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ABSTRACT: Refined layer-wise theories for shell and plate models are presented and discussed in this pa-
per. Higher-order models are obtained through the Unified Formulation (UF) developed by the first author
over the last decade. The effectiveness of each higher-order term is evaluated through the so-called mixed
axiomatic/asympthotic approach (MAAA). MAAA has been recently developed and can be seen as a tool to
build reduced refined models against full expansion theories. The development of reduced models is carried out
through the investigation of the effectiveness of each unknown variable on the solution for a given problem.
Reduced models are then built for various structural cases, such as thin and thick shells, layered shells and
sandwiches. Results show the enhanced capabilities of MAAA and UF to develop refined layer-wise models
with reduced computational costs.

1 INTRODUCTION

Composite panels are frequently exploited in mechan-
ical and aerospace applications. The structural anal-
ysis of these components requires appropriate mod-
els able to deal with high transverse shear and normal
deformability and the discontinuity of physical prop-
erties through the thickness of a panel. An accurate
stress and strain field evaluation can be often obtained
only by means of refined models.
Classical and well-known plate/shell theories are
those by Kirchhoff (1850), Love (1927), Reissner
(1945), Mindlin (1950), Vlasov (1957), Koiter (1970)
and Naghdi (1972). These theories are based on ax-
iomatic hypotheses leading to simplified models of
the three-dimensional deformed configuration of the
structure. Typical examples of these hypotheses are:
sections remain plane, the thickness deformation can
be neglected, shear strains are negligible. For a com-
plete review of this topic, including laminated com-
posite structures, the readers can refer to the many
available survey articles on plates and shells (Librescu
& Reddy 1986, Reddy 2004).
Approximated structural models can be also built
through asymptotic approaches. In this case, expan-
sions of the unknown variables are developed by eval-
uating the order of magnitude of significant terms
referring to a geometrical parameter (thickness-to-
length in the case of plates and shells). The asymp-
totic approach provides consistent approximations
since all the terms retained have the same order of
magnitude of the perturbation parameter when the lat-
ter vanishes. Articles on the application of asymptotic

methods to shell structures can be found in Cicala
(1959), Fettahlioglu & Steele (1974), Berdichevsky
(1979, Berdichevsky & Misyura (1992), Widera &
Logan (1980), Widera & Fan (1988), Spencer, Wat-
son, & Rogers (1990), and in the monographes by Ci-
cala (1965) and Gol’denweizer (1961).
Axiomatic and asymptotic methods have been histor-
ically motivated by the need to work with simplified
theories capable of leading to simple formulas and
equations to be solved by hand calculations. Up to
five decades ago, in fact, it was quite prohibitive to
solve problems with many unknowns (more than 5,
6); nowadays, this limitation no longer holds. The ap-
proach exploited in this paper adopts a condensed no-
tation technique introduced by the first author during
the last decade and referred to as the Carrera Uni-
fied Formulation (CUF) for beams, plates and shell
structures (Carrera 2003, Carrera & Petrolo 2012).
Through CUF, governing equations are given in terms
of a few ’fundamental nuclei’ whose form does not
depend on either the order of the introduced approx-
imations or on the type base functions in the thick-
ness direction. In order to obtain more general con-
clusions and to draw general guidelines and recom-
mendations to build bidimensional theories for metal-
lic and composite plates and shells, CUF can be also
used to evaluate the effectiveness of each term of a re-
fined theory. This has been done in the present paper.
In CUF, in fact, the role of each displacement vari-
able in the solution is investigated by measuring the
loss of accuracy due to its neglect. A term is consid-
ered ineffective, i.e. negligible, if it does not affect the
accuracy of the solution with respect to a reference



3D solution. Reduced kinematics models, based on a
set of retained displacement variables, are then ob-
tained for each configuration considered . Full and re-
duced models are then compared in order to highlight
the sensitivity of a kinematics model to variations in
the structural problem. This method can somehow be
considered as a mixed axiomatic/asymptotic approach
since it provides asymptotic-like results starting from
a preliminary axiomatic choice of the base func-
tions. Companion investigations - related to equiva-
lent single layer and layer-wise plate models - have
been proposed in Carrera & Petrolo (2010), Carrera,
Miglioretti, & Petrolo (2011a), Carrera, Miglioretti,
& Petrolo (2011b) and Carrera, Lamberti, & Petrolo
(2011).
In this paper, layer-wise refined plate and shell models
are investigated. The effectiveness of each displace-
ment variable has been established varying a number
of parameters (e.g. the thickness ratio, the orthotropic
ratio and the stacking sequence of the lay-out).

