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ABSTRACT

This paper proposes an advanced approach to the analysis
of reinforced-shell aircraft structures. This approach, denoted as
Component-Wise (CW), is developed by using the Carrera Uni-
fied Formulation (CUF). CUF is a hierarchical formulation al-
lowing for the straightforward implementation of any-order one-
dimensional (1D) beam theories. Lagrange-like polynomials are
used to discretize the displacement field on the cross-section of
each component of the structure. Depending on the geometrical
and material characteristics of the component, the capabilities
of the model can be enhanced and the computational costs can
be kept low through smart discretization strategies. The global
mathematical model of complex structures (e.g. wings or fuse-
lages) is obtained by assembling each component model at the
cross-section level. Next, a classical 1D finite element (FE) for-
mulation is used to develop numerical applications. It is shown
that MSC/PATRAN can be used as pre- and post-processor for
the CW models, whereas MSC/NASTRAN DMAP alters can be
used to solve both static and dynamic problems. A number of
typical aeronautical structures are analyzed and CW results are
compared to classical beam theories (Euler-Bernoulli and Tim-
oshenko), refined models and classical solid/shell FE solutions
from the commercial code MSC/NASTRAN. The results highlight
the enhanced capabilities of the proposed formulation. In fact,
the CW approach is clearly the natural tool to analyze wing
structures, since it leads to results that can be only obtained
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through three-dimensional elasticity (solid) elements whose com-
putational costs are at least one-order of magnitude higher than
CW models.

INTRODUCTION

Primary aircraft structures are essentially reinforced thin
shells [1]. These are so-called semimonocoque constructions
which are obtained by assembling three main components: skins
(or panels), longitudinal stiffening members (including spar
caps) and transversal stiffeners (ribs). The free vibration analy-
sis and the determination of stress/strain fields in these structural
components are of prime interest for structural analysts. Many
different approaches were developed in the first half of the last
century. These are discussed in major reference books [1, 2]
and more recently in [3]. Among these approaches the so-called
Pure Semimonocoque (PS) (or “idealized semimonocoque™) is
the most popular, since it assumes constant shear into panels
and shear webs. The main advantage of PS is that it leads to
a system of linear algebraical equations. However the number
of such equations rapidly increases for multi-bay box structures
with high redundancy. The number of resulting equations (and
redundancy) can be strongly reduced by coupling PS with as-
sumptions from Euler-Bernoulli (Euler-Bernoulli Beam Model,
EBBM) or Timoshenko (Timoshenko Beam Model, TBM) theo-
ries. This lead to the so-called Beam Semimonocoque (BS) ap-
proach. Many works are known to overcome limitations related
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to constant shear hypotheses, see [4—8] as examples.

Due to the advent of computational methods, mostly FEM,
the analysis of complex aircraft structures continued to be made
using a combination of solids (3D), plates/shells (2D) and beams
(1D). These were implemented first in NASTRAN codes. Many
others commercial FE codes have been developed and used
in aerospace industries. Nowadays FEM models with a num-
ber of unknowns (degrees of freedom, DOFs) close to 10° are
widely used in common practise. The possible manner in which
stringers, spar caps, spar webs, panels, ribs are introduced into
FE mathematical models is part of the knowledge of structural
analysts. A short discussion of this follows. A number of
works have shown the necessity for a proper simulation of the
stiffeners-panel “linkage”. Kolli and Chandrashekhara [9] for-
mulated an FE model with 9-node plate and 3-node beam el-
ements. Gangadhara [10] carried out linear static analyzes of
composite laminated shells using a combination of 8-node plate
elements and 3-node beam elements. As far as dynamic analy-
sis is concerned, Samanta and Mukhopadhyay [11] developed a
new stiffened shell element and, subsequently, they used this el-
ement to determine natural frequencies and mode shapes of dif-
ferent stiffened structures. In [12], Thinh and Khoa developed
a new 9-node rectangular stiffened plate element for the free vi-
bration analysis of laminated stiffened plates based on Mindlin’s
deformation plate theory. Recently, Voros [13] formulated a new
plate/shell stiffener element. In Voros’ theory, the stiffener el-
ement is developed by means of a general beam theory, which
includes the constraint torsional warping effect and the second
order terms of finite rotations.

