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ABSTRACT

This paper presents a novel approach to deal with the anal-
ysis of composite aerospace structures with curved sections.
The Carrera Unified Formulation is exploited to create hierar-
chical high-order beam models capable of detecting both lo-
cal and global mechanical behaviors of composite structures.
The blending function method is applied to introduce the exact
shape of the cross-section boundaries into the mapping func-
tions. Problems at both microstructure scale (fiber-matrix sys-
tem) and macrostructure scale (whole components) can be stud-
ied with no lack of generalization. Several numerical examples of
aerospace structures are included and the results are compared
against those from the literature, as well as solid solutions ob-
tained through the commercial software MSC Nastran. From this
study, it is clear than the present formulation has demonstrated to
be a powerful tool for the study of composite structures, enabling
to obtain complex 3D-like solutions with a substantial reduction
in the computational costs.

INTRODUCTION

During the last decades, the use of composite materials has
acquired a main role in the construction of new advanced struc-
tures. Major aerospace companies include these materials not
only in secondary components but also in primary structures such
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as wings or fuselages. The advantages of composites are many,
amongst them: high stiffness to weight ratio, high strength to
weight ratio, fatigue strength, or ease of formability (see Tsai
[1]). The development of accurate models for composite struc-
tures have become of main interest for the industry since it serves
to get a better understanding of the behaviour of these materials
in many environments. In this context, one-dimensional models
represent an effective alternative to solid formulations, in partic-
ular when slender structures are considered. The classical beam
theories, developed by Euler [2] and then by Timoshenko [3],
do not always serve for the analysis of composites since they
are not able to predict correctly shear effects, making it neces-
sary to enhance one-dimensional models by using refined for-
mulations. A well-known review of the first developments on
laminated beams and plate models was written by Kapania and
Raciti [4, 5]. The structural analysis of composite structures can
be directed following two different approaches depending on the
correlation between the number of layers and the number of de-
grees of freedom of the model: the Equivalent Single Layer and
the Layer Wise. In the Equivalent Single Layer (ESL) approach,
the number of degrees of freedom is independent of the number
of components of the composite. Reddy [6] developed an ESL
higher-order shear deformation theory for plates, which was then
extended by Khedeir and Reddy [7, 8] for the analysis of free-
vibrations and buckling of cross-ply beams. Other ESL mod-
els can be found in [9, 10]. On the other hand, in Layer Wise
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(LW) methods there is a dependency between the number of un-
knowns and the number of layers. They have been adopted in
many works since they overcome some of the limitations of the
ESL approach by accounting the properties of each layer sepa-
rately. Some studies on LW models are included in [11-13].

The geometric approximation of the problem is directly re-
lated to the accuracy of finite element models. The most common
approaches are briefly discussed in the following. According to
Szab6 and Babtiska [14], the finite element space is character-
ized by three factors: the finite element mesh, the polynomial
order of the elements and the mapping functions. A proper com-
bination of these parameters is needed to minimize the approx-
imation error of any structural problem. Conventional finite el-
ement methods follow an A-refinement scheme to increase the
accuracy by refining the finite element mesh. Isoparametric el-
ements, which employ the same shape functions to interpolate
both the solutions and the geometry, are used to approximate
curves and surface boundaries. On the other hand, the p-version
of the finite element method make use of a fixed mesh and, as
a consequence, the quality of the approximation depends on the
polynomial degree of the elements. Due to the coarse discretiza-
tions normally used in p-models, a proper representation of the
geometric domain is required to reduce the approximation er-
ror. In this context, Gordon and Hall [15] presented a method
in which parametric polynomials are employed to represent the
shape of curved boundaries, denoted as the blending function
method. These polynomials are opportunely introduced into the
mapping functions of the elements, increasing in this manner the
quality of the approximation. This method has been successfully
applied for the modelling of curved domains of p-version finite
elements in several works, such as [16,17].

The main focus of the present research is to use the blending
function method and the concept of non-isoparametric mapping
for the description of the cross-section of beam models, while
the longitudinal axis is discretized by conventional Lagrange-
type beam elements. This procedure allows one to represent
the exact shape of the beam section and, consequently, to reduce
the error of the geometric approximation. The component-wise
(CW) approach is recalled in this work and applied to generate
global-local models in which the different-level components of
laminates (layers, fibers and matrices) can be formulated simul-
taneously. CW models have been employed successfully for the
analysis of multi-component structures in many works, for ex-
ample [18-21]. Hierarchical Legendre Expansions (HLE), in-
troduced in Carrera et al. [22], are used in this work to spread
the unknowns over the cross-section domain with hierarchical
higher-order polynomials, for which the mapping techniques can
be better exploited.

