
Abstract

This paper is concerned with linearized elastic buckling analysis of columns. The

Carrera unified formulation (CUF) is used to formulate variable kinematics beam the-

ories. According to the CUF, Taylor-like polynomials of order N are used to interpo-

late the cross-sectional displacement field. By using the strong form of the principle of

virtual displacements, governing equations and natural boundary conditions are for-

mulated in terms of fundamental nuclei, whose formal expressions do not depend on

the order of the theory N. The dynamic stiffness matrix is straightforwardly developed

and the algorithm of Wittrick and Williams is used as solution technique to compute

critical buckling loads for a number of solid and thin-walled metallic and composite

beam-columns. The results computed using the proposed method are compared with

those available in the literature. The accuracy and efficiency of the current approach

as well as its capability to deal with bending-torsion and coupled buckling modes are

demonstrated.

Keywords: buckling analysis, Carrera unified formulation, beams, dynamic stiffness

method.

1 Introduction

Linearized buckling analysis of axially loaded beam-columns plays an important role

in the design of aerospace, civil and other engineering structures. Several methodolo-

gies to solve the problem have been developed during the years and there are excellent

texts on the subject, see for example Timoshenko [1] and Matsunaga [2].

In most of the classical works on column buckling, it has been assumed that when

the equilibrium of the column is disturbed, it becomes unstable due to bending in a

plane of symmetry of the cross-section. There are cases of practical interest where
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the column may buckle due to twisting or due to a combination of both twisting and

bending. Such types of torsion or bending-torsion buckling are particularly preva-

lent in columns of thin-walled cross-sections, which generally exhibit low torsional

rigidity. Some noteworthy contributions on instability of thin-walled columns are due

to Wagner [3], Goodier [4] and Vlasov [5], amongst others. More recent papers on

this topic can be found in Vo and Lee [6, 7] and Kim et al. [8]. In essence, Vo

and Lee [6, 7] developed an analytical model based on the shear deformable beam

theory whereas Kim et al. [8] proposed a formulation based on the displacement pa-

rameters defined at an arbitrarily chosen axis, including second order terms of finite

semitangential rotations. Furthermore, the developments on the generalized beam the-

ory [9, 10] deserve some special mention. Other contributions on the subject include

Zhang and Tong [11], Mohri et al. [12] and Beale et al. [13].

In the present work, a general formulation for buckling analysis of both solid and

thin-walled columns is proposed. The methodology can deal with pure bending or tor-

sional buckling modes as well as with coupled bending-torsion instability phenomena.

In the formulation presented, both metallic and composite columns can be analysed

with no restrictions on the cross-sectional geometry. This is achieved by exploiting the

Carrera Unified Formulation (CUF) [14], which has received wide attention in recent

years [15, 16, 17]. CUF enables the development of 1D displacement fields in an arbi-

trary, but kinematically enriched manner. The governing differential equations can, in

fact, be written in terms of the fundamental nuclei that depend nether on the order of

the theory nor on the cross-sectional geometry. In recent works, CUF has already been

applied to buckling analysis of columns by using both Finite Element Method (FEM)

[18] and a Navier type solution [19]. As it is known, FEM is a widely used numerical

method in solid mechanics which transforms the governing differential equations into

a system of algebraic equations. However, only approximate solutions are given by

FEM. On the other hand, if the Navier solution is used, no numerical approximations

are made, but of course, only simply supported boundary conditions can be addressed.

A more powerful, but elegant approach for CUF theories can be achieved through

the application of the Dynamic Stiffness Method (DSM), which was recently applied

by Pagani et al. for free vibration analysis of metallic [20] and composite [21] beams.

The DSM is appealing in free vibration and buckling analyses because unlike the

FEM, it provides exact solution of the governing equations of a structure for any

boundary conditions, once the initial assumptions on the displacements field have been

made. The uncompromising accuracy of the DSM when dealing with buckling analy-

sis has been demonstrated by Banerjee and Williams [22], Banerjee [23], Eisenberger

and Reich [24], Eisenberger [25] and Abramovich et al. [26], amongst others.

