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ABSTRACT

Reinforced structures are usually analyzed using
one-dimensional (rod/beam) and two-dimensional
(plate/shell) structural elements. The present work uses
a one-dimensional (1D) structural model to analyze
thin-walled structures with longitudinal and transversal
stiffeners. The 1D model introduced in the present work
is based on the Carrera Unified Formulation (CUF).
The CUF allows any structural model to be derived
in a compact and unified form. In the present work
is derived a refined one-dimensional model which has
only displacements as unknowns. Many assessment
are proposed to show the performances of the model.
Simple and reinforced panels are considered in the
model assessment and reinforced cylindrical structures
are then investigated. Finally a simplified launcher
structural model, inspired to the Ariane 5, is analyzed.
The results are compared with those from solid and
two-dimensional/one-dimensional models.
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1. INTRODUCTION

The analysis of slender thin-walled structures, as a
launchers, is a challenging problem, in fact, when these
structures are discretized using solid FE models, the con-
straints on the element aspect-ratio force the model to
have a large number of degrees of freedoms (DOFs) and
therefore to be very computationally expensive.

The use of reduced model allows the computational cost
of the analysis to be reduced but usually afflicts the ac-
curacy of the results. Classical beam models, as Euler-
Bernoulli [1] or Timoshenko [2] beam models, are suit-
able for the analysis of slender bodies typical of the
launcher structure, but the kinematic assumptions do not
allow these models to be used in the thin-walled structure
analysis.

Different solutions have been proposed to overcome the
limitations of the classical models in order to extend the

use of 1D models to any beam geometries and with any
boundary conditions, an example can be found in the
book by Novozhilov [3]. Typical approaches consist to
introduce corrector factors, as in the books by Timo-
shenko and Goodier [4] and by Sokolnikoff [5], which
are based on shear corrector factors. Instead El Fatmi
[6] [7] introduced a warping functionφ to improve the
description of normal and shear stress of the beam. An-
other approach based on asymptotic solution was used by
Berdichevsky at al. [8], where a characteristic parameter
(e.g., the cross-section thickness for a beam) is exploited
to build an asymptotic series. This work has been the
origin of an alternative approach to constructing refined
beam theories. It is also appropriate to recall the works
by Schardt [9, 10] which developed a generalized beam
theories (GBT) widely used by Silvestre [11] for the thin-
walled structures analysis.

The 1D model introduced in the present work is based
on the Carrera Unified Formulation (CUF)Carrera [12].
The CUF allows any structural model to be derived in a
compact and unified form. In the present work is used a
refined one-dimensional model which has only displace-
ments as unknowns, this model ws introduced in [13].
If the unknowns of the problem are expressed in terms
of displacements only, a complex structure can be easily
analyzed connecting simpler one-dimensional structures,
this approach is called Component-Wise (CW)[14, 15].
The CW approach used in this work is used to analyze
thin-walled structures. Many assessment are proposed to
show the performances of the model. Simple and rein-
forced panels are considered in the model assessment and
reinforced cylindrical structures are then investigated.Fi-
nally a simplified launcher structural model, inspired to
the Ariane 5, is analyzed. The results are compared with
those from solid and two-dimensional/one-dimensional
models. Static and dynamic analyses are performed. The
use of a refined one-dimensional theory allows the model
to have e reduced number of degrees of freedom, typi-
cal of the beam theories, but, at the same time, allows
the model to detect a quasi-3D solution. Refined models
overcome the assumption of rigid cross-section and there-
fore are able to detect shell-like deformations, typical of
the thin-walled structures.

The results of the dynamic analyses show the quasi-3D
capabilities of the present model and the CW approach



has been proved to be a competitor of the solid FE mod-
els. The natural frequencies and the modes computed us-
ing the CW approach can be compared whit those from
the solid model but the present formulation has only 5%
of DOF than solid model. The results have been com-
pared also with a reduced model built using two- and
one-dimensional classical elements (1D/2D). Also in this
case, the CW approach requires a much lower number of
DOF with respect to 1D/2D model and ensure the same
level of accuracy.