The works mentioned so far show a clear interest in investi-
gating FEM applications to reinforced-shell structures. In most
of the articles in literature, such as those cited above, plates/shells
and stiffeners are modeled as separate elements and a simulation
of the stiffener-panel “linkage” is often necessary. Usually, beam
nodes are connected to the shell element nodes via rigid fictitious
links. This methodology presents some inconsistencies. The
main problem is that the out-of-plane warping displacements in
the stiffener section are neglected and the beam torsional rigidity
is not correctly predicted.

The main aim of the present work is to introduce a new
1D formulation which is able to model reinforced-shell aircraft
structures. The present component-wise (CW) approach deals
with shells and stiffeners by means of a unique 1D formulation,
with no need to introduce “fictitious links” to connect beam and
shell elements. The CW approach has recently been exploited for
the analysis of laminated composites [14] and it has proven to be
able to model single fibers and related matrices, entire layers and
whole multilayers. Furthermore, the CW models have shown
their enhanced capabilities in dealing with both static [15] and
free vibration [16] analysis of wing structures.

The present work is part of the framework of the one-
dimensional Carrera Unified Formulation, CUF, which was re-

cently proposed by the first author and his co-workers [17, 18].
Two classes of CUF 1D models were formulated: the Taylor-
expansion class, hereafter referred to as TE, and the Lagrange-
expansion class, hereafter referred to as LE. TE models exploit
N-order Taylor-like polynomials to define the displacement field
above the cross-section with N as a free parameter of the for-
mulation. The strength of CUF TE models in dealing with ar-
bitrary geometries, thin-walled structures and local effects were
evident in static [19, 20] and free-vibration analysis [21,22]. An
important feature of TE models is that EBBM and TBM clas-
sical beam theories can be derived as degenerate cases of the
linear Taylor-type expansion. Conversely, the LE class is based
on Lagrange-like polynomials to discretize the cross-section dis-
placement field and LE models have only pure displacement vari-
ables. Recently, static analyses on isotropic [18] and composite
structures [23] have revealed the strength of LE models in deal-
ing with open cross-sections, arbitrary boundary conditions and
obtaining Layer-Wise descriptions of the 1D model. In the fol-
lowing a brief overview on CUF is proposed and the CW ap-
proach is described. Next, some examples are addresses. Finally,
the main conclusions are outlined.

PRELIMINARIES

The notation assumed in this paper is hereafter introduced.
The adopted coordinate frame is presented in Fig. 1. Let us
introduce the transposed displacement vector,

u(x,y,z) = {ux Uy Uz }T ()

The cross-section of the structure is 2, and the beam boundaries

FIGURE 1. COORDINATE FRAME OF THE BEAM MODEL

over y are 0 <y < L. The stress, 0, and strain, € components
are grouped as follows:

T T
GPZ{GZZ Oxx GU}T’EP:{gZZ Exx SZ/V}T (2)
On={0y Oy Oy}, &n={&y & &y}
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The subscript ’n” stands for terms lying on the cross-section,
while ”p” stands for terms lying on planes which are orthogonal
to Q. In the case of small displacements with respect to a char-
acteristic dimension of Q, linear strain - displacement relations
can be used

&€y =Dpu 3)
€, =Dyu= (Dpo+Dyy)u

where D, and D, are linear differential operators. They can be
found in [17]. Constitutive laws were exploited to obtain stress
components,

oc=Ce C))
According to Eqn.s (2), Eqn. (4) becomes

Cp = Cpp€p+Cpntn
On = Cup€p + Cnén

®)

The matrices C ps Cum, C n» and C’,,,, contains the material coef-
ficients. For the sake of brevity they are not reported here. They
can be found in [24].

HIGHER-ORDER FINITE BEAM ELEMENTS
In the framework of the CUF, the displacement field above
the cross-section is the expansion of generic functions, Fr,

u(x,y,2) = Fr(x,2)ur(y), t=12,...M (6)

where F; vary over the cross-section. u; is the displacement
vector and M stands for the number of terms of the expansion.
According to the Einstein notation, the repeated subscript, 7, in-
dicates summation. The choice of F; determines the class of 1D
CUF model that has to be adopted. Two cases are addressed in
this paper: TE and CW/LE.

