
V ECCOMAS Thematic Conference on the Mechanical Response of Composites

COMPOSITES 2015

S.R. Hallett and J.J.C. Remmers (Editors)

COMPONENT-WISE 1D MODELS FOR DAMAGED LAMINATED,
FIBER-REINFORCED COMPOSITES

M. Petrolo, E. Carrera, E. Zindan

Department of Mechanical and Aerospace Engineering, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129, Torino, Italy

marco.petrolo@polito.it, erasmo.carrera@polito.it, elifzindan@gmail.com

Keywords: CUF, beam, damage, component-wise, finite elements.

Summary: The structural analysis of damaged composite structures requires high fidelity
models to detect very accurate displacement, strain and stress fields. In particular, local effects
and 3D stress fields have to be dealt with. The proper modeling of multiscale components –
layers, fibers and matrix – enhances the accuracy of computational models to a great extent. To
date, 3D solid finite elements represent the most reliable tool for this kind of analyses. However,
such finite elements can lead to very cumbersome numerical models. In other words, the accu-
rate structural analysis of complex structures is quite impossible due to the very high number
of degrees of freedom that is necessary. This paper presents free vibration analyses of dam-
aged composite structures via an innovative approach that is based on 1D (beam) advanced
models. The present 1D FEs stems from the Carrera Unified Formulation (CUF) and provide
a Component-Wise (CW) modeling. In a CW model, each component of a complex structure is
modeled through the refined 1D CUF models. A detailed physical description of the real struc-
ture is achieved because each component can be modeled with its material characteristics, and
no homogenization techniques are required. Furthermore, although 1D models are exploited,
the problem unknown variables are located on the physical surfaces of the real 3D model, and
no artificial surfaces or lines have to be defined to build the structural model. The CW can lead
to a multiscale approach for composites since each typical component of a composite structure
- fibers, matrix, plies - can be modeled through the 1D CUF models. Different scale compo-
nents can be assembled straightforwardly without ad hoc coupling techniques. The adoption of
1D models enhances the multi-dimension coupling capabilities and reduces the computational
costs to a great extent. The computational cost reduction in terms of total amount of DOFs
ranges from 10 to 100 times less than shell and solid models, respectively. In this paper, dam-
aged composite structures are analyzed using the CW approach. Free vibration analyses are
carried out, and comparisons against classical approaches are provided to show the enhanced
capabilities of the present approach to providing 3D-like accuracy with very low computational
costs.

1. INTRODUCTION

The inclusion of the multi-scale characteristics of composites is often mandatory to enhance
the quality of the structural analysis. To date, most of the techniques that have been developed
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for this task are based on very cumbersome numerical models, such as the 3D solid finite el-
ements. This means that the accurate structural analysis of complex composite structures is
almost impossible due to the enormous number of degrees of freedom that is required. Exam-
ples of multiscale techniques can be found in [1, 2, 3, 4].
This paper deals with damaged composite structures, and, in particular, free vibration analy-
ses were carried out. Many damage detection techniques exploit the changes in frequencies
and modal shapes due to the presence of damage [5, 6, 7, 8]. The Modal Assurance Criterion
(MAC) [9] is one of the most common tools to evaluate damage through the modal shapes of a
structure [10, 11, 12]. The MAC is defined as a scalar representing the degree of consistency
(linearity) between one modal and another reference modal vector.
The Carrera Unified Formulation (CUF) [13, 14] is a modeling technique to build 1D and 2D
structural theories that are extremely accurate and computationally cheap. The 1D CUF, in par-
ticular, has been recently exploited to develop the component-wise approach (CW)[15]. Figure

Figure 1. Component-Wise model of a laminated plate.

1 shows an example in which the CW was applied to model a layered composite plate. The CW
can model the macro (layers) and microscale components (fibers and matrix) using 1D mod-
els only. All these components can be coupled straightforwardly by imposing the displacement
continuity at the interfaces. A detailed, physical description of composites can be obtained since
the problem unknowns can be placed on the physical surfaces of the real 3D model. Moreover,
each component is modeled using its material characteristics, that is, no homogenization tech-
niques are required. The CW can be exploited to model other types of complex structures, such
as aircraft wings [16, 17]. In [18], the authors exploited the CW for the analysis of damaged
isotropic, thin-walled structures.
This paper evaluates the effects of damages on composite structures via the CW. In particular,
the effects on the natural frequencies and the MAC matrix are investigated.

