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Abstract. This paper presents an application of refined one-dimensional (1D) models to
the static and free vibration analysis of thin-walled layered structures. Carrera Unified
Formulation (CUF) is employed to easily introduce higher-order 1D models with a variable
order of expansion for the displacement unknowns over the beam cross-section. Classical
Euler-Bernoulli beam theory is obtained as a particular case of these variable kinematic
models while a higher-order expansion permits the detection of the in-plane cross-section
deformation. Finite element (FE) method is used to provide numerical results. In particular, the
case of a deformable clamped-clamped thin-walled layered cylinder loaded by a non-uniform
internal pressure is discussed. The static analysis reveals the model capabilities in accurately
describing the three-dimensional deformation of the cylinder. The free vibration analysis
provides results not detectable by typical 1D models in excellent agreement with a solid (3D)
FE solution. The present models do not introduce additional numerical problems with respect
to classical beam theories. Moreover, the results clearly show that finite elements which
are formulated in the CUF framework offer shell-type capabilities in analyzing thin-walled
structures with a remarkable reduction in the computational cost required.
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1. INTRODUCTION

In many areas such as aerospace, civil and biomechanical engineering different kinds
of slender structures are involved nowadays. Typical examples of these one-dimensional (1D)
structures are for instance rotor and wind blades, aircraft wings, bridges and towers, and
even veins. Such beam-like components can be analyzed via 1D formulations and one main
advantage is that 1D models require a lower computational cost compared with 2D plate and
shell or 3D solid models [1].

The 1D models used in early studies of slender structures were based on classical
theories, such as Euler-Bernoulli [13] and Timoshenko [30] theories. The growing use of
advanced composite and sandwich materials in thin-walled beam-like structures has revealed
that 1D theories have to be refined in order to predict the behavior of such complex structures
in an accurate way. In last decades, many theoretical and computational approaches were taken
to address issues such as warping effects and in-plane cross-secton deformation. Recently,



refined theories such as those based on the 1D Carrera Unified Formulation (CUF) [7, 8] and
variational asymptotic methods (VABS) [32] as well as the Generalized Beam Theory (GBT)
[25] have presented remarkable advances in static, buckling, and free vibration analysis.

A detailed review of several theories for vibrations and wave propagation was presented
by Kapania and Raciti [20]. A first formulation of a second-order theory by using cross-
sectional warping and transverse direct stress was proposed by Stephen and Levinson [28].
Heyliger and Reddy [16] proposed a third-order theory with a quadratic variation of the shear
strain accross the cross-section. Its refined version, with transverse normal stress components,
was reported later by Soldatos and Elishakoff [27]. Early fourth-order beam theories were
formulated by Levinson [21], Rychter [24] and were extended by Bickford [2] to the dynamic
analysis. Kant and Gupta [18] proposed a refined FE higher-order model with quadratic
transverse shear strain that was applied to the free vibration analysis of angle-ply laminated,
deep sandwich and composite beams [22, 23]. Kant et al.[19] provided an analytical solution
to the natural frequency analysis of thick and thin composite beams by accurately desribing
the cross-section warping. The formulation of two higher-order shear deformation theories
by Subramanian [29] satisfied the traction-free surface conditions at the top and bottom beam
surfaces. A higher-order FE model based on classical laminated theory presented higher-
frequencies analysis capabilities for the vibration response of laminated tapered beams [14, 15].
Recently, Şimşek and Kocatürk [26] highlighted that a third-order shear deformation theory
gives significantly better results than classical theories in the case of short beams and high
mode numbers.

As mentioned, higher-order 1D models with generalized displacement variables based
on CUF have recently been proposed by Carrera and co-authors for the analysis of isotropic [8]
and composite structures [10, 31]. CUF has been developed over the last decade for plate/shell
models [6, 3] and it has recently been extended to static and dynamic 1D modeling [7, 9, 12].
CUF is a hierarchical formulation which considers the order of the model as a free-parameter
of the analysis. In other words, models of any order can be obtained with no need for ad hoc
formulations by exploiting a systematic procedure. Euler-Bernoulli and Timoshenko beam
theories are obtained as particular cases of the first-order expansion.