In this paper, DSM is applied to refined CUF beam models and then extended to the

linearized buckling analysis of columns, i.e. axially loaded beams. The investigation

is carried out in the following steps: (i) first CUF is introduced and higher-order mod-

els are formulated, (ii) then, the Principle of Virtual Displacements (PVD) is used to

derive the differential governing equations and the associated natural boundary con-

ditions for the generic N-order model, (iii) next, the Dynamic Stiffness (DS) matrix
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Figure 1: Beam structure.

is formulated and (iv) finally the algorithm by Wittrick and Williams [27] is used to

compute the critical buckling loads of both isotropic and composite laminated beam-

columns.

2 Carrera Unified Formulation

2.1 Preliminaries

Figure 1 shows the adopted rectangular Cartesian right-handed coordinate system,

together with the geometry of a generic beam structure. The cross-section of the

beam lies on the xz-plane and it is denoted by Ω, whereas the boundaries over y are

0 ≤ y ≤ L. Let us introduce the transposed displacement vector,

u(x, y, z) =
{

ux uy uz

}T
(1)

The linear part of the strain vector, ǫ, can be derived as follows:

ǫ = Du (2)

where D is a linear differential operator. In this work, geometric non-linearities are

introduced in the axial strain in a Green-Lagrange manner.

ǫnlyy =
1

2
(u2

x,y
+ u2

y,y
+ u2

z,y
) (3)

The suffix after the comma in Eq. (3) denotes the derivatives. Constitutive laws are

then exploited to obtain stress components to give

σ = C̃ǫ (4)

The linear differential matrix D and the components of matrix C̃ are not given here

for the sake of brevity, but they can be found in [21].

Within the framework of the CUF, the displacement field u(x, y, z) can be ex-

pressed as

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (5)
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where Fτ are the functions of the coordinates x and z on the cross-section. uτ is the

vector of the generalized displacements, M stands for the number of the terms used in

the expansion, and the repeated subscript, τ , indicates summation. The choice of Fτ

determines the class of the 1D CUF model. According to Eq. (5), TE (Taylor expan-

sion) 1D CUF models consist of a MacLaurin series that uses the 2D polynomials xi

zj as Fτ functions, where i and j are positive integers. For instance, the displacement

field of the second-order (N = 2) TE model can be expressed as

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(6)

The order N of the expansion is set as an input option of the analysis; the integer

N is arbitrary and it defines the order the beam theory. Classical Euler-Bernoulli

Beam Model (EBBM) and Timoshenko Beam Model (TBM) can be realised by using

a suitable Fτ expansions as shown in [14].

2.2 Governing equations of the N-order TE model

The principle of virtual displacements is used to derive the equations of motion.

δLint − δLσ0
yy

= 0 (7)

where Lint stands for the strain energy and Lσ0
yy

is the work done by the axial pre-stress

σ0
yy on the corresponding non-linear strain ǫnlyy. δ stands for the usual virtual variation

operator. The virtual variation of the strain energy is

δLint =

∫

V

δǫTσ dV (8)

Equation (8) is rewritten using Eq.s (2), (4) and (5). After integrations by part, it reads

δLint =

∫

L

δuT
τ K

τsus dy +
[

δuT
τ Π

τsus

]y=L

y=0
(9)

where Kτs is the differential linear stiffness matrix and Π
τs is the matrix of the natural

boundary conditions in the form of 3×3 fundamental nuclei. The explicit expressions

of the components of Kτs and Π
τs can be found in [21].

The virtual variation of the axial pre-stress is

δLσ0
yy

=

∫

L

(
∫

Ω

σ0
yyδǫ

nl
yy dΩ

)

dy (10)

After substituting Eqs. (5) and (3) into Eq. (10) and after integration by parts, one has

δLσ0
yy

= −σ0
yy

∫

L

δuT
τ K

τs
σ0
yy

us dy + σ0
yy

[

δuT
τ Π

τs
σ0
yy

us

]y=L

y=0
(11)
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where K
τs
σ0
yy

is the fundamental nucleus of the differential geometric stiffness matrix.

