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ABSTRACT: This lectures is devoted to advanced computational models for multilayered
plate/shell structures embedding piezoelectric layers as sensor/actuators. The hierarchical
modelling is obtained by referring to the Carrera Unified Formulation which permits the
development of equivalent single-layer and layer-wise theories based on classical and
mixed variational statements. The need of layer-wise analysis is pointed out as well as the
convenience to refer to mixed variational statements to evaluate transverse mechanical
and electrical variables without any post-processing. Mostly an overview of the recent
work co-authored by the first author is given. The results have been obtained by running
an in-house software recently namedMUL2.

1 INTRODUCTION

Smart systems are the candidate for next generation structures of aerospace vehicles as
well as for some advanced products of automotive and ship industries. Piezoelectric ma-
terials are the most used in that framework. These materials are characterized by the
so called ’direct’ and ’inverse effect’: an applied electrical potential induces mechanical
stresses and vice-versa. Such an electro-mechanical coupling permits one to build up
closed-loop control systems in which piezo-materials play the role of both actuators and
sensors. An intelligent structure can be therefore built in which, for instance, deforma-
tions or vibrations are reduced by appropriate control laws [1].

In many of the recent applications, piezoelectric layers are employed in conjunction
with composites layered structures. A smart structure is in this case obtained by embed-
ding piezo-layers (sensors and/or actuators) in a multilayered one. Among the various
open problems of smart structures such as material capabilities, optimum design, control
algorithm, this work is direct to modelling of plate/shell structures. Accurate evaluation
of electrical and mechanical variables is, in fact, a crucial point for appropriate use smart
structures. It is a well known, see [2], [3], [4], that classical theories, that were originally
developed for traditional plates and shells for pure mechanical-problems, can lead to large
errors when applied to multilayered cases embedding piezolayers. This is mainly due to
the following features: 1. layers exhibit different electro-mechanical material properties
which make feasible quasi three-dimensional mechanical/electrical fields; 2. a strong cou-
pling can occur between mechanical and electrical fields; 3. piezoelectric materials are
often introduced as localized patches.

An efficient description of the above three points require amendments to those plate/shell
theories that were originally introduced for pure mechanical problems and structures
made by isotropic materials. No effective control, in fact, can be build unless accurate
evaluation of electrical (voltage, electric field, charge) and mechanical (displacement,



stress, strain) variables is made. Smart structures specialists know that available commer-
cial general-purpose FE codes do not offer efficient shell elements on that respect.

This lectures is devoted to discuss the methods and ideas that permit to ’fight’ against
points 1-3. The following points are covered.

• Evaluation of electromechanical coupling stiffness.

• Discussion of higher order theories.

• Application of Zig-Zag (ZZ) theories with Interlaminar Continuous (IC) electrical
and mechanical fields.

• Layer-wise description of mechanical and electrical layers.

• Variable kinematic approach based on Carrera Unified Formulation (CUF).

• Mixed methods applied to piezoelectricity along with direct evaluation of secondary
electro-mechanical variables such as electric displacement and charge. Attention is
restricted to Reissner Mixed Variational Theorem (RMVT).

• Efficiency of the 2D model in sensing and actuating.

All the above problems are discussed by both analytical and computational (FE) method
as well as for plate and shell geometries.

The contribution brought by authors and co-workers are considered at the most in the
lecture with minor reference to some other relevant works made in the last ten years
literature. Among the author’s papers the recent papers [5]-[10] are referred to.