The Carrera Unified Formulation (CUF), developed during
the last years by Carrera and its colleagues [23, 24], has been
extensively employed to obtain refined models for the analysis
of composite structures. The effectiveness of CUF beam models

FIGURE 1. COORDINATE FRAME OF A LAMINATED BEAM.

accounting both ESL and LW approaches was presented in [25]
and a series of refined theories based on Taylor’s polynomials,
trigonometric series, hyperbolic, exponential, and zig-zag func-
tions were introduced in [26], showing the generality of the for-
mulation. Many other applications of CUF on composites can be
found in the literature, including multi-line models [27], analysis
of composite rotors [28] and thin-walled structures [29]. A brief
introduction to the different theories based on CUF is included
in the following sections, with a focus on the mapping technique
employed at the cross-sectional level and its application on com-
posite materials. Some numerical solutions are then provided to
validate the method, and the main conclusions are outlined.

PRELIMINARIES

Let us consider a Cartesian reference system like the one
shown in Fig 1. The longitudinal axis of the beam coincides with
the y-coordinate, whereas the cross-section, €, is placed on the
xz-plane. The cross-section of the beam contains an arbitrary
number of layers with curved boundaries. In this framework, the
associated displacement field reads

Mx(x,%Z)
y(x,Y,2) ey
“z(x»)’7z)

u(x,y,z) =

The strain and stress components can be grouped in six-term vec-
tors as

T
€ = {gyy Exx €z Exz &7 Exy }

T
o = { ny Oxx Ozz Oxz Gyz ny }

)

and the geometrical relations between strains and displacements,
using this vectorial notation, are

£=Du A3)
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where D is a 6 x 3 matrix that contains the differential operators
%, (% and a%. Finally, the stress components can be obtained
through the constitutive laws, that make use of the stiffness ma-
trix to relate strains and stresses as follows

c=Ce €]

The coefficients C,-j of the stiffness matrix are not included here
for the sake of brevity. They depend on the mechanical properties
of the material and the orientation of the fibers of each layer in
relation with the global coordinates defined in Fig. 1.

REFINED BEAM MODELS BASED ON CUF

A usual method used by researchers to overcome the limi-
tations of conventional beam theories is to enrich the kinematic
field with additional terms, enabling to capture higher-order ef-
fects within the cross-section. In the framework of CUF, the
displacement field is described in a unified manner by expand-
ing the unknown variables over the section domain with generic
functions, as

u(x,y,z) = F(x,2)u(y) t=1,2,....M 5)

where T denotes summation. uc(y) is the vector of general dis-
placements and M the number of terms of the expansion. F; rep-
resents the set of expansion functions and determines the theory
of structure to be used in the beam formulation. Many theories of
structure have been developed via the Unified Formulation dur-
ing the last years, including Taylor-based Expansions (TE) and
Lagrange-based Expansions (LE). Hierarchical Legendre Expan-
sions have been recently implemented in the framework of CUF
and their performance in the analysis of laminates has been as-
sessed in Pagani et al. [30]. To be concise, only a brief introduc-
tion of HLE is addressed bellow these lines.

For HLE theories, the F; expansions are defined from
Legendre-class polynomials. HLE models make use of a hierar-
chical set of these polynomials to generate quadrilateral expan-
sion domains that are employed to discretize the physical surface
of the cross-section. The main feature of this kind of models is
that the polynomial order of the theory, p, is introduced as an
input parameter, allowing one to select the accuracy of the solu-
tions. Vertex, edge and internal functions conform the expansion
space, as shown in Fig. 2.

Vertex expansions The nodal or vertex modes are defined as
bi-linear functions that take the value 1 in one vertex and O in the
rest, as

F, = 1(1 —rir)(1—s;s)

=1,2,3,4 6
4 T b ) ()

vertex expansions

1

r=1_[2 3 4

2 _ ' |\ side expansions
(0] 4 <
o 5 " 6 7 8
o e ¥
o 3|7 %
ko] /

9 10 11 2 ; ;
<—“ / internal expansions
£ 4y &)\ £
o 13 ha ~ hs he nz
c ) ;
> <& W
5 5|V |S AT @V
S he e 20 1 22 23

& P T SO M S
A e
24 25 6 7 28 9 30
P e .
v At Jt A 40\ G4
31 32 ™ 333 34 35 Be ~ B7 B8

FIGURE 2. HIERARCHICAL SET OF LEGENDRE-TYPE FUNC-
TIONS USED AS F; IN HLE MODELS.

where r and s vary over the domain between —1 and +1, and r;
and s; correspond to the vertex location in the natural system of
coordinates.

