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A mixed variational statement for the analysis of layered structures under the effect of
mechanical and electrical fields is proposed in this paper to develop finite plate elements
what permits direct evaluation (that is “a priori”) of transverse electrical displacement Dz.
The original Reissner Mixed Variational Theorem RMVT is modified to account “only”
for interlaminar continuous Dz. Continuity of mechanical variables, such as transverse
shear and normal stress components, is discarded to provide a simple “Electrical” modified
RMVT, here denoted RMVT-Dz. Implementation are made via Carrera Unified Formu-
lation. The applications of the proposed approach is demonstrated by comparison with
classical formulations based on the Principle of Virtual Displacements as well as to avail-
able 3D and analytical solutions.

I. Introduction

Smart systems can be considered the candidates for next generation structures in aerospace vehicles as well
as for some advanced products in the automotive and ship industries. Piezoelectric materials are extensively
used in this framework. These materials are characterized by the so-called “direct” and “inverse effect”: an
applied electrical potential induces mechanical stresses and vice-versa. Such an electro-mechanical coupling
permits one to build closed-loop control systems in which piezo-materials play the role of both actuators and
sensors. An intelligent structure can therefore be built in which, for instance, deformations or vibrations are
reduced by appropriate control laws.
An appropriate use of piezoelectric materials, however requires an accurate description of the electrical and
mechanical fields in the constitutive layers. The present paper focuses on the computational, finite element,
electro-mechanical two-dimensional modelings of smart structures embedding piezo layers.
Piezoelectric plates appear as multilayered structures. Very often, piezoelectric layers are embedded in
laminated structures made of anisotropic composite materials. The importance of appropriate modelings of
piezoelectric plates is clearly displayed by the large number of papers that have been published over the last
two decades.

Among the available review papers, those by Saravanos and Heyliger,1 and Wang and Yan2 are herein
mentioned. A short review of some of the latest contributions to the FE analysis of piezoelectric plates
follows. A finite element that includes a FSDT description of displacements and layer-wise form of the
electric potential was developed by Sheik et al.3 The numerical, membrane and bending behavior of FEs
which are based on FSDT was analyzed by Auricchio et al.4 in the framework of a suitable variational
formulation. The third order theory of HOT type was applied by Thornburg and Chattopadhyay5 to derive
finite elements that take into consideration the electro-mechanical coupling. Similar elements have more
recently been considered by Shu.6 The extension of the third order Zig-Zag Ambartsumian multilayered
theory to finite analysis of electromechanical problems has been proposed by Oh and Cho.7 An extension
to piezoelectricity of numerically efficient plate/shell elements based on the Mixed Interpolation of Tensorial
Components (MITC) formulation has recently been provided by Kögl and Bucalem.8,9

Although traditional layer-wise theories, based on the Principle of Virtual Displacements (PVD), are able
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to accurately predict mechanical displacements, electric potential, in-plane stress and in-plane electric dis-
placements, they are unable to guarantee the continuity of transverse stresses or of the transverse electric
displacement at the interface between two adjacent layers (the continuity of transverse stresses should be en-
forced for equilibrium reasons). The continuity conditions for secondary variables, such as transverse stresses
and transverse electric displacement, are known in literature as C0

z requirements.10 These requirements can
be satisfied by employing the mixed approach. In particular, displacement components, electric potential,
transverse stresses and transverse electric displacement can be independently considered and used as degrees
of freedom, using the Reissner Mixed Variational Theorem (RMVT).11,12 In this way, the continuity of
transverse stresses and of the transverse electric displacement is always guaranteed and, consequently, the
C0

z requirements are automatically fulfilled. On most of the last decade, the first author and his co-workers
have contributed extensively to the application of RMVT to multilayered made structures and they have
introduced a layer-wise finite element formulation for composite plates that fulfils the continuity of trans-
verse stresses between layers.13 Closed-form solution analysis as well as FE applications14 have shown that
RMVT can be considered a very suitable tool to provide a quasi-3D description of stress and strain fields in
anisotropic laminated structures. The formulation employed in these latter works, named Carrera Unified
Formulation (CUF), permits one to formulate both ESL and LW models in terms of a few “Fundamental
Nuclei” whose form does not depend on either the order of the through-the-thickness expansion that has
been used for the various variables or on the number of nodes of the element. Many works have been devoted
to the extension of the CUF: PVD and RMVT variational statements where extended to piezolaminated
plates.15 The modeling of piezolaminated plates using layerwise mixed finite elements was then proposed16

and subsequently an extension of the RMVT to piezoelectric laminates with analytical results was pub-
lished.17 Mixed finite elements for static and dynamics analysis of piezoelectric plates have been provided,18

where only transverse stresses were modeled by RMVT. The related variational statement has been named
P-RMVT, where the “P” stands for “Partial”. In this case, the transverse electric displacement Dz was
calculated by post-processing. More accurate results for the evaluation of the Dz have been presented in
a recent work,19 where the transverse stresses, together with the Dz, have been modeled by RMVT. The
employed variational statement has been called F-RMVT, where the “F” stands for “Full”.
Among the various variables, the evaluation of the transverse electric displacement is of particular interest.
The Dz is, in fact, closely related to the electrical charge Q:

Q =
∫

Ω

Dz dΩ, (1)

where Ω is the plate surface. The charge consists of a fundamental input/output in a closed-loop control of
a smart structure. Faster and accurate evaluation of Q is a key-point in the development of an efficient and
reliable closed-loop control algorithm. However, Dz, in classical applications is only given “a posteriori” via
post-processing of the primary variables (the displacements and the electrical potential). An extended RMVT
application, with Dz assumed as primary variable, has been employed in this paper, which has been called
RMVT-Dz. The relevant difference between RMVT-Dz and the above mentioned F-RMVT is that the first
does not imply the modeling of transverse stresses, while both variational statements require the modeling
of the transverse electric displacement. As a consequence, RMVT-Dz leads to a lower computational effort
than F-RMVT and it assures, at the same time, accurate results for the transverse electric displacement. An
almost complete overview of the possible subcases of RMVT was given in a recent paper.20 The RMVT-Dz

was in the latter article mentioned as a possible extension of RMVT to piezoelectric structures. However,
constitutive equations and FE matrices consistent with RMVT-Dz were not listed. The present work derives
the constitutive equations for RMVT-Dz and develop applications for plate elements in the framework of
the CUF. The RMVT-Dz Fundamental Nucleus (explicitly given in the Appendix) contains information to
built the corresponding stiffness matrix and in this paper is presented and numerically assessed.

II. Considered variational statements

A. The PVD for the electro-mechanical case

The PVD statement for the pure-mechanical case study is commonly written as it follows:∫

V

(δεT
G σH) dV = δLe, (2)
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where superscript “T” indicates the array transposition, δ is the variational symbol and bold letters denote
arrays. Subscripts “G” and “H” indicates variables obtained by Geometrical relations and by constitu-
tive/Hooke’s relations respectively. σ, ε and Le indicate stresses, strains and the external work, in the same
sequence.
In the case of applied electro-mechanical loading on a surface Ω, employing Einstein’s summation convention
over repeated indices, the virtual variation of the external work can be expressed as:

δLe =
∫

Ω

(
t̄i δui − Q̄ δφ

)
dΩ, (3)

where:
t̄i is the mechanical loading in i-direction (pressure);
ui is the displacement component in i-direction;
Q̄ is the charge density on the plate surface;
φ is the electric potential.
Stresses and strains are conveniently split between in-plane and out-of-plane (normal or transverse) compo-
nents:20 ∫

V

(δεT
pG σpH + δεT

nG σnH) dV = δLe, (4)

with:
εT

p =
{

εxx εyy εxy

}
; σT

p =
{

σxx σyy σxy

}
;

εT
n =

{
εzz εxz εyz

}
; σT

n =
{

σzz σxz σyz

}
.