2 2D MODELS VS ANDC0
z -REQUIREMENTS

Laminated piezoelectric structures are characterized by piece-wise constant distribution
of mechanical properties in the thickness plate/shell direction. As a consequence in-plane
stresses are in general discontinuous at the each layer interface. On the other hand, due to
equilibrium conditions, transverse shear and normal stresses must be continuous at the in-
terfaces. The continuity of the normal stresses requires that strains must be discontinuous
since material properties change from layer to layer; as a consequence the derivatives of
the displacements must be discontinuous at each interface (ZZ effect). The normal electric
displacement must be continuous at the interface too, if free boundary conditions are pos-
tulated. The set of this rules has been summarized in [11] asC0

z -requirements: mechanical
and electrical displacements as well as transverse stresses (not their derivatives) must be
C0 continuous functions in thez-thickness direction. An example of stresses, displace-
ments and electric displacements is shown in Fig.1. The fulfillment ofC0

z –requirements
consists of a key-point in the development of advanced theories for the analysis of piezo-
electric plate/shell structures.
If classical formulations based on extension to piezoelectricity of Principle of Virtual Dis-
placements (PVD) are employed transverse normal and shear stresses as well as transverse
electrical displacement are ’a posteriori’ obtained discontinuous at the interface. Such an
error could be reduced by increasing the accuracy of 2D theories as well as by adopting
refined layer-wise theories.
Better results are obtained by employing extended Reissner Mixed Variational Theo-
rem (RMVT) to piezoelectricity. RMVT permits, in fact, to assume ’a priori’ transverse
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Figure 1: Example of displacements, stresses and electric displacements distribution along the in
z-coordinate.

shear/normal stresses and/or transverse electrical displacement as continuous function in
the thickness direction.

It appears clear from the discussion above that the following possibilities arise to build
refined and advanced model for piezoelectric laminated structures:

1. to increase the order of the expansion of the unknown variables in the thickness
plate/shell direction.

2. to use both ESL and LW description for the unknown variables;

3. to refer to mixed variational statement to get ’a priori’ continuity of a given electro-
mechanical variable.

These three points are discussed and adopted in this work. The complexity inside Points 1
and 2 are handled by means of Unified Formulation (CUF) introduced by Carrera in [12].
Point 3 is considered by employing various forms of original Reissner Mixed variational
Theorem.

3 THE CARRERA UNIFIED FORMULATION

The unified formulation consists of a technique which permits to handle in a unified man-
ner a large variety of plate modelings. This is made by expressing governing equations
and/or finite element matrices in term of a few fundamental3 × 3 nuclei which do not
formally depend on: - expansionN used to in thez-direction; - number of the nodeNn

of the element; - variables description (LW or ESL).

3.0.1 FORMULATION BASED ON PVD

Unknown variables are in this case the displacements and the electrical potential. The
following ’axiomatic’ expansion is used for displacements:

u k(x, y, z) = Fb(z)u k
b (x, y) + Fr(z)u k

r(x, y) + Ft(z)u k
t (x, y) r = 2, . . . , N − 1

(1)
or in compact form:

u k(x, y, z) = Fτ u k
τ (2)



Fτ (z) are function of the thickness coordinatez which can assume different forms.uτ

are two-dimensional 2D unknowns. Similarly, the electric potential is assumed:

φk(x, y, z) = Fb(z)φk
b (x, y)+Fr(z)φk

r(x, y)+Ft(z)φk
t (x, y) r = 2, . . . , N −1 (3)

or un compact form:
φk(x, y, z) = Fτ φk

τ (4)

Thickness functions could be the same of those already used for displacements. Of course
this is not mandatory and in same cases it could be not convenient.

3.0.2 FORMULATION BASED ON RMVT

The transverse normal stresses should be added as field variables in the RMVT applica-
tions with respect to those already introduced for the PVD case. The transverse normal
stresses are:

σ k
n(x, y, z) = Fb(z)σ k

nb(x, y)+Fr(z)σ k
nr(x, y)+Ft(z)σ k

nt(x, y) r = 2, . . . , N−1
(5)

or in compact form:
σ k

n(x, y, z) = Fτ σ k
nτ (6)

Also in this case the thickness functions can be the same of those already used for dis-
placements and electric potential. See next sub-sections.