2. CARRERA UNIFIED FORMULATION

The CUF is a hierarchical methodology to reduce 3D problems to 2D or 1D formulations
in a unified manner. CUF exploits arbitrary rich expansions of the unknown variables. In the
structural mechanics scenario, and in a displacement-based formulation, the CUF defines the
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displacement field of a structural model as the expansion of generic functions Fτ ,

u = Fτuτ , τ = 1, 2, ....,M (1)

Where u is the displacement vector, uτ is the generalized displacements unknown array and
M stands for the number of terms of the expansion. According to the Einstein notation, the
repeated subscript, τ , indicates summation.
The 1D Taylor Expansion (TE) models uses 2D polynomials xi zj as base functions above the
cross-section (y is the axial coordinate). i and j are positive integers. For instance, the third-
order (N = 3) TE model has the following displacement field:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6 + x3 ux7 + x2z ux8 + xz2 ux9 + z3 ux10
uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10
uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10

(2)
TE model unknowns are displacements andN -order derivatives of the displacement field. These
variables are usually defined along the axis of the beam. The unknown variables become pure
displacements if Lagrange polynomials are adopted as expansion functions. The resulting mod-
els are referred to as LE (Lagrange-Expansion) models in the framework of the CUF. Three-
(L3), four- (L4) and nine-point (L9) polynomials were formulated which lead to linear, quasi-
linear (bilinear), and quadratic kinematics, respectively. For instance, the interpolation func-
tions in the case of an L4 element are the following ones:

Fτ =
1

4
(1 + r rτ )(1 + s sτ ) τ = 1, 2, 3, 4 (3)

where r and s vary from −1 to +1, and rτ and sτ are the coordinates in the natural plane of the
four Lagrange nodes. According to the CUF, the displacement field given by an L4 element is

ux = F1 ux1 + F2 ux2 + F3 ux3 + F4 ux4
uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4
uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4

(4)

Where ux1 , ..., uz4 are the displacement variables of the problem and represent the translational
displacement components of each of the four points of the L4 element. For further refinements,
the cross-section can be discretized by using several L-elements.
LE leads to FE mathematical models built by using only physical boundaries; artificial lines
(beam axes) and surfaces (plate/shell reference surfaces) are no longer necessary. Figure 2
shows the physical volume/surface approach of the present modelling technique. A 3D geom-
etry can be accurately modeled via LE since the problem unknowns can be spread over the
physical surfaces of the structure. This capability can be extremely powerful in a CAD-FEM
coupling scenario, for instance in an optimization problem, since the 3D CAD geometry can
be straightforwardly exploited to build the FE model. FE matrices can be obtained upon the
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Beam element

Beam node

Lagrange node above the first beam
node cross-section

Lagrange node above the second beam
node cross-section

DOFs: pure displacements of each Lagrange
node (3 DOFs per Lagrange node)

Lagrange nodes can be placed above
the physical surface of the structure

3D Geometry from CAD

LE Modeling

Computational Model

Figure 2. The physical volume/surface approach of LE.

introduction of the 3D material constitutive relations and the differential geometrical relations.
For example, the virtual variation of the internal work can be written as follows:

δLint = δuTsjK
τsijuτi (5)

Where Kτsij is the stiffness matrix written in the form of the fundamental nuclei, u is the nodal
displacement vector and δ is the virtual variation. The superscripts indicate the four indexes
exploited to assemble the matrix. i and j are related to the shape functions along the beam axis,
while τ and s are related to the expansion functions over the cross-section. The fundamental
nucleus is a 3× 3 array that is formally independent of the order of the structural model. More
details about CUF models can be found in authors’ books [13, 14].

