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SUMMARY. The present paper compares 1D and 2D assumptions inthe analysis of thin-walled struc-
tures. Refined beam/plate/shell models are exploited and the orders of these models are taken as free
parameters, that is, classical beam/plate/shell theoriescan be refined at any extent. Finite Element (FE)
approximations are used to handle different boundary conditions (geometrical and mechanical). The Car-
rera Unified Formulation (CUF) is adopted in order to write finite element matrices of 1D and 2D models
(both plate/curved cases) in a concise form based on the so-called fundamental nuclei. Well established
benchmark problems which are often used to assess shell problems are solved by implementing both 1D
and 2D assumptions. Comparisons between 1D and 2D models arecarried out in terms of accuracy and
computational costs. Results obtained suggest that 1D CUF models are able to detect shell-like solutions
with lower computational costs and less implementation issues.

1 INTRODUCTION
Theory of structures (TOS) can be built according to variousmethods. If only displacement variables

are considered, the fundamental problem of TOS will consistof the evaluation of the minimum number
of unknown variables (UVs) needed to solve a given problem according to a fixed accuracy. In the
development of the so-called axiomatic approach to TOS, theUVs are introduced by postulating an
expansion for the three unknown displacements. Such an expansion can be formulated in many different
ways. The generic displacement componentu in an orthogonal reference system (x, y, z) can be expanded
in terms of one-dimensional (1D) or two-dimensional (2D) UVs, respectively,

1D : u = u1D
i (y) F 1D

i (x, z), i = 1, .., M1D

2D : u = u2D
i (x, y) F 2D

i (z), i = 1, ..., M2D

(1)

whereu1D
i (y) andu2D

i (x, y) are the UVs ,F 1D
i andF 2D

i are the base functions used for the 1D and 2D
expansions. It is assumed that in the 1D case the expansion ismade in terms of the two coordinatesx, z
(over a given section for a givenz-value) while the expansion is made in terms ofz (over the thickness
at a given point of coordinatesx, y) for 2D models. The base functions can be represented by any kind
of polynomials, such as powers ofz (or x, z in the 1D cases), harmonics, Lagrange, Legendre, etc. The
Principle of Virtual Displacements can be used to derive governing equations (in both weak and strong
forms) consistent to the assumptions made in Eq. 1.
This paper is devoted to the analysis of shell structures by means of 1D and 2D structural models. 1D
theories are usually referred to as ’beam’ models. Most known examples are the Euler-Bernoulli [1] and
Timoshenko [2] models. These models are hereafter referredto as EBBT and TBT, respectively. These
models provide reliable results if compact structures madeof isotropic materials are considered in bend-
ing. Higher-order beam models are needed to account for non-classical effects due to, for instance, thin
walls or point loads. An excellent review on higher-order models can be found in Kapania and Raciti [3].
2D shell models may be classified in two classes according to different physical assumptions. The Koiter
model [4] is based on the Kirchhoff hypothesis. The Naghdi model [5] is based on the Reissner-Mindlin
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assumptions that take into account the transverse shear deformation. It is known that when a finite el-
ement method is used to discretize a physical model, the phenomenon of numericallocking may arise
from hidden constrains that are not well represented in the finite element approximation. There are many
approaches proposed to overcome the locking phenomenon, such as the use of the standard displacement
formulation with higher-order elements (see [6],[7]), theuse of reduced-selective integration techniques
(see [8],[9]) or the use of modified variational forms (see [10, 11]).
Numerical examples are herein carried out by using 1D and shell models derived from the Carrera Unified
Formulation (CUF) [12]. In the CUF framework, higher-orderstructural models are obtained hierarchi-
cally since the order of the model is considered as an input ofthe analysis. A cylindrical shell finite
element based on CUF [13] is adopted in this paper. In the wakeof Bathe et al. [14, 15], the Mixed
Interpolation of Tensorial Components (MITC) method has been extended to shell elements with nine
nodes in order to overcome the membrane and shear locking. The performances of this element have
been tested in [16] by solving discriminating problems fromthe literature, that involve very thin shells.
1D Taylor-based (TE) models [17] are also exploited. CUF 1D models are able to predict accurate dis-
placement and stress fields of arbitrary shaped and constrained structures [18, 19, 20, 21, 22, 23, 24] with
considerable reductions of computational costs.
This paper gives a brief theoretical overview of both 1D and 2D CUF models and then presents the
numerical results related to the Scordelis-Lo barrel vaultproblem.

