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SUMMARY. This paper presents higher order beam elements with only displacement degrees of
freedom based on Carrera Unified Formulation (CUF). The displacement components are expanded
in terms of cross-section coordinates, (x, y), by using N -order Lagrange polynomials which are de-
fined on a set of sampling points. The displacements of these points are the variables of the structural
problem. CUF hierarchical implementation offers the capability of considering N as a free parameter
of the formulation. Refined models are obtained either by increasing N , or by opportunely assem-
bling multiple Lagrange elements on the cross-section. Linear, quadratic and cubic approximations
along the beam axis, (z), are introduced to develop finite element matrices. These are obtained in
terms of a few fundamental nuclei whose form is independent by both N and the number of element
nodes. Convergence and assessments with available results is first made. Additional analyses con-
sider free vibrations responses. It is mainly concluded that refined beam models based on Lagrange
polynomials furnish reliable and accurate results. Their use offers a wide range of opportunities such
as dealing with multilayered structures, detecting shell-type responses and implementing non-linear
analysis.

1 INTRODUCTION
Slender bodies such us airplane wings, helicopter blades, bridges, and frames are mainly an-

alyzed through beam theories. The use of one-dimensional 1D models is ’historically’ preferred
to the introduction of more cumbersome two-dimensional 2-D (plate and shell theories) and three-
dimensional 3-D analyses. The proper detection of non-classical effects and shell-type responses
requires the development of higher-order beam theories.
Classical 1-D models for beams made of isotropic materials are based on Euler-Bernoulli and Tim-
oshenko theories. The former does not account for the transverse shear effects on the cross-sections
deformations. The latter provides a model that foresees a constant shear deformation distribution on
the cross-sections. Both of them yield better results for slender rather than short beams.
A review of several beam and plate theories for vibration, wave propagation, buckling and post-
buckling was presented by Kapania and Raciti [1, 2]. Particular attention was given to models that
account for transverse shear-deformation. Beside that, a review about the developments in finite ele-
ment formulations for thin and thick laminated beams was provided. Kim and White [3] investigated
non-classical effects in composite box beam models, such as torsional warping and transverse shear
effects. They show that the larger the thickness of the wall, the more important the non-classical
effects. Third-order, locking free beam element was developed by Reddy [4]. Euler-Bernoulli’s and
Timoshenko’s models where are obtained as special cases of the proposed element. As far as free
vibrations finite element analysis is concerned, higher order models are necessary to evaluate prop-
erly high number modes as highlighted by Shi and Lam [5]. Lee [6] studied the flexural-torsional
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behavior of I-shaped composite beams. Transverse shear deformation, coupling and warping effects
are accounted for.
Refined theories are also developed exploiting the asymptotic method [7, 8, 9], a suitable kinematics
model for a structural problem is obtained by investigating the role played by the various variables
in term of a perturbation parameter (usually a geometrical one such as the span-to-height ratio for
beams). The 3-D problem is then reduced to a 1-D model by exploiting an asymptotic series of a
characteristic parameter, and retaining those terms which exhibit the same order of magnitude when
the perturbation parameter vanishes. Contributions in developing higher order beam theories by ex-
ploiting asymptotic methods can be found in [10, 11, 12].
In this paper the finite element formulation of refined beam models based on Lagrangian polynomials
is addressed. Static and free vibrations analysis are conducted. Linear and quadratic approximations
along the section, (x, y), are used. Convergence studies are first made. Additional analysis consider
different loadings conditions (bending, traction), as well as free-vibrations analysis. Taylor-type
expansions are used for validation purposes, see also [13]. In particular, Euler Bernoulli (EBBM),
Timoshenko (TBM) and fourth order models are considered.

2 PRELIMINARIES
The adopted coordinate frame is presented in Figs. 1 and 2. The beam boundaries over z are

0 ≤ z ≤ L. The origin is placed on the center of gravity of the section even when a generic not-
rectangular shape is considered. The displacements vector is:

u(x, y, z) =
{

ux uy uz

}T
(1)

Superscript T represents the transposition operator. The stress, σ, and the strain, ε, are grouped as it
follows:

σp =
{

σxx σyy σxy

}T
, εp =

{
εxx εyy εxy

}T

σn =
{

σxz σyz σzz

}T
, εn =

{
εxz εyz εzz

}T (2)

Subscript ”n” stands for terms laying on the cross-section, while ”p” stands for terms laying on
planes orthogonal to Ω. In case of linear theory, the strain-displacement relations are:

εp = Dpu
εn = Dnu = (DnΩ + Dnz)u

(3)

with:

Dp =




∂
∂x 0 0

0 ∂
∂y 0

∂
∂y

∂
∂x 0


 , DnΩ =




0 0 ∂
∂x

0 0 ∂
∂y

0 0 0


 , Dnz =




∂
∂z 0 0

0 ∂
∂z 0

0 0 ∂
∂z


 (4)

In case of orthotropic materials, Hooke law holds:

σ = Cε (5)

According to Eq.s 2, the previous equation becomes:

σp = C̃ppεp + C̃pnεn

σn = C̃npεp + C̃nnεn
(6)
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where matrices C̃pp, C̃nn, C̃pn and C̃np are:

C̃pp =




C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66


 , C̃nn =




C̃55 C̃45 0
C̃45 C̃44 0
0 0 C̃33


 , C̃pn = C̃

T

np =




0 0 C̃13

0 0 C̃23

0 0 C̃36




(7)
For the sake of brevity, the dependence of the coefficients [C̃]ij versus Young’s moduli, Poisson’s
ratio, the shear moduli and the fibre angle is not reported. It can be found in [14] or [15].

3 UNIFIED FORMULATION
The proposed higher-order formulation is embedded in the framework of Carrera Unified For-

mulation (CUF)[16]. CUF offers a systematic procedure to obtain refined structural models by
considering the order of the theory, N , as a free parameter of the formulation. The displacement
field is assumed as an expansion of a certain class of functions Fτ :

u = Fτ uτ , τ = 1, 2, ....,M (8)

where Fτ are functions of the coordinates x and y on the cross-section. uτ is the displacement vector
and M stands for the number of terms of the expansion. Linear (2 nodes, B2), quadratic (3 nodes,
B3) and cubic (4 nodes, B4) shape functions, Ni, along the beam axis, (z), are introduced to develop
finite element matrices. Fτ expansion can be expressed in several manners. In this work linear (Q4)
and parabolic (Q9) Lagrange polynomials are exploited. For the sake of brevity, their expressions
are not reported here, they can be found in [18]. The use of Lagrange expansions require the choice
of a set of sampling points on the cross-sections with respect to compute the polynomials. In Figs. 3
the locations of the sampling points are shown in case of square cross-section. The variables of the
problem are the displacement components of each sampling point. In case of linear expansion, the
kinematics model becomes:

ux = L1 ux1 + L2 ux2 + L3 ux3 + L4 ux4

uy = L1 uy1 + L2 uy2 + L3 uy3 + L4 uy4

uz = L1 uz1 + L2 uz2 + L3 uz3 + L4 uz4

(9)

where L1, ..., L4 stand for the Lagrange polynomials and ux1, ..., uz4 are the displacement variables.
Lagrange-type description of the cross-section kinematics offers the opportunity of stacking multiple
sets of sampling points upon the cross-section. Each set has its own displacement field as well as
material properties. The assembling procedure is analogue to that used with finite elements along
z axis. By means of this analogy, Lagrange sets of sampling points are referred as cross-section
elements. In case of two Q4 elements, the cross-section displacement field becomes:

ux = L1 ux1 + L2 ux2 + L3 ux3 + L4 ux4 + L5 ux5 + L6 ux6

uy = L1 uy1 + L2 uy2 + L3 uy3 + L4 uy4 + L5 uy5 + L6 uy6

uz = L1 uz1 + L2 uz2 + L3 uz3 + L4 uz4 + L5 uz5 + L6 uz6

(10)

In Figs. 4 the stacking sequences for two linear and parabolic elements are shown. The total amount
of variables is related to the order of the expansion as well as the number of elements on the cross-
section.
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4 FINITE ELEMENT FORMULATION
Finite Element formulation is adopted in order to easily face arbitrary shaped cross-sections. By

introducing the shape functions, Ni, and the nodal displacements vector, qτi:

qτi =
{

quxτi
quyτi

quzτi

}T
(11)

the displacement vector becomes:
uτ = NiFτ qτi (12)

For the sake of brevity, the shape functions are not reported here. They can be found in many books,
for instance in [18]. Elements with 4 nodes (B4) are formulated. The stiffness matrix of the elements
and the external loadings that are consistent to the model are obtained via the Principle of Virtual
Displacements:

