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Abstract: This paper proposes an innovative approach that is based on 1D (beam) advanced models 
for the damage analysis of composite structures. The present 1D formulation stems from the Carrera 
Unified Formulation (CUF) and it leads to a Component-Wise (CW) modelling. By means of the CUF, 
any-order 2D and 1D structural models can be developed in a unified and hierarchically manner and 
they provide extremely accurate results with very low computational costs. The computational cost 
reduction in terms of total amount of DOFs ranges from 10 to 100 times less then shell and solid 
models, respectively. The 1D CUF formulation, which is based on the use of Lagrange polynomials to 
describe the cross-section displacement field of the structure, is exploited in this paper. Such 1D 
models lead to the CW since each component of a complex structure can be modelled through a 
refined 1D model based on Lagrange expansions. The adoption of only 1D models to model complex 
structures improves the multi-dimension coupling capabilities and reduces the computational costs to 
a great extent. The CW can lead to a multi-scale approach for composites since each typical 
component of a composite structure can be modelled through the 1D CUF models and, moreover, 
different scale components can coexist in the same model with no need of further modelling tools. A 
detailed physical description of a real structure can be obtained since each component can be 
modelled with its own material characteristics, that is, no homogenization techniques are required. 
Furthermore, Although 1D models are exploited, the problem unknown variables can be placed on the 
physical surfaces of the real 3D model, that is, no artificial surfaces or lines have to be defined to build 
the structural model. In this paper, damaged composite structures are analysed by means of the CW 
approach. Static and dynamic responses are carried out and comparisons against classical 
approaches are provided to show the enhanced capabilities of the present approach in obtaining 3D-
like accuracy with very low computational costs. 
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composites. 

1 Introduction 

Computational models for the analysis of damaged composite structures should be able to provide 
very accurate displacement, strain and stress fields. The proper modelling of multiscale components – 
layers, fibres and matrix – enhances the accuracy of computational models to a great extent.  
Currently, most of the techniques that have been developed for these tasks are based on very 
cumbersome numerical models, such as the 3D solid finite elements. The accurate structural analysis 
of complex structures is almost impossible due to the enormous number of degrees of freedom that is 
required.  
Beam models are widely adopted for many structural engineering applications because they are 
computationally cheaper and less cumbersome than plate, shell and solid finite elements. The 
classical beam theories are those by Euler-Bernoulli and Timoshenko [1-3]. None of these theories 
can detect non-classical effects such as warping, out- and in-plane deformations, torsion-bending 
coupling or localized boundary conditions (geometrical or mechanical). These effects are important 
when, for instance, small slenderness ratios, thin walls, the anisotropy of the materials and damages 
are considered.  
Many methods have been proposed over the last decades to enhance classical theories and to extend 
the application of 1D models to any geometry or boundary condition. Among the others, some of the 
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most recent developments in 1D models have been obtained by means of the following approaches:  
the introduction of shear correction factors [1]; the use of warping functions based on the Saint-Venant 
solution [4, 5], asymptotic approaches [6]; generalized beam theories (GBT) [7]; higher-order beam 
models [8, 9].   
This work exploits the Carrera Unified Formulation (CUF) for higher-order 1D models [2, 3, 10]. CUF 
was initially developed for plates and shells [10, 11], more recently for beams [2, 12, 13]. In CUF 
models, the displacement field above the cross-section is modelled through expansion functions 
whose order is a free parameter of the analysis. This means that any-order structural models can be 
implemented with no need of formal changes in the problem equations and matrices. CUF can 
therefore deal with arbitrary geometries, boundary conditions and material characteristics with no need 
of ad hoc formulations.  
CUF 1D models have recently been applied to static [12-14] and free-vibration [15] analyses. The 
most recent extension of CUF models is the so-called Component-Wise approach (CW) that is based 
on the use of  Lagrange polynomials for the cross-section displacement field description [16,17]. 
Multicomponent structures (e.g. aircraft wings or fibre reinforced composites) are modelled through a 
unique 1D formulation [18-21]. 1D CW leads to solid-like accuracies with far less computational costs 
than shell and solid FEs.  
In this work, CUF 1D models are exploited to analyse damaged structures through the free vibration 
analysis. This paper outlines guidelines for the damage analysis of structures and it highlights the 
enhanced capabilities of the present formulation which can be easily adopted to detect the structural 
behaviour of damaged structures. 

