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Abstarct. In this paper, the coupled and uncoupled thermoelasticity problems for a rotating 
disk subjected to thermal and mechanical shock loads are analytically solved. Axisymmetric 
thermal and mechanical boundary conditions are considered in general forms of arbitrary 
heat transfer and traction, respectively, at the inner and outer radii of the disk. To solve the 
thermoelasticity problems based on the classical and generalized coupled theories, and 
dynamic and quasi static uncoupled theories, an analytical procedure based on the Fourier-
Bessel transform is employed. Closed-form formulations are presented for temperature and 
displacement fields. The results of the present formulations are in good agreement with the 
numerical results available in the literature. The radial distribution and time history of 
temperature, displacement and stresses for the different theories of thermoelasticity in the 
disk are shown to provide a basis for the comparison of the results. 



Mohammad Ali Kouchakzadeh, Ayoob Entezari, Erasmo Carrera. 

 

 2

1 INTRODUCTION 

Rotating disks subjected to thermal loads are widely used in many engineering 
applications. In some of these applications, the disks may be exposed to sudden temperature 
changes in short periods of time. These sudden changes in temperature can cause time 
dependent thermal stresses in the disks. Thermal stresses due to large temperature gradients 
are higher than the steady state stresses. These large stresses occur before reaching the steady 
state condition. In such conditions, the disk should be designed with consideration of transient 
effects. 
When a structure is exposed to a thermal shock load, the theory of uncoupled thermoelasticity 
does not present accurate results. In this case, the theories of coupled thermoelasticity which 
simulate the mutual dependency between temperature and displacement fields are necessary. 
In the recent years, theories of classical and generalized coupled thermoelasticity have 
received more attention and are developed by many researchers, due to their use in advanced 
structural design problems. Since the analytical solution of the coupled thermoelasticity 
equations are mathematically difficult to achieve, numerical methods are often used to solve 
these problems, especially if the boundary conditions are complicated.  
Many studies have been done on the numerical methods of solution for these problems. A few 
number of these studies are focused on the numerical solution to the coupled thermoelasticity 
problem in disks. Bagri and Eslami [1] studied the generalized coupled thermoelasticity of 
isotropic annular disk, based on the Lord–Shulman (LS) model. They transformed the 
governing equations into the Laplace domain using the Laplace transform; and employed the 
Galerkin finite element method to solve the system of equations in the space domain. In this 
study, the actual physical quantities in the time domain were obtained applying the numerical 
inversion of the Laplace transform. Using the same method, Bakhshi et al. [2]; and Bagri and 
Eslami [3] based on classic and Lord–Shulman theories, respectively, studied the coupled 
thermoelasticity of FGM annular disk. 
Number of papers that presented a closed form analytical solution for coupled 
thermoelasticity problems is limited. Most of the published analytical studies are limited to 
those of an infinite body or a half-space, where the boundary conditions are simple. In the 
recent years, some analytical solutions for bounded geometries with specified boundary 
conditions have been presented by a few researchers. The coupled thermoelasticity problem in 
a FGM beam are analytically solved by Abbasi et al. [4] using the finite Fourier 
transformation method. Afshar et al. [5] investigated two dimensional coupled 
thermoelasticity problem in a FGM beam subjected to lateral thermal shock. They combined 
the method of finite Fourier series with the Galerkin FE method to solve the govering 
equations. Jabbari et al. [6, 7] presented an analytical solution for the classic coupled 
thermoelasticity problems in spherical and cylindrical coordinates. To solve the governing 
equations, they used the Fourier expansion and eigenfunction methods. Following these 
studies and using the same methods, Jabbari and Dehbani [8, 9] obtained an analytical 
solution for the LS generalized coupled thermoporoelasticity problems in spherical  and 
cylindrical coordinates. Akbarzadeh et al. [10] presented the analytical solution for coupled 
thermoelasticity in a FGM plate under lateral thermal shock. The analysis was based on the 
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third-order shear deformation theory. They used the double finite Fourier series and the 
analytical Laplace inverse method. The coupled thermoelasticity behavior in a thick hollow 
cylinder based on GN model was studied by Hosseini and Abolbashari [11]. They solved the 
governing equations analytically using series solution in the Laplace space domain, and 
applied the numerical inverse Laplace transform method, to obtain displacement and 
temperature fields in the time domain. Shahani and Momeni [12] solved analytically the 
classic coupled thermoelasticity problem in a thick-walled sphere. They used the finite Hankel 
transform to obtain closed form solutions for temperature and displacement fields. In their 
study, it was assumed that temperatures and mechanical tractions on inner and outer surfaces 
of the sphere are specified. A fully analytical solution of the classic coupled thermoelasticity 
problem in a rotating disk are presented by Kouchakzadeh and Entezari [13]. 
The main purpose of the present study is to solve thermoelasticity problems in a rotating disk 
based on the classical and generalized coupled theories, and dynamic and quasi static 
uncoupled theories using a fully analytical procedure. The general forms of thermal and 
mechanical boundary conditions as arbitrary time dependent heat transfer and traction, 
respectively, may be prescribed at the inner and outer radii of the rotating disk. The governing 
equations are solved analytically using the finite Hankel transform. Finally, the analytical 
solutions are presented, in closed forms, for temperature and displacement fields. The results 
of this paper are verified by those obtained using the numerical method in Ref. [1]. The radial 
distributions and the time histories of temperature, displacement and stresses for the different 
theories of thermoelasticity in the rotating disk are shown and compared to each other. 