TE 1D models are based on polynomial expansions, x z/,
of the displacement field above the cross-section of the structure,
where i and j are positive integers. For instance, the displace-
ment field of the second-order (N = 2) TE model is expressed
by

Uy = Uy, +X Uy, + 2 Uy, +x? Uy, +XZ Uy +2? Uxg
Uy = Uy, +X Uy, +2 Uy, +x§ Uy, X2 Uy "‘122 Uyg Q)
Uy = Uz +X Uzy +Z Uy + X7 Uy +XZ Uz + 27 Uy

The order N of the expansion is arbitrary and defines the beam
theory. N can be set as an input of the analysis.

For LE class, F; are Lagrange-like polynomials. In this
work, three types of cross-section polynomial sets were adopted:
four- (L3), four- (L4), and nine-point (L9) elements. The
isoparametric formulation was exploited to deal with arbitrary
shaped geometries. The L3, L4 and L9 interpolation functions
are given in [25]. For instance, the L4 function is

1
Fe=g(I4rr(l4ss)  =1234 8)

where r and s vary from —1 to 41, whereas r; and s; are the
coordinates of the four points whose numbering and location in
the natural coordinate frame are shown in Fig. 2a. Unlikely TE,

(-1,1) (1,1 (-1,1) (0,1) (1,1

s
T_.'
(-1,0)

@,0)

(-1,-1 1,-1) (-1,-1) (0,-1) (,-1)

(a) Four-point element, L4 (b) Nine-point element, L9

FIGURE 2. CROSS-SECTION L-ELEMENTS IN NATURAL GE-
OMETRY

one of the most important feature of LE models is that they have
only pure displacement degrees of freedom. More details about
LE models can be found in the paper by Carrera and Petrolo [18].

For both TE and LE models, the FE approach was adopted
to discretize the structure along the y-axis. This process is con-
ducted via a classical finite element technique, where the dis-
placement vector is given by

u(xvyaz) = FT('va)Ni(y)qTi (9)

N; stands for the shape functions and q; for the nodal displace-
ment vector. For the sake of brevity, the shape functions are not
reported here. They can be found in many books, for instance
in [26]. Elements with four nodes (B4) were adopted in this
work, that is, a cubic approximation along the y-axis was as-
sumed.

The stiffness matrix of the elements, the mass matrix and
the external loadings vector can be obtained via the principle of
virtual displacements. For the sake of brevity, the derivation of
the elemental matrices and the loading vector is not provided in
this paper, but it can be found in [17]. For illustrative purpose,
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TABLE 1. DISPLACEMENT VALUES, u,;, AT THE LOADED POINT AND NUMBER OF DEGREES OF FREEDOM FOR THE CONSIDERED

STRUCTURAL CONFIGURATIONS OF THE THREE-BAY WING BOX

Full Model No Ribs Case Open Mid-bay Case
u;x10°m DOFs u,x10°m DOFs u,x10°m DOFs
MSC/NASTRAN
SOLID/SHELL 1.412 100026 3.051 89400 1.963 89621
Classical and Refined TE Beam Models
EBBM 0.464 495 0.464 495 0.464 495
TBM 0.477 495 0.477 495 0.477 495
N=3 0.793 1650 0.794 1650 0.873 1650
N=5 1.108 3465 1.203 3465 1.500 3465
N=7 1.251 5940 2.158 5940 1.745 5940
N=9 1.325 9075 2.649 9075 1.836 9075

1.397 10750

2.981 10560 1.919 10446

the stiffness matrix in the form of fundamental nucleus is given
in the following:

KU —f (D F,1) [énp (D FoI) + Co (Dn,,FsI)} +
(Dy Fel) [Cpp (DpFl) + Cpn (D"PFSI)} ot
Ilij-,y 4 [(D,f,,FrI) Con + (D} F:I) C'pn] Fsvoloy +
Iliv_\'jlgy 4 FT |:C‘np (DpFSI) + Cnn (anFs‘I):| > +

" 1y aF:ConFy > g Iy

(10)
where:
010
Ioy= 100 <1...>Q:/...dg (a1
001 Q

(i{ JRE A 1117,‘717,»-) = /I (M Nj,N:N; ,Ni Nj, N, N,;y) dy
(12)
It should be noted that K™ does not depend either on the ex-
pansion order or on the choice of the F; expansion polynomials.
These are the key-points of CUF which allows, with only nine
FORTRAN statements, the implementation of any-order of mul-
tiple class theories.