2 Carrera unified formulation 

The beam cross-section displacement field is described by an expansion of generic functions (F 𝜏) 
 

 𝒖 = 𝐹𝜏𝒖𝜏,        𝜏 = 1,2, . . . . ,𝑀 (1) 
 

Where F 𝜏 are functions of the cross-section coordinates (x, z), 𝒖𝜏 is the displacement vector and M 
stands for the number of terms of the expansion. Taylor-like polynomial expansions of the 
displacement field above the cross-section of the structure can be used. The order of the expansion is 
arbitrary and is set as an input of the analysis. For example, the second-order model (N = 2) is based 
on the following displacement field: 
 

𝑢𝑥 = 𝑢𝑥1 + 𝑥  𝑢𝑥2 + 𝑧  𝑢𝑥3 + 𝑥2  𝑢𝑥4 + 𝑥𝑧  𝑢𝑥5 + 𝑧2  𝑢𝑥6
𝑢𝑦 = 𝑢𝑦1 + 𝑥  𝑢𝑦2 + 𝑧  𝑢𝑦3 + 𝑥2  𝑢𝑦4 + 𝑥𝑧  𝑢𝑦5 + 𝑧2  𝑢𝑦6
𝑢𝑧 = 𝑢𝑧1 + 𝑥  𝑢𝑧2 + 𝑧  𝑢𝑧3 + 𝑥2  𝑢𝑧4 + 𝑥𝑧  𝑢𝑧5 + 𝑧2  𝑢𝑧6

 (2) 

 
The 1D model described by Eq. (2) has 18 generalized displacement variables: three constant, six 
linear, and nine parabolic terms. Lagrange polynomials can be used as well. For the sake of brevity, 
the Lagrange polynomial expressions are not reported here, they can be found in [3]. 
The governing equations were derived by means of the Principle of Virtual Displacements (PVD). A 
compact form of the virtual variation of the strain energy can be obtained as shown in [2, 3],  
 

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝒒𝜏𝑖𝑇 𝑲𝑖𝑗𝜏𝑠𝒒𝑠𝑗 (3) 
 

Where 𝑲𝑖𝑗𝜏𝑠 is the stiffness matrix written in the form of the fundamental nuclei. Superscripts indicate 
the four indexes exploited to assemble the matrix: 𝑖 and 𝑗 are related to the shape functions, 𝜏 and 𝑠 
are related to the expansion functions. The fundamental nucleus is a 3 × 3 array which is formally 
independent of the order of the beam model. In a compact notation, the stiffness matrix for a given 
material property set can be written as:  



 
 
 

 