2 CARRERA UNIFIED FORMULATION

The Carrera Unified Formulation (CUF) can deal with
a wide variety of beam/plate/shell structures. More
details on CUF can be found in many papers (Car-
rera 2002, Carrera 2003). According to CUF, the gov-
erning equations are written in terms of a few funda-
mental nuclei which do not formally depend on both
the order of the expansion N and the approximating
functions in the thickness direction. The displacement
field is modeled as follows:

u = Fτuτ , τ = 0,1, ....,N (1)

where Fτ are functions of z. uτ is the displacements
vector and N stands for the order of the expansion.
According to Einstein’s notation, the repeated sub-
script τ indicates summation. In this work, layer-wise
models are considered based on Legendre polynomi-
als. For the sake of brevity, these polynomials are not
given here, they can be found in Carrera (2003).
The Principle of Virtual Displacements (PVD) is
used to obtain the governing equations and bound-
ary conditions. In the general case of multi-layered
plates/shells subjected to mechanical loads, the gov-
erning equations are

δuks
T

: Kkτs
uu ukτ = Pkuτ (2)

where T indicates the transpose and k the layer.
Kkτs
uu and Pkuτ are the fundamental nuclei for the stiff-

ness and load terms, respectively, and they are assem-
bled through the depicted indexes, τ and s, which
consider the order of the expansion in z for the dis-
placements.

The corresponding Neumann-type boundary condi-
tions are:

Πkτs
d ukτ = Πkτs

d ūkτ , (3)

where Πkτs
d is the fundamental nucleus for the

boundary conditions and the over-line indicates an as-
signed condition.

For the explicit form of fundamental nuclei for
the Navier-type closed-form solution and more de-
tails about the constitutive equations and geometri-
cal relations for laminated plates and shells in the
framework of CUF, one can refer to (Carrera 2002).
A simply supported plate has been considered and a
bi-sinusoidal transverse distributed load is applied to
the top surface:

pz = p̄z sin(
πx

a
) sin(

πy

b
) (4)

where a and b are the side length of the plate.

2.1 Mixed Axiomatic/Asymptotic approach

Significant advantages are offered by refined
plate/shell theories in terms of accuracy of the
solution, but a higher computational effort is nec-
essary because of the presence of a larger number
of displacement variables. This work is an effort to
understand the convenience of using a fully refined
model rather than a reduced one. The effectiveness of
each term, as well as the terms that have to be retained
in the formulation, are investigated as follows.

1. The problem data are fixed (geometry, bound-
ary conditions, loadings, materials and layer lay-
outs).

2. A set of output variables is chosen (maximum
displacements, stress/displacement component
at a given point, etc.).

3. A theory is fixed, that is, the terms that have to
be considered in the expansion of ux, uy, and uz
are established.

4. A reference solution is used to establish the ac-
curacy (the N = 4 case is assumed as the best-
reference solution since it offers an excellent
agreement with the 3D solutions).

5. The effectiveness of each term is numerically
established measuring the error produced com-
pared to the reference solution.

6. Any term which does not give any contribution
to the mechanical response is not considered as
effective in the kinematics model.

7. The most suitable kinematics model is then de-
tected for a given structural lay-out.

A graphical notation has been introduced to make the
representation of results more readable. This consists
of a table with three lines for the displacement com-
ponents and a number of columns that depends on the
number of displacement variables which are used in



Table 1: Symbols to indicate the status of a displacement vari-
able.

Active term Inactive term Fixed term
N M H

the expansion. In an equivalent single layer approach,
the number of variables does not depend on the num-
ber of layers. A fourth-order models, for instance, has
15 unknowns (generalized displacement variables), as
shown in figure 1. In a LW approach, the number of
unknowns depends on the number of layers. Figure 2
shows the unknowns for a generic layer. In this case,
the top and bottom variables are pure displacement
variables. Table 1 shows the symbols adopted to in-
dicate the status of a variables. The top and bottom
terms of LW are considered as fixed since they cannot
be neglected, this would imply the constraining of the
structure.

Figure 1: Locations of the displacement variables within the ta-
bles layout

Figure 2: Locations of the displacement variables within the ta-
bles layout. LW approach for a generic k layer.