The component-wise approach

The refined TE models described above are characterized
by degrees of freedom (displacements and N-order derivatives
of displacements) with a correspondence to the axis of the beam.
The expansion can also be made by using only pure displacement

() (b) (©

FIGURE 3. CW APPROACH THROUGH LE ELEMENTS

values, e.g. by using Lagrange polynomials. The resulting LE
can be used for the whole cross-section or can be introduced by
dividing the cross-section into various sub-domains (see [18]).
This characteristic allows us to separately model, for instance,
stringers and panels. The LE formulation was used in this paper
to implement CW models of reinforced-shell wing structures, as
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shown in Fig. 3a where a two-stringer spar is considered. Fig-
ure 3b shows a possible CW model of the spar where each com-
ponent was modelled via one 1D LE element. Each LE element
is then assembled above the cross-section to obtain the global
stiffness matrix based on the 1D formulation. Since panels could
not be reasonably modelled via a 1D formulation, 1D CW mod-
els can be refined by using several L-elements for one compo-
nent. This aspect is shown in Fig. 3¢ where the panel is mod-
elled via two 1D LE elements. By exploiting the present 1D
formulation, the analysis capabilities of a structural model can
be enhanced by 1. locally refining the LE discretization; 2. using
higher-order LE elements (e.g. 4-node, 9-node, 16-node, etc.).

NUMERICAL RESULTS

Some examples are discussed in this section. First, the
static analysis of a three-bay wing box is addressed. Next, free
vibration analyses of a fuselage section and a complete wing
are introduced. The results are compared both with classical
beam theories and solid/shell elements of the commercial code
MSC/NASTRAN. The attention is focused on the ability of the
present CW formulation to foresee the effects due to both lon-
gitudinal and transverse stiffeners as well as open sections on
thin-walled aerospace structures.

Static analysis of a three-bay wing box

The first analysis case was carried out on the three-bay wing
box [15] for which PS and BS solutions were given in Rivello’s
book [2]. The considered structure is shown in Fig. 4a [2, chap.
11 p. 301], whereas Fig.s 4b and ¢ show its variations. These

=~

(b) No ribs case

(c) Full model with open mid-bay

FIGURE 4. DIFFERENT STRUCTURAL CONFIGURATIONS OF
THE THREE-BAY WING BOX

examples highlight the capability of the present advanced 1D
models to accurately describe the effects due to ribs and open
sections. The structures consist of three wing boxes each with a
length, I, equal to 0.5 m. The cross-section is a trapezium with
a height b = 1 m. The two webs of the spars have a thickness
of 1.6 x 1073 m, whereas #; = 0.16 m and /2, = 0.08 m. The
top and the bottom panels have a thickness of 0.8 x 1073 m, as
well as ribs. The area of the stringers is A; = 8 x 10~* m2. The
wing is completely made of an aluminium alloy 2024, having
G/E = 0.4. The cross-section in y = 0 was clamped and a point
load, F, =2 x 10* [N], was applied at [b,2 x [,hy/2]. Table 1
shows the vertical displacement values, u, and the computational
costs for each model implemented. Classical, increasing order
TE and CW models are reported. The CW models were obtained
by a combination of L4 and L9 elements. Results are validated
by an MSC/NASTRAN model built both with solid and shell FE.

