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SUMMARY. The present paper compares 1D and 2D assumptiotieianalysis of thin-walled struc-
tures. Refined beam/plate/shell models are exploited amadrtthers of these models are taken as free
parameters, that is, classical beam/plate/shell theoaiede refined at any extent. Finite Element (FE)
approximations are used to handle different boundary ¢mmdi (geometrical and mechanical). The Car-
rera Unified Formulation (CUF) is adopted in order to writétéirelement matrices of 1D and 2D models
(both plate/curved cases) in a concise form based on thallmdundamental nuclei. Well established
benchmark problems which are often used to assess sheleprslre solved by implementing both 1D
and 2D assumptions. Comparisons between 1D and 2D modatami®d out in terms of accuracy and
computational costs. Results obtained suggest that 1D Caifelmare able to detect shell-like solutions
with lower computational costs and less implementationass

1 INTRODUCTION

Theory of structures (TOS) can be built according to varimaeshods. If only displacement variables
are considered, the fundamental problem of TOS will cordighe evaluation of the minimum number
of unknown variables (UVs) needed to solve a given probleoomting to a fixed accuracy. In the
development of the so-called axiomatic approach to TOSUte are introduced by postulating an
expansion for the three unknown displacements. Such amsiqracan be formulated in many different
ways. The generic displacement componeimtan orthogonal reference system ¢, z) can be expanded
in terms of one-dimensional (1D) or two-dimensional (2D)4/Yespectively,

1D :u=ulP(y) FP(z,z2), i=1,..,Mp
(1)
2D :u = u?P(z,y) F?P(2), 1=1,...,Msp

whereu!? (y) andu?? (z, y) are the UVs F!P and F?P are the base functions used for the 1D and 2D
expansions. It is assumed that in the 1D case the expangioeds in terms of the two coordinatesz
(over a given section for a giverrvalue) while the expansion is made in terms:dbver the thickness
at a given point of coordinates y) for 2D models. The base functions can be represented byiady k
of polynomials, such as powers ofor z, z in the 1D cases), harmonics, Lagrange, Legendre, etc. The
Principle of Virtual Displacements can be used to deriveegoing equations (in both weak and strong
forms) consistent to the assumptions made in Eq. 1.

This paper is devoted to the analysis of shell structures égns of 1D and 2D structural models. 1D
theories are usually referred to as 'beam’ models. Most knexamples are the Euler-Bernoulli [1] and
Timoshenko [2] models. These models are hereafter reféorad EBBT and TBT, respectively. These
models provide reliable results if compact structures nwddsotropic materials are considered in bend-
ing. Higher-order beam models are needed to account forctamsical effects due to, for instance, thin
walls or point loads. An excellent review on higher-orderdais can be found in Kapania and Raciti [3].
2D shell models may be classified in two classes accordinifereht physical assumptions. The Koiter
model [4] is based on the Kirchhoff hypothesis. The Naghdiei§5] is based on the Reissner-Mindlin



assumptions that take into account the transverse sheamnthgfon. It is known that when a finite el-
ement method is used to discretize a physical model, thegrhenon of numericdbcking may arise
from hidden constrains that are not well represented in tiite felement approximation. There are many
approaches proposed to overcome the locking phenomermmnastthe use of the standard displacement
formulation with higher-order elements (see [6],[7]), thee of reduced-selective integration techniques
(see [8],[9]) or the use of modified variational forms (se@, [11]).

Numerical examples are herein carried out by using 1D anltirsbeels derived from the Carrera Unified
Formulation (CUF) [12]. In the CUF framework, higher-ord¢tuctural models are obtained hierarchi-
cally since the order of the model is considered as an inptit@fanalysis. A cylindrical shell finite
element based on CUF [13] is adopted in this paper. In the wélBathe et al. [14, 15], the Mixed
Interpolation of Tensorial Components (MITC) method hasrbextended to shell elements with nine
nodes in order to overcome the membrane and shear locking.p@Hormances of this element have
been tested in [16] by solving discriminating problems fribna literature, that involve very thin shells.

1D Taylor-based (TE) models [17] are also exploited. CUF 1d@lels are able to predict accurate dis-
placement and stress fields of arbitrary shaped and camestratructures [18, 19, 20, 21, 22, 23, 24] with
considerable reductions of computational costs.

