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Advanced layer-wise shells theories based on trigonometric functions expansions are 

considered to evaluate the static behavior of multi-layered, orthotropic shells. The aim of the 

present work is to extend the basis functions used for layer-wise formulation to a 

trigonometric basis functions properly defined. Carrera Unified Formulation for the 

modeling of composite shell structures is adopted. Via this approach, higher order, zig-zag, 

layer-wise and mixed theories can be easily formulated. The governing differential equations 

of the problem are presented in a compact general form. These equations are solved via a 

Navier-type, closed form solution. As assessment, results are compared with available exact 

solutions present in literature.  

Nomenclature 

Ak, Bk = coefficients of the first fundamental form of Ωk 

α, β = shell in-plane coordinates 

dΩk = area of an infinitesimal rectangle on Ωk 

ds
2
k = square of line element 

dV = infinitesimal volume 

Fτ = generic thickness function 

Γk = boundary of Ωk 

hk = thickness of the k-layer 

k = integer indicating layer number starting from the shell-bottom 

N = expansion order 

Nl = number of layers of the laminate 

Ωk = k-layer reference shell surface 

p = pressure loading vector 

R
k
α ,R

k
β = radii of curvature along α and β directions respectively 

σ, ε = stress and strain vectors 

u = displacements vector 

uα ,uβ ,uz = components of the displacements vector along α, β and z directions respectively 

ζk = non dimensioned layer coordinate 

z = shell thickness coordinate 
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I. Introduction 

lassical theories (Classical Lamination Theory, CLT) developed for thin elastic shells are based on Love-

Kirchhoff’s assumptions
1
. Nowadays curved shell structures made of composite laminae have gained 

widespread acceptance for primary structural components due to high value of strength- and stiffness-to-weight 

ratios. Love-Kirchhoff’s kinematic assumptions applied to layered anisotropic composite shells may not yield a 

correct prediction of displacements and stresses fields. These materials exhibit high transverse shear deformation 

and discontinuous material properties in the thickness direction. 

These features require the development of refined theories
 2,3

. 

According to published research, various theories in mechanics for composite structures have been developed. They 

can be classified as:  

 Equivalent Single Layer (ESL): the number of unknowns is independent from the number of layers, but the shear 

stress continuity on the interfaces of layers is often violated. 

 Layer-wise approach (LW): this theory aims at overcoming the restriction of the ESL about the discontinuity of 

in-plane displacement on the interface layers.  

A review of equivalent-single-layer and layer-wise laminate theories is presented by Reddy
 4

. Concerning 

trigonometric theories for structural analysis the following literature is found. 

Shimpi and Ghugal
 5

 have used trigonometric terms in the displacement field for the analysis of two layers 

composite plate. An ESL model is developed by Arya et al.
6
 using a sine term to represent the non-linear 

displacement field across the thickness in symmetric laminated beams. An extension of Ref. 6 to composite plates is 

presented by Ferreira et al.
7
. A trigonometric shear deformation theory is used to model symmetric composite plates 

discretized by a meshless method based on global multiquadric radial basis functions. A specialized version of this 

theory with a layer-wise approach is proposed by the same authors in Ref. 8. Vidal and Polit
 9

 designed a new three-

noded beam finite element for the analysis of laminated beams, based on a sinus distribution with layer refinement. 

A recent work from the same authors
10

 deals with the influence of the Murakami’s zig-zag function in the sine 

model for static and vibration analysis of laminated beams. Static and free vibration analysis of laminated shells is 

performed by radial basis functions collocation, according to a sinusoidal shear deformation theory in Ferreira et 

al.
11

. It accounts for through-the-thickness deformation, by considering a sinusoidal evolution of all displacements 

with the thickness coordinate. 

Over the last decade the second author has developed a Unified Formulation
12

 (CUF) that allows formulating 

several two-dimensional models on the basis of the choice of the a-priori main unknowns (displacements or mixed 

models), the approximation level (laminate or lamina level) and the through-the-thickness polynomial 

approximation order. As a result, an exhaustive variable kinematic model has been obtained: models that account for 

the transverse normal and shear deformability, the continuity of the transverse stress components and the zig-zag 

variation along the thickness of displacements and transverse normal stresses can be formulated straightforwardly. 