Figures 5, 6 and 7 show the span-wise variation of the axial
and the shear stress components for the three different configu-
rations. BS and PS solutions are provided for the full model of
the three-bay wing box for comparison. The structure has three
redundancies. Finally, Fig. 8 shows that the present CW model
is able to detect the distribution of transverse stress components
on ribs. The following remarks can be made:
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FIGURE 5. STRESS COMPONENTS DISTRIBUTION ALONG THE WING SPAN, FULL MODEL OF THE THREE-BAY WING BOX

ayy [kPa]

FIGURE 6. STRESS COMPONENTS DISTRIBUTION ALONG THE WING SPAN, THREE-BAY WING BOX WITH NO RIBS

ayy [kPa]

FIGURE 7. STRESS COMPONENTS DISTRIBUTION ALONG THE WING SPAN, THREE-BAY WING BOX WITH OPEN MID-BAY
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1. CW/LE models correctly predict ribs and local effects, as
they match the results obtained with solid/shell models.

2. Higher than sixth-order TE models are required to correctly
predict the cross-section deformability.

Modal analysis of a fuselage section

The free vibration analysis of a fuselage section was carried
out next. The cross-section of the fuselage is considered to be
circular and it is shown in Fig. 9. The outer diameter, d, was
set to 2 m, whereas the thickness, 7, was 0.02 m. The length-to-
diameter ratio, L/d, was taken to be equal to 10. The cylinder
was made of an aluminium alloy with elastic modulus E = 75 x
10° MPa and Poisson ratio v = 0.33. The fuselage was clamped
at both its ends.

v

FIGURE 9. CIRCULAR CROSS-SECTION OF THE FUSELAGE

In Tab. 2 the main natural frequencies are shown and CUF
models are compared to a MSC/NASTRAN model constructed
with CQUAD4 shell elements. Both classical and refined TE
models are given. The results by the CW model are reported in
the last row. The CW model was obtained by discretizing the
fuselage cross-section with 20 L9 Lagrange elements. Compar-
ison between MSC/NASTRAN computational time and the pre-
sented method is also highlighted in Tab. 2.

Figure 10 shows the first bending, torsional and shell-like
modal shapes by CW model. The following statements are wor-
thy of careful study:

1. Classical and lower-order TE models are not able to describe
the dynamic behavior of the fuselage structure.

2. Higher-order TE models are able to detect both global
(bending, torsional) and local (shell-like) modes of the fuse-
lage.

3. The proposed CW model of the thin-walled cylinder only
detects bending and torsional natural frequencies. Local
shell-like modes are not correctly described. This could be
due to the high distortions that inflict LE elements for this
particular problem. Improved results can be obtained by
increasing the number of LE elements above the fuselage
cross-section.

IS

(a) Bending mode, 28.72 Hz

X

(b) Torsional mode, 80.71 Hz

(c) Shell-like mode, 106.36 Hz

FIGURE 10. MAIN MODAL SHAPES OF THE FUSELAGE SEC-
TION, CW MODEL

Modal analysis of a complete aircraft wing

The free vibration analysis of a complete aircraft wing was
carried out for the final assessment. The cross-section of the wing
is shown in Fig. 11. The NACA 2415 airfoil was used and two
spar webs and four spar caps were added. The airfoil has the
chord, ¢, equal to 1 m. The length, L, along the span direction is
equal to 6 m. The thickness of the panels is 3 x 10~ m, whereas
the thickness of the spar webs is 5 x 10~ m. The whole structure
is made of the same isotropic material of the previous analysis
case. The wing was clamped at the root. For the present wing
structure, two different configurations were considered. Configu-
ration A had no transverse stiffening members. In Configuration
B the wing was divided into three equal bays, each separated by
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TABLE 2. NATURAL FREQUENCIES (Hz) OF THE FUSELAGE SECTION AND COMPUTATIONAL TIME IN PERCENTAGE OF THE REF-
ERENCE MODEL

Model IBending II Bending I Shell-like II Shell-like I Torsional II Torsional DOFs Computational time

MSC/NASTRAN
SHELL 28.49 68.96 17.39 30.22 80.41 160.81 61440 100.00 %
Classical and Refined TE Beam Models
EBBM 32.60 88.08 - - - - 93 0.0002 %
TBM 30.30 76.44 - - - - 155 0.0006 %
N=1 30.30 76.44 - - 80.78 161.57 279 0.0021 %
N=2 30.59 77.05 - - 80.78 161.57 558 0.0082 %
N=3 28.60 69.19 38.69 70.33 80.78 161.57 930 0.0229 %
N=4 28.57 69.11 25.15 35.35 80.78 161.57 1395 0.0515%
N=5 28.57 69.11 20.48 32.22 80.78 161.57 1953 0.1010%
Cw
20L9 28.72 69.44 106.36 109.67 80.71 161.43 7920 1.6617 %