Cartesian x, y, z reference system is considered and notation already used in previous work19 is referred
to: subscript “p” denotes in-plane unknowns and subscript “n” denotes out-of-plane unknowns; subscript
“z” indicates the through-the-thickness z-direction, while subscripts “x” and “y” are for the two in-plane
directions.
If electrical contributions are included, the PVD in Eq.(4) becomes:

∫

V

(δεT
pG σpH + δεT

nG σnHδ − δET
pG DpH − δEnG DnH) dV = δLe, (5)

with:
ET

p =
{

Ex Ey

}
; DT

p =
{

Dx Dy

}
;

En =
{

Ez

}
; Dn =

{
Dz

}
.

D and E indicate the transverse electric displacement and the electric field, respectively.
The condensed vectorial notation already discussed20 is employed in present work. The two multifield
variables are introduced:

ST =
{

σxx σyy σxy −Dx −Dy σzz σxz σyz −Dz

}
, (6)

ET =
{

εxx εyy εxy Ex Ey εzz εxz εyz Ez

}
, (7)

where S is the vector of extensive variables and E is the vector of intensive ones. Dz and Dn are the same
quantity expressed in different notation.
It is possible to rewrite Eq.(5) in form as simple as Eq.(2) for multifield problems:

∫

V

(
δET

G SH

)
dV = δLe. (8)

B. The RMVT-Dz

The advantage of using RMVT consists in the possibility of assuming two independent set of variables: a set
of primary unknowns and a set of extensive variables which are modeled in the thickness plate z-direction.
This leads to the “a-priori” and complete fulfillment of the interlaminar continuity for the modeled extensive
variables, with consequent satisfaction of the C0

z requirements in.13 As stated in the introduction, the
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RMVT has been commonly employed to obtain accurate results for transverse stresses in pure mechanical
problems.11 In piezoelectric applications, RMVT has been recently extended to model the transverse electric
displacement other than normal stresses.18

This work represents the first application of the RMVT with only the electric displacement Dz modeled in
the thickness plate z-direction. The convenience of that is explained in the introduction.
The RMVT statement with “a-priori” modeling of the transverse electric displacement Dz (or Dn) is here
called RMVT-Dz and it appears in literature according to the following form:20

∫

V

(δεT
pG σpH + δεT

nG σnH − δET
pG DpH − δEnG Dn − δDn(EnG − EnH)) dV = δLe. (9)

By referring to the condensed notation and considering that subscript “a” indicates “ not modeled quanti-
ties”, while subscripts “b” are related to “modeled quantities”, the following vectors can be introduced:
SaH =

{
σxx σyy σxy −Dx −Dy σzz σxz σyz

}
H

is the vector of not-modeled extensive vari-
ables, which are calculated by constitutive relations;
Sb =

{
−Dz

}
is the vector of modeled extensive variables;

EaG =
{

εxx εyy εxy E1 E2 εzz εxz εyz

}
G

is the vector of intensive variables associated to Sa

and calculated by geometrical relations;
EbG =

{
Ez

}
G

is the vector of intensive variables associated to Sb and calculated by geometrical relations;

EbH =
{

Ez

}
H

is the vector of intensive variables associated to Sb and calculated by constitutive relations.
In so doing, the RMVT statement with “a-priori” modeling of the transverse electric displacement Dz takes
the following form:

∫

V

(
δET

aG SaH + δET
bG Sk

b + δST
b (EbG − EbH)

)
dV = δLe. (10)

In the next section, the constitutive relations are obtained for the RMVT-Dz variational statement, both in
traditional notation, according with Eq.(9), and in the condensed notation, according with Eq.(10).

III. Constitutive relations

Physical constitutive equations, which are suitable for PVD applications, for the electro-mechanical case
reduce to:

σij = Cijlmεlm − eijlEl,

Dl = elijεij + εlmEm,

(11)

where standard tensor notation is used and Einstein’s summation convention is implied over repeated indices
and with: Cijlm = elastic coefficients - Hooke’s law; elij = piezoelectric coefficients; εij = permittivity
coefficients. Note that 2εij components in tensorial notation correspond to εij components in vectorial
notation, when i 6= j).
Passing from indices to vectors in split form (in-plane and out-of-plane components), constitutive variables
become: σp, σn, εp, εn, Ep, En, Dp, Dn, where En and Dn are scalars.
Eq.(11) can be rewritten:19

σp = Cppεp + Cpnεn − eT
ppEp − eT

npEn

σn = CT
pnεp + Cnnεn − eT

pnEp − eT
nnEn

Dp = eppεp + epnεn + εppEp + εpnEn

Dn = enpεp + ennεn + εT
pnEp + εnnEn,

(12)

where matrices Cpp, Cpn, Cnn, epp, epn, enn, εpp, εpn and εnn contain the constitutive coefficients in
Eq.(11), which are already rotated to the physical reference system and are partitioned so that the in-plane
quantities are split from the out-of-plane ones.21,17
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Variationally consistent constitutive relations must be derived according to Eq.(9). To do that, the system
in Eq.(12) is rearranged. First, normal component of electric field is obtained:

En = ε−1
nn(Dn − enpεp − ennεn − εT

pnEp) (13)

that is:
En = −ε−1

nnenpεp − ε−1
nnennεn − ε−1

nnεT
pnEp + ε−1

nnDn. (14)

Substituting Eq.(14) in Eq.(12) and keeping Eq.(14) as last equation, RMVT-Dz constitutive relations are
obtained:

σp = (Cpp + eT
npε

−1
nnenp)εp + (Cpn + eT

npε
−1
nnenn)εn + (−eT

pp + eT
npε

−1
nnεT

pn)Ep + (−eT
npε

−1
nn)Dn

σn = (CT
pn + eT

nnε−1
nnenp)εp + (Cnn + eT

nnε−1
nnenn)εn + (−eT

pn + eT
nnε−1

nnεT
pn)Ep + (−eT

nnε−1
nn)Dn

Dp = (epp − εpnε−1
nnenp)εp + (epn − εpnε−1

nnenn)εn + (εpp − εpnε−1
nnεT

pn)Ep + (εpnε−1
nn)Dn

En = −ε−1
nnenpεp − ε−1

nnennεn − ε−1
nnεT

pnEp + ε−1
nnDn.

(15)

A more compact expression of Eq.(15) can be obtained substituting matrices products with a new set of
constitutive coefficients, denoted by the “hat”.

σp = Ĉppεp + Ĉpnεn + êT
ppEp + êT

npDn

σn = Ĉ
T

pnεp + Ĉnnεn + êT
pnEp + êT

nnDn

Dp = êppεp + êpnεn + ε̂ppEp + ε̂pnDn

En = ênpεp + ênnεn + ε̂T
pnEp + ε̂nnDn.

(16)

Constitutive relations in Eq.(16) are suitable for the application of the RMVT variational statement in the
form of Eq.(9).
If the variational statement of Eq.(10) is addressed to, constitutive relations are obtained as it follows,
according to the condensed notation.
For sake of clarity, it is convenient to specify that primary unknowns variables are collected in the vector
V kT =

{
uk

x uk
y uk

z φk Dk
z

}
,

where the superscript k stands for the k-th layer.
It is useful to rewrite vectors introduced in Sec.B:
EkT

a =
{

εk
xx εk

yy εk
xy Ek

x Ek
y εk

zz εk
xz εk

yz

}
; EkT

b =
{

Ek
z

}
;

SkT
a =

{
σk

xx σk
yy σk

xy −Dk
x −Dk

y σk
zz σk

xz σk
yz

}
; SkT

b =
{
−Dk

z

}
.