In the framework of the Unified Formulation, to postulate the displacements distribution, we present a new set of 

trigonometric functions of the shell thickness coordinate z. This approach is adopted in both case: ESL and LW 

models. In the next subsections we present the unified and compact form of resulting equations.  

II. Geometry 

Shells are bi-dimensional structures with one dimension, in general the thickness along z direction, negligible 

with respect to the others two on the reference surface directions. The main features of shell geometry are shown in 

Fig. 1. A laminated shell composed of Nl layers is considered. The integer k, used as superscript or subscript, 

indicates each layer starting from the shell bottom. The layer geometry is denoted by the same symbols as those 

used for the whole multilayered shell and vice-versa. αk and βk are the curvilinear orthogonal co-ordinates 

(coinciding with lines of principal curvature) on the layer reference surface k (middle surface of the k-layer). zk 

denotes the rectilinear co-ordinate measured along the normal direction to k. The following relations hold in the 

orthogonal system of coordinates above described: 
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where 
2
kds  is the square of line element, kd  is the area of an infinitesimal rectangle on Ωk and dV is an 

infinitesimal volume. Here: 
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kR and 
kR are the radii of curvature along the two in plane directions αk and βk respectively. Ak and Bk are the 

coefficients of the first fundamental form of Ωk. For shells with constant curvature these coefficients are equal to 

unity. 

III. Carrera Unified Formulation  

Carrera’s Unified Formulation (CUF) permits several two dimensional models to be obtained for shells, thanks 

to the separation of the unknown variables into a set of thickness functions only depending on the thickness 

coordinate z, and the correspondent unknowns depending on the in-plane coordinates (α, β). In force of that various 

shell theories can be unified considering that CLT and FSDT (First-Order Shear Deformation Theory) are a peculiar 

case of ESL higher order models. These latter models can be regarded as a particular case of Layer-Wise (LW) 

models in which the number of layers is equal to one and the through-the-thickness polynomial approximation is 

performed via the classical base {z
 τ

 : τ = 0, 1, ..., N}. In case only displacement assumption are introduced, the 

following expansion in the thickness coordinate z can be written: 

 l
kk NkzF ,,2,1),()( uu  (3) 

where: 

 u=(uα , uβ , uz) are the three displacement components of the generic shell point P(α, β, z) measured in a 

cartesian reference system. 

 uτ=(uτ α , uτ β , uτ z) are the introduced displacement variables of PΩ(α, β, z) which lie on reference shell surface 

Ω. 

 Fτ are the introduced functions of the thickness coordinates z. 

 Nl is the number of layers of the laminate 

Einstein convention for repeated indexes is referred to. The order of the expansion as well as the choice of the base 

functions used to build the thickness function Fτ is completely free. 

The governing equations are derived according to the chosen variational statement (PVD approach) in a general way 

that does not depend upon the variable description (ESL or LW) and the expansion order. 

 

 
 

Figure 1. Geometry and notation used for multilayered shell 
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IV. Overview of the considered Shell Theories 

Since a large variety of two-dimensional theories can be formulated on the basis of different kinematic 

assumptions, it may be useful to recall some details about shell’s theories. 

The introduced assumptions for 

displacements (Eq. (3)) can be made at 

layer or at multilayer level. Layer-

Wise (LW) description is obtained in 

the first case whereas Equivalent 

Single Layer (ESL) description is 

acquired in the latter one. If LW 

description is employed than uτ are 

layer variables. These are different in 

each layer. If ESL description is 

referred to then uτ are shell variables. 

These are the same for the whole multilayer. Examples of ESL and LW assumption are given in Fig. 2. 