𝐊𝑖𝑗𝜏𝑠  =     𝐼𝑙
𝑖𝑗 ⊲  (𝐃𝑛𝑝

 𝑇  𝐹𝜏 𝐈)[ 𝐂�𝑛𝑝 (𝐃𝑝 𝐹𝑠 𝐈)  +  𝐂�𝑛𝑛 (𝐃𝑛𝑝 𝐹𝑠 𝐈)]   +
   (𝐃𝑝

 𝑇 𝐹𝜏 𝐈)[ 𝐂�𝑝𝑝 (𝐃𝑝 𝐹𝑠 𝐈)  + 𝐂�𝑝𝑛 (𝐃𝑛𝑝 𝐹𝑠 𝐈)]  ⊳ Ω  +

    𝐼𝑙
𝑖𝑗,𝑦 ⊲  � �𝐃𝑛𝑝

𝑇  𝐹𝜏 𝐈�𝐂�𝑛𝑛  +  �𝐃𝑝
 𝑇 𝐹𝜏 𝐈�𝐂�𝑝𝑛�𝐹𝑠  ⊳ Ω  𝐈Ω 𝑦   +        

    𝐼𝑙
𝑖,𝑦𝑗  𝐈Ω 𝑦 ⊲  𝐹𝜏 [ 𝐂�𝑛𝑝 (𝐃𝑝 𝐹𝑠 𝐈)  +  𝐂�𝑛𝑛 (𝐃𝑛𝑝 𝐹𝑠 𝐈)]  ⊳ Ω  +

    𝐼𝑙
𝑖,𝑦𝑗,𝑦  𝐈Ω 𝑦  ⊲  𝐹𝜏 𝐂�𝑛𝑛 𝐹𝑠  ⊳ Ω  𝐈Ω 𝑦

 (4) 

 
 where  
 

𝐈Ω 𝑦  =  �
0 1 0
1 0 0
0 0 1

�     ⊲  …  ⊳ Ω =  ∫  Ω …   𝑑Ω (5) 

  
(𝐼𝑙
𝑖𝑗 , 𝐼𝑙

𝑖𝑗,𝑦 , 𝐼𝑙
𝑖,𝑦𝑗 , 𝐼𝑙

𝑖,𝑦𝑗,𝑦)  =  ∫  𝑙 (𝑁𝑖  𝑁𝑗 ,𝑁𝑖  𝑁𝑗,𝑦 ,𝑁𝑖,𝑦  𝑁𝑗 ,𝑁𝑖,𝑦  𝑁𝑗,𝑦)  𝑑𝑦 (6) 
 

 𝐂� is the material coefficient matrix and 𝐃 is the differential operator matrix. It should be underlined that 
the formal expression of 𝑲𝑖𝑗𝜏𝑠   

1. Does not depend on the expansion order.  
2. Does not depend on the choice of the 𝐹𝜏 expansion polynomials.  

 These are the key-points of CUF which permits, with only nine FORTRAN statements, to implement 
any-order of multiple class theories.  
 The virtual variation of the work of the inertial loadings is  
 

𝛿𝐿𝑖𝑛𝑒 = ∫  𝑉 𝜌𝒖̈𝛿𝒖 𝑇𝑑𝑉 (7) 
 

 where 𝜌 stands for the density of the material, and  𝒖̈ is the acceleration vector. Equation (7) can be 
rewritten in a compact manner as follows:  
 

𝛿𝐿𝑖𝑛𝑒 = 𝛿𝒒𝜏𝑖𝑇 𝑴𝑖𝑗𝜏𝑠𝒒̈𝑠𝑗  (8) 
 

 Where 𝑴𝑖𝑗𝜏𝑠 is the mass matrix in the form of the fundamental nucleus whose components can be 
found in [2, 3]. 
 
3 Damage modelling 

A basic damage modelling approach was adopted in this work. Fig. 1 shows an example of locally 
damaged structure. In the damaged zone, the material characteristics were modified according to the 
following formulas: 
 

𝐸𝑑  =  𝑑 ×  𝐸 𝑤𝑖𝑡ℎ 0 ≤  𝑑 ≤  1, 𝐸0 =  𝐸;  𝐸0.9  =  0.9 × 𝐸 ; … . ;  𝐷0.1  =  0.1 × 𝐸             (9) 
 
 
 

Damages were introduced in different portions of the structure as will be shown in the result section of 
this paper. 



 
 

 
Figure 1: A locally damaged structure 

 

4 Results and discussion 

4.1 Isotropic beam 

A square cantilever beam was considered, aluminium was used (E = 75 GPa, ν = 0.33, ρ = 2700 
Kg/m3). The length of the beam (L) was set equal to 2 m and the height (h) equal to 0.2 m. Damage 
was introduced at the root of the beam, see Fig. 2. 

 

Figure 2: Damage at the root of a cantilever 

 

Table 1 shows the first bending and torsional frequencies of the beam via different 1D models. A solid 
FE model was built in Abaqus for comparison purposes. The total amount of degrees of freedom 
(DOFs) of each model is shown to compare computational costs. 

