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This paper proposes a new approach for the FE analysis of composite structures by means of
1D refined models that have been derived in the framework of the Carrera Unified Formulation
(CUF). CUF provides hierarchical higher-order structural models with arbitrary expansion or-
ders. Taylor- and Lagrange-type polynomials were used to interpolate the displacement field
over the element cross-section. The proposed new approach, referred to as Composite-Wise
(CW), is able to provide stress and strain fields with solid-like accuracy and very low compu-
tational cost. Within the CW approach, different scale components (fiber, matrix, laminae and
laminates) can be simultaneously considered in the same structural model. Failure analyses are
conducted by implementing well-known failure criteria. Furthermore, an integral evaluation
of failure parameters is introduced to determine critical portion of the structure where failure
could take place. Results are provided to show the enhaced capability of the present formula-
tion in the failure analysis of fiber-reinforced composite structures by the detection of detailed
displacement /stress fields with reduced computational cost.

I. Introduction

OMPOSITES provide significant advantages in performance, efficiency and costs; thanks to these features, the
Capplication of composite structures is increasing in many engineering fields. Despite the great benefits that
they provide, there are issues to be addressed, e.g. failure mechanisms, to enhance the design of composite struc-
tures. Composite structures are characterized by different length scales; referring to fiber reinforced composites,
the involved scales can be the micro- (fiber/matrix), meso- (lamina) and macro-scale (whole laminate). The
proper modeling of these scales and their interactions is of primary importance to detect reliable stress fields and
to evaluate the structural integrity of a composite structure. Many techniques are available to compute accurate
stress/strain fields in a composite structure, some of these techniques are briefly discussed hereafter.

A multi-scale approach is required when micro- and macro-scales are accounted for. An overview about the
available multiscale techniques has been provided by Lu and Kaxiras.! When also the nano-scale is taken into
account, a possible approach is based on the use of the molecular dynamics at the nano-scale level, the Repre-
sentative Volume Elements at micro-level and structural elements at the macro-scale. The Generalized Method
of Cell (GMC)?%* developed by Paley and Aboudi is an important tool in the multiscale framework. Analysis
by means of 1D and 2D components are performed in the framework of FE (Finite Element) method, a refined
technique consists in using 3D solid finite elements. These elements can be employed to discretize single compo-
nents (fibers and matrices) or to directly model the layer of a laminated structure. That is, fibers and matrices
can be modeled as being independent elements or they can be homogenized to compute layer properties. Due
to the limitations of the aspect ratio of 3D elements and to the high number of layers used in real applications,
computational costs of a solid model could be prohibitive. Classical theories which are known for traditional
beam (1D) and plate/shell (2D) structures had been improved for their application to laminates. Numerous
contributions have been presented in the literature regarding higher-order models,> ¢ Zig-zag theories™® 910 and
Layer-Wise (LW) approaches.!!"1%13 So-called global-local approaches have also been developed by exploiting
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the superposition of Equivalent Single Layer (ESL) and Layer-Wise (LW) models,'* or by using the Arlequin
method to combine higher- and lower-order theories.'® %17 The method proposed in this paper, referred to as
Component-wise (CW), is based on the 1D Carrera Unified Formulation (CUF).'® ‘Component-wise’ means that
each typical component of a composite structure (i.e. layers, fibers and matrices) can be separately modeled by
means of a single formulation. Moreover, in a given model, different scale components can be used simultaneously,
that is, homogenized laminates or laminae can be interfaced with fibers and matrices as shown in Figure 1. This
feature allows to tune the model capabilities by choosing in which portion of the structure a more detailed model
has to be used or, in other words, it make possible obtain progressively refined models up to the fiber and matrix
dimensions. Furthermore, the order of the structural model can be set as input. Because of their complexity, dam-
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2nd layer

