
Abstract

This paper presents the finite element analysis of slender thin-walled bodies by means

of different finite element models. The beam formulation is given in the framework

of the Carrera Unified Formulation, CUF, which considers the order of the theory, N ,

as a free parameter of the analysis. N is the order of the 1D displacement expansion.

The displacement components are, in fact, expanded in terms of the cross-section co-

ordinates, (x, z), by using a set of 1D generalized displacement variables. The refined

kinematic models are based on Taylor-type polynomials. The finite element formula-

tion is exploited in order to be able to face arbitrary cross-section geometries. FE’s

matrices are obtained in terms of a few fundamental nuclei which are formally inde-

pendent of both N and the number of element nodes. A cubic (4 nodes) approximation

along the beam axis, (y), is used. Structural analyses are conducted starting from clas-

sical beam theories, refined models are then introduced to evaluate non-classical ef-

fects. Aircraft wing and wind turbine blade models are analyzed. Static and dynamic

analyses are conducted. It has mainly been concluded that the enhanced refined beam

element, which has been formulated via CUF, is able to detect the so-called shell-like

mechanical behaviors, that is, shell-like results can be obtained using higher-order

beam elements. The shell-like capabilities include the detection of the local displace-

ment field induced by a concentrated load, and natural modes characterized by the

presence of waves along the cross-section contour.

Keywords: refined beam theories, finite element analysis, thin-walled structures,

slender bodies, shell-like capabilities, wings, rotor blades.
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1 Introduction

Lifting systems, LS’s, are used in many engineering applications such as in engine tur-

bines/compressors, helicopters, wind turbines, and aircrafts. A particular attention is

herein given to aircraft wings and wind turbine rotor blades. The appropriate design of

LS’s consists of a number of important issues for structural analysts. Lifting systems

appear as slender bodies in most of the applications, that is, the blades/wings length

is predominant with respect to the cross-section dimensions. This geometrical feature

permit us the adoption of the one-dimensional 1D approach for static, dynamic, and

aeroelastic analyses.

Euler-Bernoulli’s [1] and Timoshenko’s [2, 3] theories are the classical models for

beams made of isotropic materials. The former does not account for transverse shear

effects on the cross-section deformations. The latter provides a model that, at best,

foresees a constant shear deformation distribution on the cross-sections. Both theo-

ries yield better results for slender than for short beams. The static analysis requires

refined beam elements for the proper detection of non-classical effects, such as the

out-of-plane warping. As far as the free-vibration analysis is concerned, higher-order

models are necessary for the detailed evaluation of high number modes. These issues

are specially relevant for aircraft wings and rotor blades that require a detailed eval-

uation of the deformation fields and natural modes for the proper investigation of the

aeroelastic phenomena (e.g. flutter, divergence, etc.).

There are several works concerning the construction of higher-order theories. Excel-

lent reviews on these theories are those by Kapania and Raciti [4, 5]. Refined beam

models for aerospace applications have been presented by Librescu [6] and Banerjee

[9, 10]. A work on the effect of the shear deformation have been presented by Song

and Waas [7]. The application of the asymptotical method to beam theories have been

addressed by Yu and Hodges [8].

The finite element analysis is hereafter conducted in the framework of the Carrera

Unified Formulation (CUF)[11, 12]. CUF was introduced during the last decade to

implement higher-order shell theories. It has recently been extended to beam models

[13, 14, 15, 16]. The main feature of CUF is represented by its hierarchical capa-

bilities, in other words, in CUF the order of the formulation is considered as a free

parameter of the analysis. Taylor-type polynomials are used to model the beam cross-

section kinematic field. The finite element formulation is introduced to deal with

arbitrary geometries, loading and boundary conditions. Four-node elements are used

along the longitudinal axis of the beam. The Principle of Virtual Displacements (PVD)

is exploited to compute the stiffness and mass matrices, and the loading vectors. Two

different beam structures are analyzed: an aircraft wing and a wind turbine blade.

Isotropic materials are adopted. Static and free-vibration analyses are conducted. This

work is embedded in the Regione Piemonte project MICROCOST which is aimed to

the development of small wind turbines for domestic use.
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2 Description of Refined FE Beam Models

The adopted coordinate frame is presented in Fig. 1. The beam boundaries over y are

x

y

z

Ω

Figure 1: Coordinate frame of the beam model.