3. COMPONENT-WISE APPROACH AND DAMAGE MODELING

The component-wise (CW) approach has been introduced in the framework of the CUF. The
CW approach allows each typical component of a structure to be modeled through the 1D CUF
formulation. In an FE framework, this means that different components are modelled using
the same 1D FE, i.e. the same stiffness matrix is used for each component. Figure 3 shows
two examples of CW applications to aerospace and composite structures, respectively. The CW
methodology enables an optimized finite element modeling by

• choosing the component that requires a more detailed modeling;

• setting the order of the structural model to be used.

The CW can be exploited for the analysis of composite structures and can be seen as a compu-
tationally cheap multiscale approach. In fact,
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1D L-elements

Component-wise
approach

Reinforced shell
structure

Assembled
cross-section

(a) A reinforced shell structure for
aerospace applications

The three layers of the structure
are the components of the CW

The top and middle layers, the
fibers and matrix of the bottom

layer are the components of the
CW approach

The middle layer, the fibers and
matrix of the top and bottom
layers are the components of

the CW approach

Only one fiber-matrix cell is
embedded in the CW model

(b) A fiber reinforced composite
structure

Figure 3. CW modeling of multi-component structures.

• Macroscale components, e.g. layers, and microscale components, e.g. fibers, can be
simultaneously modeled through the same 1D formulation. Coupling techniques to deal
with different scales are not required.

• Each component can be modeled with its material characteristics, in other words, no
homogenization techniques are necessary.

• The adoption of the same type of 1D FEs allow highly accurate modelings to be used only
where needed, e.g. in the proximity of failure zones, whereas lower fidelity modelings
can be used elsewhere.

• The adoption of 1D FEs makes the computational costs of the CW approach 10-100 times
lower than solid elements.

A basic damage modelling approach was adopted in this work. Figure 4 shows an example of

Figure 4. Local damage in a beam.

locally damaged structure. In the damaged zone, the Young and shear moduli were modified
according to

Ed = d× E, 0 < d < 1 (6)
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4. RESULTS

A simple cell of a laminated structure is considered as a numerical example. The cell length
is 40 mm, the height is 0.6 mm and the width is 0.8 mm. One end of the structure is clamped.
A 0/90/0 lamination was considered. Figure 5 shows the four modeling approaches adopted.
Fibers were modeled with a circular cross-section, where the diameter is equal to 0.2 mm. Up

(a) Model 1: the three layers of the structure
are the components of the CW approach

(b) Model 2: the top and middle layers and
the fibers and matrices of the bottom layer are
the components of the CW approach

(c) Model 3: the middle layer and the fibers
and matrices of the top and bottom layers are
the components of the CW approach

(d) Model 4: only one fiber-matrix cell is in-
serted in CW model

Figure 5. Various modeling approaches for the laminate.

to four fibers per layer were considered. Fibers are orthotropic, with EL = 202.038 GPa, ET
= EZ = 12.134 GPa, GLT = GLZ = 8.358 GPa, GTZ = 47.756 GPa, νLT = νLZ = 0.2128 und
νTZ = 0.2704. The matrix is made of an isotropic material, with E = 3.252 GPa and ν = 0.355.
Layer properties are orthotropic and are as the following: EL = 159.380 GPa, ET =EZ = 14.311
GPa, GLT = GLZ = 3.711 GPa, GTZ = 5.209 GPa, νLT = νLZ = 0.2433 und νTZ = 0.2886. The
density, ρ, is 1300 kg/m3, 1500 kg/m3 and 1555 kg/m3 are adopted for the matrix, layer and
fiber, respectively. Mixture rules were used. The bottom layer was damaged along the first 10%
of the span.
Table 1 shows the first five natural frequencies of the structure for various damage levels. CW
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(a) d = 0.1 (b) d = 0.5

(c) d = 0.9

Figure 6. MAC matrices, Model 2.

models obtained through LEs were compared to solid FE models (Abaqus). Bending and tor-
sional modes were considered. The total amount of degrees of freedom (DOFs) for each model
is given in the last row. A good match between the two models was found. Figure 6 shows the
MAC matrices relating the undamaged and damaged models. As it can be seen, such matrices
are slightly significative only when severe damages are considered.
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Table 1. First five natural frequencies (Hz).