 

  

Table 1: First bending and torsional frequencies (Hz) of the damaged isotropic beam (E0.1), 1D CUF 
models vs. Abaqus Solid model 

Model 
DOFs 

EBBT 
183 

TBT 
305 

N = 1 
549 

N = 2 
1098 

N = 3 
1647 

N = 4 
2196 

Solid 
139587 

Bending 20.8 20.7 20.7 21.3 21.3 21.2 21.1 
Torsional - - 233.9 233.9 233.9 218.3 216.0 

 



 
 
Table 2 shows the effect of the damage intensity on the first bending and torsional frequencies. A 
fourth-order 1D CUF model was compared with a solid model.  

Table 2: First bending and torsional frequencies (Hz) of the damaged isotropic beam, CUF N = 4 
model (2196 DOFs) and Abaqus Solid model (139587 DOFs) 

Model E1 E0.9 E0.8 E0.7 E0.6 E0.5 E0.4 E0.3 E0.2 E0.1 
CUF  42.5b 41.7b 40.8b 39.7b 38.4b 36.8b 34.7b 31.9b 27.8b 21.2b 
Abaqus  42.4b 41.6b 40.7b 39.6b 38.3b 36.7b 34.5b 31.7b 27.7b 21.1b 
           
CUF  372.1t 368.1t 363.3t 357.4t 349.8t 339.9t 326.3t 306.6t 275.4t 218.3t 
Abaqus  369.7t 365.8t 360.9t 355.0t 347.4t 337.5t 323.8t 304.1t 272.9t 216.0t 
 

The following comments hold: 

• Refined beam models are mandatory to detect the damage effects.  
• The detection of torsional models can be carried out by means of refined models only. As it is 

well knows, classical beam models cannot deal with torsion. 
• Results from 1D CIF models perfectly match those from solid models. 
• The computational costs of 1D CUF models are extremely lower than solid ones. 

 

4.2 Orthotropic beam 

A rectangular cross-section beam was considered. The length of the beam (L) equal to 2 m, the width 
(b) equal to 0.1 m and the thickness (h) equal to 1 mm. An orthotropic material was considered, with 
EL = 40 GPa, ET = EZ = 4 GPa, G = 4 GPa, ν = 0.25 and ρ = 1600 Kg/m3. Figure 3 shows the damage 
distribution along the thickness, the entire beam span was damaged.  
 

 

Figure 3: Damage distribution above the cross-section of the orthotropic beam 

 

Table 2 presents the first bending and torsional frequencies for different damage levels, results were 
obtained through a fourth-order model (N = 4).  Figure 4 shows the types of modal shapes for different 
beam models. It can be stated that 
 

• Damage influences the natural frequencies of the beam. 
• Refined models are needed to detect torsional modes. 

 



 
 
Table 2: First bending and torsional frequencies (Hz) of the damaged orthotropic beam, N = 4 model 

E1 E0.9 E0.8 E0.7 E0.6 E0.5 E0.4 E0.3 E0.2 E0.1 
0.60b 0.59b 0.58b 0.57b 0.56b 0.54b 0.51b 0.48b 0.43b 0.35b 
6.21t 6.15t 6.09t 6.00t 5.88t 5.75t 5.57t 5.33t 5.02t 4.62t 

 

 
Figure 4: Modal shape types for different beam models 

 

5 Conclusions 

This paper has presented a preliminary study to analyse damaged structures via refined 1D models. 
These models were built through the Carrera Unified Formulation (CUF). The CUF has hierarchical 
capabilities that allow us to deal with any-order models with no need of ad hoc formulations. Different 
structures have been analysed and the results suggest the following: 
 

• 1D CUF structural models are powerful and computationally cheap tools to analyze structures 
for different applications. 

• CUF models provide 3D-like accuracies with low computational costs. 
• 1D CUF models can deal with damaged structures, in particular, they can detect torsional 

modes. 
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