0 ≤ y ≤ L. The displacements vector is:

u(x, y, z) =
{

ux uy uz

}T
(1)

Superscript ”T ” represents the transposition operator. The stress, σ, and the strain, ε,

are grouped as follows:

σp =
{

σzz σxx σzx

}T
, εp =

{

εzz εxx εzx

}T

σn =
{

σzy σxy σyy

}T
, εn =

{

εzy εxy εyy

}T (2)

Subscript ”n” stands for terms laying on the cross-section, while ”p” stands for terms

laying on planes orthogonal to Ω. Linear strain-displacement relations are used:

εp = Dpu

εn = Dnu = (DnΩ + Dnz)u
(3)

with:

Dp =







0 0 ∂
∂z

∂
∂x

0 0
∂
∂z

0 ∂
∂x






, DnΩ =







0 0 0

0 ∂
∂x

0

0 ∂
∂z

0






, Dny =







0 ∂
∂y

0
∂
∂y

0 0

0 0 ∂
∂y






(4)

The Hooke law is exploited:

σ = Cε (5)

According to Eq.s 2, the previous equation becomes:

σp = C̃ppεp + C̃pnεn

σn = C̃npεp + C̃nnεn

(6)
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In the case of isotropic material the matrices C̃pp, C̃nn, C̃pn and C̃np are:

C̃pp =





C̃11 C̃12 0

C̃12 C̃22 0

0 0 C̃66



 , C̃nn =





C̃55 0 0

0 C̃44 0

0 0 C̃33



 , C̃pn = C̃
T

np =





0 0 C̃13

0 0 C̃23

0 0 0





(7)

For the sake of brevity, the dependence of the coefficients [C̃]ij versus Young’s moduli

and Poisson’s ratio is not reported here. It can be found in Tsai [18] or Reddy [19].

In the framework of the Carrera Unified Formulation (CUF) [11, 12, 13, 14, 15, 16],

the displacement field is assumed as an expansion in terms of generic functions, Fτ :

u = Fτ uτ , τ = 1, 2, ....,M (8)

where Fτ are functions of the coordinates x and z on the cross-section. uτ is the dis-

placement vector and M stands for the number of terms of the expansion. According

to the Einstein notation, the repeated subscript τ indicates summation. Eq. (8) consists

of a Maclaurin expansion that used as base the 2D polynomials xi yj , where i and j
are positive integers. The maximum expansion order, N , is supposed to be 4. Table

1 presents M and Fτ as functions of N . For example, the second-order displacement

field is:
ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uz = uy1 + x uy2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(9)

N M Fτ

0 1 F1 = 1
1 3 F2 = x F3 = z
2 6 F4 = x2 F5 = xz F6 = z2

3 10 F7 = x3 F8 = x2z F9 = xz2 F10 = z3

. . . . . . . . .

N (N+1)(N+2)
2

F (N2+N+2)
2

= xN F (N2+N+4)
2

= xN−1z . . . FN(N+3)
2

= xzN−1 F (N+1)(N+2)
2

= zN

Table 1: Mac Laurin’s polynomials.

The Timoshenko beam model (TBM) can be obtained by acting on the Fτ expan-

sion. Two conditions have to be imposed. 1) a first-order approximation kinematic

field:
ux = ux1 + x ux2 + z ux3

uy = uy1 + x uy2 + z uy3

uz = uz1 + x uz2 + z uz3

(10)

2) the displacement components ux and uz have to be constant above the cross-section:

ux2 = uz2 = ux3 = uz3 = 0 (11)

The Euler-Bernoulli beam (EBBM) can be obtained through the penalization of εxy

and εzy. This condition can be imposed by using a penalty value χ in the following
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constitutive equations:

σxy = χC̃55εxy + χC̃45εzy

σzy = χC̃45εxy + χC̃44εzy

(12)

The classical theories and the first-order models require the assumption of opportunely

reduced material stiffness coefficients to correct Poisson’s locking (see Carrera and

Brischetto [20, 21]). Unless differently specified, for classical and first-order models

Poisson’s locking is corrected according to Carrera and Giunta [13].

Introducing the shape functions, Ni, and the nodal displacement vector, qτi:

q =
{

quxτi
quyτi

quzτi

}T
(13)

The displacement vector becomes:

uτ = NiFτ qτi (14)

For the sake of brevity, the shape functions are not reported here. They can be found in

many books, for instance in [22]. Elements with 4 nodes (B4) are formulated, that is, a

cubic approximation along the y axis is adopted. It has to be highlighted that, while the

order of the beam model is related to the expansion on the cross-section, the number

of nodes per each element is related to the approximation along the longitudinal axis.

These two parameters are totally free and not related to each others. An N -order beam

model is therefore a theory which exploits an N -order polynomial to describe the

kinematics of the cross-section. The stiffness matrix of the elements and the external

loadings, which are consistent with the model, are obtained via the Principle of Virtual

Displacements:

δLint =

∫

V

(δεT
p σp + δεT

nσn)dV = δLext (15)

Where Lint stands for the strain energy, and Lext is the work of the external loadings.