Following geometrical relations can be written:

Ek
aG = DaV k; (17)

Ek
bG = DbV

k; (18)

Sk
bG = Db′V

k. (19)

In explicit form:

Da =




∂x 0 0 0 0
0 ∂y 0 0 0
∂y ∂x 0 0 0
0 0 0 −∂x 0
0 0 0 −∂y 0
0 0 ∂z 0 0
∂z 0 ∂x 0 0
0 ∂z ∂y 0 0




; Db =
(

0 0 0 −∂z 0
)

; Db′ =
(

0 0 0 0 −1
)

.
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Referring to the condensed notation and specifying which quantities are obtained by Hooke’s law or by
geometrical relations, Eq.(16) becomes:

S̃k

H = H̃
kẼk

G. (20)

S̃k

H is composed by the vector of not modeled extensive variables Sk
aH and the vector of intensive variables

EbH (which is associated to Sk
b ); Ẽk

G is composed by the vector of intensive variables Ek
aG (which is associated

to Sk
a) and the vector of modeled extensive variables Sk

b , that can be thought as a geometrical vector, by

Eq.(19): S̃kT

H =
{

SkT
aH EkT

bH

}
; ẼkT

G =
{

EkT
aG SkT

bG

}
.

The physical constitutive matrix Hk can be partitioned by dividing cells related to modeled and not modeled
quantities:

Hk =

{
Hk

aa Hk
ab

Hk
ba Hk

bb

}
, (21)

where Hk
ab = HkT

ba .
In explicit form:

Hk
aa =




Ck
11 Ck

12 Ck
16 0 0 Ck

13 0 0
Ck

12 Ck
22 Ck

26 0 0 Ck
23 0 0

Ck
16 Ck

26 Ck
66 0 0 Ck

36 0 0
0 0 0 −εk

11 −εk
12 0 0 0

0 0 0 −εk
12 −εk

22 0 0 0
Ck

13 Ck
23 Ck

36 0 0 Ck
33 0 0

0 0 0 0 0 0 Ck
55 Ck

45

0 0 0 0 0 0 Ck
45 Ck

44




; Hk
ab =




−ek
31

−ek
32

−ek
36

0
0
−ek

33

0
0




;

Hk
ba =

(
−ek

31 −ek
32 −ek

36 0 0 −ek
33 0 0

)
; Hk

bb =
(
−εk

33

)
.

Physical constitutive relations, can be arranged according to the above partitioning:

Sk
aH = Hk

aaEk
aG + Hk

abEk
bG, Sk

bH = Hk
baEk

aG + Hk
bbEk

bG. (22)

From Eqs.(22) one has:

Sk
aH = H̃

k

aaEk
aG + H̃

k

abSk
bG, Ek

bH = H̃
k

baEk
aG + H̃

k

bbSk
bG, (23)

with:

H̃
k

aa = Hk
aa −Hk

ab(H
k
bb)

−1Hk
ba; H̃

k

ab = Hk
ab(H

k
bb)

−1; H̃
k

ba = −(Hk
bb)

−1Hk
ba; H̃

k

bb = (Hk
bb)

−1.

Matrix H̃
k

of Eq.(20) is:

H̃
k

=

{
H̃

k

aa H̃
k

ab

H̃
k

ba H̃
k

bb

}
. (24)

To be noticed that matrix H̃
k

represents the constitutive relations suitable for the RMVT-Dz in the form of
Eq.(10) and it contains the same information of the system in Eq.(16). See the Appendix A for the explicit

form of H̃
k
.

The advantage of using the condensed notation is that the above showed procedure to calculate constitutive
relations is applicable also when different/more extensive variables are modeled through the thickness plate
z-direction and then it represents a general and an automatic way to calculate the constitutive coefficients
for many different cases of variational statements.20
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IV. Through-the-thickness assumptions of primary variables via CUF

In the framework of the CUF,22 the primary unknowns are assumed by using a generalized expansion:

V k(x, y, z) = Fτ (z) V k
τ (x, y) τ = 0, 1, ..., N. (25)

The repeated indexes are summed over their ranges. The polynomials Fτ (z) constitute a set of independent
functions. Such base is arbitrarily chosen: power of z, Lagrange polynomials or a combination of Legendre
polynomials can be considered. N denotes the order of the introduced expansion. In case of RMVT-Dz

application, variables concerning displacements, electrical potential and transverse electric displacement are
included in vector V k.
It is understood that, by the arbitrary choice of the thickness expansion, the same computational code can
address not just one finite element, but a complete family of them, with different descriptions for primary
unknowns along the thickness of the structure. In so doing, the CUF reduces a three-dimensional problem
to a two-dimensional problem. Meanwhile, the order of the expansion along the thickness of the plate is
taken as a free parameter of the finite element and, in the developed code, it can be changed ranging from
1 up to 4.
By appropriately choosing the thickness functions, both an Equivalent Single Layer (ESL) and Layer Wise
(LW) description along the thickness of the plate is admissible. In an ESL model, a global assumption for
the unknowns is considered along the thickness of the plate (i.e. a Taylor expansion) while, in a LW model,
the expansion is made for each layer separately and then interlaminar continuity conditions are enforced by
the assembly procedure. The latter leads generally to more accurate results but the number of the nodal
degrees of freedom increases with the number of the layers coming out to a greater computational cost.
In the implemented code, for a LW theory the thickness functions are defined by:

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2 r = 2, . . . , N, (26)

where Pi = Pi(ζk) is the Legendre polynomial of i-th order defined in the domain −1 ≤ ζk ≤ 1. The chosen
thickness functions have the interesting properties:

ζk =

{
1 : Ft = 1, Fb = 0, Fr = 0

−1 : Ft = 0, Fb = 1, Fr = 0
. (27)

Using these definitions, the generalized assumptions for the primary unknowns of the k-th layer in Eq.(25)
can be stated as:

V k(x, y, z) = Fb(z)V k
b (x, y) + Fr(z)V k

r (x, y) + Ft(z)V k
t (x, y) = Fτ V k

τ , (28)
with r = 2, . . . , N.

The variables V b and V t are the actual primary unknowns at the bottom and the top surfaces of the layer
and the inter-laminar continuity can be easily imposed:

V k
t = V

(k+1)
b , with k = 1, . . . , Nl − 1. (29)

Acronyms are used for the implemented plate elements. These are denoted by LM1, LM2, LM3, LM4 in
which: L states that a Layer-Wise description is employed and M indicates that mixed approach based
on RMVT is used; 1-4 denotes the order of the expansion introduced for the field variables in each layer
(from first to fourth order). When acronyms EM1, EM2, EM3, EM4 are used, an Equivalent-Single-Layer
description is employed. LD1, LD2, LD3, LD4 and ED1, ED2, ED3, ED4 are the corresponding acronyms
when classical approach based on PVD is used (letter D).

V. “Fundamental Nuclei” and FE matrices

This section is devoted to the RMVT-Dz variational statement, while the application of the corresponding
PVD has been already illustrated.20
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A. Finite element discretization

In case of FEM implementation, unknowns can be expressed in terms of their nodal values, via the shape
functions Ni:

V k
τ (x, y) = Ni(x, y)Rk

τi i = 1, 2, ..., Nn, (30)

while for the virtual variations:

δV k
s(x, y) = Nj(x, y)δRk

sj j = 1, 2, ..., Nn, (31)

where Nn denotes the number of nodes concerning the considered finite element and Rk
τi is the vector

containing nodal values of unknowns:

RkT
τi =

{
Rk

u1τi Rk
u2τi Rk

u3τi Rk
φτi Rk

D3τi

}
. (32)

The final expression of the unknowns is:

V k(x, y, z) = FτNiR
k
τi. (33)

B. Derivation of Fundamental Nuclei and FE matrices

Upon substitution of Eqs.(17), (18), (19), (23) and (31), the variational statement in Eq.(10) leads to a set
of equilibrium equations which can be formally put in the following compact form:

δRk
sj : Kkτsij Rk

τi = P k
sj , (34)

where P k is the vector of nodal loads and the related boundary conditions are R
k
.

