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Abstract: In linear elasticity, most of the theories of structures in dynamics are governed by partial 

differential equations of motion. Among the others, the Finite Element Method (FEM) is a numerical 

technique aiming at solving the above problem by reducing it in a system of algebraic equations. 

Although being very popular, FEM suffers of some well-known problems and it is limited to the low-

frequency range. An alternative method is the Dynamic Stiffness Method (DSM), which allows to solve 

the differential equations of motion in an exact manner with no numerical approximations. DSM has 

most of the FEM capabilities. However, unlike FEM, DSM brings to a transcendental non-linear 

eigenvalue problem and the algorithm by Wittrick and Williams, which is an iterative procedure, is 

needed to solve the frequency-dependant Dynamic Stiffness matrix. In this work, FEM and DSM are 

applied with reference to the Carrera Unified Formulation (CUF), which allows for the straightforward 

implementation of higher-order hierarchical beam theories without the need for ad hoc assumptions. 

Different structural problems are addressed, including metallic and composite lifting surfaces for free 

vibrations and aeroelastic response analyses. The results show the uncompromising accuracy of DSM 

in seeking the free vibration characteristics of the structures considered. On the other hand, it is 

demonstrated that FEM is sufficient for flutter analysis since aeroelastic phenomena only excite the 

first vibration modes. 

Keywords: aeroelasticity, beams, Carrera unified formulation, doublet lattice method, dynamic stiffness 

method, finite element method, flutter. 

1 Introduction 

Aeroelasticity plays a critical role in the design of modern aerospace vehicles. Among others, flutter is 

one of the most important aeroelastic phenomena. Flutter can occur to a structure in a flow field, and it 

consists of undamped vibrations that can lead to catastrophic collapses. Different analysis tools have 

been developed to predict flutter after the publication of the now famous report by Theodorsen [1], 

nearly 80 years ago. The doublet lattice method (DLM) emerged in the late 1960s [2]. In the present 

work, an improved version of DLM, which was recently proposed by Rodden et al. [3], has been 

coupled with a refined one-dimensional (1D) structural formulation for the flutter analysis of both 

isotropic and composite lifting surfaces.  

Refined beam models are developed within the framework of the Carrera Unified Formulation (CUF), 

which is well established in the literature for over a decade [4]. CUF is a hierarchical formulation that 

considers the order of the model, N, as a free-parameter (i.e. as an input) of the analysis or in other 

words, refined models are obtained without having the need for any ad hoc formulations. In the 

present work, beam theories using CUF [5] are obtained on the basis of Taylor-type expansions (TE). 

Classical models (Euler-Bernoulli, EBBT, and Timoshenko beam theories, TBT) can be obtained as 

mailto:alfonso.pagani@polito.it


 
 

particular cases. The strength of CUF TE 1D models in dealing with arbitrary geometries, thin-walled 

structures and identifying local effects are well known for both static [6] and free-vibration analysis [7]. 

In majority of the papers on 1D CUF, the finite element method (FEM) has been used to handle 

arbitrary geometries and loading conditions. Recently, a new approach for CUF TE theories through 

the application of the dynamic stiffness method (DSM) was provided and applications to free vibration 

analysis of isotropic [8] and composite [9] beams revealed the strength of this methodology. In the 

present paper, both FEM and DSM are used to solve the equations of motion coming from CUF TE 

refined beam models and free vibration characteristics of both metallic and laminated lifting surfaces 

are evaluated. The results from modal analyses by FEM and DSM are compared and the mode 

shapes are used with reference to DLM to carry out flutter analyses [10-12]. 

The application of FEM to CUF models is not provided here for the sake of brevity, however a detailed 

dissertation can be found in [13]. On the other hand, the extension of DSM to refined beam CUF 

models is briefly outlined hereinafter. The paper is organized as follows: (i) first CUF is introduced and 

higher-order models are formulated, (ii) secondly, the principle of virtual displacements is used to 

derive the differential governing equations and the associated natural boundary conditions, (iii) next, 

the DSM is briefly discussed, (iv) both FEM and DSM are then used to compute the natural 

frequencies and mode shapes of metallic and composite lifting surfaces and, (v) finally, flutter 

analyses are carried out through DLM and g-method [14]. 