A. Equivalent single layer models 
 

1. ESL with Lagrange polynomial basis functions 

Higher Order Theories (HOTs) can be formulated adopting the following expansion for displacements variables 

u={uα ,uβ ,uz}: 

 Nzz ,,2,1,0),,( uu  (4) 

A N-order theory based upon Eq. (4) is addressed as ‘EDN’. Letter ‘E’ denotes that the kinematic is preserved for 

the whole layers of the shell, as in Equivalent Single Layer (ESL) approach. ‘D’ indicates that only displacement 

unknowns are used. ‘N’ stands for the expansion order of the through-the thickness polynomial approximation. For 

instance, the displacement field of an ED3 model is: 
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 (5) 

This theory accounts for a parabolic and cubic variation along the thickness of transverse normal and shear strains, 

respectively. 
 

2. ESL with trigonometric basis functions 

In the present work we extended the basis functions used for the equivalent single layer formulation to the 

trigonometric basis functions defined as: 

 )}/sin(),/cos(,),/3cos(),/2sin(),/2cos(),/sin(),/cos(,,1{ hznhznhzhzhzhzhzz   (6) 

then the displacements field can be written as: 
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43210

)2/sin()2/cos()/2sin(

)/2cos()/sin()/cos(),,(

NN hzNhzNhz

hzhzhzzz

uuu

uuuuuu


 (7) 

We mention this theory with the acronym EDTN, where ‘T’ refers to the trigonometric basis functions adopted to 

write the assumed displacements field. The kinematics of the proposed theory (Eq. (7)) is useful, because if the 

trigonometric term (involving thickness coordinate z) is expanded in power series, the kinematics of higher order 

theories (which are usually obtained by power series in thickness coordinate z) are implicitly taken into account. 

B. Layer-Wise theory 
 

3. Legendre expansion 

The ESL theories mentioned above have the number of unknown variables that are independent from the number 

of constitutive layers Nl. If detailed response of individual layers is required and if significant variations in 

 
Figure 2. Examples of ESL (left) and LW (right) assumptions. 

Linear and cubic cases 
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displacements gradients between layers exist, as it is the case of local phenomena description, a layer-wise approach 

is necessary. That is, each layer is seen as an independent plate/shell and compatibility of displacement components 

with correspondence to each interface is then imposed as a constraint. 

Legendre Polynomials base function is usually adopted. The following expansion is, therefore, adopted:  
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where k=1, 2, …,Nl counts the laminae and Nl represents the total number of layers. Subscripts t and b denote values 

evaluated at top and bottom surface of a k-layer, respectively. The thickness functions Ft , Fb , and Fr, depend on the 

non dimensional thickness coordinate ζk =2zk/hk . ζk is defined such that -1≤ ζk ≤1, being zk a k-layer local coordinate 

and hk  stands for the thickness of a k-layer. Ft , Fb , and Fr are defined as follows:  

 2
1010 =

2
=

2
= rrrbt PPF

PP
F

PP
F  (9) 

Pj=Pj(ζk) is a Legendre's polynomials of order j. The first four Legendre's polynomials are:  
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The following properties hold:  
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 (11) 

Top and bottom displacements of each lamina are assumed as unknown variable. Interlaminar compatibility of 

displacements can be easily linked:  
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The acronym used for these theories is ‘LDN’, where ‘L’ stands for the LW approach. 
 

4. Trigonometric functions expansion 

In the framework of trigonometric functions expansions, the main purpose of the paper is to present and validate 

a new set of thickness functions for layer-wise approach. We use functions containing sine and cosine terms instead 

of Legendre Polynomials. This new set of trigonometric functions meets conditions (11). The thickness functions Ft 

and Fb are defined as previously: 
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= 1010 PP
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whereas Fr , r=2,3,…N, are redefined in the following way: 
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The maximum expansion order introduced is 11. Besides to the sine and cosine functions, in some case we added a 

unit or a linear term, so as to satisfy the conditions (11) seen before. The displacements expansion (8) is still valid, 

but Fr are now defined by Eqs. (14). We refer to this theories with the acronym ‘LDTN’, where ‘T’ stands for 

trigonometric thickness functions basis. 

For all the models that have been previously described, the governing equations and the boundary conditions are 

derived via the Principle of Virtual Displacement (PVD) in Sec. V.  