This paper gives a brief theoretical overview of both 1D ald@UF models and then presents the
numerical results related to the Scordelis-Lo barrel viardblem.

2 CARRERA UNIFIED FORMULATION
In the CUF framework, the displacement field of a structuratlei is the expansion of generic func-
tionsF,,
u=F,u,, T=1,2,...M (2)

whereu, is the displacement vector add stands for the number of terms of the expansion. According
to the Einstein notation, the repeated subscripindicates summation. The expression given by Eq. 2
is valid for both 1D and 2D models since these models are médady acting on the expansion functions
F,. Infact,

1D : u(z,y, z) = Fr(x, 2)u-(y), T=12,....,Mp 3)

2D : u(z,y, z) = Fr(z)u-(z,y), T=1,2,.... Msp

As far as 1D models are concerned, the expansions of theadaplent filed are in terms of the cross-
section coordinatesz( z) while the unknowns of the problem are given in a certain tioceabove the
cross-section. In the case of 2D models, the expansions &eems of the thickness coordinatg énd
the unknowns are given in a certain point alang

The choice of; determines the class of CUF models to adopt. Taylor-likgmpaiial expansions;’ 27
(1D) andz? (2D), of the displacement fields are adopted in this papand; are positive integers). A
genericN-order displacement field for a 1D model is then expressed by:

N N;
u= Z < Z gN—Mip ,Mip UN(N+1)2+MlD+1> 4)

N;=0 \M1p=0
For example, the second-order model, TE2, has the follokimgmatic model:

ugc:ugcl—|—xuwz—|—zugc$—|—x2ugg4—|—9czu%—|—22uggG
Uy = Uy, + T Uy, + 2 Uy, + T2 Uy, + T2 Uyy + 22 Uy, (5)
uzzuzl—|—a:u22—|—zu23+x2uz4+a:zuZ5+22uZ6

The 1D model described by Eq. 5 hBsgeneralized displacement variables: three constantingar,
and nine parabolic terms. The ordErof the expansion is arbitrary and is set as an input of theyaisal



The choice of\V for a given structural problem is usually made through a eogence study.
If 2D models are considered, a generic Taylor-like dispiaeet field is given by

u :Z"-_ll.h—7 T=1,2,....,Msp (6)
A second-order model (ESL2) is then based on the followisgldcement field:
Uy = Ugy + 2 Uz, + 22 Uy
uy = uyl +z uyz + 22 uy3 (7)
Uy = Uy + 2 Uyy + 22 Uy

A brief description of the 1D and 2D CUF models will be givemdudter.

2.1 1D CUF finite elements
The transposed displacement vector is defined as

u(m,y,z):{ Uy Uy Uy }T (8)

wherez, y, andz are orthonormal axes as shown in Fig. 1. The cross-sectitimredastructure €2, the

y

Figure 1: Coordinate frame

longitudinal axis i9) < y < L. Stressg, and straing, components are grouped as

ap:{ Ozz Ogx Oup }T, €p={ €22 €xx €z }T

On = { O.Z'y Uzy Uyy }T7 €np = { 6zy €my Eyy }T

(9)

The subscript#” stands for terms lying on the cross-section, whihé Stands for terms lying on planes
which are orthogonal t&).
Strains are obtained as

€, = Dy,u

€, = Dyu= (D, + Dpy)u

whereD,, andD,, are differential operators whose explicit expressionisra@ported here for the sake
of brevity, they can be found in [20]. Constitutive laws amr@duced to obtain stress components,

(10)

o=Ce (11)
According to Eq.s 9, the previous equation becomes:

Op = C:ppﬁp + C~’~pn6n 12
o, =Chpep+Chrpey, (12)



whereC,,, Cp,, C.,, andC,,, are the material coefficient matrices whose explicit exgicess are not
reported here for the sake of brevity, they can be found if. [ZBe FE approach is herein adopted to
discretize the structure along theaxis, this process is conducted via a classical finite efeteehnique
where the displacement vector is given by

u- = NiFqui (13)

WhereN; stands for the shape functions ang for the nodal displacement vector,

a,; = { Qua_, Qu,_, qu., }T (14)

Elements with four nodes, hereinafter referred as B4, aredtated, that is, a cubic approximation along
they axis is adopted.