1st layer
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]
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Figure 1. Component-Wise approach to simultaneously model layers, fibers and matrices

ages and failure mechanisms in composites are very different from those of metallic materials. They are heavily
affected by many parameters such as geometry, lay-up and boundary conditions. A wide number of criteria exist
to predict the occurrence of failure in fiber-reinforced composite materials. They can be classified depending on
the stress/strain components that are considered. A brief overview of the most important two-dimensional failure
criteria for anisotropic materials is given in Nali and Carrera,'” while Orifici et AL?° consider a 3D stress/strain
state. The World Wide Failure Exercise (WWFE) provided a comprehensive assessment of the methods to predict
the failure initiation in fiber-reiforced composites. From the WWFE, Puck failure criterion®' has emerged as the
most effective. Inspired by Puck’s assumptions, NASA Langley Research Centre has formulated some improved
criteria in 2D- and 3D-state of stress, respectively LaRC03?? and LaRC04.%3

Three different structural models are analyzed in this work. A homogeneous cantilever beam is proposed as
preliminary assessment, a solid model is employed to validate results. A single fiber-matrix cell is then considered
to display the integral approach capabilities. Last, a cross-ply symmetric laminated [0/90/0] beam is taken into
account to assess the proposed approach for complex structural configurations. Results are evaluated in terms of
strain energy and Failure Indexes according to two well known criteria. This paper is organized as follows: a brief
theoretical introduction to the present formulation is given in Section II, the theoretical background of the CUF
formulation is briefly shown in Sections III and IV. An overview about the CW approach for the evaluation of
integral parameters is given in section V and numerical examples are carried out in Section VI. Main conclusions

2 of 17

American Institute of Aeronautics and Astronautics



are drawn in Section VII.

II. CUF 1D Formulation

In the coordinate frame shown in Figure 2, the displacement vector is defined as

u(x,y,z):{ Up Uy U }T (1)

Stress, o, and strain, €, components are grouped as follows:

T T
Op = { Ozx Oyy Ozz Ogzgy Ogz Oyz } »€p = { €xz  €Eyy €zz €y €z €y } (2)
Linear strain-displacement relations are used,
€ =Du=(Dy+ Dg)u (3)
where
- _ _ _ _ _
B g 0 a% 0 0 0 g 0
0 3y 0 O 0 0 0 3y 0
0o 0 2 0o o0 £ 0 0 0
D= % | = 5 | = [Da] + (D, (4)
o 0 B ) Yy
A I R T B
2z 0 & P g 5z 0 0 g
2 0
L 0 5 5y 0 5 0 | L 0 0 & |
Constitutive laws are exploited to obtain stress components,
o=Ce (5)

The components of C' are the material coefficients whose explicit expressions are not reported here for the sake
of brevity, they can be found in Reddy.?*

Y

Z

Figure 2. Coordinate frame.

III. Hierarchical Higher-Order Models, TE and LE classes

In the CUF framework, the displacement field can be approximated through the expansion of generic functions,
Fr,
u=Fu, 1=12..M (6)
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where F. vary above the cross-section. u, is the displacement vector and M stands for the number of terms of
the expansion. According to the Einstein notation, the repeated subscript, 7, indicates summation. The choice
of F; determines the adopted class of 1D CUF model.

The Taylor Expansion class (TE) is based on Taylor-like polynomial expansions, z° 27, of the displacement field
above the cross- section of the structure (i and j are positive integers). The order N of the expansion is arbitrary
and is set as an input of the analysis. A convergence study is usually needed to choose N for a given structural
problem. For example, the second-order model, N = 2, has the following kinematic model:

Up = Ugy + T Ugy + 2 Ugy +:c2 Ug, + TZ Ugy + 22 Ugg

Uy = Uy, + T Uy, + 2 Uy, + z? Uy, + TZ Uys + 22 Uy (7)

Uy = Uy, + T Uzy + 2 Usyy + 22 Uy + TZ Usyy + 22 Uz
The 1D model described by Eqgs. 7 has 18 generalized displacement variables; three constant, six linear, and nine
parabolic terms. Classical beam theories, Euler-Bernoulli (EBBT) and Timoshenko (TBT), can be obtained as
particular cases of the N = 1 model, as shown in Carrera at Al.2°
The Lagrange Expansion class (LE) exploits Lagrange polynomials to build 1D refined models. The isoparametric
formulation is exploited to deal with arbitrary shaped geometries. The L9 interpolation polynomials are given by
Onate?®