The number of obtained equations coincides with the number of introduced variables: τ and s vary from 0
to N , i and j vary from 1 to Nn and k ranges from 1 to Nl.
Matrix Kkτsij is the fundamental nucleus. In this case it is a 5× 5 array and, more in general, it provides
the information to build the stiffness matrix (see the Appendix A for the explicit form of Kkτsij).
Whatever is the considered variational statement, starting from the fundamental nucleus, for a given dis-
cretization, the stiffness matrix K can be calculated by numerical integration and the assembly procedure.
K is representative of the Gibbs free energy contribution and it should be emphasized that, regardless its
name, the stiffness matrix contains information pertaining to all the considered fields and not just to the
mechanical field. If a static analysis is required, the system to solve is the following:

KR = P . (35)

where:
P is the vector of nodal loads;
R is the vector of nodal unknowns.

VI. Numerical results and discussion

In this section a few FEM results are compared with the corresponding RMVT-Dz analytical solution
(with fourth order through the thickness expansion) and with the exact solution provided by Heyliger.23

Present case study is also illustrated in a previous paper,24 where comparisons with the analytical solutions
are missing. They are considered in this work.
A three layer thin square plate of unitary side (a = 1 [m]) loaded by a sinusoidal unitary pressure at the top

face (p̂z = 1 [N/m2]) is considered in the following mechanical assessment. The plate is simply supported
at the two opposite sides with zero pressure (cylindrical bending). The layers are of equal thickness and
they are made of the same orthotropic material. The total thickness ratio is a/h = 100 and the lamination
scheme is [0/90/0]. Material properties are: E1 = 25, E2 = 1, E3 = 1, G1 = 0.5, G2 = 0.5, G3 = 0.2 (all in
[GPa]); ν12 = 0.25, ν13 = 0.25, ν25 = 0.25. Since the plate is very thin, the reduced integration technique
has been preserved in order to overcome the shear locking phenomena. Convergence results concerning the
midplane transverse displacement at the center of the plate are shown in Fig.1 for LMn and EDn Q4 FEs (Q4
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stands for four-nodes Quadrangular finite elements). Regular n×1 meshes are considered. Following remark
can be made. LMn FEs have good convergency properties. It can be noticed that, even when calculating
a displacement, simple FEs like ED1 and ED2 converge to a value different from the 3D solution. Such
difference decreases as the order of the thickness expansion increases. The obtained convergence properties
are preserved for electrical quantities, when piezoelectric materials are included in the lamination. For sake
of conciseness this analysis is not quoted.
A simply supported cross-ply [0/90] laminate composed of an elastic material with piezoelectric layers bonded
to the upper and lower surfaces is considered for the following electromechanical case study. The elastic
layer of the [0] fiber-angle is on the top. The plate is square with a side length a. The total thickness
is h. The elastic layers have a thickness of 0.4h, while the thickness of the piezoelectric layers is 0.1h.
The plate aspect ratio is a/h = 4. The elastic material is modeled as a fiber-reinforced composite and
has the properties E11 = 132.38 (all in [GPa]), E22 = 10.756, E33 = 10.756, G44 = 3.606, G55 = 5.654,
G66 = 5.654, ν12 = 0.24, ν13 = 0.24, ν23 = 0.49, ε11/ε0 = 3.5, and ε22/ε0 = ε33/ε0 = 3.0. The material of the
piezoelectric layers is PZT-4 and the material properties are E11 = E22 = 81.3 (all in [GPa]), E33 = 64.5,
G44 = G55 = 25.6, G66 = 30.6, ν12 = 0.329, ν13 = ν23 = 0.432, e31 = e32 = −5.20 (all in [C/m2]),
e33 = 15.08, e24 = e15 = 12.72, and ε11/ε0 = ε11/ε0 = 1475, ε33/ε0 = 1300. The piezoelectric layer thickness
is taken as 0.1 [m]. Both the sensor case and actuator case are considered in the following, where pz indicates
a pressure [N/m2] and φt indicates the potential [V ] imposed on the top face and p̂z = φ̂t = 1, see Fig.2. The
analysis will be restricted to LW cases. These last are, in fact, capable to furnish reliable results at each layer
interface. A second order thickness expansion is considered to properly calculate the through-the-thickness
electric displacement, which clearly shows a parabolic-like trend through the external layers (see Fig.3). For
each case, the corresponding LW RMVT-Dz analytical solutions with fourth order thickness expansion is
provided too (LM4, analytical).

A. Sensor case

The applied double sinusoidal pressure loading pz is considered on the top plate surface (sensor configura-
tion). The load amplitude is equal to 1 [N/m2]. The top and bottom laminate surfaces are fixed at zero
potential. The FEM results are obtained with a regular 10× 10 mesh of LD2 (or LM2) Q4 FEs to minimize
computational costs keeping a good accuracy. The exact midplane transverse displacement at the center of
the plate is 30.027E-11 [m], while for the LM4 analytical solution is 30.029E-11 [m]. The value calculated
by the LD2 or LM2 FEs is 30.119E-11 [m]. Additional comparisons between the exact solution25 and the
FEM results are shown in Tabs.1-3
A comparison between the 3D-exact solution, PVD and RMVT-Dz results is provided in Tab.1 for displace-
ment u2 and for the electric potential φ: the PVD and RMVT-Dz results are very close and they are in good
agreement with the exact solution. In other words, when Dz is modeled by RMVT, the calculated primary
variables do not change significantly with respect to PVD. However, if a slight difference is detected, the
RMVT results are closer to the exact solution.
A comparison between the 3D-exact solution, PVD and RMVT-Dz results is provided in Tab.2 for the trans-
verse stress σ33 and for the in-plane stresses σ22 and σ12: the PVD and RMVT-Dz results are close to the
exact solutions. It has been confirmed that, even for stresses, the difference between PVD and RMVT-Dz

is negligible.
The advantages of RMVT-Dz implementation are evident in Tab.3, where the evaluation of transverse dis-
placement is referred to. The results are compared with 3D-exact and to PVD solutions. It should be
underlined that RMVT-Dz leads to an almost 3D-exact description, while PVD results can be affected by
very large errors (see also Fig.3). In the RMVT-Dz* column, the Dz is calculated by using the physical
constitutive relations in the RMVT-Dz analysis. It can be noted that the RMVT-Dz* results are very close
to the PVD ones.
The charge Q, calculated on the top surface of the top layer of the plate, under plate surface integration
of Dz, according to Eq.(1), is shown in Tab.4. It is important to underline that RMVT-Dz provides a
different charge value from PVD (almost 15% different) and this would encourage the use of RMVT-Dz,
which appears mandatory the sensor case.
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B. Actuator case

The applied double sinusoidal potential φ is considered in the top plate surface (actuator configuration).
The load amplitude is equal to 1 [V ]. The bottom laminate surfaces is fixed at zero potential. The FEM
results are obtained with a regular 10× 10 mesh of LD2 (or LM2) Q4 FEs. The exact midplane transverse
displacement at the center of the plate is −14.711 × 10−12 [m], while the value calculated by the LD2 and
LM2 FEs are −14.151 × 10−12 [m] and −14.152 × 10−12 [m], respectively. Other comparisons between the
exact solution25 and the FEM results are shown in Tabs.5-7.
The following remarks can be made. Tab.5 shows that the primary variables, u2 and φ, calculated by FEM
are in good agreement with the exact solution provided by Heyliger.25 As far as Tab.6 is concerned, the
in-plane stresses are also calculated with good accuracy, while the normal stress does not have reasonable
values around the top and the bottom face of the plate. It is clear, from Tab.7, that the RMVT-Dz modeling,
compared to the PVD modeling, does not significantly improve the solution for the actuator case.