3.1 EQUIVALENT SINGLE LAYER MODELS

The assumption above can be used at layer or at multilayer level: LW and ESL theories
are than obtained, respectively. Depending on the made choice for the polynomialsF (z)
a large variety of plate modelings can be introduced. In the ESL case the laminate is
treated as a single layer. The subscriptk, is therefore omitted.

A first natural choice for thickness functionsF (z)) consist to refer to power ofz poly-
nomials:

Fb = 1, Fr = z(r−1), Ft = zN r = 2, . . . , N (7)

That is a Taylor-type expansion and the variables related toFb corresponds to the middle
plane values; higher order terms correspond instead to higher order derivative calculated
with correspondence to the reference surface of the plate.

To be noticed that this model is not able to reproduce the Zig-Zag form for the displace-
ment field in the thickness direction. Murakami [13] introduced a Zig-Zag function, able
to describe a zig-zag form for the displacements. The Murakami Zig-Zag function can
be, for instance, introduced instead of theFt polynomial:

Fb = 1, Ft = (−1)kζk, Fr = z(r−1) r = 2, . . . , N. (8)

The exponentk changes the sign of the zig-zag term in each layer. Such an artifice per-
mits one to reproduce the discontinuity of the first derivative of the displacements in the
z-direction.

The displacements are the only unknowns that could be modelled by ESL model with
the introduction of Murakami’s zig-zag function. The electrical potential as well as trans-
verse stresses require layer-wise description.



3.2 LAYER WISE MODELS LW

If detailed response of individual layers is required and if significant variations in gra-
dients between layers exist, Layer Wise model must be referred to. Each layer is seen
as an independent layer and the continuity of the field variables at the interfaces is im-
posed as a constraint. The use of Taylor type expansion in each layer is not convenient.
Top-bottom continuity would require additional conditions on the field variables. In or-
der to avoid this drawback an appropriate combination of Legendre Polynomials could be
conveniently used as base function according to the following:

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2 r = 2, . . . , N (9)

WherePi(ζk) is the i-order Legendre polynomial in the domain−1 ≤ ζk ≤ 1. The first
five Legendre polynomials are:

P0 = 1 P1 = ζk P2 =
3ζ2 − 1

2
P3 =

5ζ3 − 3ζ

2
P4 =

35ζ4 − 30ζ2 + 3

8
(10)

The functions we have chosen have the following properties:

ζk =

{
1 : Ft = 1, Fb = 0, Fr = 0

−1 : Ft = 0, Fb = 1, Fr = 0
(11)

For instance, if displacement variablesu k
t e u k

b are the top and bottom displacement of
thekth layer, the continuity condition is easily written as:

u k
t = u

(k+1)
b , con k = 1, . . . , NL − 1 (12)

Electric potential and transverse stresses are in this work always described as LW vari-
ables.

3.3 ACRONYMS

Depending on the used variational statement (PVD or RMVT), variables description and
order of expansionN a number of two-dimensional theories and related FEs can be de-
rived. In order to identify the various FEs appropriate acronyms are introduced. Fig.(2)
shows how the acronyms are built.The first field can be ’E’ or ’L’ according to ESL or LW
description, respectively; the second field can be ’D’ or ’M’ according to PVD or RMVT
application, respectively; the last field can assume the numbers 1-4 according to the order
of the adopted expansion in the thickness direction; a third ’Z’ and fourth ’C’ field (which
are optional in the ESL case), denote the use of MZZF and/or IC fulfillment, respectively.