In this paper, an application of CUF one-dimensional models to the static and free
vibration analysis of thin-walled structures is presented. The finite element method (FEM) is
used to handle arbitrary geometries and loading conditions. At first, a static case is considered
and comparisons with solid FE solutions are made in order to assess the present 1D model
and enhance its accuracy. The influence of higher-order effects over the three-dimensional
cross-section deformation, not detectable by classicalbeam theories, is enhanced also on the
evaluation of vibrational modes of layered structures. The use of variable kinematic 1D CUF
models reveals their shell-type capabilities in accurately describing the dynamic behavior of
thin-walled structures.

2. PRELIMINARIES

A slender structure with axial length L is considered and studied as a beam. The
intersection of the beam with a plane that is perpendicular to its axis identifies the beam’s
cross-section Ω. A global cartesian coordinate system composed of x and z axes parallel to the



cross-section plane is defined, whereas y represents the out-of-plane coordinate. However, the
y axis is not necessarily a centroidal one. The choice of the cross-section is arbitrary, since
it does not affect the following theoretical formulation. In the present work, the thin layered
annular cross-section shown in Fig. 1 is considered. The three layers are denoted as 1, 2, and 3.
Therefore, a thin-walled layered cylinder represents the structure to be studied.
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Figure 1. Geometry of the cylinder cross-section.

The cartesian components of the displacement vector u
(
x, y, z

)
are ux, uy, and uz. The stress

σ and the strain ε are grouped in vectors as follows:

σp =
{
σzz σxx σzx

}T
εp =

{
εzz εxx εzx

}T
σn =

{
σzy σxy σyy

}T
εn =

{
εzy εxy εyy

}T (1)

where superscript T stands for the transposition operator. Subcript n refers to quantities related
to the beam cross-section Ω, whereas subscript p refers to quantities related to the out-of-plane
direction. In the case of small displacements with respect to the length L, the linear relations
between strain and displacement components hold and a compact vectorial notation can be
adopted:

εp = Dp u

εn = Dn u = Dnp u + Dny u
(2)

whereDp,Dnp, andDny are differential matrix operators:
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0 0
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∂z

∂

∂x
0 0

∂

∂z
0

∂
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0

∂

∂z
0

0
∂
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0

0 0 0
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0 0

∂

∂y

∂

∂y
0 0

0
∂

∂y
0

 (3)

According to Eq. 1, the generalized Hooke’s law for isotropic materials is:

σp = Cpp εp + Cpn εn

σn = Cnp εp + Cnn εn
(4)



where matrices Cpp, Cpn, Cnp and Cnn are:

Cpp =

 C11 C12 0
C12 C22 0
0 0 C44

 , Cpn = C T
np =

 0 0 C13

0 0 C23

0 0 0

 ,
Cnn =

 C55 0 0
0 C66 0
0 0 C33

 (5)

For the sake of brevity, the dependence of the coefficients Cij on Young’s modulus, Poisson’s
ratios, and shear modulus is not reported here. It can be found in Jones [17]. In this paper
isotropic materials are considered. The extension to composite beams will be presented in
future papers.

3. VARIABLE KINEMATIC 1D MODELS

According to the framework of Carrera Unified Formulation (CUF) [8], the displace-
ment field is assumed to be an expansion of a certain class of functions Fτ , which depend on
the cross-section coordinates x and z:

u (x, y, z, t) = Fτ (x, z) uτ (y, t) τ = 1, 2, . . . , Nu = Nu (N) (6)

