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Summary. This document presents the static analysis of reinforced tapered structures using
1D models. These models are based on one dimensional formulation derived through the unified
formulation(CUF). This formulation provides 3D-like results thanks to the use of polynomial ex-
pansions to describe the displacement field over the cross-section. Depending on the types of
expansion used, different classes of CUF are obtained. In this work the Lagrange expansions
were used. The use of LE models allows each structural component to be considered separately;
this approach is called component wise (CW). Different kind of aeronautical structures, grad-
ually more complex, were studied. The stress and displacement fields due to simple load cases
were obtained. The results have been compared with those obtained using commercial tools,
3D and 2D models have been used as comparisons. These last use solid and shell elements. The
results show the capability of the present refined 1D models to achieve results usually obtained
by use of solid models and therefore, with higher computational cost.

1. INTRODUCTION

The typical aeronautical structures are composed by reinforced thin shell, in order to min-
imize the weight without reducing the performances. These structures are composed by skin
(several panels joined), longitudinal stiffening spar and the transversal stiffener called ribs. The
analysis of these thin-walled structures can be obtained by the use of classical methods dis-
cussed in [1][2]. The classical approaches assume constant shear stress inside panels. In order
to overcome the limitations related to constant shear stress, the use of matrix methods was in-
troduced by Argyris and Kensley [3]. These methods are automatic and are at the basis of the
development of finite element methods (FEMs).
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With the introduction of computational tools that implement the finite elements methods,
the analysis of aircraft structures can be made using three elements typically: the solid (three-
dimensional), the plate (two-dimensional) and the beam elements (one dimensional). One of the
most popular software based on this approach is NASTRAN. Usually, solid elements are used
for aerospace structures that lead to a huge computational cost. This is a complication when
a multi-field problem is performed, as an aeroelastic or thermal analysis, or when a particular
material are used, such as composite.

In order to overcome this issue, a equivalent lower-fidelity model is used. The most sim-
plified model is called stick-model and concerns the use of one-dimensional model along the
wing’s elastic axis. This type of model implies the evaluation of the structural stiffness of the
wing respect to its principal axes. Another approach is the 2D model. This last is useful to
describe the several types of thin-walled structures which can be found in the aeronautical field.
In conclusion, the structural analyses require a huge computational cost or a model with poor
accuracy.

In this scenario, the development of High fidelity reduced models with very good accuracy
is crucial, above all because the aeronautic structures are even more complex, both in the design
field and in the material field.

In this work a refined 1D model based on Carrera Unified Formulation is applied. CUF
has been developed for shell and plate theories by [4]. In the last years, the CUF has been
extended to beam theories [5]. In general two classes of 1-D models were proposed: one based
on the Taylor expansion (TE) and the other one based on the Lagrange Expansion (LE). Lately
other expansions have been implemented as shown in [8][9] where, for example, trigonometric
expansions were introduced. The LE models, used in this document, have only displacements
as unknowns and this feature allows to impose the congruence between different structures
without incurring in coupling issues. In this way each generic component of a reinforced shell
structure has its 1D formulation.

This document can be subdivided into three parts. In the first a brief introduction at Unified
Formulation is presented. Then the structures studied are shown and the results are reported.
Finally, the main conclusions are highlighted.

2. 1-D Carrera Unified Formulation

In this section are provided some notions about the CUF. Initially, a brief introduction to the
theory of structures is presented, followed by the description of the CUF and LE beam. Then
the solution with the finite element is illustrated.

2.1 Preliminaries

For each general point the displacement vector can be identified:

uT = (ux, uy, uz) (1)
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where ux, uy and uz are the components along the three directions. The strains and stresses
vectors are defined as:

εT = (εxx, εyy, εzz, εxy, εxz, εyz), (2)

σT = (σxx, σyy, σzz, τxy, τxz, τyz). (3)

The strain vector can be obtained using the differential operator b:

ε = bu. (4)

The extended form of b can be found in [6]. The Hooke’s law introduces the relation between
the stress field and the strain one:

σ = Cε, (5)

where C is the stiffness coefficients matrix of the material. In order to describe an isotropic
material, the matrix C can be expressed as:

C =


C11 C12 C12 0 0 0
C21 C11 C12 0 0 0
C21 C21 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (6)

The coefficients are defined

C11 = 2G+ λ C12 = C21 = λ C44 = G (7)

G =
E

2(1 + ν)
λ =

νE

(1 + ν)(1− 2ν)
(8)

where E is Young’s modulus, G is the shear modulus and ν is Poisson’s ratio. λ and G are
also called as Lamè coefficients.