Carrera Unified Formulation (CUF) is employed to derive shell equations that are solved for the case of simply 

supported boundary conditions and doubly curved shells with constant curvatures. Navier-type closed form solution 

are obtained. Results for multi-layer cross-ply shells are presented to validate the proposed theory, and further are 

compared with exact solutions present in literature. 

V. Governing equations 

C. Equations for the Nl layers 
 

The displacement approach is formulated in terms of uk by variational imposing the equilibrium via PVD: 

 k
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where 
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‘T’ as superscript stands for the transposition operator. δ signifies virtual variations. },,{ k
z

kkkT pppp  is a generic 

pressure loading acting on the top, 
t

k
, and on the bottom, 

b

k
, of each lamina. The variation of the internal work 

has been split into in-plane and out-of-plane parts and involves the stress obtained from Hooke's Law and the strain 

from the geometrical relations. Geometrical relations link strains ε and displacements u. Strains are conveniently 

grouped into in-plane and normal components denoted by the subscripts p and n, respectively. The geometric 

relations are:  

 
k

nz
k

n
k

n
k
n

k
p

k
p

k
p

uDuAuDε

uAuDε

=

=
 (17) 

in which Dp, DnΩ and Dnz are differential matrix operators and Ap and An are geometrical terms accounting for the 

through-the-thickness variation of the curvature: 
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kH and kH  account for the change in length of a k-layer segment due to the curvature. Curvature terms have been 

entirely retained in the following developments. 

In the case of linear elastic material, stresses and strains are related via Hooke's generalized law: 
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Terms k
ppC

~
, k

pnC
~

, k
npC

~
 and 

k
nnC

~
 are the material stiffness matrices for a k-layer in the global reference system, see 

Carrera
12

. By replacing Eqs. (17), (19) and the unified displacement field in Eq. (3). into Eq. (15), PVD reads: 
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being: 
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By imposing the definition of virtual variations for the unknown displacement variables, the differential system of 

governing equations and related boundary conditions for the Nl k-layers in each Ωk domain are found. The governing 

equations are: 
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Differential stiffness and mechanical boundary conditions matrices are: 
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I is the unit array. 

Previous equations consist of 3×3 fundamental nuclei. The following sub/super–scripts apply: τ, s and k. Explicit 

forms of the governing equations for each layer can be written by expanding the introduced subscripts and 

superscripts in the previous arrays as follows 

 NrbrtsbrtNk l  ,2;,,;,,;,,2,1  (25) 

D. Assemblage and Multilayer Equations 
 

PVD has been written for the Nl independent layers. 
0
zC requirements must be imposed to drive equations from layer 

to multilayer level. Multilayered equations can be written 

according to the usual variational statements: stiffness related to 

the same variables is accumulated in this process. Interlaminar 

continuity conditions are imposed at this stage. An example is 

shown in Fig. 3. Details on this procedure can be found in the 

mentioned author’s papers. Multilayered arrays are obtained at 

the very end of the assemblage. The equilibrium and boundary 

conditions for the displacement formulation take on the 

following form 

                           
uΠΠuu

puK

dd

d
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                       (26) 

 

VI. Closed form solution 

In order to assess the proposed models, equations (26) are herein solved for a special case in which closed form 

solutions are given. The particular case in which the material has the following properties (as it is the case of cross-