F.=10r?+rr)(s®+ss,) T=1,3,57

Fr=3s2(s*+ss)(1—r) + ir2(r? +rr)(1—s?) 7=2,4,6,8 (8)

Fr=(1-7?)(1-5% T=9
where r and s range from —1 to +1 and r, and s, are the natural coordinates of the interpolation points above
the cross-section. The displacement field given by a L9 element is

Uz:Fl Uzl+F2um2+F3uzg+F4um4+F5uz5+F6um6+F7um7+F8uzg+F9ua:g
Uy = Fy wy, + Fy uy, + F3 uys + Fy uy, + Fs uys + Fo tuyg + F7 uy, + Fg uyg + Fo uy, (9)
Uy = F Uy + Fo Uy + F3 Usy + Fy Uy, + F5 Usy + Fo sy + Fruy, + F3 Usy + Fo Uy,

where uy,, ..., u,, are the displacement variables of the problem and they represent the pure displacement com-
ponents of each of the nine points of the L9 element. This means that LE models provide elements that have
only pure displacement variables. L6 models are obtained in the same manner, the explicit expression of these
polynomials are not reported here, they can be found in Ofiate.?%

IV. FE Formulation and the Fundamental Nucleus

The FE approach was herein adopted to discretize the structure along the y-axis, this process was conducted
via a classical finite element methodology based on the Principle of Virtual Displacements. The shape functions,
N;, and the nodal displacement vector, q.;, are used and the displacement vector becomes

u(x,y, z) = Ni(y)Fr(z,2)q,;, 1=1,2,...,. K (10)
with
T
qr; = { Qug . Qu,, Qu., } (11)

where K is the number of the nodes on the element. For the sake of brevity, the explicit forms of the shape
functions, N;, are not reported here, they can be found in Bathe.?” Elements with 4 nodes, here denoted as B4,
were used in this paper, that is, a cubic approximation along the y axis was adopted.

The stiffness matrix is obtained via the Principle of Virtual Displacements in the form of the fundamental nucleus.
The explicit forms of the 9 components of K, are not reported here, they can be found in Carrera and Petrolo.?
The strain energy is obtained via the Principle of Virtual Displacements

6Lint = 5Lea:t (12)
where
SLint = 041 KijrsQri (13)
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V. The CW approach for the evaluation of integral quantities

The CW approach allows the modelling of a fiber-reinforced composite structure up to the component scale.
Previous works have evidenced CW enhanced structural capabilities to detect accurate stress/strain fields in the
matrix, fibers, layers and interfaces of composite layered structures with low computational costs. Numerical
results on different structural problems can be found in Carrera et Al.,'®2® where comparisons with solid models
have been provided. The present work proposes to exploit this approach to evaluate integral quantities to identify
potential critical areas of a composite structure. In composite structures, failure can occurs due to fiber or matrix
collapse, debonding or delamination. To determine where failure occurs, integral quantities can be evaluated in
subdomains that can be lines, areas or volumes of the components or at lamina/fiber-matrix interfaces. After a
preliminary analysis at the macroscale level, the model capabilities can be tuned by choosing in which portion of
the structure a more detailed model has to be used. In other words, detailed models can be progressively obtained
up to the fiber and matrix subvolume dimensions to identify which part of the structure is working in the most
critical conditions. Failure index offers a punctual evaluation of the criticality in a given structure. To overcome
the puntual evaluation the CW integral approach is applied to evaluate a failure parameter related to subvolumes.
Results are given in terms of “failure index density” F'I where, F'I; is a function calculated as reported in eq.14
for a i-th subvolume.

I f‘/i FIdV;
Y
Given a criterion, the corresponding FI is integrated in the subvolume dV; and then normalized for the corre-
spondind volume V;. In order to obtain an evaluation on larger portions of the structure, subvolumes are combined
and a further index is proposed in eq. 15 where the F'I of each subvolume is summed and then normalised with
respect to NV ol that is the total number of summed subvolumes.