2 GOVERNING EQUATIONS 

Consider an annular rotating disk, made of isotropic material, under axisymmetric thermal 
and mechanical shock loads applied to its inner or outer radii. The equation of motion in 
radial direction for the rotating disk with constant thickness can be written as [14] 
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where ���  and ��� are radial and tangential stress components, � is radial coordinate, � is 
density, � is constant angular velocity of the rotating disk, and � is the time variable. The 
relations between the radial displacement � and the strains are 
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where ���  and ��� are the radial and tangential strain components, respectively. The stress 
components for the plane stress state, according to Hooke’s law are 
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(3) 

Here, � is the temperature change and �� and �� are obtained as 
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(4) 

where � and � are Lame constants, and � is the coefficient of linear thermal expansion. 
Equations (1) to (3) may be combined to yield the equation of motion in term of the 
displacement component as 
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(5) 

For the axisymmetric problem, the classical coupled heat conduction equation in polar 
coordinates in the absence of heat source is obtained to be [14]  
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(6) 

where �, � and �� are the thermal conductivity, specific heat and reference temperature, 
respectively.  
Equations (5) and (6) constitute the governing coupled system of equations for the classical 
theory of thermoelasticity in the problem of isotropic rotating disk with constant thickness. 
The classical coupled theory of thermoelasticity is based on the conventional energy equation 
(Eq. (6)). The parabolic nature of the energy equation in this theory, leads to the prediction of 
infinite propagation speeds for the thermal disturbances. This prediction is physically 
unrealistic and problems arise when we deal with special applications involving very short 
transient durations and sudden mechanical and thermal shock loads. On this basis, some 
modified coupled thermoelasticity models with the finite speed of wave propagation such as 
Lord-Shulman (LS), Green-Lindsay (GL), and Green–Naghdi (GN) theories have been 
proposed. The generalized coupled heat conduction equation based on the LS theory for the 
axisymmetric problem in the absence of heat source is [1, 14] 
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(7) 

where �� is relaxation time associated with LS model. The relaxation time represents the time-
lag needed to establish steady state heat conduction in an element of volume when a 
temperature gradient is suddenly imposed on the element [14, 15]. Equations (5) and (7) are 
the governing equations of the generalized coupled thermoelasticity based on LS model in the 
problem of isotropic rotating disk with constant thickness. 
For the coupled equations (5) and (7), The general forms of thermal and mechanical boundary 
conditions can be considered as heat transfer and traction, respectively, at the inner and outer 
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radii of the disk as follows 
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where �� and �� are the inner and outer radii of the disk, respectively. ��(�) to ��(�) are time 
dependent known functions applied to the inner and outer radii. ��� are constant thermal and 