Model 1

d = 0.1 d = 0.5 d = 0.9 d = 1.0

CW Solid CW Solid CW Solid CW Solid

Mode 1 420.49b 412.45b 568.05b 562.66b 607.25b 601.84b 613.01b 607.56b

Mode 2 609.17b 603.90b 657.13b 651.82b 687.32b 681.81b 693.29b 687.75b

Mode 3 3248.2b 3211.4b 3629.3b 3597.1b 3776.3b 3744.1b 3800.2b 3767.8b

Mode 4 3985.1b 3954.2b 4132.6b 4101.0b 4246.4b 4214.0b 4271.0b 4238.5b

Mode 5 8169.3t 7903.9t 8743.2t 8503.6t 8964.4t 8724.0t 9000.8t 8759.7t

DOFs 5859 75789 5859 75789 5859 75789 5859 75789

Model 2

Mode 1 409.74b 458.34b 557.89b 589.92b 596.51b 628.08b 602.15b 606.92b

Mode 2 599.46b 624.55b 648.81b 671.44b 678.95b 701.59b 684.86b 687.77b

Mode 3 3144.1b 3412.1b 3512.2b 3764.6b 3653.3b 3908.4b 3676.1b 3766.5b

Mode 4 3941.2b 4086.9b 4094.4b 4235.6b 4209.3b 4350.8b 4233.8b 4254.5b

Mode 5 7599.4t 9046.3t 8084.4t 9738.6t 8290.0t 9984.4t 8324.7t 10187t

DOFs 16275 92346 16275 92346 16275 92346 16275 92346

Model 3

Mode 1 417.06b 420.13b 563.22b 566.17b 601.91b 604.98b 607.58b 608.44b

Mode 2 605.38b 608.16b 653.52b 654.90b 683.2b 684.66b 689.10b 687.67b

Mode 3 3195.7b 3238.8b 3568.7b 3618.1b 3713.89b 3764.0b 3737.5b 3773.7b

Mode 4 3968.3b 3976.9b 4115.6b 4124.3b 4227.91b 4238.2b 4252.1b 4244.0b

Mode 5 7903.3t 8612.5t 8403.6t 9303.5t 8619.94t 9536.0t 8656.7t 9497.5t

DOFs 9765 268440 9765 268440 9765 268440 9765 268440

Model 4

Mode 1 420.11b 436.18b 567.41b 577.96b 606.50b 616.97b 612.24b 612.01b

Mode 2 608.85b 616.76b 656.61b 664.37b 686.70b 694.57b 692.66b 692.12b

Mode 3 3244.21b 3318.8b 3624.74b 3689.9b 3771.46b 3836.4b 3795.3b 3794.7b

Mode 4 3982.42b 4030.7b 4129.66b 4178.7b 4243.23b 4293.1b 4267.8b 4266.6b

Mode 5 8171.29t 8238.5t 8745.96t 8837.0t 8966.89t 9061.1t 9003.2t 9106.2t

DOFs 11811 60282 11811 60282 11811 60282 11811 60282

(∗): b, t refer to bending and torsional mode, respectively.
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5. CONCLUSIONS

This paper has presented free vibration analyses of damaged composite structures. A sim-
ple cell model was considered in which fibers were embedded. Component-Wise (CW) models
based on 1D advanced finite elements were used. The 1D elements were obtained using La-
grange expansions of the cross-section displacement field. 1D models were built through the
Carrera Unified Formulation (CUF). The CUF has hierarchical capabilities that allow us to deal
with any order models with no need for ad hoc formulations. The use of CW features leads
to models that provide high-fidelity geometrical and material descriptions of the structure. No
reference axes or surfaces are, in fact, needed to define an LE model. Furthermore, the use of
homogenised material characteristics can be avoided. The damage has been introduced using
reduced stiffness areas. Local damage was considered. Various modeling approaches have been
considered in which multiscale components have been modeled in different ways. Comparisons
with 3D finite elements have been carried out. The results suggest that

• A good match was found between the 1D models and the 3D ones.

