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Finite element models are often composed by various sub-models over the problem domain based
on various formulations. This approach can lead to reduced computational costs and acceptable
accuracy losses. Locally refined 1D structural models are presented in this paper. Refined models
are obtained through the Carrera Unified Formulation (CUF). CUF is a hierarchical formulation able
to deal with any-order structural model with no need of ad hoc formulations. The order and the
type of the expansions (e.g. Taylor, Lagrange, Legendre) are free parameters of the analysis. Local
refinements are obtained through a multi-line approach. 1D refined finite elements with different
order of expansion over the cross-sectional plane are employed in different regions of the domain
of the structure. Lagrange multipliers are used to couple different order elements. Constraints are
imposed on displacement variables at a number of points (connection points) whose location over the
interface boundaries is a parameter of the method. Various structural problems are considered with
particular attention paid to those problems where local refinements are of particular interest, such as
locally loaded thin-walled structures or composite structures. The accuracy and the computational
costs of the multi-line models are evaluated through comparisons with 2D and 3D models from
commercial codes.

1 INTRODUCTION
This paper is devoted to the analysis of isotropic and laminated composite beams for aerospace

and civil engineering applications. Beam models are widely used to analyze the mechanical behavior
of slender bodies, such as columns, aircraft wings, towers and bridges, amongst others. The ease
of application of one-dimensional (1D) theories and their computational efficiency are some of the
main reasons why structural analysts prefer them to two-dimensional (2D) and three-dimensional
(3D) models.

The classical and best-known beam theories are those by Euler [1] (hereinafter referred to as
EBBM) and Timoshenko [2] (hereinafter referred to as TBM). These models yield reasonably good
results when slender, solid section, homogeneous structures are subjected to flexure. Conversely,
the analysis of deep, thin-walled, open section beams may require more sophisticated theories to
achieve sufficiently accurate results (see [3]).

Over the last century, many refined beam theories have been proposed to overcome the limitation
of classical beam modelling. Different approaches have been used to improve the beam models,
which include the introduction of shear correction factors, the use of warping functions based on
de Saint-Venant’s solution, the variational asymptotic solution (VABS), the generalized beam theory
(GBT), and others. Some selected references and noteworthy contributions are briefly discussed
below.

Early investigators have focused on the use of appropriate shear corrections factors to increase the
accuracy of classical 1D formulations, such as Timoshenko and Goodier [4], Sokolniko [5]. Another
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important class of refinement methods in the literature is based on the use of warping functions. The
contributions by El Fatmi [6] and Ladevéze et al. [7] are some excellent examples.

Asymptotic type expansion in conjunction with variational methods has also been proposed; see
for example Berdichevsky et al. [8], which also includes a commendable review of previous works
on beam theory development.

GBT probably originated from the work of Schardt [9]. GBT improves classical theories by
using piece-wise beam description of thin-walled sections.

Higher-order theories are generally obtained by using refined displacement fields of the beam
cross-sections. Washizu [10] ascertained how the use of an arbitrarily chosen rich displacement fields
can lead to closed form exact 3D solutions. However, when complex cross-sections are considered,
the solution becomes increasingly inaccurate as the distance from the reference axis of the beam
increases.

To overcome this limitation of higher-order models, Multi-Line (ML) [11, 12, 13] beam models
are introduced in this paper. In the ML beam modelling approach, a slender body is discretized by
means of multiple beam axes which are placed in different regions over the problem domain. 1D
higher-order finite elements are developed within the framework of the Carrera Unified Formulation
(CUF), which has been well established in the literature for over a decade [14, 15, 16]. CUF is a
hierarchical formulation that considers the order of the model N as a free-parameter (i.e. as input) of
the analysis. In the present work, beam theories using CUF are obtained on the basis of Taylor-type
expansions (TE). EBBM and TBM can be obtained as particular or special cases.