2 CARRERA UNIFIED FORMULATION
In the CUF framework, the displacement field of a structural model is the expansion of generic func-

tionsFτ ,
u = Fτ uτ , τ = 1, 2, ...., M (2)

whereuτ is the displacement vector andM stands for the number of terms of the expansion. According
to the Einstein notation, the repeated subscript,τ , indicates summation. The expression given by Eq. 2
is valid for both 1D and 2D models since these models are obtained by acting on the expansion functions
Fτ . In fact,

1D : u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ...., M1D

2D : u(x, y, z) = Fτ (z)uτ (x, y), τ = 1, 2, ...., M2D
(3)

As far as 1D models are concerned, the expansions of the displacement filed are in terms of the cross-
section coordinates (x, z) while the unknowns of the problem are given in a certain location above the
cross-section. In the case of 2D models, the expansions are in terms of the thickness coordinate (z) and
the unknowns are given in a certain point alongz.
The choice ofFτ determines the class of CUF models to adopt. Taylor-like polynomial expansions,xi zj

(1D) andzj (2D), of the displacement fields are adopted in this paper (i andj are positive integers). A
genericN -order displacement field for a 1D model is then expressed by:

u =

N
∑

Ni=0

(

Ni
∑

M1D=0

xN−M1D zM1D u N(N+1)+M1D+1

2

)

(4)

For example, the second-order model, TE2, has the followingkinematic model:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(5)

The 1D model described by Eq. 5 has18 generalized displacement variables: three constant, six linear,
and nine parabolic terms. The orderN of the expansion is arbitrary and is set as an input of the analysis.
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The choice ofN for a given structural problem is usually made through a convergence study.
If 2D models are considered, a generic Taylor-like displacement field is given by

u = zτ−1uτ , τ = 1, 2, ...., M2D (6)

A second-order model (ESL2) is then based on the following displacement field:

ux = ux1 + z ux2 + z2 ux3

uy = uy1 + z uy2 + z2 uy3

uz = uz1 + z uz2 + z2 uz3

(7)

A brief description of the 1D and 2D CUF models will be given hereafter.

2.1 1D CUF finite elements
The transposed displacement vector is defined as

u(x, y, z) =
{

ux uy uz

}T
(8)

wherex, y, andz are orthonormal axes as shown in Fig. 1. The cross-section ofthe structure isΩ, the

Figure 1: Coordinate frame

longitudinal axis is0 ≤ y ≤ L. Stress,σ, and strain,ε, components are grouped as

σp =
{

σzz σxx σzx

}T
, εp =

{

εzz εxx εzx

}T

σn =
{

σzy σxy σyy

}T
, εn =

{

εzy εxy εyy

}T (9)

The subscript ”n” stands for terms lying on the cross-section, while ”p” stands for terms lying on planes
which are orthogonal toΩ.
Strains are obtained as

εp = Dpu
εn = Dnu = (Dnp + Dny)u

(10)

whereDp andDn are differential operators whose explicit expressions is not reported here for the sake
of brevity, they can be found in [20]. Constitutive laws are introduced to obtain stress components,

σ = C̃ε (11)

According to Eq.s 9, the previous equation becomes:

σp = C̃ppεp + C̃pnεn

σn = C̃npεp + C̃nnεn

(12)
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whereC̃pp, C̃pn, C̃np, andC̃nn are the material coefficient matrices whose explicit expressions are not
reported here for the sake of brevity, they can be found in [20]. The FE approach is herein adopted to
discretize the structure along they-axis, this process is conducted via a classical finite element technique
where the displacement vector is given by

uτ = NiFτ qτi (13)

WhereNi stands for the shape functions andqτi for the nodal displacement vector,

qτi =
{

quxτi
quyτi

quzτi

}T
(14)

Elements with four nodes, hereinafter referred as B4, are formulated, that is, a cubic approximation along
they axis is adopted.
The stiffness matrix of the elements are obtained via the Principle of Virtual Displacements,

δLint =

∫

V

(δεT
p σp + δεT

n σn)dV = δLext (15)

WhereLint stands for the strain energy andLext is the work of the external loadings.δ stands for the
virtual variation. In a compact notation the stiffness matrix for a given material property set can be written
as

K ij τ s = I
ij

l /
(

D T
np Fτ I

)

[

C̃np

(

Dp Fs I
)

+ C̃nn

(

Dnp Fs I
)

]

+

(

D T
p Fτ I

)

[

C̃pp

(

Dp Fs I
)

+ C̃pn

(

Dnp Fs I
)

]

