
COMPONENT-WISE MODELS FOR THE ACCURATE DYNAMIC AND BUCKLING
ANALYSIS OF COMPOSITE WING STRUCTURES

E. Carrera, A. Pagani∗
Department of Mechanical and Aerospace Engineering

Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

P. H. Cabral, A. Prado, G. Silva
Embraer S.A.

12227-901 São José dos Campos
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ABSTRACT
In the present work, a higher-order beam model able to

characterize correctly the three-dimensional strain and stress
fields with minimum computational efforts is proposed. One-
dimensional models are formulated by employing the Carrera
Unified Formulation (CUF), according to which the generic 3D
displacement field is expressed as the expansion of the primary
mechanical variables. In such a way, by employing a recursive
index notation, the governing equations and the related finite el-
ement arrays of arbitrarily refined beam models can be written
in a very compact and unified manner. A Component-Wise (CW)
approach is developed in this work by using Lagrange polynomi-
als as expanding cross-sectional functions. By using the princi-
ple of virtual work and CUF, free vibration and linearized buck-
ling analyses of composite aerospace structures are investigated.
The capabilities of the proposed methodology and the advan-
tages over the classical methods and state-of-the-art tools are
widely demonstrated by numerical results.

NOMENCLATURE
Fτ Cross-sectional expanding functions.
Ki jτs Fundamental nucleus of the linear stiffness matrix.
Ki jτs

σ0 Fundamental nucleus of the geometrical stiffness matrix.
I Identity matrix.
L Beam length.
Lint Internal strain energy.
Lσ0 Work of the initial stresses.

∗Corresponding author, email: alfonso.pagani@polito.it

M Number of expansion terms.
Ni Shape functions.
V Beam volume, V = Ω×L.
p polynomial order of the shape functions.
qτi FE nodal unknowns.
u Displacement vector.
uτ Generalized displacement vector.
δ Virtual variation.
εεε Strain vector.
Ω Beam cross-section domain.
σσσ Stress vector.
σσσ0 Initial stress state vector.
( )i Finite element expansion index on the variable.
( ) j Finite element expansion index on the variation.
( )s Cross-sectional expansion index on the variation.
( )τ Cross-sectional expansion index on the variable.

INTRODUCTION
The availability of appropriate tools for the accurate dy-

namic and buckling analysis of metallic and composite aerospace
structures is of fundamental importance for the design and sizing
processes. These structures, which are essentially reinforced-
shells (see [1, 2]), are commonly modelled by combining, via
rigid links (e.g. through Lagrange multipliers), one-dimensional
(1D/beam) and two-dimensional (2D/shell) finite elements that
are implemented in commercial codes. This approach, how-
ever, introduces various physical and geometrical inconsisten-
cies, see [3–5]. For example, the out-of-plane warping of the
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stringers and the transverse normal stress in the panels, eventu-
ally, are not considered. Nowadays, the only way to overcome
these issues is to utilize either ad-hoc methodologies or 3D/solid
finite element models, which can seriously affect the efficiency
of the analysis.

In the present work, a geometrically consistent higher-order
beam model able to characterize in a correct way the three-
dimensional strain and stress fields is proposed for the accurate
free vibration and buckling analyses of reinforced and composite
aerospace structures. One-dimensional models are formulated
by utilizing the well-known Carrera Unified Formulation (CUF),
according to which the generic 3D displacement field is the ex-
pansion, through generic cross-sectional functions, of the gener-
alized displacement unknowns [6, 7]. CUF, by employing a re-
cursive index notation, allows the governing equations and, even-
tually, the corresponding finite element matrices of higher-order
beam models to be written in a very compact and unified manner.
According to Carrera et al. [8–12] and Carrera and Pagani [13], a
Component-Wise (CW) approach is formulated in this paper by
using Lagrange polynomials as expanding cross-sectional func-
tions. Along the axis of the beam, on the other hand, the prob-
lem domain is approximated by a classical finite element pro-
cedure. The CW approach allows the analyst to model, readily,
each structural component (stringers, panels, ribs, spars, etc.) by
using the same formulation (i.e., the same 1D finite element) and
tune the theory accuracy by opportunely refining the kinematic
characteristics at the cross-sectional level. By using the princi-
ple of virtual work and CUF, free vibration and linearized buck-
ling analyses of composite and reinforced aerospace structures
are investigated by CW models. Particular attention is given to
the buckling formulation, which makes use of the complete 3D
stress field and Green-Lagrange strains for the development of
the linearized tangent/geometrical stiffness contribution.