Different-order refined beam elements can be adopted for each beam-line in ML models. Then,
once each beam axis has been discretized with 1D elements, Lagrange multipliers are used to impose
constraints on displacement variables at a number of connecting points at the interface boundaries
between each beam-line. The number of beam-lines and the order of the beam elements used to dis-
cretize each beam-line, as well as the number and the location of connecting points at the boundary
interfaces, are all parameters of the ML model. In the case of laminated composite structures, ML
modelling approach represents a step forward from the classical equivalent single layer (ESL) and
layer-wise (LW) approaches since each layer (or group of layers) of the structure is modelled by one
higher-order beam.

In the next section a brief overview of CUF is provided. Subsequently, the use of Lagrange
multipliers for the development of ML models is described. Then, numerical results concerning
reinforced thin-walled isotropic and composite structures are presented and the main conclusions
are outlined.

2 1D REFINED ELEMENTS AND MULTI-LINE MODELS
The adopted rectangular cartesian coordinate system is shown in Figure 1, together with the

geometry of the beam. The cross-sectional plane of the structure is denoted by Ω, and the beam
boundaries over y are 0 ≤ y ≤ L. Let us introduce the transposed displacement vector,

u(x, y, z) =
{

ux uy uz

}T
(1)

Within the framework of the CUF, the displacement field can be expressed as

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (2)

where Fτ are the functions of the coordinates x and z on the cross-section. uτ is the vector of the
generalized displacements, M stands for the number of terms used in the expansion, and the repeated
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Figure 1: Coordinate frame of the beam model.

subscript, τ , indicates summation. The choice of Fτ determines the class of the 1D CUF model.
The refined beam elements adopted in the present paper, consist of a Taylor series that uses the 2D
polynomials xi zj as base - where i and j are positive integers - and they are referred to be Taylor
Expansion (TE) models. For instance, the displacement field of the second-order (N = 2) TE model
can be expressed as

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(3)

The order N of the expansion is set as an input option of the analysis; the integer N is arbitrary and
defines the order the beam theory. Classical TBM and EBBM theories are also captured from the
formulation as degenerate cases.

The FE approach was adopted to discretize the structure along the y-axis. This process is con-
ducted via a classical finite element technique, where the displacement vector is given by

u(x, y, z) = Fτ (x, z)Ni(y)qτi (4)

Ni stands for the shape functions and qτi for the nodal displacement vector. For the sake of brevity,
the shape functions are not reported here. They can be found in many books, for instance in [17].
Elements with four nodes (B4) were adopted in this work, that is, a cubic approximation along the
y axis was assumed. The stiffness matrix of the elements and the external loadings vector were
obtained via the principle of virtual displacements

δLint =

∫
V

δϵTσdV = δLext (5)

where Lint stands for the strain energy, Lext is the work of the external loadings and δ stands for
the virtual variation. ϵ and σ are the vectors of the strains and stresses, respectively. For the sake
of brevity, the fundamental nuclei of the stiffness matrix and the loading vector is not reported here.
They can be found in [16], together with a more comprehensive discussion on refined 1D CUF
models.

2.1 The Multi-Line Approach
In the present paper, Lagrange multipliers are used to implement ML models. In Fig. 2 a slender

structure discretized by two different beam axes is shown. Higher-order elements of arbitrary order
are placed on each beam-line, which separately describes a given sub-region of the whole structure.
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Figure 2: Multi-line approach

Lagrange multipliers are then used to impose compatibility on displacement variables at a number
of connecting points at the interface boundary between beam-lines.

A comprehensive discussion about the extension of Lagrange multipliers to 1D refined CUF
elements can be found in [18]. The final system that has to be solved is the following:[

K BT

B 0

] [
q
λ

]
=

[
F
0

]
(6)

where K is the global stiffness matrix, B is the matrix containing the coefficients of the constraints
imposed at the interfaces, λ is the vector of the Lagrange multipliers, and F is the vector of the
generalised loads.

3 NUMERICAL RESULTS
Two different structural problems were considered and the results are discussed below. In the

first example, an I-shaped beam is addressed in order to highlight the advantages of the present ML
approach when applied to the analysis of thin-walled structures. The results from the analysis of
a cross-ply laminated beam are subsequently shown. The comparisons with the solutions from the
literature and 3D solid model by MSC Nastran clearly show the capability of the present ML models
to deal with LW results.

