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ABSTRACT 

The use of various finite elements (FE) for the analysis of reinforced-shell aerospace 

structures is discussed in this paper. One-, two-, and three-dimensional FE models from a 

commercial code are compared to higher-order beam theories, which are implemented by 

using the Carrera Unified Formulation (CUF). CUF is a hierarchical formulation allowing 

for the straightforward implementation of any order-beam theories without the need of ad-hoc 

formulations. The attention is here focused on a novel approach denoted as Component-Wise 

(CW).  According to CUF, Lagrange-like polynomials are used in CW models to discretize the 

displacement field on the cross-section of each component of the structure. Depending on the 

geometrical and material characteristics of the component, the capabilities of the model can 

be enhanced and the computational costs can be kept low through smart discretization 

strategies. The global mathematical model of complex structures (e.g. wings or fuselages) is 

obtained by assembling each component model at the cross-section level. Next, a classical 1D 

FE formulation is used to develop numerical applications. A number of typical aerospace 

structures are analysed. Static and dynamic analyses highlight the enhanced capabilities of 

the proposed formulation. In fact, the CW approach is clearly the natural tool to analyse 

aerospace structures, since it leads to results that can be only obtained through three-

dimensional elasticity (solid) elements whose computational costs are at least one-order of 

magnitude higher than CW models. 
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1 INTRODUCTION 

Primary aircraft structures are essentially reinforced thin shells [1] and they are obtained by 

assembling three main components: skins, longitudinal stiffening members (including spar 

caps) and ribs. The free vibration analysis and the determination of stress/strain fields in these 

structural components are of prime interest for structural analysts. Many different approaches 

were developed in the first half of the last century. These are discussed in major reference 

books [1,2] and more recently in [3]. Due to the advent of computational methods, mostly 

FEM, the analysis of complex aircraft structures continued to be made using a combination of 

solids (3D), plates/shells (2D) and beams (1D). These were implemented first in NASTRAN 

codes. Many others commercial FE codes have been developed and used in aerospace 
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industries. Nowadays FEM models with a number of unknowns (degrees of freedom, DOFs) 

close to     are widely used in common practise. The possible manner in which stringers, 

spar caps, spar webs, panels, ribs are introduced into FE mathematical models is part of the 

knowledge of structural analysts. A short discussion of this follows. A number of works have 

shown the necessity for a proper simulation of the stiffeners-panel “linkage”. Kolli and 

Chandrashekhara [4] formulated an FE model with 9-node plate and 3-node beam elements. 

Gangadhara [5] carried out linear static analyses of composite laminated shells using a 

combination of 8-node plate elements and 3-node beam elements.  In [6], Thinh and Khoa 

developed a new 9-node rectangular stiffened plate element for the free vibration analysis of 

laminated stiffened plates based on Mindlin’s deformation plate theory. The works mentioned 

so far show a clear interest in investigating FEM applications to reinforced-shell structures. In 

most of the articles in literature, such as those cited above, plates/shells and stiffeners are 

modeled as separate elements and a simulation of the stiffener-panel “linkage” is often 

necessary. Usually, beam nodes are connected to the shell element nodes via rigid fictitious 

links. This methodology presents some inconsistencies.  

 The main aim of the present work is to introduce a new 1D formulation which is able 

to model reinforced-shell aircraft structures. The present component-wise (CW) approach 

deals with shells and stiffeners by means of a unique 1D formulation, with no need to 

introduce “fictitious links” to connect beam and shell elements. The CW approach has 

recently been exploited for the analysis of laminated composites [7] and it shown its enhanced 

capabilities in dealing with both static [8] and free vibration [9] analysis of wing structures. 

The present work is part of the framework of the one-dimensional Carrera Unified 

Formulation, CUF, which was recently proposed by the first author and his co-workers [10, 

11]. Two classes of CUF 1D models were formulated: the Taylor-expansion class, hereafter 

referred to as TE, and the Lagrange-expansion class, hereafter referred to as LE. TE models 

exploit N-order Taylor-like polynomials to define the displacement field above the cross-

section with N as a free parameter of the formulation [10,12]. An important feature of TE 

models is that Euler-Bernoulli (EBBM) and Timoshenko (TBM) classical beam theories can 

be derived as special cases of the linear Taylor-type expansion. Conversely, the LE class is 

based on Lagrange-like polynomials to discretize the cross-section displacement field and LE 

models have only pure displacement variables [11]. In the following a brief overview on CUF 

is proposed and the CW approach is described. Next, some examples are addresses. Finally, 

the main conclusions are outlined. 

2 1D REFINED ELEMENTS 

The adopted rectangular Cartesian coordinate system is shown in Figure 1, together with the 

geometry of the beam. The cross-sectional plane of the structure is denoted by "Ω" , and the 

beam boundaries over y are 0<y<L. 