δLint =
∫

V

(δεT
p σp + δεT

nσn)dV = δLext − δLine (13)

where Lint stands for the strain energy, Lint is the work of the external loadings, and Line is the
work of the inertial loadings. δ stands for the virtual variation. The virtual variation of the strain
energy is rewritten using Eq.s 3, 6 and 12, in a compact format it becomes:

δLint = δqT
τiK

ijτsqsj (14)

where Kijτs is the stiffness matrix in the form of the fundamental nucleus. Its components are:

Kijτs
xx = C̃11

∫
Ω

Fτ,xFs,xdΩ
∫

l
NiNjdz + C̃16

∫
Ω

Fτ,yFs,xdΩ
∫

l
NiNjdz+

C̃16

∫
Ω

Fτ,xFs,ydΩ
∫

l
NiNjdz + C̃66

∫
Ω

Fτ,xFs,ydΩ
∫

l
NiNjdz+

C̃55

∫
Ω

FτFsdΩ
∫

l
Ni,zNj,zdz

Kijτs
xy = C̃12

∫
Ω

Fτ,xFs,ydΩ
∫

l
NiNjdz + C̃26

∫
Ω

Fτ,yFs,ydΩ
∫

l
NiNjdz+

C̃16

∫
Ω

Fτ,xFs,xdΩ
∫

l
NiNjdz + C̃66

∫
Ω

Fτ,yFs,xdΩ
∫

l
NiNjdz+

C̃45

∫
Ω

FτFsdΩ
∫

l
Ni,zNj,zdz

Kijτs
xz = C̃13

∫
Ω

Fτ,xFsdΩ
∫

l
NiNj,zdz + C̃36

∫
Ω

Fτ,yFsdΩ
∫

l
NiNj,zdz+

C̃55

∫
Ω

FτFs,xdΩ
∫

l
Ni,zNjdz + C̃45

∫
Ω

FτFs,ydΩ
∫

l
Ni,zNjdz

Kijτs
yx = C̃12

∫
Ω

Fτ,yFs,xdΩ
∫

l
NiNjdz + C̃16

∫
Ω

Fτ,xFs,xdΩ
∫

l
NiNjdz+

C̃26

∫
Ω

Fτ,yFs,ydΩ
∫

l
NiNjdz + C̃66

∫
Ω

Fτ,xFs,ydΩ
∫

l
NiNjdz+

C̃45

∫
Ω

FτFsdΩ
∫

l
Ni,zNj,zdz

Kijτs
yy = C̃22

∫
Ω

Fτ,yFs,ydΩ
∫

l
NiNjdz + C̃26

∫
Ω

Fτ,xFs,ydΩ
∫

l
NiNjdz+

C̃26

∫
Ω

Fτ,yFs,xdΩ
∫

l
NiNjdz + C̃66

∫
Ω

Fτ,xFs,xdΩ
∫

l
NiNjdz+

C̃44

∫
Ω

FτFsdΩ
∫

l
Ni,zNj,zdz

(15)

Kijτs
yz = C̃23

∫
Ω

Fτ,yFsdΩ
∫

l
NiNj,zdz + C̃36

∫
Ω

Fτ,xFsdΩ
∫

l
NiNj,zdz+

C̃45

∫
Ω

FτFs,xdΩ
∫

l
Ni,zNjdz + C̃44

∫
Ω

FτFs,ydΩ
∫

l
Ni,zNjdz

Kijτs
zx = C̃55

∫
Ω

Fτ,xFsdΩ
∫

l
NiNj,zdz + C̃45

∫
Ω

Fτ,yFsdΩ
∫

l
NiNj,zdz+

C̃13

∫
Ω

FτFs,xdΩ
∫

l
Ni,zNjdz + C̃36

∫
Ω

FτFs,ydΩ
∫

l
Ni,zNjdz

Kijτs
zy = C̃45

∫
Ω

Fτ,xFsdΩ
∫

l
NiNj,zdz + C̃44

∫
Ω

Fτ,yFsdΩ
∫

l
NiNj,zdz+

C̃23

∫
Ω

FτFs,ydΩ
∫

l
Ni,zNjdz + C̃36

∫
Ω

FτFs,xdΩ
∫

l
Nı,zNjdz
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Kijτs
zz = C̃55

∫
Ω

Fτ,xFs,xdΩ
∫

l
NiNjdz + C̃45

∫
Ω

Fτ,yFs,xdΩ
∫

l
NiNjdz+

C̃45

∫
Ω

Fτ,xFs,ydΩ
∫

l
NiNjdz + C̃44

∫
Ω

Fτ,yFs,ydΩ
∫

l
NiNjdz+

C̃33

∫
Ω

FτFsdΩ
∫

l
Ni,zNj,zdz

The virtual variation of the work of the inertial loadings is:

δLine =
∫

V

ρüδuT dV (16)

where ρ stands for the density of the material, and ü is the acceleration vector. Eq. 16 is rewritten
in a compact manner using Eq.s 3, and 12:

δLine = δqT
τiM

ijτsq̈sj (17)

where q̈ is the nodal acceleration vector. Mijτs is the mass matrix in the form of the fundamental
nucleus. Its components are:

M ijτs
xx = M ijτs

yy = M ijτs
zz = ρ

∫
Ω

FτFsdΩ
∫

l
NiNjdz

M ijτs
xy = M ijτs

xz = M ijτs
yx = M ijτs

yz = M ijτs
zx = M ijτs

zy = 0
(18)

It should be noted that no assumptions on the approximation order have been done. It is therefore
possible to obtain refined beam models without changing the formal expression of the nucleus com-
ponents.
The loadings vector variationally consistent to the model is derived for the case of a generic concen-
trated load P:

P =
{

Pux Puy Puz

}T
(19)

Any other loading condition can be similarly treated. The virtual work due to P is:

δLext = PδuT (20)

By substituting Eq. (12), the previous equation becomes:

δLext = FτNiPδqT
τi (21)

This last equation permits the identification of the components of the nucleus which have to be
loaded. In case of first order expansion and P acting along x direction only, the virtual external work
is:

δLext = Pux L1(xp, yp) δux1+Pux L2(xp, yp) δux2+Pux L3(xp, yp) δux3+Pux L4(xp, yp) δux4

(22)
where [xp, yp] are the coordinate on the cross-section of the loading application point.
The undamped dynamic problem can be written as it follows:

Mä + Ka = p (23)

where a is the vector of the nodal unknowns and p is the loadings vector. Introducing harmonic
solutions, it is possible to compute the natural frequencies, ωk, for the homogenous case, by solving
an eigenvalues problem:

(−ω2
kM + K)ak = 0 (24)

where ak is the k-th eigenvector.
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5 RESULTS AND DISCUSSION
Static and free vibrations responses of different beam models are investigated. Clamped and

simply supported boundary conditions are accounted for. Beams are supposed to have square cross-
section. The coordinate frame and the cross-section geometry are shown in Figs. 1 and 2. The
thickness of the section, h, is equal to 0.2 [m]. The span-to-height ratio, L/h, is equal to 100. An
isotropic material is used. The Young’s modulus, E, is equal to 75 [GPa]. The Poisson ratio, ν, is
equal to 0.33.

5.1 BENDING
The bending analysis is conducted on a cantilever beam undergoing a vertical force, Puy

, equal
to −50 [N]. The loading is applied at the tip cross-section. The mechanics of the beam is described
in terms of the maximum vertical displacement, uy , which is computed at the tip cross-section. A
reference solution is obtained according to the following formula:

uyb
=

Puy
L3

3EI
(25)

where I is the moment of inertia of the cross-section.
Table 1 shows the free tip displacement for different mesh along z direction and different cross-
section kinematics model. B4 elements are used. Five finite element models are considered: Euler
Bernoulli (EBBM), Timoshenko (TBM), a fourth order Taylor-type expansion (N = 4), linear as well
parabolic Lagrange polynomials (Q4 and Q9, respectively). EBBM, TBM and fourth order model
show a fast convergence behavior since a slender beam loaded at the free tip is considered. Linear
Lagrange polynomials are affected by poor convergence rate, while Q9 model is able to detect the
solution by using 40 beam elements along z axis. In Table 2 a convergence study on the number of
Q4 and Q9 elements is conducted. Increasing the number of linear elements improves the solution.
No effects are observed as multiple Q9 elements are exploited. Fig. 5 shows the results obtained
through different combinations of longitudinal (B2, B3 and B4) and cross-section elements (Q4 and
Q9). The usage of linear elements has a detrimental effect on the solution. The combined use of Q9
and B3 or B4 permits to yield the benchmark value.