• The number of degrees of freedom of 1D models is at least ten times lower than 3D
models.

• The CW was proved to be reliable in dealing with multiscale components and various
modeling strategies can be considered.

References

[1] G. Lu, and E. Kaxiras, Handbook of Theoretical and Computational Nanotechnology,
volume X. American Scientific Publishers, 2005.

[2] J. LLorca, C. Gonzalez, J. Molina-Aldaregua, M. Segurado, J. Seltzer, R. F. Sket, M. Ro-
drguez, S. Sdaba, R. Muoz, and L. P. Canal, Multiscale modeling of composite materials:
a roadmap towards virtual testing. Advanced Materials, 23, 5130–5147, 2011.

[3] J. Aboudi, Mechanics of Composite Materials: A Unified Micromechanical Approach.
Elsevier, 1991.

[4] E.J. Pineda, A.M. Waas, B.A. Bednarcyk, C.S. Collier, and P.W. Yarrington, Progressive
damage and failure modeling in notched laminated fiber reinforced composites. Interna-
tional Journal of Fracture, 158(2), 125–143, 2009.

[5] Z. Zhang, K. Shankar, E.V. Morozov, M. Tahtali, Vibration-based delamination detection
in composite beams through frequency changes. Journal of Vibration and Control, DOI:
10.1177/1077546314533584, 2014.

[6] R. Capozucca, Vibration of CFRP cantilever beam with damage. Composite Structures,
116, 211–222, 2014.

9



M. Petrolo, E. Carrera, E. Zindan

[7] M.A. Pérez, L. Gil, M. Sánchez and S. Oller, Comparative experimental analysis of the
effect caused by artificial and real induced damage in composite laminates. Composite
Structures, 112, 169-178, 2014.

[8] Y. Wang, M. Liang and J. Xiang, Damage detection method for wind turbine blades based
on dynamics analysis and mode shape difference curvature information. Mechanical Sys-
tems and Signal Processing, 48, 351–367, 2014.

[9] R.J. Allemang and D.L. Brown, A Correlation Coefficient for Modal Vector Analysis. Pro-
ceedings of the 1st SEM International Modal Analysis Conference, Orlando, FL, Novem-
ber 8–10, 110–116, 1982.

[10] O.S. Salawu and C. Williams, Bridge assessment using forced-vibration testing. Journal
of Structural Engineering, 121(2), 161-173, 1995.

[11] J. Zhao and L. Zhang, Structural Damage Identification Based on the Modal Data Change.
International Journal of Engineering and Manufacturing, 4, 59-66, 2012.

[12] S. Mukhopadhyay, H. Lus, L. Hong and R. Betti, Propagation of mode shape errors in
structural identification. Journal of Sound and Vibration, 331, 3961–3975, 2012.

[13] E. Carrera, G. Giunta and M. Petrolo, Beam Structures: Classical and Advanced Theories.
John Wiley & Sons, Inc., 2011.

[14] E. Carrera, M. Cinefra, M. Petrolo and E. Zappino, Finite Element Analysis of Structures
through Unified Formulation. John Wiley & Sons, Inc., 2014.

[15] E. Carrera, M. Maiarù and M. Petrolo, Component-wise analysis of laminated anisotropic
composites. International Journal of Solids and Structures, 49, 1839-1851, 2012.

[16] E. Carrera, A. Pagani and M. Petrolo, Component-wise Method Applied to Vibration of
Wing Structures. Journal of Applied Mechanics, 80(4), 2012.

[17] E. Carrera, A. Pagani and M. Petrolo, Classical, refined and component-wise analysis of
reinforced-shell structures. AIAA Journal, 51(5), 1255-1268, 2013.

[18] M. Petrolo, E. Carrera and A.S.A.S. Alawami, Free vibration analysis of damaged beams
via refined models. Advances in Aircraft and Spacecraft Sciences, In Press.

10