2.2 Unified Formulation

The model used in this document introducing an approximation of the displacement field of
the beam. A generic three-dimensional displacement field expressed as

u = u(x, y, z). (9)

can be re-written as

u = Fτ (x, z)uτ (y), τ = 1, 2 . . .M, (10)
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where uτ is the displacement vector and the Fτ represents the expansion used to approximate
the behaviour of the beam cross-section. M is the number of terms of the expansion. The type
of Lagrange polynomials used in this work for built 1D high-order model is nine-point elements
(L9). There are other types of polynomials like four-point elements (L4). These polynomials
are expressed by an isoparametric formulation in order to deal with any shape geometries as
shown in fig.1. The interpolation functions can be found in [7].

Once that the function are defined, for example, the displacement field of L9 element along
x is given by

ux = F1ux1 + F2ux2 + F3ux3 . . .+ F9ux9 (11)

where ux1 . . . ux9 represent the component along x of the displacement field of each node of
the L9 elements. In order to have a better refined model, the cross section can be discretized by
more L-elements joined together as show in fig.1.

(a) L4 and L9 elements in natural reference system. (b) Two assembled L9 in
generic reference system.

Figure 1. L9.

2.3 Finite Element solution

In this part the FE solution based on Lagrange Expansion are going to be presented. The
displacement vector is given by

u(x, y, z) = Fτ (x, z)Ni(y)qτi (12)

where Ni are the shape functions and qτi the nodal displacements vector. The B3 elements
(elements with three nodes) are adopted in this work and the index i indicates the node of the
beam element. The governing equations can be obtained using the PVD (Principle of Virtual
Displacements) that, in the static case, is expressed as the equivalence between the work of the
external loads (δLext) and the strain energy (δLint). The term δ denotes the virtual variation.

δLint = δLext (13)

The internal work can be written as:
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δLint =

∫
V

δεTσdV (14)

Introducing the Hooke’s law and the geometrical relations, the internal work can be ex-
pressed in function of the Ni, the expansion used for the cross section and the properties of the
material. The process to get the 15 can be found in [6].

δLint = δqsj
∫
V

Nj(y)Fs(x, z)bTCbFτ (x, z)Ni(y)dV qτi (15)

The stiffness matrix Kijτs is obtained and it is expressed in term of fundamental nucleus
(3× 3 array).

In order to deepen the CUF, the TE and LE theory and its FE application, the recent book
by Carrera et al. is suggested [6].

3. Numerical Results

In this section different aeronautical structures are examined. Initially the results of a simple
reinforced panel are presented. First a rectangular panel is studied; then a tapered one is taken
into account. In the second part a tapered wing box with rectangular cross section will be shown.
The results are compared with those from a commercial FEM software. The software used is
MSc/NASTRAN. Two model are used. The solid model was realized with 8-node element
(HEX8) instead, the model called shell+beam model combines the two nodes beam elements
(BAR2) for the stiffener and the plate elements (QUAD4) for the panels. The several structures
presented in this section is made of a generic aluminium alloy with these properties: Young’s
module E = 71.7 GPa, Poisson’s ratio ν = 0.33, density ρ = 2810 kg/m3.

3.1 Rectangular Shape

The first structure is a simple rectangular panel with two stiffeners along the biggest edge.
One extremity is clamped and on the other one the load is applied. The geometrical data of
the structure are the following: axial length L = 1 m, panel height h = 0.2 m, panel thickness
t = 0.002m, stiffener cross-section a×b = 0.02×0.02. Figure 2 shows the several dimensions
introduced. The force applied has a magnitude of F = −50000 N .