C. Shell problems

In this section the shell problems for which 3D solution were given by Bhaskar and Varadan26 for the pure
mechanical problem has been extended to piezoelectric case. The problem has been already referred to assess
Unified formulation in both PVD and RMVT for pure mechanical problems.27 Piezoelectric shells are build
by replacing and/or adding piezoelectric layers to the original shells.
The cylindrical shell considered by Bhaskar and Varadan has the following geometry, see Fig.4: a = 40,
b = 62.8318853, Rα = ∞, Rβ = 10 and m = 1, n = 8. The following two lay-outs are considered:
-one piezoelectric layer;
-four layers: two external made by piezoelectric materials, and two internal are carbon fiber cross ply (0/90).
Mechanical properties are those used in the plate case. Both actuator and sensor configurations are treated.
For the actuator case the distribution of electric potential Φ applied at top surface is

Φ(α, β) = Φsin(
πα

a
) sin(

8πβ

b
), (36)

with Φtop = 1, Φb = 0 and P z = 0.
A mechanical transverse pressure is applied with correspondence to the bottom surface in the sensor case:

Pz(α, β) = P zsin(
πα

a
) sin(

8πβ

b
), (37)

with Φtop = Φb = 0, and P z = 1.

Results are given in Tabs.8-11. Different variational statements are compared for thick and thin shells.
Electric potential and transverse electric displacement are considered. Three letters acronyms are used to
identify the analytical modeling. The first letter “L′′ means that LayerWise description is applied; the second
letter is “D′′ or “M ′′ in case of PVD modeling or RMVT-Dz modeling, respectively; the subsequent number
specifies the employed order for the through-the-thickness expansion of variables. Tabs.8,9 are related to
one-layer case. Tabs.10,11 are related to four-layers case. Actuator and sensor configurations are considered,
respectively.
Tab.8-11 shows that higher order expansions leads to the same results for both electric potential, even though
different variational statements are referred to. Normal electric displacement results related to RMVT appli-
cations are quite different with respect to PVD ones (where Dz is not an assumed variable). These differences
are larger for the sensor case: see Tabs.9,11) where a mechanical loading is applied at the bottom of shell.
Concerning Tabs.10,11, which refer to a four-layered configuration, the presence of two mechanical layers
reduces the electric coupling. Furthermore, for the sensor case the effect of the radii of curvature is larger
than for the actuator one. If the transverse electric displacement is concerned about, the superiority of
RMVT with respect to PVD is confirmed, especially for the sensor case.

VII. Conclusions

A new mixed variational statement (RMVT-Dz) is proposed in this work for the “a priori” evaluation
of the transverse electric displacement Dz. FE plate elements and corresponding analytical solutions have
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been developed to asses the numerical performance of RMVT-Dz. The numerical results clearly show that
RMVT-Dz is capable of furnishing almost 3D-results for the Dz. For the sensor case, worse evaluations of
Dz are instead obtained by using other variational statements, which discard the interlaminar continuity of
Dz. In short, the RMVT-Dz should be preferred to other variational statements when fast and accurate
results are needed for the prediction of Dz and of the electrical charge Q on the plate. Future work could
be devoted to consider additional lay-out, boundary conditions and load cases.
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A. Appendix: Explicit forms of RMVT-Dz Fundamental Nuclei

The stiffness fundamental nucleus Kkτsij related to the RMVT-Dz application is listed below. Consti-
tutive information are included too. In the following, the layer-superscript k is always implied to simplify
equations.
The stiffness fundamental nucleus is:

K τsij =




K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55




. (A.38)

Its elements are:

K11 = H̃aa(7, 7) / NiNj .Ak
Fτ,zFs,z + H̃aa(1, 1) / Ni,xNj,x .Ak

FτFs + H̃aa(3, 1) / Ni,yNj,x .Ak
FτFs+

+H̃aa(1, 3) / Ni,xNj,y .Ak
FτFs + H̃aa(3, 3) / Ni,yNj,y .Ak

FτFs;

K21 = H̃aa(8, 7) / NiNj .Ak
Fτ,zFs,z + H̃aa(3, 1) / Ni,xNj,x .Ak

FτFs + H̃aa(2, 1) / Ni,yNj,x .Ak
FτFs+

+H̃aa(3, 3) / Ni,xNj,y .Ak
FτFs + H̃aa(2, 3) / Ni,yNj,y .Ak

FτFs;

K31 = H̃aa(7, 7) / Ni,xNj .Ak
FτFs,z + H̃aa(8, 7) / Ni,yNj .Ak

FτFs,z + H̃aa(6, 1) / NiNj,x .Ak
Fτ,zFs+

+H̃aa(6, 3) / NiNj,y .Ak
Fτ,zFs;

K41 = −H̃aa(4, 7) / Ni,xNj .Ak
FτFs,z − H̃aa(5, 7) / Ni,yNj .Ak

FτFs,z;

K51 = H̃ba(1, 1) / NiNj,x .Ak
FτFs + H̃ba(1, 3) / NiNj,y .Ak

FτFs;

K12 = H̃aa(7, 8) / NiNj .Ak
Fτ,zFs,z + H̃aa(1, 3) / Ni,xNj,x .Ak

FτFs + H̃aa(3, 3) / Ni,yNj,x .Ak
FτFs+

+H̃aa(1, 2) / Ni,xNj,y .Ak
FτFs + H̃aa(3, 2) / Ni,yNj,y .Ak

FτFs;

K22 = H̃aa(8, 8) / NiNj .Ak
Fτ,zFs,z + H̃aa(3, 3) / Ni,xNj,x .Ak

FτFs + H̃aa(2, 3) / Ni,yNj,x .Ak
FτFs+

+H̃aa(3, 2) / Ni,xNj,y .Ak
FτFs + H̃aa(2, 2) / Ni,yNj,y .Ak

FτFs;

K32 = H̃aa(7, 8) / Ni,xNj .Ak
FτFs,z + H̃aa(8, 8) / Ni,yNj .Ak

FτFs,z + H̃aa(6, 3) / NiNj,x .Ak
Fτ,zFs+

+H̃aa(6, 2) / NiNj,y .Ak
Fτ,zFs;

K42 = −H̃aa(4, 8) / Ni,xNj .Ak
FτFs,z − H̃aa(5, 8) / Ni,yNj .Ak

FτFs,z;

K52 = H̃ba(1, 3) / NiNj,x .Ak
FτFs + H̃ba(1, 2) / NiNj,y .Ak

FτFs;

K13 = H̃aa(1, 6) / Ni,xNj .Ak
FτFs,z + H̃aa(3, 6) / Ni,yNj .Ak

FτFs,z + H̃aa(7, 7) / NiNj,x .Ak
Fτ,zFs+

+H̃aa(7, 8) / NiNj,y .Ak
Fτ,zFs;

K23 = H̃aa(3, 6) / Ni,xNj .Ak
FτFs,z + H̃aa(2, 6) / Ni,yNj .Ak

FτFs,z + H̃aa(8, 7) / NiNj,x .Ak
Fτ,zFs+

+H̃aa(8, 8) / NiNj,y .Ak
Fτ,zFs;

K33 = H̃aa(6, 6) / NiNj .Ak
Fτ,zFs,z + H̃aa(7, 7) / Ni,xNj,x .Ak

FτFs + H̃aa(8, 7) / Ni,yNj,x .Ak
FτFs+

+H̃aa(7, 8) / Ni,xNj,y .Ak
FτFs + H̃aa(8, 8) / Ni,yNj,y .Ak

FτFs;

K43 = −H̃aa(4, 7) / Ni,xNj,x .Ak
FτFs − H̃aa(5, 7) / Ni,yNj,x .Ak

FτFs − H̃aa(4, 8) / Ni,xNj,y .Ak
FτFs+

−H̃aa(5, 8) / Ni,yNj,y .Ak
FτFs;

K53 = H̃ba(1, 6) / NiNj .Ak
FτFs,z;
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K14 = −H̃aa(7, 4) / NiNj,x .Ak
Fτ,zFs − H̃aa(7, 5) / NiNj,y .Ak

Fτ,zFs;

K24 = −H̃aa(8, 4) / NiNj,x .Ak
Fτ,zFs − H̃aa(8, 5) / NiNj,y .Ak

Fτ,zFs;

