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Abstract. The extension of a hierarchical one-dimensional structural model to aeroelas-
ticity is the subject of the present paper. The aerodynamic model is based on the Vortex
Lattice Method, VLM, whereas the refined 1D model is based on the Carrera Unified For-
mulation, CUF. Airfoil in-plane deformation and warping are introduced by enriching the
displacement field over the cross-section of the wing. Linear to fourth-order expansions
are adopted and classical beam theories (Euler-Bernoulli and Timoshenko) are obtained
as particular cases. The VLM aerodynamic theory is coupled with the structural finite
element model via an appropriate adaptation of the Infinite Plate Spline method. The
aeroelastic tailoring is investigated for several wing configurations (by varying aspect ra-
tio, airfoil geometry and sweep angle) and an excellent agreement with MD NASTRAN
solution is provided for structural and aeroelastic cases. The effectiveness of higher-order
models for an accurate evaluation of aeroelastic response of isotropic and composite wings
is shown.

1 INTRODUCTION

Composite materials are widely used nowadays in a large variety of applications and
engineering fields. The advantages related to their spread are becoming so significant that
composites are by now a must for state-of-the-art manufacturing technology.

The requirements of weight saving and structural efficiency for aerospace systems such
as rotor blades, aircraft wings, and helicopter rotor blades are leading to a wide use of
structures in the form of composite thin-walled beams. This makes the accurate evaluation
of the response of deformable lifting bodies (LBs) when subjected to steady and unsteady
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aerodynamic loadings an even more challenging issue for the aeroelastic design of aerospace
vehicles [8]. Over the last decades, many significant contributions have been given in
structural, aerodynamic, and aeroelastic coupling modeling [12]. A relevant review article
about recent advances in describing fluid-structure interaction is found in Dowell and Hall
[9].

Composite beam-like structures can be analyzed by means of beam models provided
that a number of non-classical effects such as large torsional warping are incorporated.
Detailed structural and aeroelastic models are essential to fully exploit non-classical effects
in design due to the properties characterizing advanced composite material structures,
such as anisotropy, heterogeneity and transverse shear flexibility [14]. A detailed review of
the recent development of beam models can be found in [20]. A considerable amount of
work was done in trying to improve the global response of classical beam theories [11, 19]
using appropriate shear correction factors, as described by Timoshenko [19]. El Fatmi [10]
improved on the displacement field over the beam cross-section by introducing a warping
function to refine the description of normal and shear stress of the beam. An asymptotic
type expansion in conjunction with variational methods (VABS) was proposed by Yu and
co-workers [22]. Generalized beam theories (GBT) have improved classical theories by
using a piece-wise beam description of thin-walled sections [18].

Among the various extensions of refined beam models to aeroelasticity, the work done by
Librescu and Song [16] on divergence instability of swept-forward wings made of composite
materials is mentioned. A thin-walled beam model was implemented which incorporated
the anisotropy of the material, transverse shear deformation and warping effects.

Carrera and co-authors have recently proposed refined 1D theories with only generalized
displacement variables for the analysis of compact and thin-walled sections/airfoils. Higher-
order finite elements are obtained in the framework of the Carrera Unified Formulation,
CUF, which considers the order of the model as a free-parameter of the analysis. This
technique has been developed over the last decade for plate/shell models [2] and it has
recently been extended to beam static and dynamic modeling [4, 5, 6].

The present work couples a refined 1D model based on CUF with the Vortex Lattice
Method (VLM) for the analysis of static aeroelastic response of aircraft wings. The
aerodynamic load transferring is based on the work presented by Demasi and Livne [8] via
the Infinite Plate Spline method [13]. In the proposed formulation (see Varello et al.[21]),
the computation of linear steady aerodynamic loads refers to the VLM presented by Katz
and Plotkin [15].

2 PRELIMINARIES

A beam-like structure with axial length L is considered. A local cartesian coordinate
system is defined in Fig. 1. The cross-section of the structure is Ω and the beam longitudinal
axis is along the y direction. The displacement vector of a generic point is:

u
(
x, y, z

)
=
{
ux uy uz

}T
(1)
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Figure 1: Beam’s cross-section geometry and coordinate system.