This paper is organized as follows: (i) first, CUF is briefly
introduced; (ii) then, CUF is utilized along with a finite element
procedure to develop the fundamental nuclei of the linear and ge-
ometrical stiffness matrix which are employed in the linearized
buckling analyses; (iii) next, numerical results are discussed in
details and both reinforced panels and composite wing box struc-
tures are considered; (iv) finally, the main conclusions are drawn.

CARRERA UNIFIED FORMULATION
We consider a beam structure whose cross-section (Ω) lies

on the xz-plane of a generic Cartesian reference system. The
boundaries of the problem along the axis y are 0≤ y≤ L, where
L is the length of the beam. Within the framework of the Carrera
Unified Formulation (CUF), the displacement field u(x,y,z) can
be expressed as a generic expansion of the primary unknowns:

u(x,y,z) = Fτ(x,z)uτ(y), τ = 1,2, ....,M (1)

where Fτ are the functions of the coordinates x and z on the
cross-section, uτ is the vector of the generalized displacements,
M stands for the number of the terms used in the expansion, and
the repeated subscript, τ , indicates summation. The choice of Fτ

determines the class of the 1D CUF model that is required and
subsequently to be adopted.

Taylor Expansion (TE) 1D CUF models consists of McLau-
rin series that uses the 2D polynomials xi z j as Fτ basis, see [6].
For instance, the second-order TE beam model presents the fol-
lowing kinematics:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(2)

where the parameters on the right-hand side (ux1 , uy1 , uz1 , ux2 ,
etc.) are the unknown generalized displacements of the beam
axis as functions of the y-axis. It should be noted that classical
beam models (e.g., Euler-Bernoulli and Timoshenko beam mod-
els) are degenerated cases of the linear TE model.

In this paper, Lagrange polynomials are used as Fτ cross-
sectional functions. The resulting beam theories are called LE
(Lagrange Expansion) CUF models in the literature [7]. La-
grange polynomials as used in this paper can be found in [14].
In the framework of CUF, linear three- (L3) and four-point (L4),
quadratic six- (L6) and nine-point (L9), as well as cubic 16-point
(L16) Lagrange polynomials have been used to formulate linear
to higher-order kinematics beam models. For example, the kine-
matics of the quadratic beam theory derived from the adoption of
one single L9 polynomial set to approximate the cross-sectional
displacements is:

ux = L1 ux1 +L2 ux2 + ...+L9 ux9
uy = L1 uy1 +L2 uy2 + ...+L9 uy9
uz = L1 uz1 +L2 uz2 + ...+L9 uz9

(3)

where L1, L2, ..., L9 are the nine Lagrange polynomials as func-
tions of the cross-sectional coordinates. ux1 , uy1 , uz1 , ..., uz9 are
functions of the coordinate y and represent the pure displacement
components at the nine roots of the L9 polynomial set. For im-
proving further the beam kinematics and obtaining a geometri-
cally exact (isoparametric) description of complex cross-section
beams, a combination of Lagrange polynomials can be used in
a straightforward manner by employing CUF. For more details
about LE beam theories, interested readers are referred to Car-
rera and Petrolo [15].

LE models have been recently used for the Component-Wise
(CW) analysis of aerospace [8,9] and civil engineering construc-
tions [13] as well as for composite laminates [10] and box struc-
tures [11, 12]. In fact, since LE utilizes only the physical bound-
aries to define the problem geometry, they allow the formulation
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of geometrically consistent (isogeometric) models. The main ad-
vantage of the CW models is that each component of the struc-
ture can be modeled with the same finite element, whose kine-
matics can be opportunely enriched depending on the problem
characteristics and analysis needs. Moreover, since the same
higher-order formulation is used for each component, there is no
need to couple components with different geometry and scales
by fictitious mathematical artifices such as rigid links and MPC’s
(see [8]).