K34 = −H̃aa(7, 4) / Ni,xNj,x .Ak
FτFs − H̃aa(8, 4) / Ni,yNj,x .Ak

FτFs − H̃aa(7, 5) / Ni,xNj,y .Ak
FτFs+

−H̃aa(8, 5) / Ni,yNj,y .Ak
FτFs;

K44 = H̃aa(4, 4) / Ni,xNj,x .Ak
FτFs + H̃aa(5, 4) / Ni,yNj,x .Ak

FτFs + H̃aa(4, 5) / Ni,xNj,y .Ak
FτFs+

+H̃aa(5, 5) / Ni,yNj,y .Ak
FτFs;

K54 = /NiNj .Ak
FτFs,z;

K15 = −H̃ab(1, 1) / Ni,xNj .Ak
FτFs − H̃ab(3, 1) / Ni,yNj .Ak

FτFs;

K25 = −H̃ab(3, 1) / Ni,xNj .Ak
FτFs − H̃ab(2, 1) / Ni,yNj .Ak

FτFs;

K35 = −H̃ab(6, 1) / NiNj .Ak
Fτ,zFs;

K45 = /NiNj .Ak
Fτ,zFs;

K55 = −H̃bb(1, 1) / NiNj .Ak
FτFs.

Subscripts after comma indicates derivatives and:

/(.....).Ak
=

∫

Ωk

(.....)dΩ.

The explicit form of matrices H̃aa,H̃ba,H̃ab and H̃bb is:

H̃aa =




C11 + e2
31/ε33 C12 + e31e32/ε33 C16 + e31e36/ε33 0 0 C13 + e31e33/ε33 0 0

C12 + e31e32/ε33 C22 + e2
32/ε33 C26 + e32e36/ε33 0 0 C23 + e32e33/ε33 0 0

C16 + e31e36/ε33 C26 + e32e36/ε33 C66 + e2
36/ε33 0 0 C36 + e33e36/ε33 0 0

0 0 0 −ε11 −ε12 0 −e15 −e14

0 0 0 −ε12 −ε22 0 −e25 −e24

C13 + e31e33/ε33 C23 + e32e33/ε33 C36 + e33e36/ε33 0 0 C33 + e2
33/ε33 0 0

0 0 0 −e15 −e25 0 C55 C45

0 0 0 −e14 −e24 0 C45 C44




;

H̃
T

ab =
[

e31/ε33 e32/ε33 e36/ε33 0 0 e33/ε33 0 0
]
;

H̃ba =
[
−e31/ε33 −e32/ε33 −e36/ε33 0 0 −e33/ε33 0 0

]
;

H̃bb =
[
−1/ε33

]
.

14 of 22

American Institute of Aeronautics and Astronautics



u2 × 1012 u2 × 1012 u2 × 1012 u2 × 1012 φ× 101 φ× 101 φ× 101 φ× 101

Height 3D25 Analytical PV D RMV T -Dz 3D25 Analytical PV D RMV T -Dz

1.000 -47.549 -47.552 -45.593 -45.594 0.0000 0.0000 0.0000 0.0000
0.975 -41.425 -41.430 -39.527 -39.528 0.0189 0.0189 0.0181 0.0181
0.950 -35.424 -35.427 -33.567 -33.569 0.0358 0.0358 0.0336 0.0336
0.925 -29.531 -29.536 -27.715 -27.772 0.0488 0.0488 0.0464 0.0464
0.900 -23.732 -23.733 -21.969 -21.970 0.0598 0.0599 0.0567 0.0567
0.800 -10.480 -10.530 -10.058 -10.577 0.0589 0.0589 0.0560 0.0559
0.700 0.1413 0.1394 -0.0836 -0.0836 0.0589 0.0589 0.0560 0.0559
0.600 9.8917 9.9064 9.5104 9.5108 0.0596 0.0596 0.0567 0.0567
0.500 20.392 20.384 18.205 18.206 0.0611 0.0611 0.0583 0.0583
0.400 24.768 24.774 22.149 22.150 0.0634 0.0634 0.0606 0.0605
0.300 29.110 29.110 26.700 26.703 0.0665 0.0665 0.0637 0.0637
0.200 33.819 33.838 31.860 31.863 0.0706 0.0706 0.0677 0.0677
0.100 39.309 39.312 37.628 37.632 0.0756 0.0756 0.0726 0.0726
0.075 44.492 44.498 42.930 42.934 0.0602 0.0602 0.0581 0.0581
0.050 49.772 49.776 48.341 48.346 0.0425 0.0425 0.0411 0.0411
0.025 55.163 55.169 53.863 53.867 0.0224 0.0224 0.0218 0.0218
0.000 60.678 60.682 59.494 59.499 0.0000 0.0000 0.0000 0.0000

Table 1. PVD and RMVT-Dz results: comparison between LD2 and LM2 FEM solutions with the 3D-exact and
the analytical LM4 solutions, sensor case. Displacements are in [m]; electric potential is in [V ]. u2 = u2(a/2, 0);
φ = φ(a/2, b/2).

σ33 × 101 σ33 × 101 σ33 × 101 σ33 × 101 σ22 σ22 σ22 σ22 σ12 σ12 σ12 σ12

Height 3D25 Analytical PV D RMV T -Dz 3D25 Analytical PV D RMV T -Dz 3D25 Analytical PV D RMV T -Dz

1.000 10.000 10.000 9.6313 9.6381 6.5643 6.5642 6.2392 6.2387 -2.4766 -2.4768 -2.3547 -2.3546
0.975 9.9657 9.9645 9.4336 9.4354 5.8201 5.8203 5.5033 5.5030 -2.1824 -2.1827 -2.0680 -2.0679
0.950 9.8682 9.8683 9.3631 9.3598 5.0855 5.0855 4.7857 4.7856 -1.8942 -1.8944 -1.7866 -1.7864
0.925 9.7154 9.7146 9.4197 9.4112 4.3595 4.3597 4.0865 4.0866 -1.6114 -1.6116 -1.5103 -1.5102
0.900 9.5151 9.5177 9.6034 9.5898 3.6408 3.6408 3.4057 3.4059 -1.3332 -1.3333 -1.2393 -1.2392
0.900 9.5151 9.5177 10.163 10.163 2.8855 2.8858 3.8364 3.8362 -0.2463 -0.2464 -0.2290 -0.2290
0.800 8.5199 8.5167 8.7018 8.7018 1.4499 1.4551 2.0094 2.0093 -0.1534 -0.1539 -0.1475 -0.1474
0.700 7.3747 7.3757 7.4395 7.4395 0.2879 0.2880 0.3332 0.3332 -0.0817 -0.0817 -0.0776 -0.0775
0.600 6.1686 6.1683 6.3764 6.3764 -0.7817 -0.7829 -1.1923 -1.1922 -0.0212 -0.0213 -0.0193 -0.0193
0.500 4.9831 4.9817 5.5124 5.5124 -1.9266 -1.9266 -2.5670 -2.5669 0.0369 0.0370 0.0274 0.0274
0.500 4.9831 4.9817 4.9178 4.9179 0.0991 0.0991 0.0527 0.0527 0.0369 0.0370 0.0274 0.0274
0.400 3.8045 3.8049 3.9244 3.9244 -0.0149 -0.0150 -0.0683 -0.0683 0.0965 0.0966 0.0771 0.0771
0.300 2.6137 2.6131 2.8259 2.8259 -0.1280 -0.1281 -0.2049 -0.2049 0.1529 0.1529 0.1335 0.1335
0.200 1.4821 1.4850 1.6223 1.6223 -0.2426 -0.2427 -0.3571 -0.3570 0.2139 0.2142 0.1966 0.1966
0.100 0.4868 0.4867 0.3136 0.3136 -0.3616 -0.3617 -0.5248 -0.5247 0.2882 0.2883 0.2663 0.2663
0.100 0.4868 0.4867 0.8251 0.8365 -4.2348 -4.2349 -3.9325 -3.9325 1.5603 1.5605 1.4415 1.4413
0.075 0.2845 0.2854 0.9872 0.9436 -4.8806 -4.8808 -4.5636 -4.5634 1.8105 1.8108 1.6933 1.6931
0.050 0.1312 0.1311 1.0311 1.0339 -5.5337 -5.5337 -5.2123 -5.2119 2.0651 2.0652 1.9499 1.9498
0.025 0.0340 0.0353 0.9568 0.9553 -6.1951 -6.1953 -5.8785 5.8780 2.3246 2.3249 2.2115 2.2113
0.000 0.0000 0.0000 0.7641 0.7583 -6.8658 -6.8658 -6.5623 -6.5617 2.5899 2.5901 2.4779 2.4777