(14)

NVol Jy, FIdVi

* k=1 Vi
FIr==h=l Vi 1
NVol (15)

VI. Numerical results

Numerical examples have been carried out for different structural models. A homogeneous beam was considered
as first assessment. Solid comparisons were provided. Then, a single fiber-matrix cell was considered. Last, a
multilayered beam was considered with a fiber/matrix cell included in the third layer. For the homogeneous
case study, in order to validate the estimation of the integral parameter, results are compared with those of a
solid model built through 1080 20-node hexaedron elements. In Figure 3 the two employed meshes are provided
respectively for the CW model and for the solid model, one of the ten subvolumes taken into account is highlighted
by the red line. The CW mesh is obtained through one nine-points (L9) element on the cross-section and 30 B3
elements along the y-axis. The structure is clamped at one end and four bending forces are applied at the free-tip,
F = 0.025 N. In Table 1 results are shown in terms of strain energy, the first column provides CW model results
while in the second column solid results are reported. Results show that for each subvolumes the strain energy
can be evaluated with solid like accuracy with a reduced computational cost. In fact, the last row in Table 1
shows that CW approach has almost 3 times less DOF's.

Through a further subdivision in 30 subvolumes the local effect of the loading can be seen in Figure 4 where
the strain energy distribution along the beam axis is depicted. In the CW approach the simplest structural
layout is a fiber/matrix cell. Figure 5 provides a graphic description of a possible modeling refinement for the
single cell case study. A typical strategy can be based on a preliminary volume subdivision at macroscale. Where
deemed appropriate, components can be identified and finer subvolume distributions can be considered. Fiber
and matrix volumes are evaluated with their own properties. The analyzed cell is square with side h = 0.1 mm,
and L/h = 10 where L is the longitudinal length of the structure. The fiber diameter is d = 0.08 mm. The mesh
is obtained by means of 10 B3 elements along the y-axis and 20 nine-point (L9) elements on the cross-section.
Fiber and matrix material properties are shown in Table 2. For each material, failure coefficients are reported.
The subscripts T and C denote respectively the limit value in the case of tension and compression. The structure
is clamped at y = 0. Two loading configurations are analyzed as shown in Figure 6. In a first case study, four
bending force are locally applied on the matrix at the cell corners, F = 0.025 N. Then, in a second case two
loading forces, F = 0.05 N, are applied at [0, L, h/2] and [h, L, h/2]. For the evaluation of the integral quantities
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Figure 3. CW and Solid Models for the homogeneous assessment.

E; mJ
Vol CW  Solid
x10*
1 1.030 1.023
E x10°
2 8529 8.535
3 6.648 6.651
4 5.002 5.006
5 3.592 3.595
6 2416 2.420
7 1476 1.479
%108
8§ 7.703 7.738

9 3.000 3.036

10  1.301 1.470

E x10* mJ

3.917 3.914
DOFs

1647 4557

Table 1. Strain energy distribution in homogeneous beam subvolumes.

two main subvolumes of the whole structure are considered as depicted in Figure 7. Results of this preliminary
investigation are provided in Table 3 in terms of the total strain energy E, axial strain energy FE,, and shear
strain energy Es.

Furthermore, the strain energy of each subvolume, F;, is normalized with respect to the strain energy of the
whole model, E. Axial (E,;,;) and shear (E; ;) strain energies respectively normalized to the axial E,, and the
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Figure 4. Strain energy distribution along the y-axis.
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Figure 5. Component-Wise approach for volume evaluations.

ithFiber subvolume

shear F strain energy of the whole structure are also take into account. This preliminary analysis shows that
the main part of the total and axial strain energy of the cell due to the bending are localized around the clamp,
while for the the shear strain energy is around the free tip while for the torsion load the main part of the energy is
absorbed by the second subvolume. Then, a further subvolume distribution is analyzed, five parts of the structure
are considered as depicted in Figure 7.