mechanical parameters related to the conduction and convection coefficients, and mechanical 
properties. In general, following initial conditions may be assumed for the coupled equations 
(5) and (7) 
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Here ��(�) to ��(�) are known functions of the space coordinate �. The superscript dot (∙) 
denotes the differentiation with respect to time.  
The governing equations may be introduced in nondimensional form for simplicity. The 
nondimensional parameters are defined as 
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where / el k cV  and ( 2 ) /eV      represent the unit length and the speed of 

elastic wave propagation, respectively [1, 14]. The hat values indicate nondimensional 
parameters. Using the nondimensional parameters, the governing coupled system of Eqs. (5) 
and (7), and stress-displacement relations take the form 
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(13) 

where 2
0 ( 2 )C T c       is called the thermoelastic coupling (or damping) parameter 

[14]. For a certain isotropic material, the thermoelastic coupling parameter is a function of the 
reference temperature ��.  
From nondimensional Eqs. (11) and (12), the thermal disturbances propagate with the speed 

of �� = �1 �̂�⁄  and the speed of propagation of the elastic disturbances is unity [14, 16]. The 
value of �� is finite for the Lord–Shulman theory. When the relaxation time is zero, the 
system of Eqs. (11) and (12) reduces to that of the classical coupled thermoelasticity which 
predicts an infinite speed of propagation of thermal disturbances. 
The boundary and initial conditions (8) and (9) in terms of the nondimensional parameters can 
be written in the form 
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Here � and � are the nondimensional inner and outer radii, respectively. The hat values are 
nondimensional parameters that are defined as 
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As is evident from Eqs. (11) and (12), The theories of coupled thermoelasticity take into 
account the time rate of change of the first invariant of strain tensor in the first law of 
thermodynamics causing the coupling between elasticity and energy equations. This situation 
occurs when the rate of application of a thermo-mechanical load is rapid enough to produce 
thermal stress waves [14]. To obtain the solution for temperature and displacements and 
finally the stresses, these coupled equations must be solved simultaneously. 
If the time rate of change of imposed thermo-mechanical loads is not large enough to excite 
the thermal stress wave propagation, the effect of coupling term in the energy equation (11) 
can be negligible. In this case, the energy equation of the classical coupled theory reduces to  

 
2

2

1 ˆ 0
ˆˆ ˆˆ
T

r r tr

        
    

 (16) 

Equations (12) and (16) are the governing equations of the dynamic uncoupled 
thermaoelasticity for the rotating disk. 
In most practical engineering problems the imposed thermo-mechanical load is vary 
sufficiently slowly with the time so as not to excite inertia effects. Such problems are called 
quasi-static [14]. Neglecting the inertia term, the equation of motion (12) reduces to 
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Therefore, the quasi-static uncoupled thermaoelasticity problem in the rotating disk can be 
described by Eqs. (16) and (17). For a steady-state condition the heat conduction Eq. (16) is 
further reduced to [14] 
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This equation along with the imposed boundary conditions fully defines the field of 
temperature distribution in the disk for the steady state. 
 

3 SOLUTION OF CUOPLED THERMOELASTICITY 

The governing Equations (11) and (12) are a system of second order linear partial 
differential equations (PDE) with nonconstant (radius dependent) coefficients subjected to the 
nonhomogeneous initial and boundary conditions. These equations can be solved using the 
analytical method based on the finite Hankel transform, which can change the partial 
differential equations into solvable ordinary differential equations. To this end, first, the 
principle of superposition can be used to simplify the coupled initial-boundary value problem 
(IBVP) into simpler sub-IBVPs. 
Therefore, using the principle of superposition, the heat conduction Equation (11) along with 
the corresponding boundary and initial conditions (14) in terms of the nondimensional 
parameters (without the hat sign for convenience), can be decomposed into two following 
sub-IBVPs 
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Note that in the first sub problem, the PDE is homogeneous while the boundary and initial 
conditions are nonhomogeneous and homogeneous, respectively. In the second sub problem, 
the PDE is nonhomogeneous and may include the coupled terms while the boundary and 
initial conditions are homogeneous and nonhomogeneous, respectively. Similarly, Eqs. (12) 
and (14) may be decomposed into two following sub-IBVPs 
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2 3 2 4