The compact expression is based on Einstein’s notation: repeated subscript τ indicates sum-
mation. The number of expansion terms Nu depends on the expansion order N , which is a
free parameter of the formulation. Taylor’s polynomials are chosen as cross-section functions
Fτ . Most displacement-based theories can be formulated on the basis of the above generic
kinematic field. For instance, when N = 2, the second-order axiomatic displacement field is
given by:

ux = ux1 + ux2 x + ux3 z + ux4 x
2 + ux5 xz + ux6 z

2

uy = uy1 + uy2 x + uy3 z + uy4 x
2 + uy5 xz + uy6 z

2

uz = uz1 + uz2 x + uz3 z + uz4 x
2 + uz5 xz + uz6 z

2

(7)

Subsequently, the classical beam models such as Euler-Bernoulli’s (EBBM) [13] and Timo-
shenko’s (TBM) [30] are easily derived from the first-order approximation model. Timoshenko
beam model (TBM) can be obtained by setting terms {uij : i = x, z ; j = 2, 3 } equal to
zero. In addition, an infinite rigidity in the transverse shear is also adopted for EBBM by
penalizating εxy and εyz via a high penalty value in the following constitutive equations:

σyz = C55 εyz σxy = C66 εxy (8)

Higher-order models provide an accurate description of the shear mechanics, the cross-section
deformation, Poisson’s effect along the spatial directions and the torsional mechanics in
more detail than classical models do. EBBM neglects them all, since it was formulated to
describe the bending mechanics. TBM takes into account constant shear stress and strain
components. Classical theories and first-order models require the assumption of opportunely
reduced material stiffness coefficients to correct Poisson’s locking effect [4, 5]. According to
Carrera and Giunta [7], the same technique is used here to correct Poisson’s locking.



4. FINITE ELEMENT FORMULATION

Following standard FEM, the unknown variables in the element domain are expressed
in terms of their values corresponding to the element nodes [8]. For the sake of completeness,
some details about the formulation of CUF finite elements are here retrieved from previous
works [11, 12] and extended to the dynamic response analysis. By introducing the shape
functions Ni and the nodal displacement vector q, the displacement field becomes:

u (x, y, z, t) = Fτ (x, z)Ni (y) qτi (t) i = 1, 2, . . . , NN (9)

where:
qτi =

{
quxτi quyτi quzτi

}T
(10)

contains the degrees of freedom of the τ th expansion term corresponding to the ith element node.
One-dimensional elements with 4 nodes are formulated. Third-order Lagrange polynomials
are used as shape functions. For the sake of brevity, more details are not reported here, but can
be found in Carrera et al.[9, 11]. This beam model can be easily extended to mixed theories.
However, this work presents a displacement-based formulation. The variational statement is
therefore the Principle of Virtual Displacements:

δLint =

∫
V

(
δεTn σn + δεTp σp

)
dV = δLext − δLine (11)

where Lint is the internal strain energy, Lext is the work of external loadings, and Line is the
work of inertial loadings. δ stands for the virtual variation. The damping effect is neglected for
the sake of simplicity. Substituting Eq. 9 into Eq. 2 and using the fact that Fτ are independent
of y, the strain vectors can be written as:

εn =
(
Dnp Fτ I

)
Ni qτi + Fτ

(
DnyNi I

)
qτi

εp =
(
Dp Fτ I

)
Ni qτi

(12)

where I is the identity matrix. The expression of the internal strain energy (Eq. 11) can be
rewritten in terms of virtual nodal displacements as follows:

δLint = δqTτi K
ij τ s qsj (13)

where Eq. 4 has been used. The 3× 3 fundamental nucleus of the structural stiffness matrix
presented in Eq. 13 can be shown to have the following explicit equation:

K ij τ s = E ij /
(
D T

np Fτ I
)[
Cnp

(
Dp Fs I

)
+ Cnn

(
Dnp Fs I

)]
+(

D T
p Fτ I

)[
Cpp

(
Dp Fs I

)
+ Cpn

(
Dnp Fs I

)]
. Ω +

E ij,y /
[ (
D T

np Fτ I
)
Cnn +

(
D T

p Fτ I
)
Cpn

]
Fs . Ω IΩ y +

E i,y j I
T
Ω y / Fτ

[
Cnp

(
Dp Fs I

)
+ Cnn

(
Dnp Fs I

)]
. Ω +

E i,y j,y I
T
Ω y / Fτ Cnn Fs . Ω IΩ y

(14)



where:

IΩ y =

 0 0 1
1 0 0
0 1 0

 / . . . . Ω =

∫
Ω

. . . dΩ (15)

(
E ij, E ij,y , E i,y j, E i,y j,y

)
=

∫
l

(
NiNj, NiNj,y , Ni,y Nj, Ni,y Nj,y

)
dy (16)

The symbol / . . . . Ω indicates integration over the cross-section. In the case that the beam
cross-section consists of subsections with different laminations as in the present work, the
matrices Cpp, Cpn, Cnp and Cnn are different for each subsection. Hence, it is important
to note that such the integration over the cross-section has to include all the subsections
contributions.

The virtual variation of the work of inertial loadings is:

δLine =

∫
V

uTρ ü dV (17)

where ρ is the density of the material and ü is the acceleration vector. By retrieving Eq. 9,
δLine can be rewritten in terms of virtual nodal displacements as follows:

δLine = δqTτi

∫
Ω

ρ
(
Fτ I

)[∫
l

NiNj dy

](
Fs I

)
dΩ q̈sj (18)

where q̈ is the nodal acceleration vector. The virtual variation of the work of inertial loadings
can be finally expressed in the following compact notation:

δLine = δqTτi

[
ρ E ij / Fτ Fs . Ω I

]
q̈sj = δqTτi M

ij τ s q̈sj (19)

The 3× 3 fundamental nucleus of the mass matrix presented in Eq. 19 is therefore a diagonal
matrix. The virtual work of external loads variationally consistent with the above method is
here derived for the case of a generic concentrated load P =

{
Pux Puy Puz

}T acting on the
load application point

(
xP , yP , zP

)
. By using Eq. 9, δLext becomes:

δLext = δuT P = δqTτi Fτ NiP = δqTτi Fτi (20)

where Fτ is evaluated in (xP , zP ) and Ni is calculated in yP . Any other loading condition can
be similarly treated. From Eq.s 11, 13, 19, and 20 the governing equation of motion can be
derived through a finite element assembly procedure:

M q̈ + K q = F (21)

whereM is the mass matrix,K is the stiffness matrix and F is the vector of equivalent nodal
forces. It should be noted that no assumptions on the expansion order have been made so far.
Therefore, it is possible to obtain variable kinematic 1D models without changing the formal
expression of the nucleus components. Thanks to the CUF, the present model is invariant with
respect to the order of the beam theory and the type of element used in the finite element axial
discretization. Shear locking is corrected through selective integration [1].



In conclusion, the static structural response is computed as solution of the following
equation, which is a particular form of Eq. 23 by neglecting the inertial contribution:

K q = F (22)

The free vibration analysis of the structure is carried out by considering the homogeneous case
of Eq. 23 by neglecting the contribution of external loadings:

M q̈ + K q = 0 (23)

Introducing harmonic solutions, it is possible to compute the natural angular frequencies, ωk,
and the natural frequencies, fk, by solving an eigenvalue problem:[

−ω2
kM + K

]
qk = 0 (24)

where qk is the kth eigenvector.

5. RESULTS AND DISCUSSION

As previously mentioned, the structure studied in the present paper is a three-layer
cylinder. The layers are made of different isotropic materials. The material and geometrical
properties of the layers are summarized in Table 1. The thickness t is equal for each layer and
is small enough to consider overall the cylinder as a thin-walled structure, since the external
and internal diameter are respectively equal to de = 100 mm and di = 94 mm. The length L of
the cylinder is equal to 500 mm. For all the following analysis, a clamped boundary condition
is taken into account for both the free edges (at y = 0 and y = L).

Table 1. Material and geometrical properties of the cylinder layers.