*: not provided by the model

A LE Model - NACA
Mode 26 : Freq.=142.91. Eigenvecto
—

c

FIGURE 11. CROSS-SECTION OF THE WING

a rib with a thickness of 6 x 1073 m. (2) Mode 26 (142.91 Hz)
Table 3 shows the main modal frequencies of both structural T

configurations of the wing. In this table, the results obtained Mode 4 Freq 2467 Egervecte

through the CUF models are compared to those from classical

beam theories and to those from SOLID models. In the last two

rows of Tab. 3, the frequencies of the first two shell-like modes

are stated. The following considerations hold.

1. The bending modes of the wing are correctly detected by
both the lower-order and higher-order TE models.

2. As revealed by the previous numerical examples, at least a (b) Mode 54 (246.70 Hz)

cubic expansion on the displacement field (TE N = 3) is nec-

essary to Correctly detect the torsional modes. FIGURE 12. SHELL-LIKE MODES OF THE WING (CONFIGU-
3. The CW models match the SOLID solutions, in fact, shell- RATION A) EVALUATED WITH THE CW MODEL

like modes can be obtained by means of LE beam elements.
4. The computational effort of a higher-order beam model is

significantly lower than the ones requested by solid models. ered in this section, the CW models were included into the com-

mercial software MSC/NASTRAN, which was used to solve the
To deal with complex structures, such as the one consid- eigenvalue problem through DMAP alters, and MSC/PATRAN

8 Copyright © 2013 by ASME



TABLE 3. GLOBAL AND LOCAL MODAL FREQUENCIES OF THE COMPLETE AIRCRAFT WING

Configuration A
EBBM TBM ~N=1 N=2 N=3 CW SOLID
DOFs 93 155 279 558 930 21312 186921
Global Modes
I Bending*’ 4.22 4.22 4.22 4.29 4.26 4.23 4.21
I Bending® 22.10 21.82 21.82 2195 21.87 21.76 21.69
II Bending®*  26.44 2636 2636 26.66 2625 25.15 24.78
I Torsional - - 13293 50.27 48.46 31.14  29.18
Il Bending® 7391 7335 7335 7399 71.64 5926 56.12
Local Modes
I Shell-like - - - - - 86.36  75.13
I Shell-like - - - - - 88.94  73.85
Configuration B
DOFs 84 140 252 504 840 23976 171321
Global Modes
I Bending*’ 4.12 4.12 4.12 4.19 4.17 4.14 4.12
I Bending® 21.56  21.30 2130 21.50 2142 2128 21.22
II Bending*  25.71 25.63 25.63 26.00 2561 2500 2492
I Torsional - - 131.24 49.57 4748 3945 39.22
III Bending® 71.44 70.90 7090 71.80 69.49 64.84 63.88
Local Modes
I Shell-like - - - - - 85.61 75.01
I Shell-like - - - - - 91.54  78.61

* Bendinggz bending mode along the &-axis

was used for the post-processing of the CW model of the wing.
Two shell-like modes evaluated by means of the CW model are
shown in Fig. 12 for Configuration A.

CONCLUSIONS

This paper has considered and compared existing methods
and recent approaches that exploit one-dimensional structural
theories based on the Unified Formulation, which allows for the
straightforward implementation of higher-order analysis without
the need of extensive revisions of the model. The main con-
clusion to be drawn is that the present component-wise anal-

ysis appears to the authors to be the most convenient way, in
terms of both accuracy and computational costs, in order to cap-
ture the global and local mechanical behavior of wing structures.
However, particular attention has to be paid when discretizing
structures with low radii of curvature. Additionally, the present
CW approach allows us to build FE mathematical models by
only using physical surfaces. This characteristic of CW mod-
els is a unique feature that makes this approach advantageous in
a CAE/CAD scenario.
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