FINITE ELEMENT APPROXIMATION
The finite element approach is adopted here to discretize the

structure along the y-axis. Thus, the generalized displacement
vector uτ(y) is approximated as follows:

uτ(y) = Ni(y)qτi i = 1,2, . . . , p+1 (4)

where Ni stands for the i-th shape function, p is the order of the
shape functions, and i indicates summation. qτi is vector of the
FE nodal parameters.

Fundamental nucleus of the linear stiffness matrix.
The linear stiffness matrix K can be calculated from the vir-

tual variation of the strain energy δLint , which reads:

δLint =< δεεε
T

σσσ > (5)

where δ denotes the virtual variation; εεε and σσσ are the strain and
stress vectors, respectively; V is the initial volume of the struc-

ture (V = Ω×L); and < (·) >=
∫

V
(·) dV . By using the linear

geometrical relations, the Hook’s law, the CUF (Eqn. (1)) and
Eqn. (4), the virtual variation of the internal work is written as
follows:

δLint = δqT
τiK

i jτsqs j (6)

Ki jτs is the CUF fundamental nucleus (FN) of the element stiff-
ness matrix K. The FN is a 3× 3 matrix that, given the cross-
sectional functions (Fτ = Fs, for τ = s) and the shape functions
(Ni = N j, for i = j), can be expanded by using the indexes
τ,s = 1, ...,M and i, j = 1, ..., p+ 1 in order to obtain the ele-
mental stiffness matrix of any arbitrarily refined beam model. In
other words, by opportunely choosing the beam kinematics (i.e.,
by choosing Fτ as well as the number of expansion terms M) clas-
sical to higher-order beam theories and related stiffness array can
be implemented in an automatic manner by exploiting the index
notation of CUF. The nine components of Ki jτs are not reported
here for the sake of brevity. They can be found in [16].

Fundamental nucleus of the geometrical stiffness ma-
trix.

In this paper, particular emphasis is given to free vibration
and linearized buckling problems. As far as linearized buckling
is concerned, the tangent stiffness matrix can be obtained from
the linearization of the virtual variation of the nonlinear internal
strain energy δ (δLint), see [17, 18]. To a first-order approxima-
tion, δ (δLint) can be expressed as the sum of the contributions
given by the linear stiffness as in the previous section and the vir-
tual variation of the work of the initial stresses (or pre-stresses),
σσσ0.

δ (δLint)≈ δqT
τiK

i jτs
δqs j+< δ (δεεε)T

σσσ
0 > (7)

By using CUF and FEM as in Eqns. (1) and (4) respectively, and
the Green-Lagrange nonlinear strain-displacement relations [19],
Eqn. (7) becomes:

δ (δLint) ≈ δqT
τiK

i jτs
δqs j +δqT

τiK
i jτs
σ0 δqs j

= δqT
τi
(
Ki jτs +Ki jτs

σ0

)
δqs j

(8)

where Ki jτs is the FN of the linear stiffness matrix as in Eqn. (6)
and Ki jτs

σ0 is the FN of the geometrical stiffness matrix. Ki jτs
σ0 is

a diagonal matrix and it is given in the following for reasons of
completeness:

Ki jτs
σ0 =

(
< σ0

xxFτ,x Fs,x NiN j >+< σ0
yyFτ FsNi,yN j,x >

+ < σ0
zzFτ,z Fs,z NiN j >+< σ0

xyFτ,x FsNiN j,y >

+ < σ0
xyFτ Fs,x Ni,y N j >+< σ0

xzFτ,x Fs,z NiN j >

+ < σ0
xzFτ,zFs,x NiN j >+< σ0

yzFτ,zFsNiN j,y >

+ < σ0
yzFτ Fs,zNi,yN j >

)
I

(9)

where I is the 3×3 identity matrix. As for the elemental linear
stiffness matrix and given the cross-sectional functions Fτ and
the 1D shape functions Ni, the fundamental nucleus of the ge-
ometric stiffness matrix can be expanded in an automatic way
by employing CUF to give the elemental matrix for any desired
beam theory. Finally, once the global matrices are assembled in
the classical way of FEM, the critical buckling loads are deter-
mined as those initial stress states σσσ0 which render the tangent
stiffness matrix singular; i.e., |K+Kσ0 |= 0.