δ stands for the virtual variation. The virtual variation of the strain energy is rewritten

using Eq.s (3), (6) and (14), in a compact format it becomes:

δLint = δqT
τiK

ijτsqsj (16)

Where Kijτs is the stiffness matrix in the form of the fundamental nucleus. Its com-

ponents are:

Kijτs
xx = C̃22

∫

Ω

Fτ,yFs,ydΩ

∫

l

NiNjdy + C̃66

∫

Ω

Fτ,xFs,xdΩ

∫

l

NiNjdy+

C̃44

∫

Ω

FτFsdΩ

∫

l

Ni,zNj,zdy

Kijτs
xy = C̃23

∫

Ω

Fτ,yFsdΩ

∫

l

NiNj,zdy + C̃44

∫

Ω

FτFs,ydΩ

∫

l

Ni,zNjdy

Kijτs
xz = C̃12

∫

Ω

Fτ,yFs,xdΩ

∫

l

NiNjdy + C̃66

∫

Ω

Fτ,xFs,ydΩ

∫

l

NiNjdy
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Kijτs
yx = C̃44

∫

Ω

Fτ,yFsdΩ

∫

l

NiNj,zdy + C̃23

∫

Ω

FτFs,ydΩ

∫

l

Ni,zNjdy

Kijτs
yy = C̃55

∫

Ω

Fτ,xFs,xdΩ

∫

l

NiNjdy + C̃44

∫

Ω

Fτ,yFs,ydΩ

∫

l

NiNjdy+

C̃33

∫

Ω

FτFsdΩ

∫

l

Ni,zNj,zdy
(17)

Kijτs
yz = C̃55

∫

Ω

Fτ,xFsdΩ

∫

l

NiNj,zdy + C̃13

∫

Ω

FτFs,xdΩ

∫

l

Ni,zNjdy

Kijτs
zx = C̃12

∫

Ω

Fτ,xFs,ydΩ

∫

l

NiNjdy + C̃66

∫

Ω

Fτ,yFs,xdΩ

∫

l

NiNjdy

Kijτs
zy = C̃13

∫

Ω

Fτ,xFsdΩ

∫

l

NiNj,zdy + C̃55

∫

Ω

FτFs,xdΩ

∫

l

Ni,zNjdy

Kijτs
zz = C̃11

∫

Ω

Fτ,xFs,xdΩ

∫

l

NiNjdy + C̃66

∫

Ω

Fτ,xFs,ydΩ

∫

l

NiNjdy+

C̃55

∫

Ω

FτFsdΩ

∫

l

Ni,zNj,zdy

The virtual variation of the work of the inertial loadings is:

δLine =

∫

V

ρüδuT dV (18)

where ρ stands for the density of the material, and ü is the acceleration vector. Eq. 18

is rewritten using Eq.s 3, and 14:

δLine =

∫

l

δqT
τiNi

[
∫

Ω

ρ(Fτ I)(FsI)dΩ

]

Njq̈sjdz (19)

where q̈ is the nodal acceleration vector. The last equation can be rewritten in the

following compact manner:

δLine = δqT
τiM

ijτsq̈sj (20)

where Mijτs is the mass matrix in the form of the fundamental nucleus. Its components

are:

M ijτs
xx = M ijτs

yy = M ijτs
zz = ρ

∫

Ω

FτFsdΩ

∫

l

NiNjdy

M ijτs
xy = M ijτs

xz = M ijτs
yx = M ijτs

yz = M ijτs
zx = M ijτs

zy = 0
(21)

It should be noted that no assumptions on the approximation order have been done.

It is therefore possible to obtain refined beam models without changing the formal

expression of the nucleus components. This is the key-point of CUF which permits,

with only nine FORTRAN statements, to implement any-order beam theories. The

shear locking is corrected through the selective integration (see [22]). The undamped

dynamic problem can be written as it follows:

Mä + Ka = p (22)
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where a is the vector of the nodal unknowns and p is the loadings vector. Introduc-

ing harmonic solutions, it is possible to compute the natural frequencies, ωi, for the

homogenous case, by solving an eigenvalues problem:

(−ω2
i M + K)ai = 0 (23)

where ai is the i-th eigenvector.

3 Results and Discussion

Two assessments are considered. The static analysis of a wing model is first assessed

by means of a beam model. The results are compared with a solid finite element

model. The free vibration analysis of a wind turbine rotor-blade is then done by using

a shell model and comparing the results with experimental data.