The structure can be seen as the sum of three components: the stiffeners and the panel. The
stiffeners are modeled in “typical method“; it means that the beam elements are along the length
of the stiffener and the Lagrange Expansion is used to described the cross section. Instead, for
the panel the thickness direction is taken as beam axis. The shape of the panel is discretized
with the polynomial expansions. This method is going to be useful in order to model a tapered
panel, as will be showed in the next section. In fig.2 these formulations are reported; the y axis
identifies the direction of the beam elements. For the stiffeners are used 5 B3 elements (beam
elements with three nodes). For the panel only one. During the analysis, a poor influence of
the beam element number has been evaluated on the panel behaviour. For this reason only the
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results with one beam element are presented. In order to have a better accuracy, the number
of beam element along the stiffener can be increased (with an increase of the number of L9
elements for the panel cross-section) or can be introduced B4 beam elements.

(a) Reinforced Panel (b) 1D formulation

Figure 2. Case analyzed.

In fig.3 the L9 distributions used for the cross-section are shown. In this case the two
stiffeners have the same L9 distribution. This choice was adopted to simplify the assembling
with the panel. In order to have also a convergence analysis, the panel was described with three
different discretizations show in fig.3

The results are reported In the table 1.

Table 1. Average τxz×108 on the rectangular panel at y = L/2 and x = t/2.

BS 10 L9 20 L9 30 L9 Solid
DOF 3531 3927 4323 207993
τxz[Pa] -1.250 -1.114 -1.117 -1.117 -1.153

In fig.4 the values of shear stress along the panel height are showed.
It should be noted that the CUF approach provides results in agreement to those obtained

with a solid model characterized by a significantly larger number of DOF. Moreover, the not
constant shear stress distribution along the panel is confirmed.
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Figure 3. Cross-section L9 distributions for the rectangular structure.
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Figure 4. τxz vs z-axis at L/2 of the rectangular panel.
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3.2 Tapered Shape

A tapered reinforced panel is now considered. Once again the beam axis is taken along
the length to describe the stiffeners and along the thickness for the panel. The number of B3
elements used is the same of the previous model. For the panel formulation, considering the
previous assessment results, only a discretization with 20 L9 is used, for a total of 99 points.
The stiffener cross-section is the same of the previous one. Figure 6 presents the meshes used
for the cross-sections. Using this approach, as the figure shows, the tapered panel is modeled
with accuracy without introducing heavy approximations ( for example the tapered edge ap-
proximated by steps). The length of the stiffener is always L = 1 m, the bigger height of the
panel is h1 = 0.2m, the other one is obtained by rotating the stiffener. Introducing a taper angle
of α = 2.5 deg, the value found is h2 = 0.1128m . The panel thickness and the stiffener cross-
section are the same of the precious case.The sizes are reported in fig.5 The force magnitude on
the free extremity is equal to F = −50000N . The material used is the same aluminum alloy of
the previous section.

(a) Reinforced Panel (b) 1D formulation

Figure 5. Tapered formulation.

In the table 2 the displacement of two points are reported. The values are multiplied ×10−2.
These two points match with the axis of the stiffeners at L = 1 [m]. By reference to the fig.6
the points considered are located in local reference system at (0,L,0). wa is related to upper
stiffener where the load is applied. Instead wb is related to lower stiffener.

In fig.7 the values of τxz along the height are shown instead the table n.1 shows the average
values. The average value is evaluated in the middle plane of the panel.All the values are
multiplied ×108.
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Figure 6. Cross-section L9 distributions for the tapered structure.

Table 2. w on the panel at y = L/2 and x = t/2.

Displacement 20L9 Solid Shell+Beam
wa[m] -3.045 -3.049 -3.887
wb[m] -2.979 -2.973 -3.802
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Figure 7. τxz vs z-axis at L/2.
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Table 3. Average τxz on the panel at y = L/2 and x = t/2.