2 Governing equations of the N-order beam model by CUF 

The adopted rectangular Cartesian coordinate system is shown in Figure 1: . The cross-section of the 

beam lies on the 𝑥𝑧-plane and it is denoted by Ω, whereas the boundaries over 𝑦 are 0 ≤ 𝑦 ≤ 𝐿. Let us 

introduce the transposed displacement vector,  

 𝒖(𝑥, 𝑦, 𝑧; 𝑡) = {𝑢𝑥 𝑢𝑦 𝑢𝑧}
𝑇

 (1) 

Within the framework of the CUF, the 3D displacement field (1) is expressed as 

 𝒖(𝑥, 𝑦, 𝑧; 𝑡) = 𝐹𝜏(𝑥, 𝑧)𝒖𝜏(𝑦; 𝑡),        𝜏 = 1,2, … , 𝑀 (2) 

Where 𝐹𝜏 are the functions of the coordinates 𝑥 and 𝑧 on the cross-section. 𝒖𝜏 is the vector of the 

generalized displacements, 𝑀 stands for the number of the terms used in the expansion, and the 

repeated subscript, 𝜏 indicates summation. TE (Taylor Expansion) 1D CUF models consist of 

McLaurin series that uses the 2D polynomials 𝑥𝑖𝑧𝑗 as 𝐹𝜏 functions, where 𝑖 and 𝑗 are positive integers. 

 

Figure 1: Coordinate frame of the beam model 

In this paper, the principle of virtual displacement is used to derive the equations of motion. 

 𝛿𝐿𝑖𝑛𝑡 = ∫ 𝛿𝝐𝑇 𝝈 𝑑𝑉 = −𝛿𝐿𝑖𝑛𝑒
𝑉

 (3) 

Where 𝝐 and 𝝈 are the strain and stress vectors, respectively. 𝛿𝐿𝑖𝑛𝑡 stands for the strain energy and 



 
 

𝛿𝐿𝑖𝑛𝑒 is the work done by the inertial loadings. 𝛿 stands as usual virtual variation operator. The virtual 

variation of the strain energy is rewritten using (2), the constitutive laws, and the linear strain-

displacement relations. After integrations by part, (3) becomes 

 𝛿𝐿𝑖𝑛𝑡 = ∫ 𝛿𝒖𝜏
𝑇 𝑲𝜏𝑠 𝒖𝑠

𝐿

𝑑𝑦 + [𝛿𝒖𝜏
𝑇 𝚷𝜏𝑠 𝒖𝑠]𝑦=0

𝑦=𝐿
 (4) 

where 𝑲𝜏𝑠 is the differential linear stiffness matrix and 𝚷𝜏𝑠 is the matrix of the natural boundary 

conditions in the form of 3 × 3 fundamental nuclei. The components of the nuclei are not given in the 

present work for the sake of brevity. They can be found in [8, 9]. The virtual variation of the inertial 

forces is also rewritten in terms of the fundamental nucleus. 

 𝛿𝐿𝑖𝑛𝑒 = ∫ 𝛿𝒖𝜏
𝐿

 ∫ 𝜌 𝐹𝜏 𝐹𝑠 𝑑Ω
Ω

 𝒖̈𝑠 𝑑𝑦 = ∫ 𝛿𝒖𝜏 𝑴𝜏𝑠 𝒖̈𝑠 𝑑𝑦
𝐿

 (5) 

Where 𝜌 is the material density and 𝑴𝜏𝑠 is the fundamental nucleus of the mass matrix. Double over 

dots stand as second derivative with respect to time (t). 

In the case of harmonic motion, 𝒖𝑠(𝑦; 𝑡) = 𝑼𝑠(𝑦) 𝑒𝑖𝜔𝑡, the equations of motion can be expressed as 

follows: 

 𝛿𝑼𝜏:    𝑳𝜏𝑠  𝑼̃𝑠 = 0 (6) 

Where the vector 𝑼̃𝑠 contains the amplitudes of the harmonically varying generalized displacements 

and their first and second derivatives. 𝑳𝜏𝑠 is the 3 × 9 matrix that contains the coefficients of the 

ordinary differential equations. Its components are not give here for the sake of brevity, but they can 

be found in [8, 9]. For a given expansion order 𝑁, the equations of motion of the generic beam theory 

can be obtained by expanding (6) for 𝜏 and 𝑠 ranging from 1 to 𝑀 = (𝑁 + 1)(𝑁 + 2)/2. In a similar 

way, the boundary conditions can be written in a matrix form as 

 𝛿𝑼𝜏:    𝑷𝑠 = 𝑩𝜏𝑠  𝑼̂𝑠 (7) 

where 𝑷𝑠 is the generalised loading vector and 𝑼̂𝑠 contains the amplitudes of the harmonically varying 

generalized displacements and their first derivatives. 𝑩𝜏𝑠 is the 3 × 6 matrix that contains the 

coefficient of the natural boundary conditions (see [8, 9]) and it has to be expanded according to 𝑁 in 

the same way of the 𝑳𝜏𝑠 matrix. 