2. REFINED ONE-DIMENSIONAL MODELS

2.1. Preliminaries

The coordinate frame adopted in shown in figure 1, where
y-axis is the beam axis. The beam boundaries over y are
0 ≤ y ≤ L, where L is the beam length. The displacement
vector is

u(x, y, z) =
{

ux uy uz

}T
(1)

The superscript “T′′ denotes transposition. Stress,σ, and
strain,ǫ, components are grouped as follows:

σ =
{

σxx σyy σzz σxy σxz σyz

}T
(2)

ǫ =
{

ǫxx ǫyy ǫzz ǫxy ǫxz ǫyz

}T
(3)

Linear strain-displacement relations are used,

ǫ = Du

whereD is a differential operator, the explicit formulation
of D can be found in the book by Carreraet al.[16]. The
materials is considered elastic and isotropic, therefore the
stress can be derived using the hook’s law:

σ = Cǫ

The explicit form ofC in the case of isotropic materials,
can be found in the books by Tsai [17] or Reddy [18].

2.2. Displacement formulation

In the framework of the Carrera Unified Formulation
[19, 20, 21, 16], the displacement field is assumed as an
expansion in terms of generic functions,Fτ:

u = Fτ(x, z)uτ(y), τ = 1, 2, ....,T (4)

whereFτ are defined above the cross-section.uτ is the
displacement vector andT stands for the number of terms
of the expansion.. In this work the Lagrange expansion,
LE, is used to derive refined beam models.

LE models exploit Lagrange polynomials to build 1D
higher-order theories. In this paper two type of cross-
section polynomial sets are adopted: nine-point elements,
L9, and four-point elements, L4. The isoparametric for-
mulation is exploited to deal with arbitrary shaped ge-
ometries. The L9 interpolation functions are given by
[22]:

Fτ =
1
4

(r2 + r r τ)(s2 + s sτ) τ = 1, 3, 5, 7

Fτ =
1
2

s2
τ(s

2 − s sτ)(1− r2)

+
1
2

r2
τ(r

2 − r r τ)(1− s2) τ = 2, 4, 6, 8

Fτ =(1− r2)(1− s2) τ = 9

(5)

Wherer and s from −1 to +1. More details on refined
beam models can be found in the book by Carerraet
al.[23] The Finite Element Method is used to approxi-
mate the displacement over the beam axis. The displace-
ment field can be written introducing the classical FEM
one-dimensional shape functions:

u = Fτ(x, z)Ni(y)qiτ (6)

Where indexi indicates the node of the element. In the
present work only cubic shape functions are used there-
fore each element is considered to have four nodes.

2.3. Governing equations

The governing equation can be derived using the princi-
ple of virtual displacements in the dynamic formulation:

δLint + δLine = δLext (7)

WhereLint stands for the strain energy,Line stands fro
the inertial energy andLext is the work of the external
loadings.δ stands for the virtual variation. The internal
work can be written as:

δLint =

∫

V
δǫTσdV (8)

Introducing the formulation of the stress and strain pre-
sented in Eq.s 2 and 3, and using the displacement field
introduced in Eq 6, the variation of the internal work be-
comes:

δLint =δqT
s j

∫

V
Fs(x, z)N j(y) DTCDNi(y)Fτ(x, z)dVqτi =

=δqT
s jk

i jτsqτi
(9)

ki jτs is the stiffness matrix in form of “fundamental nu-
cleus”, a 3×3 matrix with an fixed form. The stiffness ma-
trix of the element can be evaluated varying the indexes



i, j, τ ands. The explicit formulation of the fundamental
nucleus can be found in [16].

The variation of the inertial work,δLine, can be written
as:

δLine =

∫

V
δuTρüdV (10)

Considering the displacement field introduced before this
equation becomes:

δLine =δqT
s j

∫

V
Fs(x, z)N j(y)ρNi(y)Fτ(x, z)dVqτi =

=δqT
s jm

i jτsqτi

(11)

mi jτs is the mass matrix in form of “fundamental nu-
cleus”.