Side expansions The side modes are accounted for p > 2 and
they are null at all edges but one. Their expressions are:

Fe(rys) = %(ps)cp,,(r) 7=5,9,13,18, ... )
Fe(rys) = %(1+r)¢p(s) T=6,10,14,19,... (8)
Fe(rys) = %(1+s)¢,,(r) T=7,11,15,20,... ©9)
Fr(rys) = l(1—r)q>,,(s) T=18,14,16,21,...  (10)

[\

where ¢, correspond to the one-dimensional internal Legendre-
type modes. They are not included here, but the lector can find
them in [14].

Internal expansions They exist for p > 4 and vanish at all the
edges of the quadrilateral domain. For a given expansion or-
der, there are (p —2)(p —3)/2 internal polynomials in total. For
instance, the set of sixth-order polynomials contains 3 internal
expansions (see Fig. 2), defined as the product of 1D internal
modes,

Fog(r,5) = ¢a(r)9a(s) (11)
Fyo(r,s) = ¢3(r)93(s) (12)
F30(r,5) = §2(r)9a(s) (13)

The hierarchic features of HLE models are due to the fact
that for a particular order p*, introduced as an input, the set of ex-
pansion functions includes all the polynomials of order p < px,
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and so does the displacement field. This characteristic in con-
junction with the CW method allow us to obtain highly accurate
models for any geometry of the cross-section.

The beam axis is discretized by means of the finite element
method. In one-dimensional elements, the generalized displace-
ments can be written as a function of the unknown nodal vector,
q.;, and the 1D interpolation functions, N, as follows

uT(y):Ni(Y)qria i=12,..,ny (14)
where i denotes summation and n, is the number of nodes per
beam element. Many beam models can be formulated depend-
ing on the choice of the shape functions »;. In the present work,
cubic Lagrange-type polynomials have been employed to inter-
polate the displacement unknowns on the element nodes.

The Principle of Virtual Displacements (PVD) is recalled to
obtain the governing equations. The PVD states that the virtual
variation of internal work must be equal to the virtual variation
of the external work for the structure to be in equilibrium. The
internal work is defined as

SLiw = / / el 6 dQdy (15)
1JQ

Now, if one consider de geometrical relations (Eq. (3)), the con-
stitutive law (Eq. (4)), and the expressions related to the CUF
kinematic field (Eq. (5)) and the FEM discretization (Eq. (14)),
the formal definition of the internal work can be rewritten as

8Lin = 8qp;K™Vqy; (16)

where K™ is the fundamental nucleus of the stiffness matrix.
These matrices are 3 x 3 arrays that contain the essential infor-
mation of the model. For the sake of brevity, only one of its
components is reported here, but a complete descrption can be
found in [30], for instance.

KV =Cy [NiNjdy | FoxFydQ+Cay | NiNjdy | FroFi dQ+
Jl Q J1 JQ
Cos /1 NiN;ydy /g FrxFydQ + Cog /l NiyN;dy /Q FiFyxdQ+

Coo /, NiyN; ydy /Q FFydQ

)
It can be noticed that the fundamental nuclei depend on the ma-
terial coefficients, C; J, the integrals of the shape functions along
the axis, /, and the integrals of the expansion functions over the
cross-section domain, . The main advantage of CUF is that
any-order and class theories can be formulated with only nine
FORTRAN statements.

(X3IZ3)

Q %,(n)

z,(n)

(-1,1) (1,1) (Xa1Z4)

(Xlrzl)

\

(_1/1) (11_1)

FIGURE 3. MAPPING OF A CROSS-SECTION DOMAIN BY THE
BLENDING FUNCTION METHOD.