4 VARIATIONAL STATEMENTS

Variational statements are used to derive weak and strong form governing equations in
the theory of structures. Classical formulations based on extended virtual work principle
(Principle of Virtual Displacements, PVD) do not lead to direct evaluation of electrical
chargeQ. PVD, in fact, states

PV D(u, φ) :

∫

V

(
δεT

pGσpC + δεT
nGσnC − δET

pGDpC − δET
nGDnC

)
dV = δLe − δLin,

(13)
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Figure 2: Meanings of the introduced Acronyms.

in which δ is the variational symbol and bold letters denote arrays; strainsε and stresses
σ have been split into in-plane shell/plate components (subscript p) and transverse ones
(subscript n); the same is done for the electrical fieldE and electrical displacementsD;
subscript C and G denote variables from constitutive equations and geometrical relations,
respectively.Le andLin denote external and inertia work, respectively;V is the body
volume; T denotes transposition of arrays.

Mechanical displacements and electric potential are the assumed variables. Appropriate
post-processing is, therefore, necessary to compute additional variables such as strains,
stresses, electrical fields, electrical displacement and electrical charge.

A particular case of PVD which neglects electrical stiffness is:

PV D(u) :

∫

V

(
δεT

pGσpC + δεT
nGσnC

)
dV = δLe − δLin + δLelett (14)

whereδLelett is the external work done for electric potential.
PVD is used in conjunction to the generalized geometrical relations between displace-

ment (mechanical/electrical components) and strains (mechanical/electrical components),
which in general case of shell are written:

εpG = [εαα, εββ, εαβ]T = (Dp + Ap) u , εnG = [εαz, εβz, εzz]
T = (DnΩ + Dnz −An) u

(15)

EpG = [Eα, Eβ]T = −DeΩ Φ , EnG = [Ez]
T = −Den Φ

where(α, β, z) is the shell reference system (see Fig.4). The explicit form of the intro-
duced arrays follows:

Dp =




∂α

Hα
0 0

0
∂β

Hβ
0

∂β

Hβ

∂α

Hα
0


 DnΩ =



0 0 ∂α

Hα

0 0
∂β

Hβ

0 0 0


 Dnz =



∂z 0 0
0 ∂z 0
0 0 ∂z


 (16)



DeΩ =




∂α

Hα
0 0

0
∂β

Hβ
0

0 0 0


 Den =



0 0 0
0 0 0
0 0 ∂z


 Ap =



0 0 1

HαRα

0 0 1
HβRβ

0 0 0


 An =




1
HαRα

0 0

0 1
HβRβ

0

0 0 0




(17)
Secondary variables are instead written and computed via constitutive physical relations:

σp = CE
ppεp + CE

pnεn − eT
ppEp − eT

npEn

σn = CE
npεp + CE

nnεn − eT
pnEp − eT

nnEn (18)

Dp = eppεp + epnεn + εε
ppEp + εε

pnEn

Dn = enpεp + ennεn + εε
npEp + εε

nnEn

Reissner Mixed Variational Theorem is a mixed variational statement which permits to
fulfil a priori the C0

z -requirements for transverse shear and normal stresses and normal
electric displacement. It can be used in various forms, among which:

RMV T (u, φ, σn) :

∫

V

(δεT
pGσpC + δεT

nGσnM + δσT
nM(εnG − εnC))dV = δLe − δLin

(19)

in which only the trasverse stresses are modelled.
A second form in which the normal electric displacementDz is primary variable in

place ofσn:

RMV T (u, φ,Dz) :

∫

V

(δεT
pGσpC + δεT

nGσnM − δET
pGDpC − δET

nGDnM−
δDT

nM(EnG − EnC))dV = δLe − δLin

(20)

A full form where both transverse stresses and normal electric displacement are enforced
to be continuous at each layer interface:

RMV T (u, φ, σn,Dz) :

∫

V

(δεT
pGσpC + δεT

nGσnM − δET
pGDpC − δET

nGDnM+

δσT
nM(εnG − εnC)− δDT

nM(EnG − EnC))dV = δLe − δLin

(21)

In these cases the constitutive equations for PVD (Eq.(18)) can be rearranged depending
on the primary variables considered.