In this second volume distribution, numerical results show that E; ;,q» and Eqy maz are in the first subvolume,
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Homogeneous  Fiber Matrix

Material Properties
E [GPa] 127.6 250.6  3.252
v [-] 0.3 0.2456  0.355
Failure Coeflicients
Maximum Stress [MPa]

XT 1730 3398.1  66.5
X¢ 1045 2052.6 255
SL 95.1 186.8 74

Table 2. Material properties and failure coefficients.

5 b o Matrix
b —’/
[ ] ° ® o ° [ ]
) o ¢ o ®
/ el®?°?,
Fiber { * ® o © °t
. 4 °

Fiber

(b) Torsion loading case

Figure 6. Loading configurations.

while F qe is in the fifth subvolume for the bending load. For the torsion case the fifth subvolume appear to be
the most stressed. Furthermore, CW approach is able to distinguish the component strain energies to determine
what is the contribution given by the fiber and by the matrix. In Table 4 results are shown for the bending
load. The superscrits “f” and “m” respectively refer to fiber and matrix. CW approach shows that in this load
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Bending Torsion

Vol E;/E Euzi/Eax E,i/E;s E,/E E,i/E;s
1/2 0.846 0.874 0.308 0.138 0.415
2/2 0.154 0.126 0.692 0.862 0.585
1/5 0.469 0.484 0.177 0.055 0.168
2/5 0.289 0.298 0.089 0.055 0.166
3/5 0.149 0.153 0.082 0.055 0.163
4/5 0.055 0.056 0.083 0.056 0.169
5/5 0.038 0.008 0.568 0.778 0.334

E mJ FE., mJ E, mJ E mJ E, mlJ

3.448 x 10 3.331 x 10®  3.257 x 10° | 1.150 x 10*  3.775 x 10°

Table 3. Strain Energy in beam subvolumes.

Figure 7. Subvolume distributions.

configuration, the main axial strain energy is absorbed by the fiber while the matrix mainly absorbs the shear

strain energy. Table 5 reports results for the torsion loading case.

For both cases, in the last fifth (5/5) it is possible to detect the local effect on the matrix due to the loading.
Focusing on the sixteen subvolumes shown in Figure 8, the strain energy at the microscale can be evaluated.
Table 6 reports that the bending loading has more effect on the matrix subvolumes 9-16 while the torsion loading
affects principally the subvolumes 11-12,15-16.
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Single cell: bending

Fiber Matrix

vol  Ef/Ef Bl El,  ElJEl | EP/E™  ERJEL ED/ET
1/2 0.873 0.874 0.591 0.509 0.872 0.046
2/2 0.127 0.126 0.409 0.491 0.128 0.954
1/5 0.483 0.484 0.326 0.275 0.488 0.039
2/5 0.298 0.298 0.180 0.171 0.293 0.005
3/5 0.153 0.153 0.167 0.088 0.151 0.004
4/5 0.057 0.056 0.164 0.033 0.056 0.008
5/5 0.009 0.008 0.162 0.423 0.012 0.945

Ef mJ Ef. mJ] Ef mJ E™ ml] E™ mJ E™ m]J

3.201 x 103 3.186 x 10> 1.569 x 10° | 2.468 x 10* 1.449 x 10* 1.688 x 10°

Table 4. Strain Energy in fiber and matrix subvolumes.

Single cell: torsion

Fiber Matrix

Vol E’/ES E!,/E! ET/E™ E™ /BT
1/2 0.501 0.506 0.006 0.042
2/2 0.499 0.494 0.994 0.958
1/5 0.200 0.202 0.002 0.028
2/5 0.200 0.203 0.002 0.014
3/5 0.200 0.203 0.002 0.000
4/5 0.200 0.202 0.003 0.032
5/5 0.199 0.190 0.989 0.925

Ef mJ Ef mJ E™ mJ] E™ mJ

3.069 x 10°  3.035 x 10° | 8.436 x 10°  7.399 x 10°

Table 5. Strain Energy in fiber and matrix subvolumes.