Cross-Section Mapping

As it has been introduced before, the higher-order polyno-
mials usually utilized in HLE models enable the use of coarse
discretizations of the cross-section domain without any loss of
accuracy. The blending function method is employed in this pa-
per to represent the exact shape of curved boundaries in large
expansion domains. This method will allow us to model, for in-
stance, the fiber section with only one domain, or to capture any
curved geometry without the need of refining the discretization.
The concept is illustrated in Fig. 3, in which a quadrilateral do-
main with a curved side is considered. The mapping functions in
the cross-section plane for this case can be written as:

4 _
0:E.m) = T AE M-+ (o)~ (5 0+ ) 11

2
4 _
0-Em = Y FEMZ+ (alm) - (1 4 1 7)) 118

i=1

(18)
The first term correspond to the linear isoparametric mapping
functions, whereas the second basically converts the straight line
that links vertices 2 and 3 into the curved shape determined by
x2(n) and z2(n). The blending function method in conjunction
with HLE models allow us to model the exact shape of any sec-
tion geometry with a reduced number of expansions, which leads
to a reduced computational cost.

NUMERICAL RESULTS

Some static analysis are addressed in this section. First,
a slender sandwich panel with a curved section has been con-
sidered. After this assessment, a micro-scale study of a fiber-
matrix cell and a cross-ply laminated beam are included. The ad-
vantages of the present formulation in the analysis of laminated
structures are opportunely commented. Ten Lagrange-type beam
elements with four-nodes are employed for the longitudinal mesh
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FIGURE 4. REPRESENTATION OF THE CURVED SANDWICH
BEAM MODEL.

along the y-axis in all the examples. This mesh configuration has
been selected to ensure convergent results. The HLE beam mod-
els are compared with solid and shell solutions obtained from the
commercial software MSC Nastran as well as other beam theo-
ries.

Curved Sandwich

An L-angle curved sandwich is considered for the first as-
sessment to validate the present formulation on multi-component
configurations. Figure 4 shows a representation of the beam
model used in this study. The panel’s length is 1 m and the global
geometric features of the cross-section are 40 mm high, 40 mm
wide and 7 mm thick. A quarter-circumference segment links
the flange and the web, being the radius of the outer boundary
as high as 20 mm. The sandwich is composed of two Aluminum
faces of 1 mm each and a foam core of 5 mm of thickness. Both
components are modeled as isotropic materials, being their prop-
erties: for the Aluminum, Young’s modulus, E, equals to 75 GPa
and Posisson ratio, v, 0.33; for the foam, E equals to 0.1063 GPa
and v is 0.32. A clamped-free configuration is selected, and a
pressure of 10 kN/m? is applied on the top surface of the straight
flange, pushing the structure downwards. The cross-section do-
main distribution is reported in Fig. 5. Each component is mod-
eled with three local expansions, which are curved in the middle
segment of the section. Polynomial orders from 2" to 8/ (HL2 -
HLB) have been considered for the expansion functions over the
cross-section. Cubic mapping functions are employed to accu-
rately represent the geometry of the curved domains.

The numerical results of displacements and stresses are ad-
dressed in Table 1. Shell and solid NASTRAN elements are used
to validate the solutions. The vertical displacements, u,, are mea-
sured at the upper corner of the section (Point A in Fig. 5) at
the tip, whereas the normal and shear stress solutions, o, and
Oy, respectively, are evaluated at the midpoint of the outer sur-
face of the curved segment (point B) at the middle section. The
mixed interpolation of tensorial components (MITC) method has

i

FIGURE 5. CROSS-SECTION DOMAIN DISTRIBUTION OF THE
CURVED SANDWICH BEAM.

been employed to mitigate the shear locking phenomenon and
to obtain the correct distribution of shear stresses, see Carrera et
al. [31]. Finally, the right-hand column of the table shows the
degrees of freedom of each model. Fig. 6 displays the normal
and shear stress distribution along the thickness of the sandwich
at Point B. Finally, Fig. 7 and 8 show a 2D plot of the normal
and shear stresses, respectively, at the middle section, showing
the capabilities of refined CUF models of reproducing 3D-like
solutions through one-dimensional models. Out of these results
we can state that:

1. HLE solutions are in good agreement with the results ob-
tained from solid elements in NASTRAN, and clearly over-
come those of the shell elements. Convergence in the dis-
placements is reached from the 3’ expansion order (HL3
model). Both normal and shear stress distribution are cor-
rectly captured with an important reduction in the computa-
tional cost.

2. The mapping technique enables HLE models to reproduce
the exact shape of the section with a few local expansions.
The accuracy of the results is not compromised since the
polynomial order of the expansions can be set to a desired
level of accuracy.