For the sake of brevity, the formulation of the free vibration
problem in the domain of CUF is not discussed in this work.
Interested readers are referred to the book of Carrera et al. [7].
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FIGURE 1. ORTHOTROPIC REINFORCED PLATE.

NUMERICAL RESULTS
In this section, selected numerical results are discussed. The

main aim is to demonstrate the capability of the CW formula-
tion to deal with simple to relatively complex geometries and
anisotropy. The first example deals with the buckling analysis
of an orthotropic reinforced plate. Further analyses focus on the
free vibration and buckling of composite box structures, includ-
ing reinforcements.

Orthotropic reinforced plate
In the first analysis case, the buckling analysis of a simply-

supported orthotropic reinforced plate is discussed. The plate
structure is reinforced by employing two stringers as shown in
Fig. 1, where the main dimensions as well as the boundary con-
ditions and loadings are also depicted. It should be noted that, in
Fig. 1, p is a load per unit of area and p1 = p2 = p×Ac, where Ac
is the area of the stringer. The in-plane dimensions of the plate
are a = 500 mm and b = 250 mm. The thickness is equal to t = 2
mm. The structure is entirely made of an orthotropic material
with the following representative characteristics:

Elastic modula, E1 = 132500 MPa; E2 = E3 = 10800 MPa.
Poisson ratios, ν12 = ν13 = 0.24, ν23 = 0.49.
Density ρ = 100 kg/m3.

Table 1 reports the first buckling loads of the structure for
various dimensions of the stringers. The results by the present 1D
CW model are compared to those from analytical, plane-stress
solutions from Lekhnitskii [20]. The CW model employs 1D
LE refined elements for each of the components of the structure
(i.e., the panel and the stringers). In total, nine L9 polynomials
are used to formulate the beam kinematics in accordance with

TABLE 1. CRITICAL BUCKLING LOADS [ N
mm2 ] OF THE OR-

THOTROPIC REINFORCED PLATE FOR VARIOUS DIMENSIONS
OF THE STRINGERS.

[bc;hc] [3;5] [3;8] [3;10]

Ref. [20] CW Ref. [20] CW Ref. [20] CW

pcr1 10.4 11.9 15.2 15.6 21.1 20.1

pcr2 22.2 22.0 43.5 37.3 68.8 55.01

pcr3 46.5 43.7 84.3 75.1 150.3 130.6

CUF, whereas 20 B4 beam finite elements are utilized along the
beam axis.

It should be noted that the CW solutions agree with the refer-
ence results as the dimensions of the stringers are small. Interest-
ingly, the difference between the 1D CW model and the plate ref-
erence model increases as the dimensions of the stringers grow.
The reason is that, unlike the reference model and most of the
techniques used in the literature and in practical applications for
the analysis of reinforced structures, the CW model can describe
the mechanics of each component of the structure separately and
in an accurate manner. In fact, local phenomena and distortion
involving large stringers cannot be neglected if the stringers are
sufficiently large. To further underline this aspect, Fig. 2 shows
the variation of the first natural frequencies as functions of the
total load applied at the edge of the panel. In Fig. 2, the natural
frequencies are given in the following non-dimensional form:

ω
∗ = ω

b2

t

√
ρ

E1
(10)

For small stringers (Fig. 2a), the first buckling load can be rec-
ognized as the load that nullifies the natural frequency related to
the mode shape shown in Fig. 3a. On the contrary, a crossing
phenomena occurs in Fig. 2b where sufficiently big stringers are
considered, and the first buckling mode becomes the one shown
in Fig. 3b, in which the stringers deformation are visible. Of
course, this behaviour cannot be detected with classical models.