5 FREE-VIBRATION OF PIEZOELECTRIC PLATES BY PVD MODELS

Carrera Unified formulation was first applied to piezoelectric plates in [4] in the case of PVD.
Results are summarized in Table 2-6.
In the Problem I a square plate with the side lengtha and the thicknessh is considered. It consists
of five layers which are assumed to be perfectly bonded to each other. The top and bottom layers
are made of piezoelectric materials with the thicknesshk

p = 0.1h each, the three structural layers of
equal thickness have the configuration[0◦/90◦/0◦]. The materials are PZT-4 for the piezoelectric
and Gr/Ep for the structural layers. The corresponding material properties can be taken from
Table 1. The top and bottom surfaces are assumed to be traction-free and electrically grounded,



Table 1: Elastic, piezoelectric and dielectric properties of used materials

Property PZT-4 Gr/EP
E1 [GPa] 81.3 132.38
E2 [GPa] 81.3 10.756
E3 [GPa] 64.5 10.756
ν12 [-] 0.329 0.24
ν13 [-] 0.432 0.24
ν23 [-] 0.432 0.49
G44 [GPa] 25.6 3.606
G55 [GPa] 25.6 5.6537
G66 [GPa] 30.6 5.6537
e15 [C/m2] 12.72 0
e24 [C/m2] 12.72 0
e31 [C/m2] -5.20 0
e32 [C/m2] -5.20 0
e33 [C/m2] 15.08 0
ε̃11/ε0 [-] 1475 3.5
ε̃22/ε0 [-] 1475 3.0
ε̃33/ε0 [-] 1300 3.0

Figure 3: Considered multilayered piezoelectric plates: sensor configuration (left) and actuator
configuration (right).

Table 2: Verification - Problem I, Frequency parametersγ = ω/100 of exact solution and LD4

a/h Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
4 exact 57074.5 191301 250769 274941 362492 381036

LD4 57074.0 191301 250768 274940 362489 381036

50 exact 618.118 15681.6 21492.8 209704 210522 378104
LD4 618.104 15681.6 21492.6 209704 210522 378104



which imposes the electric potential to be zero(Φt = Φb = 0). The free vibration frequencies
for one wave in each direction(m = n = 1) are calculated in means of the frequency parameter
γ = ω/100. Four thickness ratiosa/h = 2, 4, 10 and50 are considered. A 3D exact solution
is available from Heyliger and Saravanos [14] for the casesa/h = 4 and 50. Further numerical
results for these cases can be taken from Benjeddou [15] and Touratier and Ossadzow-David [16].

The configuration for Problem II consists of a simply supported square plate with the side lengtha
and the thicknessh. It is build of four layers, two layers of fiber reinforced material as a structural
core on top and bottom of which the two piezoelectric layers are bonded. The core layers have
the thicknesshc = 0.4h each and the fiber direction is in[0◦/90◦] configuration. The thickness of
each piezoelectric layer ishp = 0.1h. The materials are PZT-4 and Gr/Ep with the same properties
as used for Problem I (Table 1). The analytic solution is calculated for one wave in each direction
(m = n = 1). Four different thickness ratiosa/h = 2, 4, 10 and100 are considered in Table 6.
A mechanical loading of̂pz = 1 is applied on the top surface of the plate. The top and bottom
surfaces are electrically grounded and thus have the potentialΦt = Φb = 0. The configuration of
Problem II is the same of Problem I (Fig.3). 3D exact solution to Problems II fora/h = 4 were
presented by Heyliger [17].

5.1 VERIFICATION

To verify CUF based models and to assess their accuracy a comparison with results from the 3D
exact solution is presented. Attention is restricted to the LD4 plate theory which is supposed to
lead to the best description (see also next section). The exact solution for Problem I taken is
available for the thickness rationsa/h = 4 and 50. Table 2 shows the results for the frequency
parameterγ = ω/100 for the first six modes of the exact solution and LD4 model of the Unified
Formulation. The differences between the two solutions is extremely small. It can be concluded,
that LD4 leads to a quasi-3D description of the dynamic and static response of multilayered plates
embedding piezoelectric layers. LD4 therefore could be used as reference solutions in those cases
in which 3D solutions are not available.