Fiber-Matrix Cell

A mechanical study of the fiber-matrix cell is conducted
at a micro-scale level in the following example. The fiber has
been assumed as cylindrical, and the matrix is perfectly bounded
around it, conforming a rectangular block. The complete com-
posite is then modeled as a square beam with the following ge-
ometric sizes: side of the square section, b, equals to 0.1 mm,
diameter of the fiber, d, equals to 0.08 mm and length, L, is as
high as 4 mm. Both the matrix and the fiber have been consid-
ered isotropic. The Young’s modulus, E, of the fiber is equal
to 202.038 GPa and its Poisson ratio, v, is 0.2128. For the ma-
trix material, £ = 3.252 GPa and v = 0.355. The structure is
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FIGURE 6. NORMAL AND SHEAR STRESSES ALONG THE THICKNESS AT POINT B, Y=L/2.

TABLE 1. RESULTS OF DISPLACEMENTS AND STRESSES OF
THE CURVED SANDWICH BEAM.

model u;x10°m o0y, x 107" Pa ©0,,x10°°Pa  DOFs
Point A point B Point B
MSC Nastran solutions
Solid -3.715 3.353 4.324 166617
Shell -3.900 3.496 2.721 71000
HLE model solutions
HL2 -3.032 3.421 -6.551 3720
HL3 -3.711 3.307 4.484 5952
HLA4 -3.712 3.293 4.466 9021
HL5 -3.712 3.288 4.276 12927
HL6 -3.712 3.290 4.256 17670
HL7 -3.712 3.298 4.308 23250
HLS -3.712 3.297 4.321 29667

clamped at one edge and a vertical load, F; = —0.1 N, is applied
at the other one, at the center of the section [0, L,0]. All the eval-
uating points are included considering a reference system equiv-
alent to the one of Fig. 1 and placed at the center of the cell. Fig.
9 shows the differences in the cross-section domain discretiza-
tion for conventional CUF LE models and the novel HLE model.
The blending function method enables to model the fiber section

J— M 4x10’

y/ F1 3x107
/ F4 2x107
F4 1x107

-1x10”

- -2x10”

o -3x10”
-4x107
-5x10"
-6x10"

FIGURE 7. NORMAL STRESSES [PA] AT THE MIDDLE SEC-
TION OF THE CURVED SANDWICH BEAM, HL5 MODEL.

with only one expansion domain, summing five domains for the
entire cell, whereas isoparametric LE models require at least 20
domains (12 nine-node L9 + 8 six-node L6) to approximate the
geometry.

Table 2 presents the displacements and stress solutions at
various points of the structure, together with the DOFs of each
model. The results are validated with solid element solutions
of NASTRAN. Classic beam theories of Euler and Timoshenko,
TE and LE models have also been included for comparison pur-
poses. The TE models here addressed have been generated by us-
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TABLE 2. _DISPLACEMENTS AND STRESS RESULTS OF THE FIBER-MATRIX CELL IN VARIOUS POINTS.

model u; Oyy Oyy 0y, DOFs
[0,L,0] [0,L/2,d/2] [0,L/2,0.03] [-d/2,L/2,d/2]
MSC Nastran model [18]
SOLID -7.818 9.492 7.094 -2.383 268215
Classical and refined models based on TE [18]
EBBT -7.811 9.469 7.102 -1.962 363
TBT -7.835 9.469 7.102 -1.962 605
N=1 -7.835 9.469 7.102 -1.962 1089
N=2 -1.774 9.358 7.019 -2.311 2178
N=3 -1.777 9.358 7.019 -2.464 3630
N=4 -7.794 9.327 7.090 -2.454 5445
N=5 -7.795 9.327 7.090 -2.375 7623
N=6 -7.800 9.315 7.105 -2.373 10164
N=7 -7.800 9.315 7.105 -2.304 13068
N=8 -7.804 9.346 7.117 -2.301 16335
LE models [18]
12L9+8L6  -7.933 9.450 7.046 -2.500 7533
HLE models
HL1 -0,459 9.966 7.287 1.340 744
HL2 -2.616 2.532 1.861 -7.315 1860
HL3 -7.763 9.358 7.092 -3.212 2976
HL4 -7.771 9.400 7.071 -2.912 4557
HLS -1.773 9.383 7.070 -2.746 6603
HL6 -1.774 9.412 7.080 -2.296 9114
HL7 -1.775 9.365 7.073 -3.219 12090
HLS -1.775 9.361 7.071 -3.556 15531
ing McLaurin polynomial expansions of up to 8 order, whereas Cross-Ply

LE models employ Lagrange-class bi-quadratic expansions. It
is possible to state that all beam models present a good perfor-
mance, being able to obtain very close values to the solid model
with a great reduction in number of DOFs. To complete the as-
sessment, the normal and shear stress distributions at the middle
section obtained with HLE mapped models are shown in Fig. 10.