 

 
 

Figure 1: Coordinate frame of the beam model. 
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Let us introduce the transposed displacement vector, 

 

 (     )  *        +
                                                 (1) 

 

Within the framework of the CUF, the displacement field can be expressed as 

 

 (     )     (   )  ( )                                                   (2) 
 

where    are the functions of the coordinates x and z on the cross-section.    is the vector of 
the generalized displacements, M stands for the number of terms used in the expansion, and 

the repeated subscript, τ, indicates summation. The choice of    determines the class of the 1D 

CUF model. 

 TE models consist of a Taylor series that uses the 2D polynomials   ,    as base, 

where   and   are positive integers. For instance, the displacement field of the second-order 

(   ) TE model can be expressed as 
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The order N of the expansion is set as an input option of the analysis. Classical TBM 

and EBBM theories are also captured from the formulation as degenerate cases of the linear 

(   ) TE model. For LE class,    are Lagrange-like polynomials. In this work, three types 
of cross-section polynomial sets were adopted: four- (L3), four- (L4), and nine-point (L9) 

elements. The L3, L4 and L9 interpolation functions are given in [13]. Unlikely TE, one of 

the most important feature of LE models is that they have only pure displacement degrees of 

freedom. More details about LE models can be found in the paper by Carrera and Petrolo 

[11]. For both TE and LE models, the FE approach was adopted to discretize the structure 

along the  -axis. This process is conducted via a classical finite element technique, where the 
displacement vector is given by 

 

 (     )     (   )  ( )                                             (4) 
 

   stands for the shape functions and     for the nodal displacement vector. For the sake of 

brevity, the shape functions are not reported here. They can be found in many books, for 

instance in [13]. Elements with four nodes (B4) were adopted in this work, that is, a cubic 

approximation along the  -axis was assumed. The stiffness matrix of the elements, the 
external loadings vector and the mass matrix were obtained via the principle of virtual 

displacements 

 

      ∫        
 

                                                    ( ) 

               

where      stands for the strain energy,      is the work of the external loadings and      is 

the work of inertial loadings.   stands for the virtual variation.   and   are the vectors of the 
strains and stresses, respectively. For the sake of brevity, the derivation of the fundamental 
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nuclei is not reported here. They can be found in [8-11], together with a more comprehensive 

discussion on refined 1D CUF models. 

2.1 The component-wise approach 

The refined TE models described above are characterized by degrees of freedom 

(displacements and N-order derivatives of displacements) with a correspondence to the axis of 

the beam. The expansion can also be made by using only pure displacement values, e.g. by 

using Lagrange polynomials. The resulting LE can be used for the whole cross-section or can 

be introduced by dividing the cross-section into various sub-domains (see [11]). This 

characteristic allows us to separately model, for instance, stringers and panels. The LE 

formulation was used in this paper to implement CW models of reinforced-shell wing 

structures, as shown in Figure 2a where a two-stringer spar is considered. Figure 2b shows 

 

 

                              (a)                                             (b)                                              (c) 

 

Figure 2: CW approach through LE elements 

 

a possible CW model of the spar where each component was modelled via one 1D LE 

element. Each LE element is then assembled above the cross-section to obtain the global 

stiffness matrix based on the 1D formulation. Since panels could not be reasonably modelled 

via a 1D formulation, 1D CW models can be refined by using several L-elements for one 

component. This aspect is shown in Figure 2c where the panel is modelled via two 1D LE 

elements. By exploiting the present 1D formulation, the analysis capabilities of a structural 

model can be enhanced by 1. locally refining the LE discretization; 2. using higher-order LE 

elements (e.g. 4-node, 9-node, etc.). 

3 NUMERICAL RESULTS 

The efficiency of both CW and TE refined models is investigated in this section. First, the 

results from the modal analysis of a C-shaped beam are given in order to highlight the main 

capabilities of the present methods. The results from static analysis of a complex wing 

structure are subsequently introduced. Comparisons with MSC Nastran 3D solid models are 

proposed. Particular attention is given to the capabilities offered by CW models of dealing 

with complex thin-walled reinforced structures as well as with solid -like FEM analyses with 

significantly lower computational costs. 

3.1 Free vibration analysis of a C-shaped beam 

A cantilever C-shaped beam is considered as the first numerical example. The cross-section of 

the structure is shown in Figure 3. The geometrical data are as follows:        m, 

       m,       m. The length of the beam   is equal to    m. The structure is made of 

an aluminium alloy with Young’s modulus      GPa, Poisson’s ratio       , and 

density        Kg/m
3
. 
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Figure 3: Cross-section of the C-shaped beam 
 

 Table 1 shows the first ten natural frequencies according to classical, refined, 

component-wise, and a Nastran solid models. The given results refer to a configuration in 

which a non-structural mass is placed at (     ). Columns 2 and 3 show the results by 

classical beam theories. Columns 4 to 7 show the natural frequencies by fourth- to eight-order 

TE model. In columns 8 and 9 the results by CW models of the C-shaped beam are given. 

Two CW models are considered, differing in the L-element discretization of the cross-section, 

as shown in Figure 4, where the location of the non-structural mass is also depicted. 

Specifically, the 6L9 model is built with six nine-node Lagrange elements on the cross-

section, whereas the 10L9 model is composed by 10 nine-node L-elements. In the last column 

the results of a solid model by MSC Nastran are also given for comparison purposes. In Table 

1, the number of the degrees of freedom (DOFs) is also given for each model implemented. 