Property Layer 1 Layer 2 Layer 3

t [mm] 1 1 1
E [GPa] 69 30 15
ν 0.33 0.33 0.33
ρ [kg/m3] 2700 2000 1800

In order to easily present the deformation of the cylinder, a cylindrical coordinate system
r−θ−y is now introduced. The plane r−θ is the cross-section plane. The r coordinate goes
along the radial direction, whereas the θ coordinate is an angle measured counterclockwise
from the axis −z. For the sake of simplicity, the origin of the cylindrical system overlaps the
cross-section center of mass as well as the origin of the global coordinate system.

5.1. Static analysis

A uniform pressure p = 14.8 MPa is applied on the internal edge of the cylinder as
shown in Fig. 2. In particular, the loading is applied along all the length of the structure



and only on the upper side of layer 1 (r = di/2, 90° ≤ θ ≤ 270°, 0 ≤ y ≤ L). Although
the structure here analyzed is axisymmetric, its deformed configuration is not expected to be
axisymmetric due to the loading distibution. Nevertheless, the solution will be symmetrical
with respect to both x = 0 and y = L/2 planes. Given the solution’s simmetry with respect to
y = L/2 plane, the maximum deformation is placed on the section lying on this plane. This
section is denoted as mid-span section from this point forward.

x

z

321

Figure 2. Pressure applied on the cylinder for the static analysis.

The static response of the structure is computed through the present CUF 1D model with a
variable expansion order up to N = 8 by solving Eq. 22. A solid finite element analysis is
also carried out via the commercial code NASTRAN in order to assess the present refined 1D
model. One solid element along the thickness is used for each layer. Due to the small layer
thickness and the well-known aspect ratio restrictions typical of solid finite elements, the model
in NASTRAN consists of 86880 nodes and 64800 HEX8 elements. The number of degrees of
freedom (DOF) is thus equal to 257760.

The deformation of the mid-span section, which is expressed in terms of the magnitude
of displacement vector u, is depicted in Fig. 3 for different models and compared with the
solid NASTRAN solution. The solution confirms to be symmetrical with respect to the x = 0

plane regardless the model used. The particular distribution of pressure loadings is supposed to
deform the beam cross-section, in addition to a bending behavior obviously. Moreover, the
span-to-external diameter ratio is equal to 5 and makes the structure a thick beam. Hence,
this case cannot be consistent with the kinematic hypotheses which classical beam models
are based on. Classical models are therefore not expected to yield accurate results and this
statement is confirmed by the EBBM result. In fact, a pure bending and a uniform displacement
over the cross-section are detected by Euler-Bernoulli theory.

By enriching the displacement field, the first-order model provide a linear displacement
distribution along the z direction. Nevertheless, it results not to be realistic. Taking the solid
FE model as reference, the results improve as the expansion order N increases. In particular,
for a eight-order model the deformation of the mid-span section is accurately described and its
agreement with the 3D solution is remarkable. Even not reported here, it is noteworthy that for
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Figure 3. Deformation of the mid-span section for higher-order 1D models.



an expansion order higher than 8 the analysis would provide the same results as those obtained
by N = 8, thus confirming a convergent trend on N .

The increasing accuracy of the present formulation as N increases is well-shown in
Fig. 4, which illustrates the deformation of the external edge of the annular mid-span section
of the cylinder (r = de/2, y = L/2) along the angular θ coordinate. The deformation is again
expressed in terms of the magnitude of displacement vector u. It is notable how the actual trend
is far from the uniformly deformed configuration supposed by EBBM. Classical and low-order
models provide a unrealistic behavior of the thin-walled cylinder. With a higher-order model
than the third the curve trend changes and becomes similar to the reference one. Nevertheless,
for N < 8 the displacement is remarkably overestimated at points θ = 180° and dangerously
underestimated at points where the displacement is actually maximum. The CUF 1D FEs
provide a convergent solution by approaching the NASTRAN 3D results until a well agreement
for N = 8.
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Figure 4. Displacement of the external edge of the mid-span section.