Table 2. PVD and RMVT-Dz results: comparison between LD2 and LM2 FEM solutions with the 3D-exact
and the analytical LM4 solutions, sensor case. Stresses are in [Pa]. σ33 = σ33(a/2, b/2); σ11 = σ11(a/2, b/2);
σ12 = σ12(0, 0).
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Dz × 1013

Height 3D25 Analytical RMV T -Dz PV D RMV T -D∗
z

1.000 160.58 160.58 160.22 239.57 234.38
0.975 149.35 148.93 148.27 204.92 203.62
0.950 117.23 117.23 117.53 161.38 163.98
0.925 66.568 66.243 68.003 108.95 115.44
0.900 -0.3382 -0.3384 -0.3044 47.621 58.008
0.900 -0.3382 -0.3384 -0.3044 -0.2990 -0.3101
0.800 -0.1276 -0.1277 -0.0969 -0.0977 -0.1027
0.700 0.0813 0.0813 0.1064 0.1037 0.1048
0.600 0.2913 0.2914 0.3058 0.3051 0.3123
0.500 0.5052 0.5053 0.5010 0.5065 0.5198
0.500 0.5052 0.5053 0.5010 0.4943 0.4815
0.400 0.7259 0.7262 0.7228 0.7236 0.7165
0.300 0.9563 0.9564 0.9495 0.9529 0.9515
0.200 1.1995 1.2001 1.1812 1.1821 1.1865
0.100 1.4587 1.4590 1.4179 1.4114 1.4215
0.100 1.4587 1.4590 1.4179 -50.162 -58.915
0.075 -58.352 -58.061 -59.178 -105.53 -111.00
0.050 -103.66 -103.66 -103.15 -152.63 -154.82
0.025 -132.40 -132.03 -130.50 -191.45 -190.36
0.000 -142.46 -142.46 -141.23 -222.00 -217.63

Table 3. Comparison between FEM and the analytical LM4 solution, sensor case. LD2 and LM2 FEs are
employed for PVD and RMVT case, respectively. The electric displacement is in [c/m2]. Dz = Dz(a/2, b/2).
The Dz RMVT-Dz

∗ is calculated by constitutive relations in the RMVT-Dz analysis.

Q× 1011(RMV T −Dz) Q× 1011(PV D) Q× 1011(RMV T −Dz∗)
10.219 8.8763 8.5457

Table 4. Comparison between PVD and RMVT-Dz results, sensor case. LD2 or LM2 FEs are employed. Q is
the charge at the top surface of the top layer and it is expressed in [c]. RMVT-Dz* result is computed starting
from the Dz calculated by constitutive relations in the RMVT-Dz analysis.
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u2 × 1012 u2 × 1012 u2 × 1012 u2 × 1012 φ× 101 φ× 101 φ× 101 φ× 101

Height 3D25 Analytical PV D RMV T -Dz 3D25 Analytical PV D RMV T -Dz

1.000 -32.764 -32.765 -33.951 -33.951 1.0000 1.0000 1.0000 1.0000
0.975 -23.349 -23.351 -24.377 -24.377 0.9971 0.9971 0.9972 0.9972
0.950 -13.973 -13.974 -14.826 -14.826 0.9950 0.9950 0.9951 0.9951
0.925 -4.6174 -46.180 -5.2983 -5.2977 0.9936 0.9937 0.9936 0.9936
0.900 4.7356 4.7352 4.2064 4.2069 0.9929 0.9929 0.9929 0.9929
0.800 2.9808 2.9902 2.5445 2.5448 0.8415 0.8418 0.8423 0.8422
0.700 1.7346 1.7346 1.2546 1.2548 0.7014 0.7014 0.7011 0.7011
0.600 0.8008 0.8045 0.3368 0.3368 0.5707 0.5709 0.5695 0.5695
0.500 0.0295 0.0297 -0.2091 -0.2091 0.4476 0.4477 0.4473 0.4475
0.400 -0.4404 -0.4395 -0.5745 -0.5745 0.3305 0.3307 0.3310 0.3311
0.300 -0.8815 -0.8811 -0.9518 -0.9517 0.2179 0.2179 0.2177 0.2177
0.200 -1.3206 -1.3207 -1.3409 -1.3408 0.1081 0.1082 0.1073 0.1073
0.100 -1.7839 -1.7834 -1.7419 -1.7418 -0.0001 -0.0001 -0.0001 -0.0001
0.075 -2.0470 -2.0465 -1.9963 -1.9963 -0.00009 -0.00010 -0.00009 -0.00009
0.050 -2.3140 -2.3134 -2.2554 -2.2554 -0.00008 -0.00008 -0.00007 -0.00007
0.025 -2.5856 -2.5850 -2.5191 -2.5191 -0.00004 -0.00004 -0.00004 -0.00004
0.000 -2.8625 -2.8618 -2.7875 -2.7876 0.00000 0.00000 0.00000 0.00000

Table 5. PVD and RMVT-Dz results: comparison between LD2 and LM2 FEM solutions with the 3D-exact and
the analytical LM4 solutions, actuator case. Displacements are in [m]; electric potential is in [V ]. u2 = u2(a/2, 0);
φ = φ(a/2, b/2).

σ33 × 101 σ33 × 101 σ33 × 101 σ33 × 101 σ22 σ22 σ22 σ22 σ12 σ12 σ12 σ12

Height 3D25 Analytical PV D RMV T -Dz 3D25 Analytical PV D RMV T -Dz 3D25 Analytical PV D RMV T -Dz