ply shells) 0
~~~~

45362616 CCCC  has been considered, for which Navier-type closed form solutions can be 

found by assuming the following harmonic forms for the applied loadings pk={p
k
 ατ ,p

k
 βτ ,p

k 
zτ } and unknown 

displacement uk= {u
k
 ατ ,u

k
 βτ ,u

k 
zτ } variables in each k–layer, 
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which correspond to simply-supported boundary conditions. ak and bk are the lengths of the shell along the two 

coordinates αk and βk. m and n represent the number of half-waves in αk and βk direction, respectively. Capital letters 

indicate maximal amplitudes. These assumptions correspond to the simply-supported boundary conditions. Upon 

 

Figure 3. Example: how
0
zC requirements 

are imposed from layer-to multilayer level 
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Table 1. Maximum transverse deflection zu  evaluated in 

z=0 for 9-ply square plate. 
 

 EDN EDTN LDN LDTN 

a/h=100     

Ref. 13 1.005 

N=4 1.004 1.004 1.005 1.005 

N=3 1.004 1.004 1.005 1.005 

N=2 1.003 1.003 1.005 1.005 

a/h=10     

Ref. 13 1.512 

N=4 1.413 1.412 1.512 1.512 

N=3 1.413 1.412 1.512 1.512 

N=2 1.342 1.342 1.512 1.512 

a/h=4     

Ref. 13 4.079 

N=4 3.488 3.479 4.079 4.079 

N=3 3.493 3.482 4.079 4.078 

N=2 3.074 3.072 4.078 4.078 

CLT 1 

 

 
 

Figure 4: Distribution of displacement uz for 9-ply 

laminate, a/h=4, expansion order N=4. Results for 

classical and trigonometric ESL and LW models. 

substitution of Eq. (25), the governing equations assume the form of a linear system of ordinary differential 

equations. 

VII. Results 

The higher-order theories described above have been applied to the static analysis of multilayered composite 

plates and shell structures. The mechanical material properties of the lamina are: TL EE 25= , TLT EG 0.5= , 

TTT EG 0.2= , 0.25== TTLT . Subscript ‘L’ stands for direction parallel to the fibers, ‘T’ identifies the transverse 

direction, LT  is the major Poisson ratio. Thin and moderately thick plates and shells are considered. The total 

thickness of the laminate is h. In this paper, we present results for ESL and LW trigonometric theories. A 

comparison with available exact solutions is given in the following paragraphs. 

 

E. Elastic behavior of multilayered Plates 
 

In this section, we investigate the bending 

of square bidirectional plates consisting of 

several layers, loaded via a bisinusoidal 

loading pz. The elastic solution for this 

problem was given by Pagano and Hatfield
13

. 

Symmetric laminations with respect to the 

central plane are considered, with fiber 

oriented alterning between 0° and 90°, with 

respect to the α-axis. The outer layers are 0° 

oriented and the total thickness of the 0° and 

90° layers is the same. Moreover each layer 

with same orientation has same thickness. 

Results present the following dimensionless 

quantities: 
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)1/())21((4 TLLTTTTLLT EEGQ

, p0 is a constant representing the load’s 

amplitude and a is the edge length. In terms of 

normalized functions (28), the CLT solution is 

independent of the ratio a/h. 

Table 1 reports the displacement uz for a 9-

ply laminate. When the plate is thin (a/h=100) 

we have agreement with the reference solution 

for all the considered theories and expansion 

orders. Instead, when a/h decreases we notice 

the difference between ESL and LW theories. 

In the case a/h=10 we have an error of 7% 

and it reaches 15% for a/h=4. For this case, 

the trigonometric theories do not give 

improvements respect to the classic ones. This 

behavior is highlighted in Figure 4, which 

represents the displacement uz in function of 
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the plate’s thickness. The most thick plate case has been considered (a/h=4). The ED4 and EDT4 curves are 

overlapped as well as those related to LD4 and LDT4. 

Figures 5 and 6 show the distributions of displacement uz and stresses  and z for a 3-ply laminate, in the 