 

 EBBM TBM N=2 N=4 N=6 N=8 6L9 10L9 Solid 

DOFs 93 155 558 1395 2604 4185 3627 5859 177000 

1 1.154f 1.153 f 1.158 f 1.152 f 1.137 ft 1.126 ft 1.115 ft 1.115 ft 1.111 ft 
2 1.971 f 1.967 f 1.973 f 1.895 f 1.736 ft 1.651 ft 1.589 ft 1.586 ft 1.579 ft 
3 8.675 f 8.630 f 8.576 f 7.628 f 5.705 t 5.168 t 4.901 t 4.889 t 4.560 t 

4 14.699 f 14.486 f 14.356t 11.371 t 9.283 t 8.375 t 7.771 t 7.734 t 7.670 t 
5 25.765 f 25.444 f 23.585 ft 12.603 ft 10.096 ft 9.823 ft 9.735 ft 9.728 ft 9.862 ft 

6 41.504 f 40.489 f 30.962 ft 25.286 ft 20.642 ft 18.238 ft 16.920 ft 16.810 ft 16.633 ft 
7 49.009 f 48.075 f 41.005 ft 30.465 ft 23.374 ft 22.831 ft 22.718 ft 22.643 ft 22.235 ft 
8 54.789 f 53.782 f 48.724 ft 35.776 ft 29.792 ft 28.698 ft 27.426 ft 27.169 ft 26.716 ft 
9 85.837 f 81.860 f 54.363 ft  42.934 ft 33.487 ft 30.518 ft 29.704 ft 29.647 ft 29.514 ft 

10 89.333 f 85.371 f 79.443 ft 51.675 ft 40.656 ft 38.247 ft 39.120 ft 38.162 ft 34.359 ft 
*f: flexural mode, t: torsional mode; ft: coupled mode 

 

Table 1: Natural frequencies of the C-shaped beam. f: flexural mode, t: torsional mode, ft: coupled 

mode. 

 

 
(a) 6L9                                        (b) 10L9 
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Figure 4: CW models of the C-shaped beam 

 

 From the analysis it is clear that both TE and CW models are able to deal with solid-

like results whit very low computational efforts. In particular, it has been demonstrated that 

higher-than-sixth-order TE beam models are necessary to correctly describe torsional 

behaviours. Moreover, it is shown that higher-order TE and CW models can detect non local 

effects due to non-localized non-structural masses.  

3.2 Static response of a complete wing structure 

A more complex aeronautical structure is considered as the second assessment. The wing 

which is shown in Figure 5, consists of a NACA 2415 airfoil with two spars. The dimensions 

of the section are shown in Figure 5. The wing has a chord c - constant along the length - 

equal to   m. The wing half-span, i.e. the length of the beam  , is   m. The whole structure is 
made of the same material as in the previous example and clamped-free boundary conditions 

are considered. The structure undergo an inertial load     g in the negative direction of the 
z-axis. 

 

 
 

Figure 5: Cross-section of the wing structure. Dimensions in millimetres. 
 

 In Table 2 the maximum values of the vertical displacement are given for each model 

implemented. Both classical and higher-order models are considered in Table 2. A solid 

model by MSC Nastran is also considered for comparisons. The number of DOFs are also 

given in Table 2. 

 

Model -  , cm DOFs 

Classical Beam theories 
EBBM   2.147 84 
TBM    2.149 140 

TE models 
N=2     2.075 504 
N=4     2.101 1260 

N=6     2.109 2352 
N=7     2.112 3024 
N=8     2.113 3780 
N=9     2.115 4620 

CW model 
49L9   2.123 24864 

MSC Nastran model 

Solid  2.143 186921 
 

Table 2: Maximum value of the vertical displacement, wing structure 
 



7 

Figure 6 shows the normal stress distribution,    , in the top left stringer at        m, 

        m versus y-axis. Figure 7 shows the distribution along the z-axis of transverse 

shear stress,    , in the front spar at     m. The results by the component-wise and higher-order 

TE models are compared with the solution from the Solid model by MSC Nastran. 
 

 
 

Figure 6: Span-wise distribution of the axial stress component,    , in the top left stringer (  

                ). 
 

 

Figure 7: Distribution of the shear stress component,    , in the front spar at      . 

 

The results point out that CW results are in good agreement with solid FEM solution, both in 

terms of displacement and stress distributions. Conversely, classical and higher-order TE 

models are not able to correctly describe the stress state of the structure under consideration. 

4 CONCLUSIONS 

A Component-wise approach has been introduced in this paper by using the Carrera Unified 
Formulation. Numerical results have been produced and aeronautical structures considered. 

The results have been compared to  classical and refined beam theories, as well as to 3D solid 

models from the commercial code MSC Nastran. The main conclusion to be drawn is that the 

present component-wise analysis appears to the authors to be the most convenient way, in 
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terms of both accuracy and computational costs, to capture the mechanical behaviour of 

aircraft structures. 
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