K
τs
σ0
yy

=







Eτs
∂2

∂y2
0 0

0 Eτs
∂2

∂y2
0

0 0 Eτs
∂2

∂y2






(12)

where

Eτs =

∫

Ω

FτFs dΩ (13)

The components of Πτs
σ0
yy

are

Π
τs
σ0
yy

=





Eτs
∂
∂y

0 0

0 Eτs
∂
∂y

0

0 0 Eτs
∂
∂y



 (14)

In a matrix form, the equilibrium equations can be therefore written as follows:

δuτ : L
τs ũs = 0 (15)

where

ũs =
{

uxs uxs,y uxs,yy uys uys,y uys,yy uzs uzs,y uzs,yy

}T
(16)

and L
τs is the 3 × 9 fundamental nucleus which contains the coefficients of the ordi-

nary differential equations. The components of Lτs are provided below and they are

referred to as Lτs
(ij), where i is the row number (i = 1, 2, 3) and j is the column number

(j = 1, 2, ..., 9)

Lτs
(11) = E22

τ,xs,x
+ E44

τ,zs,z
, Lτs

(12) = E26
τ,xs

−E26
τs,x

, Lτs
(13) = σ0

yyEτs −E66
τs

Lτs
(14) = E26

τ,xs,x
+ E45

τ,zs,z
, Lτs

(15) = E23
τs,x

−E66
τs,x

, Lτs
(16) = −E36

τs

Lτs
(17) = E12

τ,xs,z
+ E44

τ,zs,x
, Lτs

(18) = E45
τ,zs

−E16
τs,z

, Lτs
(19) = 0

Lτs
(21) = E26

τ,xs,x
+ E45

τ,zs,z
, Lτs

(22) = E66
τ,xs

−E23
τs,x

, Lτs
(23) = −E36

τs

Lτs
(24) = E66

τ,xs,x
+ E55

τ,zs,z
, Lτs

(25) = E36
τ,xs

−E36
τs,x

, Lτs
(26) = σ0

yyEτs −E33
τs

Lτs
(27) = E16

τ,xs,z
+ E45

τ,zs,x
, Lτs

(28) = E55
τ,zs

−E13
τs,z

, Lτs
(29) = 0

Lτs
(31) = E44

τ,xs,z
+ E12

τ,zs,x
, Lτs

(32) = E16
τ,zs,x

− E45
τs,z

, Lτs
(33) = 0

Lτs
(34) = E45

τ,xs,z
+ E16

τ,zs,x
, Lτs

(35) = E13
τ,zs

−E55
τs,z

, Lτs
(36) = 0

Lτs
(37) = E44

τ,xs,x
+ E11

τ,zs,z
, Lτs

(38) = E45
τ,xs

−E45
τs,x

, Lτs
(39) = σ0

yyEτs −E55
τs

(17)

5



where

Eαβ
τ,θs,ζ

=

∫

Ω

C̃αβFτ,θFs,ζ dΩ (18)

For a given expansion order, N , the equilibrium equations can be obtained in the form

of Eq. (19) as given below by expanding L
τs for τ = 1, 2, ..., (N + 1)(N + 2)/2 and

s = 1, 2, ..., (N + 1)(N + 2)/2. It reads:

L ũ = 0 (19)

In a similar way, the boundary conditions can be written in a matrix form as

δuτ : Ps = B
τs ûs (20)

where

ûs =
{

uxs uxs,y uys uys,y uzs uzs,y

}T
(21)

and B
τs is the 3×6 fundamental nucleus which contains the coefficients of the natural

boundary conditions.

B
τs =





E26
τs,x

(E66
τs − σ0

yyEτs) E66
τs,x

E36
τs E16

τs,z
0

E23
τs,x

E36
τs E36

τs,x
(E33

τs − σ0
yyEτs) E13

τs,z
0

E45
τs,z

0 E55
τs,z

0 E45
τs,x

(E55
τs − σ0

yyEτs)





(22)

For a given expansion order, N , the natural boundary conditions can be obtained in

the form of Eq. (23) by expanding B
τs in the same way as Lτs to finally give

P = B û (23)

In the case of laminated structures, matrices L and B are evaluated for each layer;

global matrices are then obtained by summing the contribution of each lamina.

3 Dynamic Stiffness Method

Equation (19) is a system of ordinary differential equations (ODEs) of second order in

y with constant coefficients. A change of variables is used to reduce the second order

system of ODEs to a first order system,

Z =
{

Z1 Z2 . . . Zn

}T
= û (24)

where û is the expansion of ûs for a given theory order and n = 6×M is the dimension

of the unknown vector as well as the number of differential equations. In [20], an

automatic algorithm to transform the L matrix of Eq. (19) into the matrix S of the

following linear differential system was described:

Z
′(y) = SZ(y) (25)
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Figure 2: Boundary conditions of the beam element and sign conventions.