The stress, σ, and the strain, ε, are grouped in vectors as follows:

σp =
{
σzz σxx σzx

}T
εp =

{
εzz εxx εzx

}T
σn =

{
σzy σxy σyy

}T
εn =

{
εzy εxy εyy

}T (2)

The subcripts n and p refer to quantities related to the cross-section Ω and the out-of-plane
direction, respectively. In case of small displacements with respect to the length L, the
linear strain-displacement relationships hold and are written in a compact notation:

εp = Dp u

εn = Dn u = Dnp u + Dny u
(3)

whereDp, Dnp, andDny are differential matrix operators. Constitutive laws are introduced
for beams made of linear elastic orthotropic materials:

σp = C̃pp εp + C̃pn εn

σn = C̃ T
pn εp + C̃nn εn

(4)

where matrices C̃pp, C̃pn, and C̃nn are:

C̃pp =

 C̃11 C̃12 0

C̃12 C̃22 0

0 0 C̃44

 , C̃pn =

 0 C̃16 C̃13

0 C̃26 C̃23

C̃45 0 0

 , C̃nn =

 C̃55 0 0

0 C̃66 C̃36

0 C̃36 C̃33

 (5)

For the sake of brevity, the dependence of the coefficients C̃ij on Young’s moduli, Poisson’s
ratios, shear moduli, and the fiber orientation angle θ is not reported here. It can be found
in the book by Reddy [17]. θ is defined as the angle from the x axis to the 1-material axis
on the x−y plane.

3 REFINED ONE-DIMENSIONAL THEORY AND FE FORMULATION

According to the framework of the CUF [2, 7], the displacement field is assumed to be
an expansion of generic functions Fτ , which depend on the cross-section coordinates x and
z:

u (x, y, z) = Fτ (x, z) uτ (y) τ = 1, 2, . . . , Nu = Nu (N) (6)
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The number of terms Nu depends on the expansion order N , which is a free parameter
of the formulation. Mac Laurin’s polynomials x iz j are chosen as cross-section functions
Fτ and hence Eq. 6 is a Taylor-like expansion. Most displacement-based theories can
be formulated on the basis of the above generic kinematic field. Classical beam models
such as Timoshenko’s (TBM) [19] and Euler-Bernoulli’s (EBBM) [11] are easily derived
from the linear expansion, N = 1 [5]. Models having constant and linear distributions of
the in-plane displacements components, ux and uz, require opportunely reduced material
coefficients to overcome Poisson’s locking effect [3]. For the sake of brevity, the explicit
expression for these coefficients is not reported here, but can be found in [4].

The FE approach is herein adopted to discretize the structure along the y axis. By
introducing the shape functions Ni and the nodal displacement vector q, the displacement
field becomes:

u (x, y, z) = Fτ (x, z)Ni (y) qτi i = 1, 2, . . . , NN (7)

where qτi =
{
quxτi quyτi quyτi

}T
contains the degrees of freedom of the τ th expansion

term corresponding to the ith element node. Elements with a number of nodes NN equal
to 4 are formulated and hereinafter referred as B4. A cubic approximation along the y
axis is adopted [1].

The stiffness matrix of the elements is built via the Principle of Virtual Displacements:

δLint =

∫
V

(
δεTn σn + δεTp σp

)
dV = δLext (8)

where Lint stands for the strain energy and Lext is the work of external loadings. δ stands
for virtual variation. By using Eqs. 3, 4, and 7 the internal virtual work becomes:

δLint = δqTτi K
ij τ s qsj (9)

K ij τ s is the 3× 3 fundamental nucleus of the structural stiffness matrix. For the sake of
brevity, its explicit expression is not reported here, but it can be found in [20]. It should
be noted that no assumptions on the expansion order have been made. Therefore, it is
possible to obtain refined beam models without changing the formal expression of the
nucleus components. Shear locking is corrected through selective integration [1].

4 STRUCTURAL AND AERODYNAMIC NOTATIONS

The proposed beam model can easily analyze non-planar wing configurations with
arbitrary orientation in the 3D space, such as tapered wings with dihedals and sweep
angles.

The aerodynamic method here chosen is the Vortex Lattice Method (VLM) [15]. The
aerodynamic mesh, which consists in a lattice of NAP quadrilateral panels, lies on a
reference trapezoidal surface with 2 edges parallel to the wind direction. As shown in
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Figure 2: One-dimensional structural mesh and two-dimensional aerodynamic mesh of the
wing structure.

Fig. 2, a second coordinate system xloc′−yloc′−zloc′ is introduced so that the reference
surface lies on the xloc′−yloc′ plane. A global coordinate system x−y−z is placed on
the airfoil’s leading edge point at the root wing section so that x and xloc′ axes are both
parallel to the free stream velocity V∞ (see Fig. 2).