The stiffness matrix of the elements are obtained via theciprlie of Virtual Displacements,
8Lin: = / (0e, 0p + 0€L0,)dV = 0Lcg (15)
\4

WhereL;,; stands for the strain energy aid,: is the work of the external loadings. stands for the
virtual variation. In a compact notation the stiffness rixdftsr a given material property set can be written
as

Kiits — I;'Jg, (DEPFTI)[ wp (Dp F I) + Chyy (D,L,,FSI)} +
(D,,TFTI)[C (Dy F 1) + Gy (anFsI)} >a +
170 < [(DE, o 1) G + (DI Fo 1) ] Fu o Tay + (16)
I I, o F, [(jnp (D, 1) + Gy (anFSI)} b +

by Iy ~
Il Y yIQy <]F7'CnnFs >Q IQy

where
01 0
0 01 Q2
(Ilij, Ilijxy’ Iliwj’ Ilimlj’y) = /(N N N N N%yN Nz,y Nj7y) dy (18)

K7 is the stiffness matrix in the form of the fundamental nusléts components can be found in [24].
As far as the formal expression of the fundamental nucleasnserned, it has to be underlined that

¢ It does not depend on the expansion order.
¢ It does not depend on the choice of theexpansion polynomials.

These are the key-point of CUF which permits, with only nif@RTRAN statements, to implement
any-order multiple class theories.

2.2 CUF Shell finite element with cylindrical geometry

In this work a shell element with exact cylindrical geomesrgonsidered. Using the linear part of the
3D Green-Lagrange tensor as shown in [14], one can obtaifollogving strain-displacement relations
expressed in the curvilinear reference systémés, £3):



€11 = Frur,l

[ 3\ wr §
£22 = F; _(1 + EB)? + (1+ EB)UW}
e = Fo i+ (U4 e )
€13 = Wr, Fr +ur by,
a3 = Py [wr, %} +FL (1 %)UT}

€33 = wTFT,3

whereR is the radius of the cylinder taken in tgg-direction (see Fig. 2). The Unified Formulation has

Figure 2: Curvilinear coordinates reference system.

been applied to the displacements. The comma indicatesetfieative with respect to the coordinates

1,8 0r &s.

For convenience, the geometrical relations can be exptésseatrix form as:

&p =(Dp + Ap)u

20
En :(DnQ + D, — An)u ( )

where the strains have been arranged in the veelpes {11, 92,612} ande,, = {e13,¢23,33}, and
the differential operators are defined as follows:

9 0 0 00 O 1 0 0
D,=|0 Hd 0|, Du=|0 0 0, D,.=083-A,.=03|0 H 0, (21)
dy HO, 0 00 0 0 0 1
00 0 0 0 0
A,=10 0 £H| ,A, =0 £ 0, (22)
00 0 0 0 0

inwhichH = (1 + %) and the matrixA,,, is introduced. For more details about the derivation of the
geometrical relations one can refer to [14],[16]. Accogdiothe FEM, the displacement components can
be interpolated on the nodes of the element by means of thehgign shape functions; as follows:

dur = Nioq,, , us = N;q,, (23)



wherei,j = 1,...,9 by considering a nine-node elemenzysj anddq,, are the nodal displacement
components and their virtual variations. Therefore, stiistg these expressions in the geometrical
relations (20), one has:

ep =F, (D, + A,)(N:I)q.,

24
€n =F:(Dno — An)(NiI)q,, + Fr ;A (NiI)q,, @4

wherel is a3 x 3 identity matrix. The Mixed Interpolation of Tensorial Coonents (MITC) method
is used to contrast the membrane and shear locking phenontieabaffects the shell finite elements.
Considering the strains in the local coordinate systém)( the MITC shell elements ([25],[26]) are
formulated by using, instead of the strain components threaomputed from the displacements, an
interpolation of these strain components within each etemeing a specific interpolation strategy for
each component. The corresponding interpolation poial&dtying points, are shown in Fig. 3 for a
nine-nodes element.

The interpolating functions on tying points can be arrangedtie following arrays:

——

#i1 and #hs #he and #hs #e

Figure 3: Interpolation strategy for strain components.