The maximum displacement on the external edge of the mid-span section is reported in
Table 2. The error in computing the maximum deflection is significant for classical and
low-order models, except for N = 1. However, the solution for the first-order model is
completely unrealistic, see Fig. 4. In general, umax increases as N increases approaching
the 3D value. Also the position of the maximum displacement along the external edge in
terms of θ appreciably changes for different models. θumax for 1D models with an expansion
order higher than 4 coincides with the reference solution, whereas low-order models evidence
their low accuracy even in the position evaluation. This aspect has not to be underestimate
because it turns out to be fundamental for a failure investigation, for instance. In conclusion,
the eight-order model proves its capability to exactly detect the three-dimensional deformation
of the layered thin-walled cylinder with a sizeable reduction in computational cost in terms of
DOF (4185 vs. 257760).



Table 2. Maximum displacement [mm] on the external edge of the mid-span section.

Model umax % Difference θumax DOF

EBBM 5.639 −60.663 − 93
N = 1 14.272 −0.439 180 279
N = 2 8.780 −38.751 93 558
N = 3 12.011 −16.212 0 930
N = 4 12.625 −11.929 120 1395
N = 5 12.685 −11.510 117 1953
N = 6 13.281 −7.353 117 2604
N = 7 13.300 −7.220 117 3348
N = 8 14.236 −0.691 117 4185
Solid FEM 14.335 − 117 257760

5.2. Free vibration analysis

The free vibration analysis of the same layered cylinder as that used for the previous
static case is now faced by solving Eq. 23. The same solid FE model is also considered to
carry out the free vibration analysis of the layered cylinder in NASTRAN (sol 103). All the
vibrational modes obtained can be divided into four categories: bending, axial, radial, and
lobes-type modes. In axial modes, the cylinder vibrates along its longitudinal axis y and
the cross-sections remain annular-type. In radial modes, the cross-sections vibrate radially
remaining annular-type and rotate along the direction θ. In lobes-type modes, the cross-
sections do not remain annular-type since two, theee, or four lobes and so on compare in the
cross-sections.

Table 3 summarizes the natural frequencies computed for bending, radial, and axial
vibrational modes through different models. As far as the bending modes are concerned, each
frequency value refers to a couple of numbers, denoted as mode indexes, whose meaning is
important to be explained. Let the vibrational modes computed by EBBM to be considered
for instance. The first and second modes correspond to the same natural frequency (1963.0
Hz) and represent the same way of vibrating, that is a single-wave bending mode. In fact, the
cylinder is axisymmteric and thus can vibrate along a single-wave either in the x−y plane
or in the z−y plane. Hence, the mode indexes related to EBBM single-wave bending mode
(1963.0 Hz) are 1 and 2. According to Table 3, the third mode is axial whereas the fourth and
fifth modes are double-wave bending modes and so on.

The first radial frequency is well-computed by all the models, even for N = 1. This
does not occur for bending modes, for which the expansion order has to be at least equal to
4 to match solid results with a minor error. Euler-Bernoulli theory is ineffective even in the
computation of bending frequencies. Moreover, EBBM is unable to detect any radial mode
due to the kinematic hypoteses it is based on. On the contrary, this model computes accurately
the natural frequency of the first axial mode, even better than higher-order models. However,
even for the axial mode the present formulation provides a convergent trend as N increases.

Among all the possible lobe-types modes (with two, three, four lobes and so on), the



Table 3. Natural frequencies [Hz] of bending, radial, and axial modes.

Model
Bending Radial Axial

Mode 1 Mode 2 Mode 1 Mode 1
DOF

EBBM 1963.0 1,2 5044.9 4,5 − 4173.2 3 93
N = 1 1572.6 1,2 3530.3 6,7 2540.9 4 4173.3 8 279
N = 2 1597.7 1,2 3562.1 4,5 2540.9 3 4191.3 6 558
N = 3 1368.0 1,2 2925.0 6,7 2540.9 5 4182.5 10 930
N = 4 1365.4 3,4 2912.6 10,11 2540.9 7 4182.4 18 1395
N = 5 1364.3 3,4 2909.7 10,11 2540.9 7 4182.1 22 1953
N = 6 1364.3 3,4 2909.6 16,17 2540.9 11 4182.0 24 2604
N = 7 1364.2 3,4 2909.5 16,17 2540.9 11 4182.0 24 3348
Solid FEM 1360.9 3,4 2906.3 16,17 2540.2 13 4172.2 32 257760