The wing is modeled with a straight beam. The structural FE mesh is contained along
the yloc axis, which is on the trapezoidal reference surface. The fundamental nucleus (see
Eq. 9) was derived in the local coordinate system. The notation is slightly modified by
introducing the subscript “loc” to reflect this fact:

δLint = δqTτi loc K
ij τ s
loc qsj loc = δqTτi

[
eT · K ij τ s

loc · e
]
qsj = δqTτi K

ij τ s qsj (10)

where e is the 3× 3 rotation matrix relating the global and the local coordinate systems.

5 SPLINING AND AEROELASTIC FORMULATION

The present advanced beam model allows a very accurate calculation of the displacement
field at any point of the three-dimensional wing. Based on this property, the Infinite Plate
Spline method [8, 13] was shown (see [21]) to be the ideal choice for the aerodynamic load
transferring with the advanced multi-fidelity beam model presented in this work. For the
sake of brevity, the final expressions relating the displacements at aerodynamic load points
and slopes at aerodynamic control points to the nodal DOFs vector of the whole structure
are reported:

Z̃ loc′ = Ã?
3 · q

dZ loc′

dxloc′
=

dZ loc′

dx
= A3 · q (11)

The coordinate system for the splining is the local′ one. More details about the adaptation
of the IPS to the CUF-beam via a set of pseudo-structural points can be found in [21, 20].
The derivation of aerodynamic loads is now faced. According to the VLM [15], the
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pressures acting on the wing are transferred as lift forces located on load points of the
aerodynamic panels and perpendicular to the wind direction:

L =
1

2
ρ∞ V

2
∞ I

D · ∆p =
1

2
ρ∞ V

2
∞ I

D ·
[
AD
]−1 · w (12)

where ∆p contains the dimensionless pressure acting on all the load points, normalized
with respect to the dynamic pressure. ID contains the panels’ geometrical data. The VLM
allows the dimensionless normalwash w, normalized with respect to V∞, to be described
as a function of vector ∆p by means of the Aerodynamic Influence Coefficient Matrix AD.

In the steady case, considering that the structure changes configuration when it deforms,
the boundary condition used for the Vortex Lattice formulation imposes the dimensionless
normalwash to equal the slope at the control points:

w =
dZ loc′

dxloc′
(13)

The transfer from loads at the aerodynamic points to the energetically equivalent loads
at structural nodes is performed via the Principle of Virtual Displacements. All the lift
forces are parallel to the zloc′ axis, hence:

δW = δZ̃
T

loc′ · L = δqT · Ã?
3

T
· 1

2
ρ∞ V

2
∞ I

D ·
[
AD
]−1 · A3 · q = δqT · Lstr

⇒ Lstr = −Kaero · q
(14)

where the negative sign is adopted for the sake of convenience. Such a term can go to the
left hand side of the aeroelastic equation system and summed up to the structural stiffness
matrix:

Kstr · q = Lstr = −Kaero · q (15)[
Kstr + Kaero

]
· q = 0 Kaeroelastic · q = 0 (16)

where Kaeroelastic is the aeroelastic stiffness matrix. The stiffness of the system now takes
into account the aerodynamic loads due to the deformed configuration. From Eq. 16 it
appears that there is no motion. It occurs because the angle of attack so far considered is
zero. To solve this problem, a different from zero angle of attack is assigned to the wing
and the corresponding aerodynamic lift forces acting on the panels are computed. The
wall tangency condition is now imposed at the control point of each panel by setting the
dimensionless normalwash to be equal to the local slope:

w = tan
(
π − α

)
(17)

where the angle of attack α is a small quantity (linear aerodynamic model). Following
the same procedure used to build Lstr, the energetically equivalent nodal loads LRHS (the
subscript RHS means Right Hand Side) are:

LRHS =
1

2
ρ∞ V

2
∞ tan

(
π − α

)
Ã?

3

T
· ID

[
AD
]−1

d (18)
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(a) NACA 2415 with 3 cells (b) Rectangular section

Figure 3: Cross-sections used for the wing configurations.

where d stands for a NAP × 1 vector of ones. More details about this procedure can be
found in [20]. In conclusion, the final aeroelastic equation to be solved is:

Kaeroelastic · q = LRHS (19)

Equation 19 allows nodal displacement vector q to be computed. Now that the right hand
side is different from zero, we have a solution.