a/h=10 case. Results for classical and trigonometric theories are comparable. 

F. Laminated shells in cylindrical bending 
 

5. Ren’s cylindrical panel 

Results presented in Tables 2-4 refer to a 

[90°/0°/90°] cylindrical shell with layers of equal 

thickness, loaded via a bisinusoidal 

loading zp applied at the top layer. Exact solutions 

were considered by Ren
14

 for cross-ply cylindrical 

panels in cylindrical bending. The geometrical data 

(see fig. 7) are: number of half-waves in k  direction 

n=1 and b/Rβ=π/3. Layers are numbered, starting 

from the shell bottom - internal surface. The fiber L-

orientation coincided with the k -layers direction. 

Transverse displacement, in-plane and transverse 

shear stresses values are normalized by: 
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               (29) 

 

We consider the new trigonometric set of thickness 

functions to carry out the analyses. In tables 2 - 4 we 

present results also for the classical ESL and LW 

models in order to provide a comparison with the 

new trigonometric basis functions. 

 
 

Figure 7: Geometrical notations used for the 

investigated cylindrical panels and cylindrical shells. 

 

 
Figure 5: Distribution of displacement uz for 3-ply 

laminate, a/h=10. 

 

 
 

 
Figure 6: Distribution of stresses  and z for 

3-ply laminate, a/h=10. 
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Table 2 reports the displacement zu . Trigonometric LW theories provide results in agreement with the reference 

solution for an expansion order as low as 3 and for both thin and thick shells. Therefore higher expansion orders are 

not necessary for this case. Instead, if we consider the 

EDTN models we note that for the displacement uz 

there is a regular trend. Adding terms in the expansion 

improves the result, especially considering thick shells 

(Rβ/h=4), but at least we get to an error of 11%. When 

the shell is thin (Rβ/h=100) higher-order theories do not 

give improvement in the solution, respect the CLT 

results. In fact the difference between CLT and LDT11 

solutions is about 1%. 

Tables 3 and 4 report stresses  and z , for 

ESL and LW results. 

 

In table 3, considering trigonometric ESL models we 

notice that in some cases adding a term in the expansion 

leads to major errors. The thick shell case (Rβ/h=4) 

presents an irregular trend. For example the solution that 

we obtain with an expansion order of 10 is worse than 

that relative to N=3. Therefore it becomes interesting to 

study the contribution of each term in the expansion. 

LDTN results convergence to the reference solution already for N=4 and thus we do not need to add other terms to 

increase the accuracy of the solution. The transverse shear component z is presented in table 4. In this case there 

is an unexpected behavior. The solutions that we obtain with the trigonometric ESL models are better than the LW 

ones, when we consider high expansion orders. In fact, the LW solutions do not change from N=3 onwards, but the 

error remains high especially in the case of thin plate where it reaches 30%. The EDTN models instead have a 

regular trend and as we add terms to the expansion we obtain more accurate solutions. 

 

 

Table 2. Maximum transverse deflection 

zu evaluated in z=0. 
 

Rβ/h 100 10 4 

Ref. 14 0.0787 0.144 0.457 

LDT11 0.0786 0.144 0.458 

LDT10 0.0786 0.144 0.458 

LDT9 0.0786 0.144 0.458 

LDT8 0.0786 0.144 0.458 

LDT7 0.0786 0.144 0.458 

LDT6 0.0786 0.144 0.458 

LDT5 0.0786 0.144 0.458 

LDT4 0.0786 0.144 0.458 

LDT3 0.0786 0.144 0.458 

LDT2 0.0786 0.144 0.454 

LD4 0.0786 0.144 0.458 

LD3 0.0786 0.144 0.458 

LD2 0.0786 0.144 0.454 

LD1 0.0785 0.141 0.441 

EDT11 0.0782 0.135 0.404 

EDT10 0.0782 0.135 0.403 

EDT9 0.0782 0.135 0.396 

EDT8 0.0782 0.135 0.395 

EDT7 0.0782 0.135 0.397 

EDT6 0.0781 0.133 0.388 

EDT5 0.0781 0.133 0.387 

EDT4 0.0781 0.131 0.380 

EDT3 0.0781 0.131 0.380 

EDT2 0.0779 0.113 0.292 

ED4 0.0785 0.136 0.428 

ED3 0.0785 0.136 0.428 

ED2 0.0783 0.119 0.331 

ED1 0.0780 0.119 0.333 