5.2 ASSESSMENT OF VARIOUS MODELS

Table 3 shows an overview of the frequency parameter results for all the considered theories for
the thickness ratiosa/h = 4 and 50. The results from the exact solution and the additional models
of Benjeddou [18] and of Touratier and Ossadzow-David [16] are also listed. As expected the
LDN models yield the best results. The ESL models with imposed zig-zag form EDZN lead in the
most cases to a slight improvement compared to the EDN models.

5.2.1 INFLUENCE OF ORDER OF EXPANSION

In Table 4 the influence of the order of expansionN on the first mode of LDN and EDN models is
summarized. For each model the number of degrees of freedom (NDOF) and the error to the exact
solution (LD4) is given. For the LDN models an increase fromN = 1 to 4 has nearly no effect,
because even LD1 yields only marginal errors. For the ED models in contrast,N is more relevant.
The thick plate case requires at least third order and the thin plate case at least quadratic expansion
to obtain good results. Comparing the higher order EDN with the lower order LDN models it can
be noted, that for the given problem the latter yield better results although the implied NDOF is
nearly the same.



Table 3: Problem I, Frequency parametersγ = ω/100 for a/h = 4 anda/h = 50

a/h = 4 a/h = 50

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

exact 57074.5 191301 250769 618.118 15681.6 21492.8

Touratier - 194903 251763 - 15592.3 -
Benjeddou 58216.1 196018 268650 618.435 15684.0 21499.4

LD4 57074.0 191301 250768 618.104 15681.6 21492.6
LD1 57252.5 194840 255646 619.022 15683.4 21499.4

ED4 58713.8 194592 254740 618.464 15693.5 21497.8
ED1 74105.9 196021 266337 689.867 15695.0 21507.4

EDZ3 57656.7 195711 259570 618.382 15687.1 21496.5
EDZ1 63204.7 195965 266196 688.082 15693.6 21498.5

FSDT 74106.0 198465 286795 689.867 15877.2 22943.9
CLT 102932 198465 286795 719.427 15877.2 22943.9

Table 4: Problem I, Influence of Order of ExpansionN on first frequency parameterγ of LDN-
and EDN-models

LDN EDN

a/h N NDOF γ1 ∆[%] NDOF γ1 ∆[%]

4 4 84 57074.0 36 58713.8 2.87
3 64 57074.0 0.000 28 58818.6 3.06
2 44 57081.9 0.014 20 69413.7 21.6
1 24 57252.5 0.313 12 74105.9 29.84

50 4 84 618.104 36 618.464 0.06
3 64 618.104 0.000 28 618.550 0.07
2 44 618.105 0.000 20 620.229 0.34
1 24 619.022 0.149 12 689.867 11.61

Table 5: Problem I, Influence of piezoelectric effect on first frequency parametersγ1

a/h = 2 4 10 50

LD4 136604 57074.0 13526.4 618.104
LD4m 136598 57063.6 13520.7 617.770
∆[%] 0.004 0.018 0.042 0.054