6 RESULTS AND DISCUSSION

A number of wings with different geometries, layout and loadings are considered. Two
different solutions are investigated and compared in this work. The first one coincides with
the static structural analysis, hereinafter referred as SSA, and involves only the structural
stiffness matrix by disabling the aerodynamic matrix Kaero. The second solution is the
static aeroelastic analysis (SAA) which solves the aeroelastic system (Eq. 19) by adding the
aerodynamic stiffness matrix to the elastic one. Unless otherwise specified, the wings are
subjected to a pure aerodynamic loading (vector LRHS). Cantilever boundary condition
on half-wings is accounted for and the symmetry condition is exploited in the aerodynamic
computation.

A swept tapered wing is first taken into account. A half-wing is modeled via a cantilever
beam by using the following data: length L = 5 m, root chord croot = 1.6 m, taper ratio
λ = 0.25, and sweep angle Λ = +13.5°. The cross-section is a thin-walled NACA 2415
airfoil, which is subdivided into three cells by two longerons along the spanwise direction
at 25% and 75% of the chord (see Fig. 3a). An isotropic aluminium (Young’s modulus
E = 69 GPa and Poisson’s ratio ν = 0.33) is considered.

A convergence study is carried out to evaluate the combined effect of the number of
finite elements NEL and the expansion order N on the solution. The mechanics of the
beam is described in terms of the maximum vertical displacement uzmax, which is located
at the trailing edge of the tip cross-section. The results for SSA and SAA are shown in
Tables 1 and 2, respectively. uzmax increases with N for any mesh, to such an extent
that no remarkable differences are detected for high-order expansion. The numerical
convergence on NEL is achieved both for SSA and SAA. Linear theories EBBM, TBM,
and N = 1 are unable to handle any torsional behavior. Poisson’s locking correction is not
sufficient to make them effective in computing the maximum displacement.
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Table 1: Convergence study: effect of the number of B4 elements on uzmax [mm] for
different beam models. Swept tapered wing. V∞ = 50 m/s, α = 3°, 4× 40 panels. SSA.

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 4.2749 4.2829 4.2909 4.4309 4.9598 5.1036
5 3.1768 3.1842 3.1965 3.6408 3.8045 3.8858
10 3.0401 3.0473 3.0605 3.4701 3.5785 3.6316
20 3.0071 3.0144 3.0277 3.4097 3.4854 3.5377
40 2.9990 3.0062 3.0196 3.3920 3.4440 3.4802

-13.69% -13.49% -13.10% -2.383% -0.886% +0.155%

MD NASTRAN-solid (sol 101): 3.4748

EBBM

N = 3

Figure 4: Tridimensional deformation of the swept tapered wing. Pz = −7.2 kN. SAA.

Table 2: Convergence study: effect of the number of B4 elements on uzmax [mm] for
different beam models. Swept tapered wing. V∞ = 50 m/s, α = 3°, 4× 40 panels. SAA.

NEL EBBM TBM N = 1 N = 2 N = 3 N = 4

2 4.2747 4.2827 4.2904 4.4236 4.9456 5.0915
5 3.1767 3.1841 3.1959 3.6307 3.7930 3.8743
10 3.0400 3.0472 3.0598 3.4597 3.5678 3.6206
20 3.0071 3.0143 3.0270 3.3993 3.4749 3.5269
40 2.9989 3.0061 3.0189 3.3816 3.4337 3.4695

-13.40% -13.20% -12.83% -2.353% -0.849% +0.185%

MD NASTRAN-shell (sol 144): 3.4631
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On the contrary, as far as the SSA is concerned, the refined 1D models (5445 DOFs)
are very close to MD NASTRAN-solid results (sol 101 - 106 DOFs). Besides, excellent
agreement with aeroelastic MD NASTRAN-shell results (sol 144 - 2135 DOFs) is obtained
for the aeroelastic analysis (SAA). Figure 3 shows the tridimensional deflection of the wing,
drawn by means of a large scale factor, if a bending force (Pz = −7.2 kN) is combined
to the aerodynamic load. The third-order model clearly illustrates the torsional effect,
whereas the limits of EBBM are once again made evident.

Table 3: Effect of the free stream velocity V∞ [m/s] on uzmax [mm]. Unswept wing with
rectangular section. 20 B4 elements. α = 1°, 10× 50 panels. SSA vs SAA.