two-lobe frequencies computed by the present CUF 1D finite elements are considered and
reported in Table 4. As can be seen, also the lobes-type modes have two mode indexes for
each frequency, due to the cylinder axisymmetry. It is important to note that the increase of N
usually corresponds to a detection of new lobes-type modes. For instance, the second-order
model is not able to detect any two-lobe mode. The third-order model is instead able to
compute such modes, even if the corresponding frequencies are sizeable far from the correct
frequencies. As a consequence, it is necessary to increase the expansion order to 7 to match the
NASTRAN reference results, see Table 4. In the same way, for instance the four-lobe modes
are not detectable for an expansion order lower than 6. This is the reason why the increase of
the accuracy of the 1D model improves not also the computation of the frequency values, but
also the corresponding mode indexes.

Table 4. Natural frequencies [Hz] of two-lobe modes.

Model
Mode number

1 2 3
DOF

N = 3 1617.9 3,4 2960.7 8,9 4755.5 13,14 930
N = 4 1209.1 1,2 1795.0 5,6 2732.8 8,9 1395
N = 5 1005.4 1,2 1666.3 5,6 2643.3 8,9 1953
N = 6 995.8 1,2 1640.9 5,6 2602.6 12,13 2604
N = 7 862.7 1,2 1561.9 5,6 2551.7 12,13 3348
Solid FEM 859.9 1,2 1557.0 5,6 2545.4 14,15 257760

It is important to note that the lobes-type modes are typically not detectable by any one-
dimensional model. In fact, shell (2D) or solid (3D) models need to be usually involved to
study thin-walled structures such as the cylinder here considered. Pointing out the agreement
of N = 7 frequencies with NASTRAN frequencies, the results demonstrate the shell-type
capabilities of the present 1D FEs in accurately predicting complex vibrational modes and the



corresponding frequency values with a striking reduction of DOF. For the sake of brevity, further
numerical comparisons on complex vibrational modes such as third- and fourth-lobe modes
are not reported here. However, as an example case the sixth three-lobe mode computed by the
present CUF 1D model is depicted in Fig. 5 and graphically compared with the corresponding
mode obtained by NASTRAN solid model, see Fig. 6. The vibrational modes perfectly match.

Figure 5. Sixth three-lobe mode. Present CUF 1D.

Figure 6. Sixth three-lobe mode. NASTRAN solid.

6. CONCLUSIONS

This paper presents the application of refined one-dimensional models to the static and
free vibration analysis of thin-walled structures. The 1D Carrera Unified Formulation, CUF, is
exploited to formulate higher-order 1D finite elements with variable kinematics whose form
does not depend on the expansion order chosen.

A layered cylinder were used to assess and enhance the advantages of refined 1D CUF
models in evaluating the behavior of thin-walled structures. The effectiveness of higher-order
terms over the cross-section deformation were highlighted mainly when thin-walled geometries
are adopted. In fact for these cases classical beam theories become ineffective, since they
assume an undeformed cross-section. Comparing results with solid (3D) FE solutions, in-plane
deformations are instead accurately described by the proposed 1D model by increasing the
order of expansion and involving a limited number of degrees of freedom.

The dynamic analysis of the structure revealed the shell-type capabilities of the present
1D model by detecting vibrational modes typical of thin-walled structures and usually detectable



by shell or solid models. The study of corresponding natural frequencies showed a well
agreement with 3D results with a remarkable reduction in computational cost.

In conclusion, the present 1D finite element formulation proved to be a valid alternative
to shell and solid methods which necessarily require a higher computational cost. Future works
could address the structural dynamics of complex multilayered composite structures for typical
aerospace and biomechanical applications.
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