On the basis of the stress and strain distribution well known criteria are usually employed to detect the failure
initiation. The criteria identify an index, FI, referred to as Failure Index, that becomes the parameter that
determines the failure initiation. Points in which the index becomes greater or equal to one indicate the failure.
In this work two failure criteria are employed: the Maximum Stress (MS) and Tsai-Wu (TW) criteria. Failure
index distributions for both criteria at clamped cross-section, are shown in Figure 9 for the bending case study
where, failure occurs in the bottom portion of the fiber. Results, for both the loading case studies, are given in
terms of “failure index density” FI* in Table 7. The failure parameter FI* is evaluated on fiber and matrix,
approximations introduced by the homogenization theories are avoided.
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Figure 8. Matrix subvolumes near the free tip.

Bending Torsion
Vol ID E7T/E™  EI/E™ | E7/E™ ET/E™
1 0.004 0.006 0.000 0.003
2 0.004 0.006 0.000 0.003
3 0.003 0.003 0.006 0.014
4 0.003 0.003 0.006 0.014
5 0.004 0.006 0.000 0.003
6 0.004 0.006 0.000 0.003
7 0.003 0.003 0.006 0.014
8 0.003 0.003 0.006 0.014
9 0.079 0.123 0.003 0.013
10 0.079 0.123 0.003 0.013
11 0.164 0.117 0.241 0.220
12 0.164 0.117 0.241 0.220
13 0.079 0.123 0.003 0.013
14 0.079 0.123 0.003 0.013
15 0.164 0.117 0.241 0.220
16 0.164 0.117 0.241 0.220

Table 6. Local Effect on matrix due to the bending loads.
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Figure 9. Maximum Stress (MS) and Tsai-Wu (TW) Failure indexes over the single cell clamped cross-section
under bending loading.

The CW approach appears to be attractive in the perspective of a detailed analysis of more complex structural

configurations. Cells can be opportunely included in order to refine the model in areas that were considered critical
following preliminary analyses. As previously shown in Figure 5, subvolumes can be an entire subdomain of the
structure (i.e. a third of the cell) or, as depicted in Figure 10 for more complex configurations, entire laminae, a
whole fiber or an entire portion of matrix.
The structural analysis of a cantilever laminated beam is herein proposed. Stacking sequence of the plies is
[0/90/0]. The geometry of this model is described in Figure 10. The height (h) and the width (b) are equal to 0.6
mm and 0.8 mm, respectively. L/h = 10. For each layer h; = 0.2 mm. A fiber/matrix cell is modeled as having
a geometry of the previous analyzed cell. The mesh is obtained by means of 15 B3 elements along the y-axis and
41 L9 elements on the cross-section as depicted in Figure 12. Lamina, fiber and matrix material properties are
shown in Table 2. The structure is clamped at y = 0. Two loading configurations are analyzed as shown in Figure
11 and Figure 12. In a first case study, a bending force is locally applied on the center of the second lamina, F =
0.5 N. Then, in a second case four torsion forces, F = 1 N, are applied as shown in Figure 11.

In this structural configuration, the three layers are chosen as main subvolumes. Results are shown in Table
8 in terms of strain energy. It is possible to observe that in the bending load configuration the first and the third
lamina absorb the main part of the axial strain energy while the second absorb the 77,2% of the shear strain
energy. Torsion loading determines a mainly equal redistribution of the strain energy. Furthermore it is possible
to evaluate the strain energy absorbed by the cell included. Table 9 shows the total amount of energy absorbed,
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Bending Torsion
Fiber Matrix Fiber Matrix
Vol FI*TW FI*MS FI*TW FI*MS | FI* TW FI* MS FI* TW FI* MS
0.070 0.124 0.010 0.050 0.073 0.095 0.008 0.009

1/2 0.097 0.163 0.006 0.063 0.074 0.096 0.000 0.003
2/2 0.044 0.086 0.014 0.036 0.073 0.094 0.016 0.014

1/5 0.129 0.190 0.007 0.077 0.074 0.096 0.000 0.003
2/5 0.082 0.153 0.006 0.058 0.074 0.096 0.000 0.003
3/5 0.058 0.119 0.003 0.042 0.074 0.096 0.000 0.003
4/5 0.043 0.089 0.001 0.025 0.074 0.096 0.000 0.004
5/5 0.039 0.069 0.032 0.046 0.072 0.092 0.041 0.029

Table 7. Failure index integrated over the subvolumes normalized with respect to the number of subvolumes.