The variation of the external work,δLext, can be derived
in the case of a concentrated load as:

δLext = δuT P = δqT
s jFs|PN j |PP = δqT

s jp
s j (12)

whereFs|P andN j |P are the values of the shape functions
evaluated in the point there the loadP is applied. The
termsps j is the fundamental nucleus of the loading vec-
tor.

3. RESULTS

The model presented in this work has been used to per-
form of typical aerospace structures. The capabilities
of the model allow to investigate small components as
well as complex structures. The results aim to high-
light the component-wise capability therefore three dif-
ferent structure are investigated: a reinforced panel under
a static load, a modal analysis of a thin-walled cylindri-
cal structure and the modal analysis of a launcher struc-
ture including stringers and ribs. All the structures are
considered built by an isotropic aluminium alloy with a
Young’s modulus,E, equal to 73 [GPa], a density,ρ, of
2700[Kg/m3] and a Poisson’s ratio,ν, equal to 0.3.

3.1. Static analysis of a reinforced panel

A reinforced panel under static load has been investi-
gated. Fig. 1 shows the geometry of the panel and the
reference system. The structure is composed by a thin
panel reinforced with three longitudinal stiffeners with
rectangular section. Four different models have been con-
sidered, both L4 and L9 elements are used to build a
coarse and a refined mesh model. The structure is loaded
with a concentrated load,P, in the middle of the panel
with a magnitude of 20000[N]. The structure is con-
sidered clamped fory = 0[m] and y = 2[m]. Tab. 1
shows the vertical displacement in different points com-
puted using the present models. The results are com-
pared with those from a commercial code computed us-
ing a solid model. The results show that a higher-order

Figure 1: Reference system and geometry of the rein-
forced panel.

Model DOF C B A’ B’
FEM3D 63531 -4.218 -2.025 +0.242 -2.034

LE 4 2325 -2.192 -0.991 -1.499 -1.528
LE 4+ 13050 -2.913 -1.330 -0.947 -2.101
LE 9 5625 -4.075 -1.955 +0.138 -2.156

LE 9+ 14400 -4.154 -1.991 +0.254 -2.068
(+) : re f ined Mesh

Table 1: Vertical displacement,× 10−3 [m]

model is mandatory to compute accurately the vertical
displacement, the L9 elements provide the better results
but only the refined mesh, LE9+, provides results compa-
rable with those from solid model. Otherwise, the num-
ber of degrees of freedom, also for the LE9+ model, is
much more lower than in the solid model.

3.2. Dynamic analysis of a thin-walled cylinder

The modal analysis of a thin-walled cylinder has been
performed in order to assess the present model in the dy-
namic analysis. Fig.2 shows the geometry and the ref-
erence system of the structure. The structure is consid-
ered clamped at both the ends. Two model are consid-
ered, in the first case the cross-section has been approx-
imated using 12 L9 elements while in the second 16 L9
elements are used. The results have been compared with

Figure 2: Reference system and geometry of the cylinder.

those from a shell model built using a commercial code.
Tab. 2 shows the first flexural and torsional frequencies
of the structure. As expected the present model provides
accurate results. Tab. 3 show the shell-like frequency



Mode FEM2D 12L9 16L9
1st Flex 46.83 46.48 46.73
1st Tors 107.59 108.95 108.95

Table 2: First flexural and torsional frequencies , [Hz].

FEM2D 12 L9 16 L9
L = 1 M = 2 17.57 17.28 17.41

M = 3 9.43 9.34 9.40
M = 4 9.10 10.13 9.58

L = 2 M = 2 45.21 44.55 44.89
M = 3 23.26 22.58 22.98
M = 4 15.56 15.30 15.17

L = 3 M = 2 82.24 81.17 81.71
M = 3 43.49 42.12 42.89
M = 4 27.14 25.35 25.68

L = 4 M = 2 125.44 124.02 124.71
M = 3 68.71 66.56 67.74
M = 4 42.69 39.25 40.00

L = 5 M = 2 172.37 170.74 172.78
M = 3 97.79 94.85 96.42
M = 4 61.46 56.25 57.38

L : hal f − waves on cylinde axis
M : Lobes on cross− section

Table 3: Shell-like frequency[Hz]