V∞ = 30 V∞ = 50 V∞ = 70

SSA SAA SSA SAA SSA SAA

EBBM 68.650 68.611 190.693 190.398 373.756 372.628
-0.05573 % -0.15459 % -0.30189 %

N = 2 62.640 68.236 173.999 224.454 341.038 599.986
+8.93451 % +28.99720 % +75.92906 %

N = 4 66.947 73.397 185.963 244.464 364.487 668.562
+9.63479 % +31.4584 % +83.42555 %

Table 4: Effect of tailoring on the twist ∆uz TIP [mm] of the tip cross-section. Unswept
wing with rectangular section. 20 B4 elements. V∞ = 50 m/s, α = 1°, 10 × 50 panels.
Orthotropic material. SSA vs SAA.

θ
SSA
N = 4

SAA
N = 4

SAA
NASTRAN

SAA
% Diff

−60° 2.9935 3.5297 3.5407 −0.3107
−30° 4.3186 5.5433 5.5408 +0.0451

0° 1.0209 1.0708 1.0741 −0.3072
30° −2.4578 −2.1753 −2.1638 +0.5315
60° −1.1199 −1.0576 −1.0439 +1.3124
90° 1.0396 1.0914 1.1065 −1.3647

An unswept wing of length L = 5 m with a rectangular cross-section is introduced.
Referring to Fig. 3b, the chord c is equal to 1 m and the height is h = 20 mm. Table 3
reports a parametric study on uzmax, placed at the leading edge of the tip cross-section,
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Figure 5: Effect of tailoring on the twist and bending of the tip cross-section. Unswept
wing with rectangular section. Orthotropic material. SSA vs SAA.

as the free stream velocity changes. While uzmax increases linearly with the square of V∞
for SSA, the same does not occur for SAA. The contribution of Kaero to system stiffness
becomes more evident as V∞ increases and the difference from SSA can become very
significant for V∞ = 70 m/s. This difference increases with the expansion order N , which
enhances the flexibility of the structure. EBBM is ineffective in describing the difference
between structural and aeroelastic behavior.

The length L of the unswept wing is further extended to 10 m. The chord c is equal to
1 m and the height of the rectangular section is h = 100 mm. A composite material is
introduced to analyze the well-known aeroelastic tailoring. Young’s modulus along the
longitudinal axis EL is equal to 20.5 GPa, whereas those along the transverse directions
are equal to 10 GPa. Poisson’s ratio ν = 0.25 and the shear modulus G = 5 GPa are the
same in all directions. Table 4 shows the effect of the lamination θ on the torsion of the
tip cross-section due to the only aerodynamic pressure. The quantity ∆uz is defined as
the difference of uz between leading and trailing edges. The aeroelastic tailoring is more
evident for the wing twist evaluation as it is presented in Fig. 5a.

The comparison of SSA and SAA underlines the importance of the contribution of
Kaero in the case N = 4 to evaluate the aeroelastic behavior of composite wings. While
the curve related to SSA is essentially symmetrical with respect to the θ = 0° lamination,
the aeroelastic analysis shows a trend which is far from symmetrical. In general, the
aeroelastic analysis leads the twist of the unswept wing to be higher compared to the
structural solution as the lamination changes, expecially for negative values of θ. The
same result occurs for bending behavior as shown in Fig. 5b, where only the SSA case
obtains an almost symmetrical curve. The excellent agreement between the fourth-order
beam model and MD NASTRAN-shell (sol 144) to describe the aeroelastic response of
orthotropic wings with generic orientation is again striking.
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7 CONCLUSIONS

This paper has extended the Vortex Lattice Method and a refined one-dimensional
structural model for the analysis of anisotropic wings. Advanced 1D finite elements have
been obtained via the Carrera Unified Formulation which allows any order theory to be
obtained in a hierarchical manner. The static aeroelastic and structural response of wings
with different geometries and cross-sections has been analyzed. Isotropic and composite
materials has been considered.

The CUF-VLM structural and coupling models have been assessed and compared
with MD NASTRAN results. The effectiveness of higher-order models for an accurate
analysis of aircraft wings exposed to a free stream has been shown in respect to classical
theories. Comparison of structural and aeroelastic solutions has underlined the importance
of the contribution of aerodynamic stiffness. The effect of aeroelastic tailoring has been
investigated and excellent agreement with MD NASTRAN in evaluating the aeroelastic
response of composite wings has been documented. Future works will focus on aeroelastic
static and dynamic stability analyses (divergence and flutter).
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