5.2 TRACTION
As second assessment, a cantilever beam undergoing a traction force, Puz , equal to 50 [N], is

considered. The loading is applied at the tip cross-section.The mechanics of the beam is described
in terms of axial displacement, uz , which is computed at the tip cross-section. A reference solution
is obtained according to the following formula:

uzb
=

PuzL

EA
(26)

where A is the cross-section area.
Table 3 reports the results obtained through different Lagrange expansions using B4 elements. Linear
elements match the benchmark results with no need of further refinements. In Fig. 6 different
combinations of elements are addressed. B2 elements show considerably poorer convergence rate
than B3 and B4 both with Q4 and Q9.
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5.3 FREE VIBRATIONS
For dynamics analysis the beam is modeled as simply supported. The first four bending modes

are analyzed. As benchmark for the k-th natural frequency, Euler-Bernoulli solution [19] is used:

fkb
=

π

2

(
k

L

)2 (
EI

ρA

) 1
2

(27)

Table 4 shows the first four natural frequencies for different beam theories. They are related to bend-
ing modes .Parabolic Lagrange polynomials are able to match the benchmark values. Q4 elements
furnishes higher frequencies, that is, they overestimate the stiffness of the structure.

6 CONCLUSIONS
Refined beam theories with only displacement degrees of freedom based on Carrera Unified For-

mulation have been presented in this work. Lagrange polynomials have been exploited to describe
the cross-section kinematics field. Finite element analysis has been implemented for the structural
investigation of beams with different layouts. Static as well as free-vibrations analysis have been
faced. The obtained results have been compared with classical theories and Taylor-type fourth order
models.
It is mainly concluded that:

• the proposed model is able to detect correct results;

• CUF permits to deal with arbitrary higher order models with no need of ad hoc implementa-
tions;

Parabolic polynomials or multiple linear cross-section elements have to be preferred to obtain suffi-
ciently accurate results. Lagrange elements offer a wide range of applications that will be developed
in future works:

• analysis of multilayered beams via layer-wise formulation;

• implementation of non-linear structural analysis;

• extensions to aeroelastic problems.
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No. Elem. EBBM TBM N = 4 Q4 Q9
uy × 102 [m], uyb

× 102 = −1.333 [m], B4
3 −1.334 −1.334 −1.334 −0.565 −1.296
5 −1.334 −1.334 −1.334 −0.778 −1.311
10 −1.334 −1.334 −1.334 −0.945 −1.323
40 −1.334 −1.334 −1.334 −1.073 −1.331

Table 1: Maximum vertical displacement for different beam models and number of elements. Load-
ing case: bending.

No. Elem. 1× Q4 2× Q4 3× Q4 4× Q4 1× Q9 2× Q9
uy × 102 [m], uyb

× 102 = −1.333 [m], B4
3 −0.565 −1.209 −1.237 −1.249 −1.296 −1.296
5 −0.778 −1.220 −1.250 −1.262 −1.311 −1.311
10 −0.945 −1.228 −1.259 −1.271 −1.323 −1.323
40 −1.073 −1.234 −1.265 −1.278 −1.331 −1.331

Table 2: Maximum vertical displacement for different cross-section kinematics models. Loading
case: bending.

No. Elem. 1× Q4 2× Q4 3× Q4 4× Q4 1× Q9 2× Q9
uz × 107 [m], uzb

× 107 = 3.333 [m], B4
3 3.307 3.307 3.307 3.306 3.309 3.307
5 3.317 3.317 3.317 3.316 3.321 3.317
10 3.325 3.325 3.325 3.323 3.332 3.325
40 3.331 3.331 3.331 3.325 3.352 3.331

Table 3: Free tip axial displacement for different cross-section kinematics models. Loading case:
traction.

[Hz] Re. Sol. Eq. 27 EBBM TBM N = 4 Q4 Q9
f1 1.195 1.195 1.194 1.194 1.306 1.194
f2 4.780 4.778 4.775 4.775 5.221 4.777
f3 10.755 10.747 10.737 10.735 11.736 10.740
f4 19.119 19.102 19.068 19.064 20.840 19.074

Table 4: First four bending frequencies of the simply supported beam for different kinematics mod-
els.

Figure 1: Coordinate frame and geometry of a rectangular beam.
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Figure 2: Coordinate frame and geometry of a rectangular cross-section.

(a) Q4 (b) Q9

Figure 3: Sampling points locations within the cross-section.

(a) 2× Q4 (b) 2× Q9

Figure 4: Examples of assembling of stacked Lagrange elements.
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Figure 5: Convergence behavior for Q4 and Q9 elements. Loading Case: bending.
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Figure 6: Convergence behavior for Q4 and Q9 elements. Loading case: traction.
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