1

( , ) 0 , ( , ) 0
ˆ

( ,0) ( ) , ( ,0) ( )

r

r a r b

u u u
u T r

r rr r
u u

k k u a t k k u b t
r r

u r g r u r g r



 

 
    


 
   

 

 





 
(22) 

The final solution for the temperature and displacement fields is obtained from total of two 
solutions of these sub-IBVPs as follows  

  1 2 1 2( , ) ( , ) ( , ) , ( , ) ( , ) ( , )T r t T r t T r t u r t u r t u r t    (23) 

where, The solutions of homogeneous equation corresponding to heat conduction and motion 
equations are shown by ��(�, �) and ��(�, �), respectively.  ��(�, �) and ��(�, �) are solutions 
of nonhomogeneous form of heat conduction and motion equations, respectively. 
Equations (19) and (21) are called Bessel equations and can be separately solved using finite 
Hankel transform. Using the definition of the finite Hankel transform, the transformed 
temperature and displacement can expressed as 

 
 

 

 

 





1 1 1 0

1 1 1 1

[ ( , )] ( , ) ( , ) ( , )

[ ( , )] ( , ) ( , ) ( , )

b

m m
a
b

n na

T r t T t rT r t K r dr

u r t u t ru r t K r dr




 

(24) 

Here 0( , )mK r   and 1( , )nK r   are the kernel functions related to Eqs. (19) and (21), 

respectively, and result in the following relations [17] 

 

0
0 0 21 22 0

0
0 21 22 0

( )
( , ) ( ) ( )

( )
( ) ( )

m
m m m

r b

m
m m

r b

Y r
K r J r k k Y b

r

J r
Y r k k J b

r


  


 





        
         

(25) 
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1

1 1 41 42 1

1
1 41 42 1

( )
( , ) ( ) ( )

( )
( ) ( )

n
n n n

r b

n
n n

r b

Y r
K r J r k k Y b

r

J r
Y r k k J b

r


  


 





        
         

(26) 

where ��(���) and ��(���) (or ��(���) and ��(���)) are the Bessel functions of the first and 
second kind, and of order �, (� = 0 ��� 1). �� and �� are positive roots of the following 
equations, respectively [17] 

 

0 0
11 12 0 21 22 0

0 0
21 22 0 11 12 0

( ) ( )
( ) ( )

( ) ( )
( ) ( ) 0

m m
m m

r a r b

m m
m m

r b r a

Y r J r
k k Y a k k J b

r r

Y r J r
k k Y b k k J a

r r

 
 

 
 

 

 

               
                  

(27) 

 

1 1
31 32 1 41 42 1

1 1
41 42 1 31 32 1

( ) ( )
( ) ( )

( ) ( )
( ) ( ) 0

n n
n n

r a r b

n n
n n

r b r a

Y r J r
k k Y a k k J b

r r

Y r J r
k k Y b k k J a

r r

 
 

 
 

 

 

               
                  

(28) 

Equations (27) and (28) have an infinite number of the roots, because the Bessel functions are 
periodic. According to the properties of Sturm-Liouville problem, the kernel functions are 
orthogonal with respect to the weight function �. Taking the finite Hankel transform of Eqs. 
(19) and (21), and then using the operational properties on the derivatives [17], leads to 

 2
0 1 1 1 1( )mt T T T A t    (29) 

   2
1 1 2( )nu u A t

 
(30) 

where 

 2
1 2 1

1

2
( ) ( ) ( )

d
A t f t f t

d

      
 (31) 

 4
2 4 3

3

2
( ) ( ) ( )

d
A t f t f t

d

      
 (32) 

and 
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0 0
1 11 12 0 2 21 22 0

1 1
3 31 32 1 4 41 42 1

( ) ( )
( ) , ( )

( ) ( )
( ) , ( )

m m
m m

r a r b

n n
n n

r a r b

J r J r
d k k J a d k k J b

r r

J r J r
d k k J a d k k J b

r r

 
 

 
 

 

 

 
   

 

 
   

 
 

(33) 