Circumferentially-uniform-stiffness box beam
In the second analysis case, the free vibration characteristics

of the same composite box beam as analyzed in [21] is consid-
ered. The cantilever beam is prismatic with length L = 762 mm,
width b = 24.21 mm and height h = 13.46 mm. Each wall of the
box has a total thickness equal to t = 0.762 mm and it is made of
six equal layers. In this example, a CUS (Circumferentially Uni-
form Stiffness) stacking sequence [θ ]6 is addressed. Each layer
of the structure is made of an orthotopic material, whose den-
sity and mechanical properties along the fibre (L) and transverse
(T) directions are: ρ = 1601 Kg/m3, EL = 142 GPa, ET = 9.8
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FIGURE 2. VARIATION OF THE NATURAL FREQUENCIES VS PRE-STRESS, P [N]; CW MODEL.
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FIGURE 3. FIRST BUCKLING MODE OF THE ORTHOTROPIC REINFORCED PANEL FOR DIFFERENT DIMENSIONS OF THE
STRINGERS; CW MODEL.

GPa, GLT = 6.0 GPa, GT T = 4.83 GPa, νLT = 0.42, νT T = 0.5.
The proposed CUF beam structural model makes use of four L9
polynomials (one for each wall of the box) to approximate the
cross-section kinematics, whereas ten 4-node (cubic) beam finite
elements are utilized along the longitudinal axis.

Figure 4a shows, in a graphical form, the natural frequen-
cies related to some important vertical (VB) and horizontal (HB)
bending mode shapes for various angles θ . Also, the figure
compares the results by the present model, which is referred to
as 4L9, with the analytical solution provided by Armanios and
Badir [21]. Figure 4b shows the influence of θ on the natu-
ral frequencies related to twist-extension modes. According to
the notation used in [21], S modes correspond to twist-extension
modes which are dominated by the torsion (note that, when θ = 0
deg, the mode S is purely torsional). On the contrary, the twist-
extension modes which are dominated by extensional deforma-

tions are denoted to as P in Fig. 4b.
From the results given, it should be clear that ply angles

up to 60 deg have a significant influence on the natural bend-
ing frequencies and the proposed beam model is in good agree-
ment with the analytical reference solutions. Moreover, unlike
S modes, the twist-extension modes dominated by extension
(modes P) are significantly affected by θ in the case of the CUS
box beam under consideration.

Reinforced composite wing box
A cantilever composite box is analyzed as the final example.

It has rectangular cross-section as shown in Fig. 5. The length of
the structure is 3.2 m. The material employed is a fibre reinforced
orthotropic composite and has the following characteristics:

E1 = 141.96 GPa, E2 = E3 = 9.79 GPa.
ν12 = ν13 = 0.42, ν23 = 0.5.
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FIGURE 5. CROSS-SECTION OF THE COMPOSITE WING BOX.

G12 = G13 = 6 GPa, G23 = 4.83 GPa.
ρ = 1445 kg/m3.

The box is simply compressed by a uniform load. In order to
show the capabilities of the present approach to deal with com-
plex geometries, two transverse reinforcements (ribs) are added.
One rib is located at the free end of the beam, whereas the other
one is at the mid-span. These ribs have thickness equal to 5 mm
and they are made of an aluminium alloy (E = 75 GPa, ν = 0.33,
ρ = 2700 kg/m3). The CUF-based CW model proposed in this
section make use of 16 quadratic L9 polynomials to approximate
the beam kinematics. Contrarily, 20 L9 polynomials are used for
each rib. Along the beam axis 12 cubic (B4) beam elements are
utilized.

First, the effect of the fiber orientation on buckling and free
vibration analyses is investigated. Table 2 shows the different
stacking sequences employed. The natural frequencies and the

TABLE 2. STACKING SEQUENCES OF THE COMPOSITE WING
BOX.