The fiber-matrix cell configuration above presented is now
used to conform a symmetric [0°,90°,0°] cross-ply beam model.
A set of these cells is grouped to model the 0° layers, see Fig.
11, while the 90° ply is modelled with an orthotropic mate-
rial of equivalent properties. In this case, the fiber is consid-
ered orthotropic, with E;, = 202.038 GPa; Er = E; = 12.134
GPa; Grr = 8.358 GPa; G, = 8.358 GPa; Gr, = 47.756 GPa;
vir = 0.2128; vi, = 0.2128 and vy, = 0.2704. The matrix is
modeled as isotropic instead, with E = 3.252 GPa and v = 0.355.

Copyright © 2016 by ASME
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FIGURE 10. NORMAL AND SHEAR STRESS DISTRIBUTIONS [PA] AT THE MIDDLE SECTION OF THE FIBER-MATRIX CELL, HL6

MODEL.
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FIGURE 8. SHEAR STRESSES [PA] AT THE MIDDLE SECTION
OF THE CURVED SANDWICH BEAM, HL5 MODEL.

The equivalent properties of the layer are: E; = 103.173 GPa;
Er = E, = 5.145 GPa; Gy = 2.107 GPa; Gr, = 2.107 GPa;
Gr;=2.353 GPa; vir =0.2835; v;, =0.2835 and vr, = 0.3124.
The beam is 40 mm long, 0.6 mm high and 0.8 mm wide, being
the characteristics of each cell: b equals to 0.2 mm and d equals
to 0.16 mm. The CW approach allow us to consider layers, fibers
and matrices within the same model without any loss of general-
ity.

A convergence study of the results in terms of displacements
and stresses is addressed in Table 3. The solution points are also
included in the table according to a reference system placed at
the middle of the left edge of the clamped section. All the re-
sults converge for the 3" expansion order (HL3 model). Fig.
12 shows both the normal and shear stress distributions at the
middle section. These results demonstrate the potential of the

SEEER SR SR
] L L X
(] > [ ]
. M S 4
(a) LE (b) HLE

FIGURE 9. CROSS-SECTION DOMAIN DISTRIBUTIONS OF
THE FIBER-MATRIX CELL FOR LE AND HLE MODELS.

FIGURE 11. CROSS-SECTION DOMAIN DISTRIBUTION OF
THE CROSS-PLY.

present beam model in capturing complex states of stress in fiber-
reinforced laminates at a global-local level. The main remarks
extracted from this study are presented in the following conclu-
sions.
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FIGURE 12. NORMAL AND SHEAR STRESS DISTRIBUTIONS [PA] AT THE MIDDLE SECTION OF THE CROSS-PLY BEAM, HL5

MODEL.

TABLE 3. RESULTS OF DISPLACEMENTS AND STRESSES OF
THE CROSS-PLY BEAM IN VARIOUS POINTS.

model  uw,mm o, x 10> Mpa 0y; Mpa DOFs
[0.4,L,0] [0.5,L/2,-0.2] [0.5,L/2,-0.2]
HLI -0.053 -0.017 -29.309 4836
HL2 -0.348 -0.838 -43.008 13671
HL3 -1.547 -5.849 -2.389 22506
HL4 -1.548 -5.848 -2.445 35433
HL5 -1.548 -5.848 -2.432 52452
HL6 -1.548 -5.848 -2.422 73563
CONCLUSIONS

A novel hierarchical one-dimensional method based on the
Carrera Unified Formulation has been presented in this work.
HLE models have demonstrated many advantages in the anal-
ysis of composite structures at both global and local scales. The
construction of the physical model is substantially simplified due
to two facts: first, the discretization of the cross-section domain
is fixed and can be optimized, and second, the level of accuracy
depends in a great manner on the polynomial order of the model.
As a consequence, there is no need of performing iterative refine-
ments to increase the precision of the solution, which is one of
the most time-consuming works in conventional finite element
methods. These capabilities are greatly enforced by the use of
mapping techniques that allow to represent the exact shape of
the section geometry and to better optimize the distribution of
local expansions. In addition, the CW approach enables to direct
the precision of the model to particular zones of interest within
the cross-section, augmenting considerably the efficiency of the
computation.
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