1T  and 1u  are obtained by solving the nonhomogeneous second order differential equations 

(29) and (30), respectively, as follows 

 
   

0 0 0

1 1
2

2 2 2
1 10

1
( ) ( )

t tt t t tT t A e e d
  

 

 
   

 
  
  

  
 (34) 

  1 20

1
( , ) ( )sin ( )

t

n n
n

u t A t d    


  (35) 

where ∆= �1 − 4����
� . The inverse finite Hankel transforms of Eqs. (24) can be defined by 

the following series [17] 

 

1
1 1 1 0

1

1
1 1 1 1

1

[ ( , )] ( , ) ( , ) ( , )

[ ( , )] ( , ) ( , ) ( , )

m m m m
m

n n n n
n

T t T r t a T t K r

u t u r t b u t K r

  

  











 

 













 (36) 

where the coefficients of the series can be computed as 

 
2 2

0 11 ( , ) , 1 ( , )m m n na K r b K r   (37) 

2

0( , )mK r   and 
2

1( , )nK r   are the square of the norm of 0( , )mK r   and 1( , )nK r  , 

respectively, on the interval [ , ]a b   with weight function r , and are defined as 

 
2 2 2 2

0 0 1 1( , ) ( , ) , ( , ) ( , )
b b

m m n na a
K r r K r dr K r r K r dr            (38) 

Due to the orthogonality properties of the kernel functions, the solutions of Eqs. (20) and (22), 

��(�, �) and ��(�, �), can be expanded in terms of functions 0( , )mK r   and 1( , )nK r  , 

respectively as follows 

 2 0 2 1
1 1 1 1

( , ) ( ) ( , ) , ( , ) ( ) ( , )mn m mn n
m n m n

T r t Q t K r u r t S t K r 
   

   

   (39) 
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where ���(�) and ���(�) are unknown time dependent functions to be found. Substituting 
Eqs. (36) and (39) into Eqs. (20) and (22) and simplifying yields 

 

 

 

2
0 0

1 1
0 0 1 1

( , )

( , ) ( , )
mn mn m mn m

n n
mn mn n n

t Q Q Q K r

K r K r
C t S S t b u b u

r r

 

 

 

           

 

     (40) 

 

   2 2 0
1 1

( , )
( , ) m

mn n mn n mn m

K r
S S K r r Q a T

r


  


   


  (41) 

Using the orthogonality conditions for 0( , )mK r   and 1( , )nK r  , multiplying both sides of 

Eqs. (40) and (41) by 0( , )krK r   and 1( , )jrK r  , respectively, and integrating from  � to �, 

yields 

  2
0 1 0 0 1 1mn mn m mn mn mn n nt Q Q Q CU t S S t b u b u            (42) 

  2 2
2 1 3mn n mn mn mS S U Q a T U      (43) 

where 

 

1 1
0

1 2

0

0 2
1 1

2 32 2

1 1

( , ) ( , )
( , )

( , )

( , )
( , ) ( , )

,
( , ) ( , )

b
n n

ma

m

b b
m

n na a

n n

K r K r
rK r dr

r r
U

K r

K r
rK r dr r K r dr

rU U
K r K r

 





 

 

    
    



  



 

 (44) 

Also, according to the the orthogonality conditions, by substituting Eqs. (39) into (20) and 
(22), respectively, the initial conditions for Eqs. (42) and (43) can be obtained. 

To solve the coupled Eqs. (42) and (43), they are decoupled by eliminating mnQ  from Eq. 

(42) using Eq. (43). Upon elimination, the decoupled equation is written as 

 
   

   

(4) 2 2 2 2 2
0 0 0 1 2 1 2

2 2 2
1 2 0 1 1 2 0 1 1 1 3

mn mn m n mn n mn m n mn

n m m m

t S S t Ct UU S CUU S S

CUU b t u u U a t T T T U

    

  

      

     

  

    
 

(45) 

Substituting Eqs. (29) into Eq. (45) yields 



Mohammad Ali Kouchakzadeh, Ayoob Entezari, Erasmo Carrera. 