3 Dynamic Stiffness Method 

The present free vibration problem is described by a system of ordinary differential equations (ODEs) 

of second-order in 𝑦 with constant coefficients. A change of variables is used to reduce the second 

order system of ODEs to a first-order system, 

 𝒁 = {𝑍1   𝑍2   …   𝑍𝑛}𝑇 = 𝑼̂ (8) 

Where 𝑼̂ is the expansion of 𝑼̂𝑠. In [8], an automatic algorithm to transform the expanded 𝑳 matrix of 

(6) into the matrix 𝑺 of the following linear differential system was described: 

 𝒁,𝑦 (𝑦) = 𝑺 𝒁(𝑦) (9) 

Once the differential problem is expressed in terms of (9), the solution can be written as follows: 



 
 

 𝒁 = 𝜹 𝑪 𝑒𝝀𝑦 (10) 

Where 𝝀 is the vector of the eigenvalues of 𝑺. The element 𝛿𝑖𝑗 of matrix 𝜹 is the jth component of the ith 

eigenvector of matrix 𝑺 and the vector 𝑪 contains the integration constants that need to be determined 

by using the boundary conditions. By evaluating (10) in 𝑦 = 0 and 𝑦 = 𝐿, and by applying the boundary 

conditions (7), the following matrix relation for the nodal displacements is obtained: 

 𝑼̅ = 𝑨 𝑪 (11) 

Similarly, boundary conditions for generalized nodal forces are written as follows: 

 𝑷̅ = 𝑹 𝑪 (12) 

𝑼̅ and 𝑷̅ are the vectors of the amplitudes of the harmonically varying nodal generalized 

displacements and loads, respectively. The constant vector 𝑪 from (11) and (12) can now be 

eliminated to give the DS matrix of the element as follows 

 𝑷̅ = 𝓚 𝑼̅ (3) 

Where 𝓚 is the required frequency dependant DS matrix. The DS matrix given above is the basic 

building block to compute the exact natural frequencies of a higher-order beam. It is possible to 

assemble elemental DS matrices to form the overall DS matrix of any complex structures consisting of 

beam elements. Once the global DS matrix of the final structure is obtained, the boundary conditions 

can be applied by using the well-known penalty method. For free vibration analysis of structures, FEM 

generally leads to a linear eigenvalue problem. By contrast, the DSM leads to a transcendental (non-

linear) eigenvalue problem for which the Wittrick-Williams algorithm [15] is recognisably the best 

available solution technique at present. Further details about the computation of the natural 

frequencies and the mode shapes can be found in [8]. 

4 Doublet Lattice Method 

Following [16] or [2], the normalwash in a point with coordinates 𝑥, 𝑦 due to the pulsating pressure 

jump 𝛥𝑝̅̅̅̅  in the point 𝜉, 𝜂 has the following expression:  

 
𝑤 =

1

8𝜋
∫ Δ𝑝  𝐾(𝑥0, 𝑦0, 𝜔, 𝑀)𝑑𝐴

𝐴

 (14) 

Where 𝑀 is the Mach number, ω is the circular frequency, and 𝑥0 = 𝑥 − 𝜉, 𝑦0 = 𝑦 − 𝜂. The kernel 

function (𝐾) formal expression is not reported here for the sake of brevity, it can be found in [16]. (14) 

can be numerically solved by means of the Doublet Lattice Method (DLM). In the DLM framework, a 

lifting surface is discretized in a number of panels and the following algebraic system of equations has 

to be solved:  

 
𝑤𝑖 = ∑ 𝐷𝑖𝑗Δ𝑝

𝑗

𝑁𝐴𝑃

𝑗=1
 (15) 

Where 𝑁𝐴𝑃 indicates the total number of aerodynamic panels and 𝐷𝑖𝑗 is the normal wash factor. In this 

paper 𝐷𝑖𝑗 was calculated by exploiting Rodden's quartic DLM [3]. For the sake of brevity, the 

procedure to compute the normalwash factor is not reported here, it can be found in the Rodden's 

paper. It is important to underline that the steady contribution to 𝐷𝑖𝑗 was computed via the Vortex 

Lattice Method (VLM) [17]. On the other hand, the unsteady aeroelastic analysis was carried out by 

considering a set of modal shapes as generalized motions for the unsteady aerodynamic generalized 



 
 

force generation [10-12]. 