. Ω +

I
ij,y
l /

[

(

DT
np Fτ I

)

C̃nn +
(

D T
p Fτ I

)

C̃pn

]

Fs . Ω IΩ y +

I
i,y j

l IΩ y / Fτ

[

C̃np

(

Dp Fs I
)

+ C̃nn

(

Dnp Fs I
)

]

. Ω +

I
i,y j,y
l IΩ y / Fτ C̃nn Fs . Ω IΩ y

(16)

where

IΩ y =





0 1 0
1 0 0
0 0 1



 / . . . . Ω =

∫

Ω

. . . dΩ (17)

(

I
ij

l , I
ij,y
l , I

i,y j

l , I
i,y j,y
l

)

=

∫

l

(

Ni Nj , Ni Nj,y
, Ni,y

Nj , Ni,y
Nj,y

)

dy (18)

Kijτs is the stiffness matrix in the form of the fundamental nucleus, its components can be found in [24].
As far as the formal expression of the fundamental nucleus isconcerned, it has to be underlined that

• It does not depend on the expansion order.

• It does not depend on the choice of theFτ expansion polynomials.

These are the key-point of CUF which permits, with only nine FORTRAN statements, to implement
any-order multiple class theories.

2.2 CUF Shell finite element with cylindrical geometry
In this work a shell element with exact cylindrical geometryis considered. Using the linear part of the

3D Green-Lagrange tensor as shown in [14], one can obtain thefollowing strain-displacement relations
expressed in the curvilinear reference system(ξ1, ξ2, ξ3):
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ε11 = Fτuτ,1

ε22 = Fτ

[

(

1 +
ξ3

R

)wτ

R
+
(

1 +
ξ3

R

)

vτ,2

]

ε12 = Fτ

[

uτ,2 +
(

1 +
ξ3

R

)

vτ,1

]

ε13 = wτ,1Fτ + uτFτ,3

ε23 = Fτ

[

wτ,2 −
vτ

R

]

+ Fτ,3

[

(

1 +
ξ3

R

)

vτ

]

ε33 = wτFτ,3

(19)

whereR is the radius of the cylinder taken in theξ2-direction (see Fig. 2). The Unified Formulation has

ξ1

ξ2

ξ3

x

y

z

R

L

Figure 2: Curvilinear coordinates reference system.

been applied to the displacements. The comma indicates the derivative with respect to the coordinates
ξ1, ξ2 or ξ3.
For convenience, the geometrical relations can be expressed in matrix form as:

εp =(Dp + Ap)u

εn =(DnΩ + Dnz − An)u
(20)

where the strains have been arranged in the vectorsεp = {ε11, ε22, ε12} andεn = {ε13, ε23, ε33}, and
the differential operators are defined as follows:

Dp =





∂1 0 0
0 H∂2 0
∂2 H∂1 0



 , DnΩ =





0 0 ∂1

0 0 ∂2

0 0 0



 , Dnz = ∂3 · Anz = ∂3





1 0 0
0 H 0
0 0 1



 , (21)

Ap =





0 0 0
0 0 1

R
H

0 0 0



 , An =





0 0 0
0 1

R
0

0 0 0



 , (22)

in which H = (1 + ξ3

R
) and the matrixAnz

is introduced. For more details about the derivation of the
geometrical relations one can refer to [14],[16]. According to the FEM, the displacement components can
be interpolated on the nodes of the element by means of the Lagrangian shape functionsNi as follows:

δuτ = Niδqτi
, us = Njqsj

, (23)
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where i, j = 1, ..., 9 by considering a nine-node element.qsj
and δqτi

are the nodal displacement
components and their virtual variations. Therefore, substituting these expressions in the geometrical
relations (20), one has:

εp =Fτ (Dp + Ap)(NiI)qτi

εn =Fτ (DnΩ − An)(NiI)qτi
+ Fτ,3Anz(NiI)qτi

(24)

whereI is a3 × 3 identity matrix. The Mixed Interpolation of Tensorial Components (MITC) method
is used to contrast the membrane and shear locking phenomenon that affects the shell finite elements.
Considering the strains in the local coordinate system (ξ, η), the MITC shell elements ([25],[26]) are
formulated by using, instead of the strain components directly computed from the displacements, an
interpolation of these strain components within each element using a specific interpolation strategy for
each component. The corresponding interpolation points, called tying points, are shown in Fig. 3 for a
nine-nodes element.
The interpolating functions on tying points can be arrangedin the following arrays:

!

