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ABSTRACT 

Beam models are widely used to investigate the mechanical behavior of slender bodies 
such as aircraft wings, wind turbines, and slender bridges. Classical beam theories are those 
by Euler-Bernoulli and Timoshenko [1] which are particularly effective in analyzing the 
bending of compact slender structure made of isotropic materials. As the structure becomes 
thin-walled, short, or composite materials are used, classical model validity ceases since a 
number of non-classical effects has to be taken into account: warping, cross-section distortion, 
shear effects, etc.. The overcome of these limitations can be obtained by adopting refined 
beam models.  Interesting papers on this topic are those by Kapania and Raciti [2, 3], and Yu 
and Hodges [4].  

 
This paper is embedded in the framework of the Carrera Unified Formulation, CUF, for 

higher-order plate/shell [4] and beam [5] models. CUF permits us to deal with any-order 
theories in a hierarchical manner with no need of ad hoc implementations since the order of 
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the model is set as an input of the analysis. Recent papers on beams [6, 7] showed the 
enhanced capabilities offered by CUF in dealing with thin-walled structures and arbitrary 
cross-section geometries, that is, CUF beam models are able to detect shell-like solutions with 
a considerable reduction of the computational costs.  

 
The beam cross-section displacement field is described by an expansion of certain classes 

of polynomials and the finite element matrices are formulated in terms of a few fundamental 
nuclei whose form is independent of the order of the expansion. Taylor-like and Lagrange 
expansions are herein exploited. The former lead to an Equivalent Single Layer, ESL, 
description of the beam, the  latter enrich the formulation by permitting a Layer Wise, LW, 
approach. The Lagrange based beam models offer further important advantages: 1. they have 
only displacement degrees of freedom; 2. the refinement process can be localized to certain 
portions of the cross-section; 3. arbitrary constraint distributions above the cross-section are 
allowed. 
 

A particularly interesting application of the present beam models is represented by the 
multiscale analysis of fiber-matrix structures. CUF Lagrange based beams appear to be 
perfect candidates to conduct this kind of analysis since they are particularly effective to study 
slender bodies such as fibers and, moreover, they offer a wide number of options to model the 
interface phenomena. A number of examples are carried out in this work to show the various 
analysis approaches that CUF beam models offer. Comparisons with classical approaches are 
made to highlight the accuracy and computational cost performances of the present 
formulation. Particular attention is given to possible extensions to the failure analysis of fiber-
reinforced composite structures.    
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