 

 13

 
   

 

(4) 2 2 2 2 2
0 0 0 1 2 1 2

2 2
1 2 0 1 1 2 1 3( )

mn mn m n mn n mn m n mn

n m m

t S S t Ct UU S CUU S S

CUU b t u u U a A t U

    

 

      

   

  

   
 (46) 

���(�) can be obtained by solving Eq. (46) for ���(�) and substituting into Eq. (43) as  

  2 2
3 1

2

1
( )mn mn n mn mQ t S S U a T

U
      (47) 

Euation (46) is a nonhomogeneous ordinary differential equation with constant coefficients 
and has general and particular solutions. The complete solution of this equation may be 
represented as 

 ( ) ( ) ( )g p
mn mn mnS t S t S t  (48) 

where ( )g
mnS t  is a general solution of Eq. (46), with the right-hand terms equal zero. ( )p

mnS t  

is particular solutions which is related to boundary conditions of the problem and angular 
velocity of the disk. The characteristic polynomial corresponding to Eq. (46) is 

    4 3 2 2 2 2 2 2
0 0 1 2 0 1 2 0m n n m nt s s t CU U t s CU U s            (49) 

Solving Eq. (49) for every value of m and n gives four pairs of complex conjugate roots 
���,�(� = 1, . . . ,4), with a negative real part and an imaginary part. These roots cause four 
modes of mechanichal oscillation related to the function ���(�). The period and frequency of 
the oscillation only depend on the imaginary part. The damping of this oscillation is caused by 
the negative real part, which means the thermomechanical oscillation is stable.  
Thus, the general solution of Eq. (46) with the right-hand terms equal zero is obtained as 

 ,

4

1

( ) mn is tg
mn i

i

S t c e


  (50) 

where the constant coefficients �� are determined by substituting the complete solution of Eq. 
(46) into the initial conditions. 
Finally, the closed form solutions for the nondimensional temperature and displacement fields 
obtained from solving the governing coupled system of Eqs. (11) and (12), can be stated as 
follows  

 
1 0 0

1 1 1

1 1 1
1 1 1

( , ) ( , ) ( , ) ( ) ( , )

( , ) ( , ) ( , ) ( ) ( , )

m m m mn m
m m n

n n n mn n
n m n

T r t a T t K r Q t K r

u r t b u t K r S t K r

  

  

  

  
  

  

 

 

 

 





 (51) 

The expressions for the stress components in the disk are determined by substituting Eqs. (51) 
into (13). When the relaxation time is zero (�̂� = 0), the same mathematical procedure may be 
used to solve the classical coupled thermoelastic equations. 
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4 SOLUTION OF UNCUOPLED THERMOELASTICITY 

In the case of dynamic uncoupled thermaoelasticity problem in the rotating disk (� = 0 
and the effect of inertia term is considered), the solutions to uncoupled equations (12) and 
(16) can be separately obtained using the finite Hankel transform in a similar manner to that 
of coupled problems. 
For the case of the quasi-static thermoelasticity problem, the differential equation of heat 
conduction (16) is a Bessel-type equation. This equation can be solved in a similar way to the 
previous problems to yield the temperature field. The equation of motion (17) can be written 
in the following form 

 21
( )

T
ru r

r r r r


   
   
    

 (52) 

Integrating Eq. (52) twice and designating the two integration constants as ��(�) and ��(�) 
gives the radial displacement as 

 3 2 2
1

( )1 1
( , ) ( , ) ( )

8

r

a

c t
u r t T r t rdr r rc t

r r
   

 

(53) 

By substituting Eq. (53) into Eqs. (13), without the hat sign for convenience, the stress 
components are obtained as 

 

2 2

2

2
1 2

2 1 1 4 6
( , )

2 8 2

2 2 2

2 2

r

rr a
T r t rdr r

r
c

c
r

  
 

   

  

   

                
                




 



 

 (54) 

 
2

2 2 2
1 2

2 1
( , )

2

4 2 1 2 2 2

2 8 2 2

r

a
T r t rdr T

r
c

r c
r






 

    


     

            
                             



 

  

 (55) 

The unknowns ��(�) and ��(�) may be determined by applying the mechanical boundary 
conditions. 
 