"

A1

C1

E1 F1

D1

B1

#11 and 13#

!

"

A2

B2

C2

D2 F2

E2

!

"

P

R S

Q

# #22 23and #12

Figure 3: Interpolation strategy for strain components.

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP , NQ, NR, NS ]

(25)

For convenience, the subscriptsm1, m2 andm3 will indicate quantities calculated in the points (A1, B1,
C1, D1, E1, F1), (A2, B2, C2, D2, E2, F2) and (P, Q, R, S), respectively. Therefore, the strain components
are interpolated as follows:

εp =





ε11

ε22

ε12



 =





Nm1 0 0
0 Nm2 0
0 0 Nm3









ε11m1

ε22m2

ε12m3





εn =





ε13

ε23

ε33



 =





Nm1 0 0
0 Nm2 0
0 0 1









ε13m1

ε23m2

ε33





(26)

where the strainsε11m1 , ε22m2 , ε12m3 , ε13m1 , ε23m2 are expressed by means of Eq.s (24), in which the
shape functionsNi are calculated in the tying points. More details about the MITC9 shell element are
given in [16].

6



3 NUMERICAL RESULTS
The Scordelis-Lo barrel vault problem is addressed in this paper in order to carry out performance

comparisons of the proposed 1D and 2D formulations. Figure 4shows the geometry of the structure and
Table 1 presents the main characteristics of the model, moredetails about this problem can be found in
[27].
Table 2 presents the results obtained, transverse displacements are considered. First-order Shear De-

Figure 4: Geometry of the barrel vault.

Barrel vault
Young’s modulus E 4.32 × 108 lb/ft2

Poisson’s ratio ν 0.0
load P 90 lb/ft2

length L 50 ft
radius R 25 ft
thickness t 0.25 ft
angle θ0 2π/9 rad

Table 1: Physical data of the barrel vault.

formation Theory (FSDT), first-order (ESL1) and second-order (ESL2) shell models were exploited. 1D
models up to the fifth-order (TE5) were used. A20X20 mesh was used for the shell model (nine-node
element) whereas a20 B4 mesh was used for the 1D model. The total number of degrees of freedom
(DOFs) is indicated per each model. It has to be underlined that the shell solution was obtained by con-
sidering only a quarter of the structure whereas the 1D modelconsidered the whole structure. The FSDT
solution was obtained also without the membrane locking correction. Figure 5 shows the 3D deformed
configuration of the barrel vault obtained by means of the TE51D model.
These results suggest the following:

1. An excellent agreement with the reference solution was found by means of both the shell and beam
formulation.

2. As far as the shell model is concerned, an FSDT model is enough for the result convergence. The
membrane locking correction is beneficial.

3. A fifth-order beam model is instead necessary to obtain satisfactory accuracies.

4. The 1D formulation proposed is able to detect the shell solution with some15 times lower compu-
tational costs.
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2D shell
Model w [ft] DOFs Error∗∗

FSDT 0.30104 8045 −0.45%
FSDT* 0.30098 8045 −0.47%
ESL1 0.30104 10086 −0.45%
ESL2 0.30104 15129 −0.45%

1D beam
TE1 0.01869 549 −94%
TE2 0.02631 1089 −91%
TE3 0.11364 1830 −62%
TE4 0.25127 2745 −17%
TE5 0.30335 3843 +0.31%

(∗): Without membrane locking correction.

(∗∗): Reference value:w = 0.3024[ft] [27]

Table 2: Barrel vault transversal displacement at point B ofthe midsurface.

Figure 5: Barrel vault 3D deformation, TE5 1D model.

4 CONCLUSIONS
This paper has presented comparisons between higher-orderbeam and shell solutions for the barrel

vault problem proposed by Scordelis and Lo. The 1D and 2D formulations presented have been derived in
the framework of the Carrera Unified Formulation (CUF) whichconsiders the order of a structural model
as an input of the analysis. Numerical examples have been carried out in order to investigate the accuracy
issues of the models and their computational costs. The following remarks can be stated:

1. CUF models are reliable and compact tools which can be usedfor a large variety of structural
problems.

2. The adoption of higher-order 1D models make the typical limitations of classical models disappear.
Particularly powerful is the CUF capability of consideringthe order of the model as an input, this
allows the detection of the exact solution via a convergencestudy.

3. 1D CUF models detect shell-like solutions with considerable reductions of computational costs and
without some typical issues of shell models such as the membrane locking.

Future works should include studies on pinched cylinders, composite structures and free-vibration analy-
ses.
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