode,

at the same way mode 6 of the FE − 3D model is mode 5 of the

Re f ined FE − 3D mode.

TABLE 5. First 14 Modes in [Hz] for empty Launcher.

MODE REF FEM− 3D FEM− 3D LE

DOF 197436 29628 29628

1 0.73 0.75 (+2.7%) 0.74 (+1.4%)

2 0.90 0.93 (+3.3%) 0.92 (+2.2%)

3 4.55 5.20 (+14.3%) 4.70 (+3.3%)

4 6.60 7.65 (+15.9%) 6.84 (+3.6%)

5 7.76 8.02 (+3.4%) 7.94 (+2.3%)

6 7.92 7.96 (+0.5%) 8.05 (+1.6%)

7 8.38 9.23 (+10.1%) 8.53 (+1.8%)

8 8.66 9.65 (+11.4%) 8.95 (+3.3%)

9 9.00 10.08(+12.0%) 9.23 (+2.6%)

10 9.45 10.83(+14.6%) 9.70 (+2.6%)

11 10.21 11.54(+13.0%) 10.71(+4.9%)

12 10.35 11.59(+12.0%) 10.55(+1.9%)

13 12.06 12.54(+4.0%) 12.49(+3.6%)

14 12.09 12.37(+2.3%) 12.50(+3.4%)

( )(∗%) : ∗ percentage di f f erence with respect to re f ined FE3D Model

Table 5 shows that the best correspondence with the Re f ined

FE − 3D model is obtained when the LE model is used. In this

case, the error of the LE model is lower than the 5% for the

modes considered and the LE DOFs are only the 15% of those

used in the Re f ined FE − 3D.

Figure 19 shows the first 9 modes of the LE model. The local

modes of the boosters are highlighted in the Figures 19a and b.

Figures 19c and d show the global shell-like modes and Fig.19e

shows the bending mode in the central body and the shell-like

mode that involves the two boosters. The first bending mode

appears in the Fig.19f.
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(a) f s1 = 0.74Hz. (b) f s2 = 0.92Hz. (c) f s3 = 4.70Hz.

(d) f s4 = 6.84Hz. (e) f s5 = 7.94Hz. (f) f s6 = 8.05Hz.

(g) f s7 = 8.53Hz. (h) f s8 = 8.95Hz. (i) f s8 = 9.23Hz.

FIGURE 19. First 9 Modes for the LE Model

1 Concluding Remarks

In this work, different finite element models have been com-

pared in the free vibration analysis of complex reinforced struc-

tures. In particular, a reinforced cylinder structure was analyzed,

and a sample launcher was studied. Metallic and composite

materials have been considered. Different one-dimensional re-

fined models were derived using the Carrera Unified Formulation

based on the Lagrange expansion. In addition, different FE mod-

els derived using the commercial code NASTRAN were used to

compare the results. Considering the results obtained by the anal-

yses performed, it can be concluded that:

1. the 1D CUF models overcome the limitation of the classical

one-dimensional models, they allow the global modes and

local (shell like) modes to be detected;

2. the component-wise approach used in the present refined 1D

model permits to analyse both thin-walled structures and re-

inforced components using the same element;

3. the refined 1D LE models used in the present work can re-

duce the number of degrees of freedom preserving the accu-

racy of the solution.

In conclusion, the models herein used can very attractive for the

analysis of different reinforced structures. It can be used in the

analysis of complex structures, and advanced material can be

considered.
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