3.1 Torsion of a wing model

A three-cell wing model is considered. Fig. 2 shows the geometric features of the

cross-section. The NACA 2415 airfoil is used. The chord length, b, is assumed equal

z

x
O

y

b

h

Figure 2: Wing cross-section.

to 1 [m]. The cells are obtained by inserting two beams along the span-wise direction

at 25% and 75% of the chord. The span-to-chord ratio, L/b, is assumed to be equal

to 5, that is, a moderately short structure is considered. An isotropic material is used.

Young’s modulus, E, is equal to 75 [GPa]. The Poisson ratio, ν, is equal to 0.33.

Static assessments of this model have been presented in [14], Fig. 3 shows the de-

formed free-tip cross-section due to a torsion loading. This result was obtained via a

fourth-order (N = 4) model, the out-of-plane warping is well-detected. Unconventional

wing geometries have been investigated in [17]. Fig.s 4 show a natural mode computed

via a fourth-order beam model and compared with an MSC Nastran shell model. An

excellent agreement between the two models has been found.

Higher than the forth-order models are herein considered. The torsion loading is

obtained via the application of two opposite concentrated forces at the leading and

7



Figure 3: Torsion analysis of a wing model via a fourth-order beam model.

Figure 4: Natural mode of a joined-wing via CUF, f = 47.512 [Hz], and MSC Nastran

Shell, f = 47.118 [Hz].

trailing edges. The forces are equal to ±1000 [N]. Table 2 shows the value of dis-

placement components at the trailing edge loading point for different beam models

and the one computed via solid elements. The number of the degrees of freedom of

each model is given in the second column.

The following conclusions hold.

1. Classical models are totally unable to evaluate the torsional behavior of the

structure.

2. The refinement of the beam model offers significative improvements in the com-

putation of the deformed configuration.

3. The computational cost of the higher-order 1D models is strongly smaller than

in the case of solid element modelling.
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Theory DOF’s ux × 105 [m] uz × 103 [m]

EBBM 155 0.0 0.0
TBM 155 0.0 0.0
N = 1 279 0.280 −0.074
N = 2 558 3.260 −0.681
N = 3 930 5.152 −0.818
N = 4 1395 5.620 −0.877
N = 5 1953 6.087 −0.944
N = 6 2604 6.477 −0.981
N = 7 3348 6.984 −1.029
N = 8 4185 7.231 −1.052
Solid 600000 6.926 −1.305

Table 2: uz displacement at the trailing edge of the wing for different beam theories

and comparison with a solid model.

3.2 Free vibrations analysis of a wind-turbine rotor blade

The MICROCOST rotor blade is herein investigated. The free vibration analysis is

conducted via a shell model in MSC Nastran. The results are compared with those

retrieved from experimental analyses. The rotor blades are shown in Fig. 5. A single

Figure 5: Rotor blades model.

blade is considered, it is modelled as a clamped-free structure composed by a main

beam and a skin. The length of the blade is equal to 1 [m]. An isotropic material

is used. Table 3 shows the comparison amongst the experimental natural frequencies

and those computed via MSC Nastran. A good match is found especially for the first

fundamental ones.
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Mode Experimental MSC Nastran

I Bending 32 32
I Torsional 57 54
II Torsional 93 104
II Bending 169 146.5

Table 3: Natural frequencies [Hz] of the rotor blade.

4 Conclusions

Static and free vibration analyses of thin-walled aerospace structures have been pre-

sented in this paper. Higher-order theories have been systematically implemented

by means of the Carrera Unified Formulation, CUF. According to CUF, the order

of the model is assumed as a free parameter of the modelling by obtaining the ele-

ment stiffness and mass matrices in compact forms, named fundamental nuclei, that

do not depend on the theory approximation order. Elements based on classical the-

ories, (Euler-Bernoulli and Timoshenko) have been derived as particular cases. De-

formed configurations, natural frequencies, and vibration modes have been computed

and compared with those from shell and solid models of commercial FE codes. The

following main conclusions can be drawn.

1. CUF permits to deal in an unified manner with arbitrary cross-section geome-

tries and thin-walled structures.

2. The use of higher-order theories allows us to overcome classical beam model

limitations.

3. The comparison with shell and solid models has shown the shell capabilities of

the refined beam theories in detecting the localized effects of concentrated loads

and shell-like natural modes.

4. The computational effort requested by the present beam model is strongly smaller

than those needed by shell and solid elements.

The use of the proposed beam model appears suitable to investigate the structural

behavior of thin-walled structures such as the presented wind turbine blade.
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