3 RESULTS AND DISCUSSION

As first assessment, composite shells were analyzed
to assess the shell theory accuracy against the stacking
sequence. A three-layered symmetrical (90◦/0◦/90◦)
shell and a two-layered asymmetric (90◦/0◦) shell
were considered. In all the cases, the layers are of
equal thickness. The orthotropic ratio EL/ET equal
to 25 and the thickness ratio Rβ/h = 100.
Results were obtained through equivalent single layer
models, results from LW will be given during the con-
ference. Table 2 shows the shell model for each stack-
ing sequence in order to obtain a fourth-order model
accuracy. The stacking sequence influences the con-
struction of adequate models to a great extent and
an asymmetric lamination sequence requires a higher
number of displacement variables than a symmetric
one.
Layer-wise models were considered for plates and re-
sults are given in Tables 3-5 for different stacking se-
quences and thickness ratios (EL = 40 GPa, ET = Ez
= 1 GPa, GLT = 0.5 GPa, Gz = 0.6 GPa, ν = 0.25.).
Reduced models equivalent to full fourth-order mod-
els require significantly less unknown variables. High

Table 2: Comparison of the sets of effective terms for composite
shells with different stacking sequences.

uz σyy σyz
90◦/0◦/90◦

Me = 8 Me = 9 Me = 6
N N M M M
N N M N M
N N N M M

N N M M M
N N M N M
N N N N M

N N M M M
N N M N M
N M M M M

90◦/0◦

Me = 6 Me = 9 Me = 10
N N M M M
N N M M M
N M N M M

N N M M M
N N M M M
N N N N N

N N M M M
N N N N N
N N N M M

Table 3: Summary of the effective terms for a symmetric
(0◦/90◦/0◦) composite plate, a/h = 100.

Me = 12/39

uz
H M M M H M M M H M M M H
H M M M H M M M H M M M H
H M M M H M M M H M M M H

Me = 14/39

σxx
H M M M H M M M H N M M H
H M M M H M M M H M M M H
H M M M H M M M H N M M H

Me = 13/39

σxz
H M M M H M N M H M M M H
H M M M H M M M H M M M H
H M M M H M M M H M M M H

Me = 15/39

σzz
H M M M H M M M H M M M H
H M M M H M M M H M M M H
H N N N H M M M H M M M H

Me = 20/39

COMBINED
H M M M H M N M H N M M H
H M M M H M N M H M M M H
H N N N H N M M H N M M H

thickness and asymmetric stacking lead to increments
of the number of variables required.

Table 4: Summary of the effective terms for a symmetric com-
posite plate (0◦/90◦/0◦), a/h = 2.

Me = 24/39

uz
H N N N H N M M H N N M H
H N M M H M N M H N M M H
H N M M H N M M H N M M H

Me = 26/39

σxx
H N N N H N M M H N N M H
H N M M H M N M H N M M H
H N N N H N M M H N M M H

Me = 24/39

σxz
H N N N H N M M H N N M H
H N M M H M N M H N M M H
H N M M H N M M H N M M H

Me = 17/39

σzz
H N M N H M M M H M M M H
H M M M H M M M H M M M H
H N N N H M M M H M M M H

Me = 29/39

COMBINED
H N N N H N M M H N N N H
H N M M H N N N H N M M H
H N N N H N M M H N M M H

4 CONCLUSIONS

This paper has dealt with the development of re-
duced higher-order models for shell structures. Re-
sults have been obtained through the Carrera Uni-
fied Formulation (CUF) and the so-called mixed ax-
iomatic/asymptotic approach (MAAA). CUF is a hi-



Table 5: Summary of the effective terms for an asymmetric com-
posite plate (0◦/0◦/90◦), a/h = 2.

Me = 24/39

uz
H N M M H N N M H N N M H
H N N M H M M M H N M M H
H N M M H N M M H N M M H

Me = 28/39

σxx
H N M M H N N M H N N N H
H N N N H N M M H N M M H
H N M M H N M M H N N N H

Me = 23/39

σxz
H N M M H M N M H N N M H
H N N M H N M M H N M M H
H N M M H N M M H N M M H

Me = 17/39

σzz
H M M M H M M M H M M M H
H N M N H M M M H M M M H
H N N N H M M M H M M M H

Me = 30/39

COMBINED
H N M M H N N M H N N N H
H N N N H N M M H N M M H
H N N N H N M M H N N N H

erarchical formulation allowing for the automatic im-
plementation of any-order theory with no need of
ad hoc formulations. MAAA stems from CUF and
provides reduced models againt full expansion theo-
ries with reduced computational costs. Analyses have
been carried out on various composite plate and shells
structures. The following main conclusions can be
drawn:

1. MAAA provides reduced models as accurate as
full expansion models.

2. Reduced models by MAAA can need signifi-
cantly less unknown variables than full models.

3. In particular, for LW models, the reduction of un-
knowns is generally larger than in ESL.

4. As expected, higher thicknesses or anisotropy
make the reduced models more cumbersome.
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