CLT 0.0776 0.078 0.078 

 

Table 3. Maximum stresses evaluated in 

z=h/2 

Rβ/h 100 10 4 

Ref. 14 0.781 0.897 1.367 

LDT4-11 0.779 0.897 1.367 

LDT3 0.779 0.896 1.363 

LDT2 0.779 0.895 1.344 

LD4 0.779 0.897 1.367 

LD3 0.779 0.897 1.367 

LD2 0.779 0.896 1.347 

LD1 0.779 0.866 1.213 

EDT11 0.775 0.831 0.910 

EDT10 0.775 0.830 0.895 

EDT9 0.774 0.846 1.140 

EDT8 0.775 0.845 1.136 

EDT7 0.775 0.849 1.187 

EDT6 0.775 0.845 1.180 

EDT5 0.775 0.846 1.169 

EDT4 0.775 0.842 1.179 

EDT3 0.776 0.844 1.196 

EDT2 0.774 0.739 0.710 

ED4 0.779 0.883 1.339 

ED3 0.779 0.884 1.354 

ED2 0.777 0.777 0.813 

ED1 0.778 0.778 0.777 

CLT 0.776 0.759 0.732 
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6. Varadan and Bhaskar’s cylindrical shell 

Varadan and Bhaskar
15

 considered exact solutions for 

cross-ply laminated, cylindrical shells, subjected to 

transverse pressure pz at the bottom (internal) surface. 

The geometrical data (see fig. 7) are: a/Rβ=4, m=1, n=8. 

The two layers [0°/90°] lamination schemes have been 

considered. The following dimensionless quantities are 

considered: 
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zzzz
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1
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10

0

0

4
0

        (30) 

For the sake of brevity, results quoted in figures 8 

and 9 are referred to the Rβ/h=10 case and present the 

behavior of the investigated quantities (30) along the 

shell's thickness. We compared the solutions obtained 

for N= 4 for each theory that we have considered in 

this work, that is, the classical theories and the 

trigonometric ESL and LW. Being equal the 

approach adopted, the trends do not change, with or 

without the use of trigonometric functions. This 

applies especially to stresses, whereas the displacement uz undergoes an improvement when we consider the EDT 

model, compared to the ED one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Maximum stresses z evaluated in z=0 

Rβ/h 100 10 4 

Ref. 14 0.523 0.525 0.476 

LDT4-11 0.367 0.497 0.442 

LDT3 0.367 0.497 0.442 

LDT2 0.366 0.496 0.438 

LD3-4 0.367 0.497 0.442 

LD2 0.366 0.496 0.437 

LD1 0.366 0.498 0.446 

EDT11 0.416 0.524 0.436 

EDT10 0.430 0.537 0.454 

EDT9 0.430 0.537 0.451 

EDT8 0.408 0.515 0.426 

EDT7 0.408 0.515 0.427 

EDT6 0.337 0.446 0.365 

EDT5 0.337 0.446 0.365 

EDT4 0.233 0.356 0.317 

EDT3 0.233 0.355 0.317 

EDT2 0.033 0.166 0.164 

ED4 0.217 0.357 0.348 

ED3 0.217 0.357 0.347 

ED2 0.033 0.174 0.186 

ED1 0.033 0.174 0.187 

 

 
Figure 8: Distribution of displacement uz for [0°/90°] 

cylindrical shell, a/h=10. 3D solution in Ref.15 

 

 

Figure 9: Distributions of stresses zz and z  for [0°/90°] cylindrical shell, a/h=10. 3D solution in Ref. 15. 
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VIII. Conclusion 

In the framework of axiomatic approaches which can be developed on the basis of variational statements, new 

trigonometric displacement distributions in the thickness of the shell z have been postulated. In this work we 

presented higher-order shell theories based on Equivalent Single Layer and Layer-Wise approaches, formulated on 

the basis of new kinematic assumptions. A unified approach to formulate two-dimensional shell theories has been 

here addressed to evaluate the static response of cylindrical multilayered shells made of composite materials. Results 

have been compared with exact solutions available in literature. Some considerations about the effectiveness of the 

formulations can be made. In general higher expansion orders result necessary when we consider tick shells, but in 

some case adding more terms in the expansion do not give an improvement of the solution. Then it is evident that 

theories developed from a new basis of trigonometric thickness functions are effective depending on the terms that 

are adopted in the expansion. It becomes interesting to evaluate the importance of higher-order terms (see Ref. 16). 
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