5 RESULTS AND DISCUSSIONS 

To investigate the accuracy of the presented formulations, an example is chosen from Ref. 
[1], where the coupled thermeolasticity of a disk is analyzed using the finite element method. 
In this example, a stationary disk made of aluminum, with the Lame´ constants � = 40.4 GPa, 
� = 27 GPa and � = 23 × 10�� K��, � = 2707 kg/m�, � = 204 W/m ∙ K and � =
903 J/kg ∙ K is considered. The nondimensional inner and outer radii of the disk is given as 
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� = 1 and � = 2, respectively. The inside boundary of the disk is assumed to be radially 
fixed, but exposed to a step function heat flux. The outside boundary is traction free with zero 
temperature change. The initial conditions for the displacement, velocity, temperature, and the 
rate of temperature are assumed to be zero.  
In the case of zero angular velocity, assuming that � = 0.02 and �̂� = 0.64, the time variation 
of the nondimensional temperature and radial displacement at mid-radius of the disk are 
plotted in Figs. 1. Good agreements are observed between the results of presented analytical 
method and those obtained using the Galerkin finite element method in Ref. [1]. 

   
 Figure 1: Time history of the nondimensional temperature and displacement at mid-radius of the stationary disk 

Assuming that the disk is rotating with nondimensional angular velocity 0.01, the time 
histories of temperature and radial displacement at mid-radius of the disk for the different 
theories of thermoelasticity are shown in Fig. 2. Moreover, For these theories, the time 
histories of radial stress and tangential stress are plotted in Figs. 3 and 4, respectively. In this 
case, the reference temperature is considered to be 293 �. 

  
 Figure 2: Time history of the nondimensional temperature and displacement at mid-radius of the rotating disk 

for different theories of thermoelasticity 
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As shown in Figs. 2-4, when thermal shock load is applied, the generalized coupled theory 
based on LS model leads to larger maximum value of the curves for temperature, 
displacement and stresses compared to other theories. 
The classical coupled theory and uncpuled theories of thermoelasticity predict an infinite 
propagation speed for the thermal disturbances. In other words, when �̂� = 0  the hyperbolic 
heat conduction equation (11) reduces to a parabolic equation with infinite speed for thermal 
wave propagation. Moreover, this Fig. 2 shows that in the case of dynamic uncoupled 
solution, � = 0, the influence of temperature field on displacement filed is ignored and thus 
the radial displacement varies harmonically along the time with constant amplitudes. For 
coupled thermoelastic solutions, the displacement amplitudes are decreasing along the time 
axis. The reason is that for � ≠ 0, damping term appears in the heat conduction equation and, 
therefore, the energy dissipation occurs in the system. 

  

  
 Figure 3: Time history of the nondimensional radial stress at mid-radius of the rotating disk for different 

theories of thermoelasticity 
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 Figure 4: Time history of the nondimensional tangential stress at mid-radius of the rotating disk for different 

theories of thermoelasticity 
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 Figure 5: Radial distribution of nondimensional temperature and stress components for different 

theories of thermoeleasticity. 
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6 CONCLUSIONS 

In this study, thermoelasticity problems based on the classical and generalized coupled 
theories, and dynamic and quasi static uncoupled theories for a rotating disk are solved using 
a fully analytical procedure. Assuming that the disk is subjected to an arbitrary heat transfer 
and traction at its inner and outer radii, closed form formulations are presented for 
temperature and displacement fields. The procedure used in this work, is based on the finite 
Hankel transform. To validate the formulations, the results of this paper are compared with 
those obtained using the numerical method in the literature, which show good agreement.  
The radial distributions and time histories of temperature, displacement and stresses for the 
different theories of thermoelasticity in the disk are plotted and compared to each other. 
Comparison between different theories of thermoelasticity shows that under thermal shock 
loading, generalized coupled theory based on Lord–Shulman model predicts larger temprature 
and stresses compared to the other theories. Therefore, for specialized applications involving 
sudden temperature changes in short periods of time, the disk should be designed using some 
modified coupled thermoelasticity models with the finite speed of wave propagation such as 
Lord-Shulman (LS). 
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