Once the differential problem is described in terms of Eq. (25), the solution can be

written as follows:

Z = δCeλy (26)

where λ is the vector of the eigenvalues of S. The element δij of matrix δ is the j-th

component of the i-th eigenvector of matrixS and the vector C contains the integration

constants that need to be determined by using the boundary conditions.

Once the closed form analytical solution has been found, the generic boundary

conditions for the generalized displacements and forces need to be applied (see Fig. 2).

It should be noted that the vector Z of Eq. (26) does not only contain the displacements

but also their first derivatives. If only displacements are needed, by recalling Eq. (26),

only the lines 1, 3, 5, ..., n− 1 should be taken into account. Therefore, by evaluating

Eq. (26) in 0 and L and applying the boundary conditions as shown in Fig. 2, the

following matrix relation for the nodal displacements is obtained:

U = AC (27)

Similarly, boundary conditions for generalized nodal forces are written as follows:

P = RC (28)

The constants vector C from Eq.s (27) and (28) can now be eliminated to give the DS

matrix of one beam element as follows:

P = KU (29)

where

K = RA
−1 (30)

is the required DS matrix.

The DS matrix given above is the basic building block to compute the exact crit-

ical buckling loads of a higher-order beam. The DSM has also many of the general

features of the FEM. In particular, it is possible to assemble elemental DS matrices to

form the overall DS matrix of any complex structures consisting of beam elements.

Once the global DS matrix of the final structure is obtained, the boundary conditions

can be applied by using the well-known penalty method (often used in FEM) or by

simply removing rows and columns of the dynamic stiffness matrix corresponding to

the degrees of freedom that are zeroes.

7



3.1 The Wittrick-Williams algorithm

For linearized buckling analysis of structures, FEM generally leads to a linear eigen-

value problem. By contrast, the DSM leads to a transcendental (non-linear) eigenvalue

problem for which the Wittrick-Williams algorithm [28] is recognisably the best avail-

able solution technique at present. The basic working principle of the algorithm can

be briefly summarised in the following steps:

(i) A trial critical load −σ0
yy = λ∗ is chosen to compute the dynamic stiffness

matrix K
∗ of the final structure;

(ii) K
∗ is reduced to its upper triangular form by the usual form of Gauss elimina-

tion to obtain K
∗
△

and the number of negative terms on the leading diagonal of

K
∗
△

is counted; this is known as the sign count s(K∗) of the algorithm;

(iii) The number, j, of critical loads (λ) of the structure which lie below the trial

buckling load (λ∗) is given by:

j = j0 + s(K∗) (31)

where j0 is the number of critical buckling loads of all individual elements with

clamped-clamped (CC) boundary conditions on their opposite sides which still

lie below the trial critical buckling load λ∗.

Note that j0 is required because the DSM allows for an infinite number of critical buck-

ling loads to be accounted for when all the nodes of the structure are fully clamped so

that one or more individual elements of the structure can still buckle on their own be-

tween the nodes. Assuming that j0 is known, and s(K∗) can be obtained by counting

the number of negative terms in K
∗
△

, a suitable procedure can be devised (e.g. the

bi-section method) to bracket any critical buckling load between an upper and lower

bound of the trial load λ∗ to any desired accuracy.

4 Numerical Results

4.1 Metallic rectangular cross-section beam

A cantilever metallic beam is considered as the first illustrative example to demon-

strate the theory. The same structure was addressed in [2, 18], whose results are quoted

in this paper for comparison purposes. The beam has a rectangular cross-section and

length-to-height ratio, L/h, equal to 20. The material is aluminium alloy with elastic

modulus E = 71.7 GPa and Poisson’s ratio ν = 0.3.

Table 1 shows the first three non-dimensional critical buckling loads. The second

column shows the n-th critical buckling load from the Euler buckling formula give by

PEuler
cr = n2π2EI

L2
, with I =

bh3

12
(32)
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Mode Euler Matsunaga [2] TBM N=1 N=2 N=3

FEM [18] DSM FEM [18] DSM FEM [18] DSM FEM [18] DSM

1 1 0.992 0.990 0.993 0.993 0.993 0.993 0.993 0.992 0.992
2 4 3.873 3.875 3.886 3.884 3.886 3.885 3.887 3.873 3.874
3 9 8.387 8.422 8.444 8.437 8.444 8.444 8.451 8.387 8.391

Table 1: First three non-dimensional buckling loads (P ∗

cr = PcrL
2

π2EI
) of the metallic

beam, L/h = 20.