The generalized aerodynamic matrix for a given reduced frequency (𝑘) is given by  

 
 𝑄𝑖𝑗(𝑖𝑘) = ∑ Δ𝑝𝑗

𝑁(𝑖𝑘) 𝒵 i
𝑁 𝐴𝑁

𝑁𝐴𝑃

𝑁=1
 (16) 

Where   

 𝑘 = 𝜔𝑏/𝐿, b is the reference length (equal to the half of the reference chord) and 𝐿 is the 

length of the structure.  

 Δ𝑝𝑗
𝑁(𝑖𝑘) is the pressure jump due to the j-th set of motions (modal shapes), acting on the 

𝑁-th aerodynamic panel and evaluated for a given reduced frequency. The computation of 

the pressure jump is performed by means of the DLM. 

 𝒵 i
𝑁 is the 𝑖-th motion set evaluated at the 𝑁-th aerodynamic panel. Starting from the 𝑖-th 

modal shape given by a structural model, the 𝑖-th motion set is then mapped on the 

aerodynamic panels by means of the splining process. In this work, modal shapes were 

evaluated by means of CUF 1D models and both FEM and DSM as solution procedures.  

 𝐴𝑁 is the area of the 𝑁-th panel.  

𝑸(𝑖𝑘) is a square matrix with 𝑁𝑚𝑜𝑑𝑒𝑠 × 𝑁𝑚𝑜𝑑𝑒𝑠 elements, where 𝑁𝑚𝑜𝑑𝑒𝑠 indicates the total number of 

natural modes adopted. Typically, 𝑁𝑚𝑜𝑑𝑒𝑠 ranges from 10 to 20.  

The g-method, which was introduced by Chen [14], is used in this paper to solve the flutter problem. 

The basic assumption of the g-method is based on the following approximation of the generalized 

aerodynamic matrix:  

 𝑸̃(𝑝) ≈ 𝑸̃(𝑖𝑘) + 𝑔𝑸̃′(𝑖𝑘),    for    𝑔 ≪ 1 (17) 

Where 𝑔 = 𝛾𝑘 and 𝛾 is the transient decay rate coefficient. Equation (17) leads to the g-method 

equation:  

 
[(

𝑉∞

𝑏
)

2

𝑴̃𝑝2 + 𝑲̃ −
1

2
𝜌𝑉∞

2𝑸̃′(𝑖𝑘)𝑔 −
1

2
𝜌𝑉∞

2𝑸̃(𝑖𝑘)] {𝒒(𝑝)} = 0 (18) 

Where 𝑴̃ and 𝑲̃ are the generalized mass and stiffness matrices, 𝑝 is the nondimensional Laplace 

parameter (𝑝 = 𝑔 + 𝑖𝑘), and 𝑏 is is the reference length (usually equal to the half of the reference 

chord). The generalized aerodynamic matrix, 𝑸̃(𝑖𝑘), is provided by the unsteady aerodynamic model 

(DLM) in the frequency domain. The computation of 𝑸̃′(𝑖𝑘) has to be performed numerically. (18) can 

be written in the following form:  

 [𝑔2𝑨 + 𝑔𝑩 + 𝑪]{𝒒} = 0 (19) 

This is a second-order linear system in 𝑔. The g-method targets to find those solutions having 𝐼𝑚(𝑔) =

0. A so-called reduced-frequency-sweep technique is adopted to find a sign change of the imaginary 

part of each eigenvalue in a range of 𝑘 values. If the sign change occurs and 𝑅𝑒(𝑔) > 0, the reduced 

flutter frequency is then computed by means of a linear interpolation. 

5 Numerical Results 

Numerical assessments were carried out on isotropic and composite structures. Figure 2 shows the 

sweep and fiber orientation angles (positive directions). An 8 × 30 aerodynamic mesh was exploited 

and the first ten natural modes were used to build the generalized matrices. 



 
 

5.1 Isotropic plate wing 

An isotropic wing modeled as a flat plate was first considered. The wing model that was investigated 

has the following characteristics: 𝐿 = 0.305 m, 𝑐 = 0.076 m, and thickness  𝑡 = 0.001 m. The material 

is an aluminum alloy with elastic modulus 𝐸 = 73.8 GPa, shear modulus 𝐺 = 27.6 GPa and density 

𝜌 = 2768 Kg/𝑚3. This model was retrieved from [18]. 