Orientation case Wall

Top Bottom Left Right

A [0]2 [0]2 [15]2 [−15]2

B [15]2 [−15]2 [0]2 [0]2

C [15]2 [−15]2 [15]2 [−15]2

D [0]2 [0]2 [45]2 [−45]2

E [45]2 [−45]2 [45]2 [−45]2

F [0]2 [0]2 [90]2 [−90]2

G [90]2 [−90]2 [0]2 [0]2

critical compressive loads for the various lamination configura-
tions of the reinforced box are shown in Tables 3 and 4, respec-
tively. The analysis highlights that:

• The natural frequencies decrease as the orientation angle in-
creases (from 0◦ to 45◦).
• Configurations B and C present similar results, both in terms

of natural frequencies and critical buckling loads.
• Configuration F presents the highest values of critical loads
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TABLE 3. FIRST FIVE NATURAL FREQUENCIES [HZ] OF THE
COMPOSITE BOX FOR VARIOUS LAMINATION SCHEMES; CW
MODEL.

Mode Lamination scheme

A B C D E F G

1 32.30 24.96 24.22 32.05 13.21 30.30 14.94

2 54.33 54.04 54.63 61.63 39.16 74.07 57.91

3 54.48 54.17 54.76 61.79 63.49 75.18 57.92

4 62.30 62.01 62.77 69.36 63.53 75.30 59.59

5 63.11 62.70 63.47 70.18 70.59 80.73 59.61

TABLE 4. FIRST FIVE CRITICAL BUCKLING LOADS [N] OF
THE COMPOSITE BOX FOR VARIOUS LAMINATION SCHEMES;
CW MODEL.

Pcr×10−4 Lamination scheme

A B C D E F G

1 6.38 7.78 6.93 38.41 1.81 43.67 0.45

2 6.52 8.25 6.99 38.63 1.92 43.95 0.47

3 6.77 8.31 7.29 40.02 3.69 44.01 0.52

4 6.90 8.72 7.38 40.43 3.78 44.27 0.53

5 9.08 10.92 9.71 53.93 4.08 56.46 0.54

and natural frequencies. In this case, in fact, the load is
applied in the direction of the fibres at the top and bottom
walls. On the contrary, the same walls have fibres in the or-
thogonal direction with respect to the load in configuration
G, which is therefore the most ineffective lamination config-
uration.

For the orientation configuration A, Fig. 6 shows the varia-
tion of the first eight natural frequencies versus the magnitude of
the axial pre-stress P. It is easy to identify critical buckling loads
as those loads that make the related natural frequency go to zero.
The following comments arise from the analysis:

• Flexural modes (1 and 8) are not affected by axial pre-
stresses, of course.
• There are various interesting dynamic phenomena: Cross-

ing phenomena involve modes 2-3 with modes 4-5 as well
as modes 6-7 with mode 8. During crossing, the modal
deformations remain unaltered. On the other hand, mode
shapes change sensibly after the veering zone at approxi-
mately P = 40×103 N.
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FIGURE 6. VARIATION OF THE NATURAL FREQUENCIES OF
THE COMPOSITE WING BOX VS PRE-STRESS AXIAL LOAD;
CW MODEL.

CONCLUSIONS
This paper has presented free vibration and linearized buck-

ling analyses of reinforced composite structures for aerospace
applications. The employed models are based on the 1D Car-
rera Unified Formulation (CUF). According to CUF, generalized
higher-order beam models can be straightforward implemented
by using a compact, index formulation that expresses the dis-
placement field as the expansion of the primary unknowns by
arbitrary cross-sectional functions. Namely, Lagrange polyno-
mials have been utilized in this paper as cross-sectional functions
and the finite element approach has been used for developing nu-
merical applications. The use of Lagrange polynomial sets to
define the kinematics of beam theories bring to the formulation
of geometrically consistent models with Component-Wise (CW)
capabilities. By considering simple plates to more complex com-
posite reinforced box structures, the validity and the accuracy of
the formulation proposed has been widely demonstrated.
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