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1 Introduction

Sandwich plates with viscoelastic core are very effective in reduc-
ing and controlling vibration response of lightweight and flexible
structures, where the soft core is strongly deformed in shear,
due to the adjacent stiff layers. The theoretical work on con-
strained layer damping can be traced to DiTaranto [1] and Mead
and Markus [2] for the axial and bending vibration of sandwich
beams. Since then, different formulations and techniques have
been reported for modelling and predicting the energy dissipation
of the viscoelastic core layer in a vibrating passive constrained
layer damping structure [3–5]. Other proposed formulations in-
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clude thickness deformation of the core layer [6] and deal with the
cases where only a portion of the base structure receives treat-
ment [7].

Due to the high shear developed inside the core of the sandwich,
equivalent single layer plate theories, even those based on higher
order deformations, are not adequate to describe the behaviour of
these sandwiches, also due to the high deformation discontinuities
that arise at the interfaces between the viscoelastic core material
and the surrounding elastic constraining layers. The usual ap-
proach to analyse the dynamic response of sandwich plates uses
a layered scheme of plate and brick elements with nodal link-
age. This approach leads to a time consuming spatial modelling
task. To overcome these difficulties, the layerwise theory has been
considered for constrained viscoelastic treatments, and most re-
cently, Moreira et al. [8,9], among others, presented generalized
layerwise formulations in this scope.

A review and assessment of various theories for modeling sand-
wich composites with application to sandwich beams can be found
in the work of Hu et al. [10].

More recently, Araújo et al. [11–14] have presented and used for
optimisation and viscoelastic material identification purposes a
sandwich finite element model based on an eight nodded serendip-
ity plate element. The viscoelastic core layer is modelled accord-
ing to a higher order shear deformation theory and adjacent
elastic and piezoelectric layers are modelled using the first order
shear deformation theory. All materials are considered to be or-
thotropic, with elastic layers being formulated as laminated com-
posite plies. Passive damping is accounted for by using the com-
plex modulus approach, allowing for frequency dependent vis-
coelastic materials and active damping is incorporated through
feedback control laws for co-located control. Also in this frame-
work, Moita et al. [15] developed a simple and efficient non con-
forming triangular finite element where the viscoelastic core is
modelled according to Reissner-Mindlin laminated plate theory
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and the face layers are modelled according the Kirchhoff-Love
plate theory. Another sandwich plate model presented by Moita
et al. [16] is based on Reddy’s third order shear deformation the-
ory for the core and the face layers are also modelled according to
the classical laminated plate theory. These models also contem-
plate hybrid active-passive damping. A similar model was also
presented by Bilasse et al. [17] for non linear vibrations of sand-
wich plates.

In the present work the stiffness and mass matrices are obtained
by Carrera’s Unified Formulation (CUF), firstly proposed in [18–
20] for laminated plates and shells and extended to functionally
graded (FG) plates in [21–23]. The present formulation consid-
ers a displacement-based layerwise formulation, with linear ex-
pansion of displacements in each layer, with degrees of freedom
ux, uy, uz at each lamina interface. To the authors knowledge, it
is the first time that CUF is applied to this class of problems with
viscoelastic behaviour. The main advantage of the present formu-
lation is its versatility allowing for great flexibility in the through
the thickness approximations, which is an important feature in
sandwich structures.

The dynamic response of the finite element model is validated
using a few reference solutions from the literature.
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