3.1 I-section beam
A cantilever beam with a I-shaped cross-section such as the one shown in Fig. 3 is considered

first. It is assumed that the beam has a height h = 100 mm and a width w = 96 mm. The length
to height ratio, l/h, is 10. The thickness of the flanges is t1 = 8 mm, whereas the thickness of the
web is t2 = 5 mm. The material data are: elastic modulus E = 200 GPa and Poisson ratio, ν, equal
to 0.29. A vertical force Fz = −2 × 103 N is applied at point B (see Fig. 3) at the free end of the
beam.

Table 1 shows the vertical displacements, uz , at the tip of the beam, at points A and B. The
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Figure 3: I-section beam geometry

number of the degrees of freedom (DOFs) is also given for each model in Table 1. The results are
compared with 3D (Solid) and 2D (Shell) FEM solutions obtained using commercial code MSC
Nastran. The analytical result achieved through Euler-Bernoulli beam theory is also given for com-
parison purposes, uzb = FzL

3

3EI , where I is the cross-section moment of inertia. The results by
classical and refined CUF single-line models are shown in rows 6 to 15, where up to eight-order
(N = 8) beam models are considered. The last rows of Table 1 give the results by the ML models
of the I-section beam. The ML models of the I-section beam are referred to as MLNf ,Nw , where
Nf is the expansion order of the beam elements placed on beam-lines of the flanges and Nw is the
expansion order of the beam elements placed on the beam-line of the web.

Based on these results, it is clear that classical and higher-order single-line models cannot detect
the warping phenomena; lower-order elements can be effective when used in a ML approach; the
number of the degrees of freedom of ML models is extremely reduced if compared to MSC Nastran
and single-line refined models.

3.2 Symmetric laminated beam
The analysis of a symmetric cross-ply [0 ◦/90 ◦/0 ◦] laminated cantilever beam was carried out

next. The three layers have the same thickness. The non-dimensional proprieties of the adopted
orthotropic material are

EL/ET = 25 GLT /GTT = 2.5 νLT = νTT = 0.33

where L refers to the direction of the fibers and T stands for the direction normal to the fibers. For
the sake of convenience, the results are given in non-dimensional form.

u∗
z = 100

bh3ET

q0l4
uz, σ∗

ij =
σij

q0
, with i, j = x, y, z (7)

here l is the length of the beam, whereas b and h are the dimensions of the rectangular cross-section.
q0 is the intensity of the load uniformly distributed over the lower face of the beam. The beam is
considered to be very short (l/h = 4), with clamped-free boundary conditions.

The ML scheme adopted is depicted in Fig. 4, together with the loading condition. The ML
models addressed make use of three beam-lines. Two ML configurations are considered: (1) in the
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−uzA , mm −uzB , mm DOFs
−uzb = FzL

3

3EI = 0.951, mm
MSC Nastran models

Solid 0.956 2.316 355800
Shell 1.006 2.437 61000

Classical and refined single-line models
EBBM 0.951 0.951 93
N = 2 0.956 0.978 558
N = 4 0.989 1.287 1395
N = 6 0.992 1.462 2604
N = 8 0.997 1.851 4185

Present MLNf ,Nw

Nf Nw

1 1 1.016 1.016 837
2 1 0.990 1.028 1116
2 2 0.951 1.940 1674
3 2 0.950 1.984 2046
3 3 0.952 2.186 2790
4 3 0.954 2.197 3255
4 4 0.952 2.230 4185

Table 1: Vertical displacement at points A and B on the free end of the cantilever I-section beam

first case a second-order (N = 2) expansion is used in the three layers; (2) in the second case a
third-order (N = 3) expansion is used in the top/bottom layers, whereas a parabolic distribution on
the cross-section is assumed in the central layer. ML models of the symmetric laminated beam are
referred to as MLα/β/γ, where α is the expansion order of the beam discretizing the bottom layer,
β is the expansion order of the central layer, and γ is the expansion order of the top layer.

The results are shown in Table 2, where the non-dimensional vertical displacement at the tip is
given, together with the number of degrees of freedom for each model. The results by ML models are
compared to classical and refined ESL theories from [19] and to a solid FE model by MSC/Nastran.