evaluated using the present model. With shell-like are de-
noted the modes that involved a large deformation of the
cross-section that can not be detected using the classical
beam models. WithL andM are denoted the number of
half-waves on the beam axis and the number of lobes on
the cross section of the mode. The present models appear
to be able to describe accurately the dynamic behaviour
of the structure including the effects due to the deforma-
tion of the cross-section. The frequencies are compara-
ble with those from the reference model. Fig.3 shows an
example of two shell-like modes, Fig.3a shows the mode
with one half-wave on the axis and five lobes while Fig.3b

(a) Mode L=1, M=5; 14.66 [Hz].

(b) Mode L=2, M=5; 15.98 [Hz].

Figure 3: Sample of shell-like modes

depicts the same mode but with two half-waves on the
axis.

3.3. Launcher dynamic analysis

The capabilities of the present model allow complex
structure to be investigated. In this section the modal
analysis of the launcher model, reported in Fig. 4, has
been performed. The structure has a central body with
two lateral boosters. The dark areas denoted the pres-
ence of a ribs while four longitudinal stringers have been
introduced in the central body as well as in the lateral
boosters. The structure is considered free, therefore none
boundary conditions have been imposed. The two boost-
ers have been connected with the main structure at the
bottom and in the middle of the central body. The results

FEM3D FEM2D-1D LE 9
DOF 565740 408456 29682

1 0.63 0.56(−11.1%) 0.74(+17.5%)

2 5.31 4.16(−21.7%) 4.69(−11.7%)

3 6.87 6.52(−5.1%) 9.28(+35.1%)

4 7.50 6.82(−9.1%) 6.82(−9.1%)

5 8.27 - 9.62(+16.3%)

6 8.55 6.91(−19.2%) 7.93(−7.3%)

7 10.42 7.34(−29.6%) 8.94(−14.2%)

8 10.66 13.27(24.5%) 12.49(+17.2%)

Table 4: First 8 natural frequencies evaluated using dif-
ferent models.

obtained using the present model have been compared
with those from a commercial code. Two different model
has been used as reference, the first is a solid model while
the second is a mixed model where both shell and beam
elements have been used. The shells for the thin panel
and the beams for the stringers and ribs. Tab. 4 shows
the first 8 natural frequencies. The results obtained using
the present model are close to the results obtained using
the solid model. The combined 1D-2D model provides
good results but does not provide the fifth frequency. The
present model lead to a dramatic reduction in the num-
ber of the degrees of freedom, in fact, the LE model has
about 20 time less DOF than the solid model and more
than 10 time less DOF than the combined 1D-2D mod-
els. This results make the present model very attractive
in the simulation of such structures. Fig. 5 shows an ex-
ample of some modes of the launcher. It is possible to see
that the solution can be compare with a three-dimensional
solution. Both global and local modes can be detected.

4. CONCLUSIONS

In the present work a refined one-dimensional model is
used to investigate complex structures. An advanced ap-
proach, component-wise approach, has been adopted to
improve the performance of the refined one-dimensional



Figure 4: Launcher structure geometry

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 5 (e) Mode 8 (f) Mode 12

Figure 5: Example of model of the Launcher structure.

model derived using the CUF formulation. Reinforced
and thin-walled structure have been investigated consid-
ering both static and dynamic problems. A complete
launcher structure has been considered as main example
to show the performance of the present model. From the
results it is possible to state that:

• The present model is able to deal with the static and
dynamic analysis of reinforced structures;

• The present model overcomes the limitation of the
classical beam models and provides aquasi3D so-
lution;

• Single components (panels) as well as complete
structures (launchers) can be investigated using the
component-wise approach;

• The computational cost can be dramatically reduced
using the model presented in the present paper.

In conclusion the results present in this work make the
present model very attractive for the analysis of complex
structure where a large number of degrees of freedom is
required. The accuracy of the results and the computa-
tional efficiency make this model an valid alternative to
the classical analysis approach.
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