BS 20 L9 Solid Shell+Beam
DOF 3927 26019 4280
τxz[Pa] -1.151 -1.091 -1.123 -1.174
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3.3 Tapered Wing Box

Now a tapered wing box is presented. The box is composed by eight elements, four stiffeners
and four panels, numbered as shown in fig.8. At y = L the structure is clamped and at y = 0
there is a load on stiffener n.2. The lenght is r1 is 0.6 m and r2 = 0.5218 m. The last data is
due to the rotation of the stiffener around Z by an angle of α = 2.5 deg. The other geometrical
data are those already introduced previously.

Table 4 shows the displacements of the four stiffeners at the tip. The points are located in
the centre of the cross-section of the stiffener. The fig.10 shows the values of the shear stresses
in the panel. The results of the BS are not reported because this model is not able to get accurate
results in this type di structures as well as the classical models. The main assumption of these
methods is that the cross section (so also the ribs) are rigid within their planes. In fig.11 the
deformed shape of the wing box is showed. Dashed lines are the edges of the undeformed shape
instead the continuous lines represent the deformation.

(a) Wing Box (b) 1D formulation

Figure 8. Tapered formulation.

Table 4. Displacement w[m] of the center tip point of the stiffener .

DOF Point 1 Point 2 Point 3 Point 4
20L9 7296 -0.0185 -0.0191 0.00312 0.00312
Solid 58560 -0.0187 -0.0195 0.00319 0.00319

Beam+Shell 37700 -0.0229 -0.0238 0.00367 0.00367

These results show how the LE models used in this analysis provide results more similar to
solid model compared to a model that merges both the 1D elements and 2D elements.
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Figure 9. Cross-section L9 distributions for the wing box.
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Figure 10. Trend of τxz and τxy vs panel height.
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Figure 11. Deformed shape of wing box.
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3.4 Tapered Wing Box with rib

In this case a rib on the tip is introduced. The load case is the same. The geometry of the
rib is showed in fig.13 which presets the L9 distributions too. The thickness is equal to the
thicknesses of the panels. Figure12 presents the geometry and the formulations used in this
section. As for the panel, the rib has the beam axis along the thickness. Table 5 shows the
displacements of the same points of the previous wing box. The table 6 show the average value
of the shear stresses in the middle plane of the panel. Instead fig.14 shows the values of these
stresses.

In the fig.15 the function of the rib can be appreciated.

(a) Wing Box (b) 1D formulation

Figure 12. Tapered formulation.

Figure 13. Cross-section L9 distributions for the rib.
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Figure 14. Trend of τxz and τxy vs panel height.
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Table 5. Displacement w[m] of the center tip point of the stiffener .

DOF Point 1 Point 2 Point 3 Point 4
20L9 9603 -0.0100 -0.0104 -0.0054 -0.0054
Solid 60831 -0.0101 -0.0106 -0.0055 -0.0055

Beam+Shell 43580 -0.0125 -0.01310 -0.0067 -0.0067

Table 6. Average τij on the panel at y = L/2 and x = t/2.

τxz [Pa] τxy [Pa] τxz [Pa] τxy [Pa]
DOF Panel 1 Panel 2 Panel 3 Panel 4

BF -8.635 2.878 -2.878 -2.878
20L9 9603 -8.856 2.890 -1.989 -2.888
Solid 60831 -8.862 2.881 -2.041 -2.877

Beam+Shell 43580 -9.654 3.279 -2.129 3.279

Figure 15. Deformed shape of wing box.
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4. CONCLUSIONS

In this document different configurations of reinforced structures are take into account. For
each structure a static analysis under a simple load case is performed through the use of a finite
elements approach based on CUF. The cases show as LE formulation is useful for describe a
multi-components structure and allows to know the behaviour of each component separately.
Moreover, this work shows the capability of these formulations to model tapered shape without
incurring in low accuracy results. From this work some main feature can be summarized in the
following list:

• through the use of these High Fidelity Reduced models, any geometry can be represented
without introducing approximations;

• results very close to those 3D can be achieved thanks the capability to have a deformable
cross-section;

• this method can deal tapered structures. Moreover, complex structures can be described;

• the results obtained is better than those from the typical methods used in these analyses
as the 1D model and 2D model.
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