=

al

kth

Structural subvolume

ithFiber subvolume

jth Matrix subvolume

Figure 10. Component-Wise approach for volume evaluations.

and the total, axial and strain energy normalized with respect to the total, axial and shear strain energy of the
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Bending

Lamina E;/E Euzi/Eax E,i/E;s E;/E
1 0.451 0.499 0.116 0.353
2 0.099 0.003 0.772 0.302
3 0.450 0.499 0.113 0.345
E [m]] E,: [mJ] E; [mJ] E [mJ]
Laminate 5.797 x 101 5.077 x 101 6.833 x 10% | 7.330 x 102 9.671 x 10* 6.071 x 102

Table 8. Strain energy distribution in a laminate beam under bending F = 0.5 N and torsion F = 1 N loads.

F
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00000
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Fiber N

Figure 11. Laminate beam structure under torsion loading.

whole cell. Also in this case, concerning the bending load, the fiber is the component related to the axial strain
energy while the matrix that related to the shear strain energy absorption. When subjected to torsional load the
fiber absorbs the 99,2 % of the cell while the 88,3% of the shear energy is absorbed by the matrix. Evaluations
of the FI* for the maximum stress criteria are provided for the fiber/matrix cell in Table 10. Through the CW
approach, in a realistic structural configuration failure parameters can be evaluated on components properly
refining the model.
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Fiber/Matrix st
1" Lamina
Cell

Figure 12. Laminated beam model.

Bending Torsion
E;,/E Fozi/Eax E,;/E;s E,/E Eori/Eax E,;/E;
Matrix 0.026 0.015 0.741 0.875 0.008 0.883
Fiber 0.974 0.985 0.259 0.125 0.992 0.117
E [mJ] Eor [mJ] Eg [mJ] E [mJ] Eqy [mJ] Es [mJ]
Cell 2.322 x 102 2.289 x 10?2 3.432 x 10* | 2.582 x 10> 2.977 x 10> 2.515 x 103

Table 9. Strain energy distribution in a fiber/matrix cell included in a laminate beam under bending F = 5 N and
torsion F = 1 N loads.

FT* - MS
Bending | Torsion
Matrix 0.055 0.147
Fiber 0.266 0.190
Cell 0.182 0.173

Table 10. MS Failure index integrated over the fiber,matrix and whole cell subvolumes under bending F = 5 N
and torsion F = 1 N loads.

VII. Conclusion

Different structural models have been discussed in this paper for the analysis of composite structures. The
results were evaluated in terms of strain energy, failure index and a failure parameter FI*.
Comparison with solid model results was provided for the homogeneous case study. Particular attention was
given to a simple fiber-matrix cell unit in order to highlight the analysis capabilities of the formulation proposed.
Then a more complex configuration was taken into account. The CW formulation, derived through 1D CUF
structural models, can be used to model laminates, laminae, fibers and matrices separately, that is, different
scale components can be modeled by using the same 1D formulation. Cells can be opportunely included in real
configurations in order to refine the model in areas that, following preliminary analyses, were considered critical.
Numerical results suggest that:

e Preliminary analyses lead to the identification of the areas of the structure where a model refinement is
necessary. As a general guideline, to save computational cost the CW approach should be adopted where
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results from macroscale models suggest to enrich the model. Identified these areas, refined models can be
employed to obtain accurate stress/strain fields.

e Because of the solid like accuracy of the stress/strain distribution, effects due to local loads are captured
by the model,

e Results highlight how the criticality of volumes strongly depend on the load conditions.

e Integral evaluations can be obtained at microscale level up to subvolumes of the components (fiber/matrix)
with solid like accuracy. This approach can lead to progressively evaluate the criticality of the component
and to detect failure location.
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