1.000 0.0000 0.0004 -55.800 -55.419 111.81 111.80 113.28 113.26 -146.03 -146.04 -148.30 -148.30
0.975 -0.8333 -0.8535 -43.279 -43.183 63.736 63.737 66.186 66.175 -100.77 -100.79 -103.03 -103.03
0.950 -2.8471 -2.8401 -28.385 -28.574 15.833 15.836 19.448 19.447 -55.693 -55.697 -57.858 -57.855
0.925 -5.3241 -5.3090 -11.118 -11.592 -32.001 -31.994 -26.932 -26.923 -10.698 -10.702 -12.781 -12.778
0.900 -7.5482 -7.5328 8.5218 -7.7627 -79.865 -79.851 -72.955 -72.935 34.295 34.293 32.198 32.221
0.900 -7.5482 -7.6043 -15.579 -15.581 -51.681 -51.679 -68.096 -68.104 6.3365 6.3360 5.9489 5.9494
0.800 -12.957 -12.867 -11.567 -11.569 -33.135 -33.231 -41.748 -41.753 4.6631 4.6693 4.2950 4.2954
0.700 -15.245 -15.260 -11.713 -11.714 -19.840 -19.840 -21.342 -21.345 3.3247 3.3246 2.9062 2.9064
0.600 -15.510 -15.458 -16.014 -16.016 -9.7737 -9.8104 -6.8792 -6.8808 2.2096 2.2124 1.7823 1.7825
0.500 -14.612 -14.674 -24.473 -24.475 -1.3905 -1.3905 1.6408 1.6397 1.2286 1.2287 0.9237 0.9238
0.500 -14.612 -14.629 -17.335 -17.337 -1.3089 -1.3099 -1.2973 -1.2975 1.2287 1.2287 0.9237 0.9238
0.400 -12.524 -12.490 -12.937 -12.939 -0.5782 -0.5782 -3.3075 -3.3091 0.5227 0.5252 0.3400 0.3401
0.300 -9.2558 -9.602 -9.2086 -9.2096 0.1348 0.1343 5.7883 5.7872 -0.0572 -0.0571 -0.1927 -0.1926
0.200 -5.5018 -5.4940 -6.1487 -6.1495 0.8463 0.8467 1.4314 1.4313 -0.5840 -0.5839 -0.6744 -0.6744
0.100 -1.8733 -1.8958 -3.7579 -3.7583 1.5723 1.5708 2.2270 2.2270 -1.1220 -1.1217 -1.1051 -1.1051
0.100 -0.8733 -1.8698 -3.3555 -2.8333 14.529 14.523 14.007 13.988 -6.0731 -6.0712 -5.9813 -5.9814
0.075 -1.1074 -1.1102 -4.1098 -3.7838 17.801 17.794 17.041 17.030 -7.3455 -7.3436 -7.1917 -7.1918
0.050 -0.5162 -0.5158 -4.3795 -4.2493 21.098 21.089 20.148 20.144 -8.6346 -8.6321 -8.4220 -8.4222
0.025 -0.1351 -0.1397 -4.1645 -4.2299 24.428 24.419 23.328 23.331 -9.9437 -9.9412 -9.6723 -9.6726
0.000 0.0000 0.0003 -3.4647 -3.7256 27.795 27.778 26.581 26.591 -11.276 -11.273 -10.942 -10.943

Table 6. PVD and RMVT-Dz results: comparison between LD2 and LM2 FEM solutions with the 3D-exact
and the analytical LM4 solutions, actuator case. Stresses are in [Pa]. σ33 = σ33(a/2, b/2); σ11 = σ11(a/2, b/2);
σ12 = σ12(0, 0).
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Dz × 1013

Height Analytical RMV T -Dz PV D RMV T -D∗
z

1.000 -2.4184 -2.4431 -2.4382 -2.4385
0.975 -1.8220 -1.8416 -1.8388 -1.8388
0.950 -1.2275 -1.2408 -1.2395 -1.2394
0.925 -6.3446 -6.4070 -6.4043 -6.4007
0.900 -4.1874 -4.1321 -4.1504 -4.0924
0.900 -4.1874 -4.1321 -4.1274 -4.1294
0.800 -3.8633 -3.8746 -3.8751 -3.8757
0.700 -3.5886 -3.6205 -3.6228 -3.6220
0.600 -3.3640 -3.3700 -3.3705 -3.3682
0.500 -3.1824 -3.1229 -3.1182 -3.1145
0.500 -3.1824 -3.1229 -3.1275 -3.1313
0.400 -3.0453 -3.0498 -3.0492 -3.0515
0.300 -2.9472 -2.9732 -2.9709 -2.9718
0.200 -2.8902 -2.8931 -2.8925 -2.8920
0.100 -2.8701 -2.8095 -2.8142 -2.8123
0.100 -2.8701 -2.8095 -2.8425 -2.8823
0.075 -2.8384 -2.8409 -2.8144 -2.8393
0.050 -2.8140 -2.8384 -2.7898 -2.7997
0.025 -2.7990 -2.8020 -2.7685 -2.7635
0.000 -2.7934 -2.7316 -2.7507 -2.7307

Table 7. Comparison between FEM and the analytical LM4 solution, actuator case. LD2 and LM2 FEs are
employed for PVD and RMVT case, respectively. The electric displacement is in [c/m2]. Dz = Dz(a/2, b/2).
The Dz RMVT-Dz

∗ is calculated by constitutive relations in the RMVT-Dz analysis.
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Rβ/h 2 4 10 100
Φ a z = 0

LD4 0.3431 0.4611 0.5037 0.5254
LM1 0.5000 0.5000 0.5000 0.5000
LM2 0.3415 0.4609 0.5037 0.5254
LM3 0.3436 0.4614 0.5037 0.5254
LM4 0.3431 0.4611 0.5037 0.5254

Dz1011 a z = h/2
LD4 −605.73 −801.76 −1622.9 −10416
LM1 −327.37 −642.20 −1599.7 −16656
LM2 −529.21 −743.93 −1593.3 −16262
LM3 −587.25 −787.72 −1616.7 −16266
LM4 −584.80 −783.99 −1615.6 −16266

Table 8. Proposed benchmark: one piezoelectric layer for the Varadan and Bhaskar cylindrical shell. Com-
parison of various approaches. Actuator case.

Rβ/h 2 4 10 100
Φ a z = 0

LD4 0.0153 0.0355 0.0942 0.6513
LM1 0.0000 0.0000 0.0000 0.0000
LM2 0.0150 0.0350 0.0939 0.6513
LM3 0.0161 0.0359 0.0943 0.6514
LM4 0.0153 0.0355 0.0942 0.6513

Dz109 a z = h/2
LD4 0.0224 0.1377 2.0958 1456.1
LM1 −0.1340 −0.3506 −1.7252 −197.53
LM2 0.0407 0.0378 −0.0937 −111.27
LM3 0.0045 0.0092 −0.1536 −111.76
LM4 0.0095 0.0028 −0.1646 −111.76

Table 9. Proposed benchmark: one piezoelectric layer for the Varadan and Bhaskar cylindrical shell. Com-
parison of various approaches. Sensor case.
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Rβ/h 2 4 10 100
Φ a z = 0

LD4 0.4064 0.4829 0.5029 0.5009
LM1 0.3805 0.4784 0.5041 0.5012
LM2 0.4059 0.4827 0.5029 0.5009
LM3 0.4065 0.4829 0.5029 0.5009
LM4 0.4064 0.4829 0.5029 0.5009

Dz109 a z = h/2
LD4 −1.0754 −0.6666 −0.3322 −0.3494
LM1 −1.0844 −0.6674 −0.3285 −0.3623
LM2 −1.0639 −0.6600 −0.3268 −0.3622
LM3 −1.0655 −0.6603 −0.3269 −0.3622
LM4 −1.0654 −0.6603 −0.3269 −0.3622

Table 10. Proposed benchmark: multilayered piezoelectric Varadan and Bhaskar cylindrical shell. Comparison
of various approaches. Actuator case.

Rβ/h 2 4 10 100
Φ a z = 0

LD4 0.0039 0.0157 0.0485 0.3414
LM1 0.0013 0.0133 0.0458 0.3287
LM2 0.0038 0.0156 0.0485 0.3414
LM3 0.0039 0.0157 0.0485 0.3414
LM4 0.0039 0.0156 0.0485 0.3414

Dz1011 a z = h/2
LD4 9.8912 42.445 391.73 227910
LM1 1.1188 1.6464 1.9872 −1.6061
LM2 0.5401 0.6890 0.8068 −2.5408
LM3 0.6220 0.7813 0.9010 −2.4677
LM4 0.6092 0.7747 0.9001 −2.4676

Table 11. Proposed benchmark: multilayered piezoelectric Varadan and Bhaskar cylindrical shell. Comparison
of various approaches. Sensor case.
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Figure 1. Midplane transverse displacement at the center of the plate: convergence study

Figure 2. On the left the plate in sensor configuration (applied pressure); on the right the plate in actuator
configuration (applied potential)
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Figure 3. Comparison between FEM and 3D-exact solutions, sensor case; the electric displacement is in [c/m2];
D3 = D3(a/2, b/2); the Dz RMVT-Dz* is calculated by constitutive relations in the RMVT-Dz analysis

Figure 4. Proposed benchmark: Varadan and Bhaskar cylindrical shell, geometry and notation
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