Table 1 shows the first three natural frequencies for a swept back configuration (Λ = 30°).  Different 

beam models were considered, classical (EBBT and TBT) and CUF higher-order (from N = 1 to N = 4). 

The results that were obtained through both FEM and DSM approaches. Bending and torsional modes 

were detected.  

Table 1: Effect of the CUF 1D expansion order (𝑁) on the vibration frequencies (Hz) of the isotropic 

plate wing by means of DSM and FEM, Λ = 30° 

Model Method 𝑓1 𝑓2 𝑓3 

EBBT 
FEM 8.967 56.192 157.335 

DSM 8.968 56.191 157.336 

TBT 
FEM 8.966 56.189 157.320 

DSM 8.967 56.190 157.320 

N = 1 
FEM 8.966 56.185 157.308 

DSM 8.965 56.186 157.308 

N = 2 
FEM 7.199 44.462 97.939* 

DSM 7.180 44.338 97.863* 

N = 3 
FEM 7.125 43.778 74.316* 

DSM 7.105 43.654 74.412* 

N = 4 
FEM 7.093 43.529 73.296* 

DSM 7.070 43.389 73.370* 

*Torsional mode 

Table 2 shows the flutter velocity of the forward swept configuration (Λ = -30°). Again, the DSM was 

compared against FEM [10] and the influence of the beam model was evaluated. The results from the 

classical and the linear (N = 1) models were not reported since no flutter conditions were detected by 

those models. In fact, as it is clear from Table 1, the classical and the linear (N = 1) structural models 

are not able to foresee torsion and coupling phenomena, which are fundamental in flutter analysis. 

5.2 Composite plate wing 

In the second analysis case, composite wing structures were considered. Composite plate wing 

models were retrieved from [19, 20]. A graphite/epoxy composite material with the following 

characteristics was used: 𝐸𝐿 = 98.0 𝐺𝑃𝑎, 𝐸𝑇 = 7.90 𝐺𝑃𝑎, 𝐺𝐿𝑇 = 5.60 𝐺𝑃𝑎, Poisson ratio 𝜈 = 0.28 and 

𝜌 = 1520 Kg/𝑚3, where 𝐿 denotes the fibers direction and 𝑇 a direction perpendicular to the fibers. 

The length of the wing (L) is equal to 305 mm and the chord (c) is equal to 76.2 mm. The total 

 

Figure 5: Sweep and fiber orientation angles 



 
 

thickness of the laminate is 0.804 mm.  

Table 2: Effect of the CUF 1D expansion order (𝑁) on the flutter velocities of the isotropic plate wing 

by means of DSM and FEM, Λ = -30° 

Model Method Velocity (m/s) 

N = 2 
FEM 84.206 

DSM 84.086 

N = 3 
FEM 59.202 

DSM 59.366 

N = 4 
FEM 58.050 

DSM 58.188 

Symmetric six-layer laminates with constant thickness layers were considered. The plate wing was 

straight (Λ = 0°). Table 6 shows the flutter velocities for various stacking sequences and various beam 

models. DSM was used in this analysis and the results were compared with those from CLT (Classical 

Laminate Theory) plate models and with experimental results from the literature. 

Table 3: Flutter velocities (m/s) for a six-layer straight plate wing. DSM CUF beam vs CLT [19] and 

experiments [20] 

Stacking N = 2 N = 3 N = 4 

[02/90]s 

CLT, 23.0 

EXP, 25 

23.3 23.3 23.2 

[45/-45/0]s 

CLT, 40.1 

EXP, > 32 

43.3 40.4 40.4 

[452/0]s 

CLT, 27.5 

EXP, 28 

32.5 26.9 26.7 

[302/0]s 

CLT, 27.1 

EXP, 27 

29.3 26.3 26.3 

6 Conclusions 

In this paper both FEM and DSM have been exploited to solve governing equations of refined CUF 

beam models and to carry out free vibration analyses of isotropic and composite plate wings. The 

results have been then used with reference to DLM and g-method to detect the flutter conditions. The 

conducted anayses draw the following conclusions: 

 CUF is a very powerful tool to analyze the free vibration characteristics of isotropic and 

composite structures. 

 As far as flutter analyses are concerned, the present 1D approach provides results that 

perfectly match those ones from 2D FEM and experiments. 

 The adoption of refined beam models is compulsory to detect flutter. This is due to the 

influence of the bending-torsion coupling. 

 DSM is an exact method to solve the present refined CUF models. However, FEM still yields 

acceptable results for both free vibration and flutter analyses. 
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