Stress distributions shown in Fig. 5 confirm the advantages of the ML approach over one-line
beam solutions. In fact, less DOFs than ESL cases are used (both with and without Zig-Zag func-

x

z y
q0

h

L

Figure 4: Symmetric laminated [0/90/0] beam
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Model u∗
z DOFs

Present ML
ML 2/2/2 17.69 1188
ML 3/2/3 17.83 1716

MSC Nastran, [19]
Solid 17.98 103920
Classical and higher-order ESL, [19]
N = 6 with ZZ 17.84 1914
N = 6 17.14 1848
N = 3 with ZZ 17.83 726
N = 3 16.76 660
TBM 14.02 110
EBBM 6.22 66

Table 2: Non-dimensional displacement at the tip, symmetric cross-ply beam

tions) and LW solutions are obtained.

Solid
ESL, N=6

ESL, N=6 with ZZ
ML 2/2/2
ML 3/2/3
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Figure 5: Distribution of axial, σ∗
yy , and transverse, σ∗

yz , stresses for the symmetric laminated beam

4 CONCLUSIONS
A higher-order multi-line approach to the analysis of isotropic and composite slender bodies has

been presented in this paper. Refined beam elements have been formulated using CUF, which al-
lows for the formulation of any-order beam theories by setting the expansion order as input of the
analysis. Different-order beam elements have been formulated and subsequently used over differ-
ent beam-lines discretizing various structures. Beam-lines have then been coupled by imposing the
compatibility of displacements at boundary interface using Lagrange multipliers. Although the effi-
ciency of the present approach is problem dependent, Multi-line modelling undoubtedly represents
a step forward in the analysis of thin-walled and laminated composite structures and it is able to deal
with shell- and solid-like solutions with a significant reduction of the computational costs.
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[7] Ladéveze P., Simmonds, J., “New concepts for linear beam theory with arbitrary geometry and
loading”, European Journal Of Mechanics A/Solids, 17:3 377–402 (1998).

[8] Berdichevsky, V.L., Armanios, E., Badir, A., “Theory of anisotropic thin-walled closed-cross-
section beams”, Composites Engineering, 2:5–7 411–432 (1992).

[9] Schardt, R., “Eine erweiterung der technischen biegetheorie zur berechnung prismatischer
faltwerke (Extension of the engineer’s theory of bending to the analysis of folded plate struc-
tures)”, Der Stahlbau, 35 161–171 (1966).

[10] Washizu, K., “Variational Methods in Elasticity and Plasticity”, Pergamon, Oxford (1968).

[11] Carrera, E., Pagani, A., “Analysis of Reinforced and Thin-walled Structures by Multi-line Re-
fined 1D/Beam Models”, Submitted (2013).

[12] Carrera, E., Pagani, A., “Multi-line Enhanced Beam Model for the Analysis of Laminated
Composite Structures”, Submitted (2013).

[13] Carrera, E., Pagani, A., Petrolo, M., “Multi-line-beam with variable kinematic models for the
analysis of composite structures”. In Pooceding of the 9th International Conference on Com-
posite Science and Technology, Sorrento, Italy, April 24-26, 2013.

[14] Carrera, E., “A class of two dimensional theories for multilayered plates analysis”, Atti Ac-
cademia delle Scienze di Torino, Memorie Scienze Fisiche, 19-20 49–87 (1995).

[15] Carrera, E., “Theories and finite elements for multilayered, anisotropic, composite plates and
shells”, Archives of Computational Methods in Engineering, 9:2 87–140 (2002).

[16] Carrera, E., Giunta, G., Petrolo, M., Beam Structures: Classical and Advanced Theories, John
Wiley & Sons (2011).

[17] Bathe, K.J., Finite element procedure, Prentice hall 1996.

[18] Carrera, E., Pagani, A., Petrolo, M., “Use of Lagrange Multipliers to Combine 1D Variable
Kinematic Finite Elements”. Submitted (2013).

[19] Carrera, E., Filippi, M., Zappino, E. “Laminated beam analysis by polynomial, trigonometric,
exponential and zig-zag theories”, European Journal of Mechanics A/Solids 41 58–69 (2013).

8