In column 3 the results by Matsunaga [2] are given whereas columns 4 to 7 report the

results by classical and refined models based on TE CUF models of the present paper.

The exact solution by the present DSM are compared to those from FEM, which was

used in [18]. The following comments arise from the analysis:

• Euler buckling formula overestimates the critical loads of the beam addressed,

even though a high length-to-side ratio is considered.

• Higher-order CUF theories are effective in refining the solution and the results

are in good agreement with those available in the literature.

• The critical buckling load becomes lower as the expansion order for TE CUF

models increases. This is significant because other theories give unconservative

estimates of critical buckling loads.

• The exact solutions provided with the DSM is slightly higher then those by

FEM. This is unusual and may be due to numerical problems inherent in FEM.

4.2 Channel section beam

The cantilever C-shaped section beam of Fig. 3 is now addressed. The main dimen-

sions of the cross-section are a1 = 4 cm, a2 = 2 cm, h = 10 cm and t = 0.5 cm.

The beam has a length L = 2 m and is made of homogeneous isotropic material with

elastic modulus E = 3× 104 N/cm2 and shear modulus G = 1.15× 104 N/cm2.

Table 2 shows the first three critical buckling loads by higher-order (N = 7 and

N = 8) beam models by the present CUF-DSM methodology. The results are com-

pared with those given by Vo and Lee [6], who developed an analytical model based on

the shear deformable beam theory. Figure 4 shows the second buckling mode by the

seventh-order (N = 7) CUF-DSM model. The figure clearly shows that the present

method can predict the flexural-torsional buckling load accurately. The analysis high-

lights that

• Relatively higher-order kinematics are needed to detect flexural-torsional buck-

ling modes of axially loaded thin-walled structures accurately.

• The results by the proposed CUF-DSM models are in good agreement with the

results found in the literature.
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Figure 3: Cross-section of the C-shaped beam.

Mode Present CUF-DSM Vo and Lee [6]

N = 7 N = 8
1 14.111 13.875 12.977
2 119.034 117.375 113.440
3 201.510 199.125 190.567

Table 2: Flexural-torsional buckling loads (N) for the axially compressed C-section

beam.

Figure 4: Second flexural-torsional buckling mode of the C-shaped section beam by

the seventh-order (N = 7) CUF model.
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L/h Present CUF-DSM Vo and Thai [29] Aydogdu [30]

N = 1 N = 2 N = 3 N = 4
5 4.810 4.992 4.668 4.653 4.709 4.726
10 6.929 6.937 6.751 6.750 6.778 −

20 7.663 7.677 7.618 7.618 7.620 7.666
50 7.903 7.917 7.904 7.904 7.896 −

Table 3: Effect of L/h on the non-dimensional critical load, (P ∗

cr = PcrL
2

π2E2bh3 ), of the

symmetric cross-ply beam.

4.3 Cross-ply laminated beams

A simply-supported composite rectangular beam is now analysed. The lay-up is a

symmetric cross-ply [0◦/90◦/0◦]. Each layer has the same thickness and is made of

an orthotropic material with following elastic constants:

E1/E2 = 10, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25

where 1 stands for the fibre direction and (2, 3) are two directions orthogonal to 1.

Table 3 shows the first buckling load for different length-to-side ratios, L/h. In

columns 2 to 5 the results from the present CUF-DSM method with higher-order beam

models are given and compared with those from Vo and Thai [29] and Aydogdu [30].

The following comments are worth noting:

• Higher-order kinematics is needed as the length-to-side ratio decreases.

• According to the fourth-order (N = 4) CUF model, reference beam theories

[29, 30] overestimates the first critical load if short beams are considered.

• The present method is effective even though composite cross-ply beams are

analysed.

• The DSM is an effective and powerful means for the solution of CUF models.

5 Conclusions

Using the Carrera Unified Formulation, the governing equations of axially loaded

higher-order beams have been formulated in a compact and concise notation. The

exact dynamic stiffness matrix has been subsequently developed and the algorithm of

Wittrick and Williams has been used to determine the critical buckling loads. Differ-

ent structures have been analysed and the results from the present methodology have

been compared to those available in the literature. The results from the theory clearly

shows the strength of the CUF-DSM method, which can be successfully applied to

linearized buckling analysis of both compact and thin-walled metallic beams as well

as composite laminates.
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