N1 = [Na1,Npi1,Nec1, Np1, Ne1, Np1]
Nm2 = [Naz2, Np2, No2, Np2, N2, Nia] (25)
Nm.B = [NP,NQ,NR,NS]

For convenience, the subscriptd, m2 andm3 will indicate quantities calculated in the points (A1, B1,

C1,D1,E1, F1),(A2,B2,C2,D2,E2,F2)and (P, Q, R, S), rethpely. Therefore, the strain components
are interpolated as follows:

€1 Npio 0 0 €11,
Ep = [E22| = 0 N2 0 €220
£12 0 0 Nm3 €12,3
i - (26)
€13 Npio 00 0f (&3,
en= |23 =| 0 Np2 0] |€23,.
£33 0 0 1 €33

where the strains; 1, ,, €22,,,, €12,.5+ €13,.1» £23,,, are expressed by means of Eq.s (24), in which the
shape functionsV; are calculated in the tying points. More details about th& ®8 shell element are
givenin [16].



3 NUMERICAL RESULTS
The Scordelis-Lo barrel vault problem is addressed in thjsep in order to carry out performance
comparisons of the proposed 1D and 2D formulations. Figugieotvs the geometry of the structure and
Table 1 presents the main characteristics of the model, ahetiadls about this problem can be found in
[27].
Table 2 presents the results obtained, transverse dispéatte are considered. First-order Shear De-

Figure 4: Geometry of the barrel vault.

Barrel vault
Young's modulus £ 4.32 x 10% Ib/ft?

Poisson’s ratio v 00

load P 90 Ib/ft?
length L 50 ft
radius R 25 ft
thickness t 0.25 ft
angle 6o 2m/9 rad

Table 1: Physical data of the barrel vault.

formation Theory (FSDT), first-order (ESL1) and seconden(@&SL2) shell models were exploited. 1D
models up to the fifth-order (TE5) were used.28X 20 mesh was used for the shell model (nine-node
element) whereas 20 B4 mesh was used for the 1D model. The total number of degfefeeegiom
(DOFs) is indicated per each model. It has to be underlinatthie shell solution was obtained by con-
sidering only a quarter of the structure whereas the 1D muutedidered the whole structure. The FSDT
solution was obtained also without the membrane lockingemtion. Figure 5 shows the 3D deformed
configuration of the barrel vault obtained by means of the TB3nodel.

These results suggest the following:

1. An excellent agreement with the reference solution wasddy means of both the shell and beam
formulation.

2. As far as the shell model is concerned, an FSDT model isginfar the result convergence. The
membrane locking correction is beneficial.

3. Afifth-order beam model is instead necessary to obtaisfaatory accuracies.

4. The 1D formulation proposed is able to detect the shalitsni with somel5 times lower compu-
tational costs.



2D shell
Model w[ff] DOFs Error**
FSDT 0.30104 8045 —0.45%
FSDT* 0.30098 8045 —0.47%
ESL1 0.30104 10086 —0.45%
ESL2 0.30104 15129 —0.45%
1D beam
TE1 0.01869 549 —94%
TE2 0.02631 1089 —-91%
TE3 0.11364 1830 —62%
TE4 0.25127 2745 —17%
TES 0.30335 3843 +0.31%

(*): Without membrane locking correction.
(+x): Reference valuew = 0.3024[ft] [27]

Table 2: Barrel vault transversal displacement at point Biefmidsurface.

Figure 5: Barrel vault 3D deformation, TE5 1D model.

4 CONCLUSIONS

This paper has presented comparisons between highertfmedar and shell solutions for the barrel
vault problem proposed by Scordelis and Lo. The 1D and 2D titaitions presented have been derived in
the framework of the Carrera Unified Formulation (CUF) whicimsiders the order of a structural model
as an input of the analysis. Numerical examples have beeedaut in order to investigate the accuracy
issues of the models and their computational costs. ThewWolly remarks can be stated:

1. CUF models are reliable and compact tools which can be fsed large variety of structural
problems.

2. The adoption of higher-order 1D models make the typiaaitéitions of classical models disappear.
Particularly powerful is the CUF capability of consideritige order of the model as an input, this
allows the detection of the exact solution via a convergstugy.

3. 1D CUF models detect shell-like solutions with consiéaeductions of computational costs and
without some typical issues of shell models such as the mamedocking.

Future works should include studies on pinched cylindemosite structures and free-vibration analy-
ses.
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