Table 6: Problem II, Selected results forw, σxx, σxz, Φ andD̃z

a/h = 2 4 10 100

LD4 4.9113 30.029 582.06 4675300
LD1 4.8087 29.852 579.26 4647300

w × 1011 ED4 4.5047 28.591 573.25 4673900
at ED1 2.8575 18.488 423.29 3668700

z = 0 EDZ1 2.9117 20.153 498.04 4435100
FSDT 2.8575 18.488 423.29 3668700
CLT 0.58607 9.3884 364.43 2593400

LD4 3.2207 6.5642 32.771 3142.1
LD1 3.5181 6.9995 34.256 3266.9

σxz

at LD4 0.26995 0.68720 1.8540 18.832
z = 0

LD4 0.9103 6.1084 44.471 4580.2
LD1 0.8597 6.0303 44.175 4552.7

Φ× 103 ED4 0.94157 6.1274 44.402 4568.9
at ED1 0.78657 2.6580 15.044 1470.3

z = 0 EDZ1 1.3901 6.3499 41.379 4171.8
FSDT 0.78657 2.6580 15.044 1470.3
CLT 0.38494 2.1095 14.366 1040.5

LD4 0.0256 0.0161 0.0139 0.0136
LD1 -0.0662 -0.0880 -0.2853 -23.838

D̃z × 109 ED4 0.0489 0.0353 0.0327 0.0324
at ED1 0.0834 0.0464 -0.1163 -18.729

z = h/2 EDZ1 0.1496 0.1397 0.1372 0.1367
FSDT 0.0615 0.0401 -0.1174 -18.729
CLT -0.0088 -0.0314 -0.1883 -13.311



5.2.2 INFLUENCE OF PIEZOELECTRIC EFFECT

The influence of the piezoelectric coupling effects on the free vibration of the considered plate is
examined in Table 5. The results are calculated with the presented LD4 model, for the mechanical
case neglecting the piezoelectric coupling terms and thus considering only the elastic properties of
the piezoelectric layers (LD4m). The coupling effect can be interpreted as an additional stiffness
of the plate, but at least in the considered problem this influence on the natural frequencies is
negligible.

z0k=1 Rβ

α k=3

βk=3

Ω k=3

h h

k=3
R

k=1
tot

α

z0k=2

k=3z

k=2
k=1

Figure 4: Notations for the description of the shell geometry.

6 FREE-VIBRATION OF PIEZOELECTRIC SHELLS BY PVD MODELS

Extension of CUF to PVD piezoelectric shells was given in [19] and [20]. A discussion of the main
point is herein given. For the free-vibration problem of multilayered, piezoelectric shells only few
works are available in open literature presenting exact 3D-solutions. Verification computations are
presented considering the results obtained by Drumheller and Kalnins in [21] for an homogeneous
piezoelectric cylinder and those obtained by Heyliger et al. in [22] for a laminated ring. Finally, the
eigenfrequencies of a laminated cylinder are presented and the effects of the electro-mechanical
coupling are discussed.

Drumheller and Kalnins [21] analyze the free-vibration response of a simply-supported cylinder
constituted by homogeneous piezoelectric material with short-circuited surfaces. Cylinders of
variable lengtha are considered; the mean line radius isRβ = 11.1125 mm and the shell thickness
is h = 3.175 mm (the material data are reported in Tab. 7). The two considered vibration modes
are schematically represented in Fig. 5. These modes are obtained in the present theory by setting
m = 1 (fundamental mode in the cylinder axis) andn = 0 (axisymmetric mode, i.e.β = 0).

Table 7: Material data for the piezoelectric cylinder of Ref. [21].

material constants for PZT-4

CE
11 = CE

22 139.89 GPa e31 = e32 -5.5864 C/m2

CE
33 113.16 GPa e33 16.3801 C/m2

CE
12 78.62 GPa e15 = e24 12.2013 C/m2

CE
13 = CE

23 76.54 GPa εS
11 = εS

22 59.77 10−10 C/Vm
CE

44 = CE
55 26.91 GPa εS

33 58.57 10−10 C/Vm
CE

66 30.64 GPa ρ 7.5 103 kg/m3

Heyliger et al. give in [22] the natural frequencies of a laminated ring consisting of an inner
isotropic, elastic layer of Titanium (Ti) and an outer piezoceramic layer (PZT-4). The geometry
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Figure 5: Axisymmetric modes of a piezoelectric cylinder considered in Ref. [21]
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Figure 6: Left: Geometry of the laminated ring considered in Ref. [22] (all quantities given in
[m]). Right: Data for transversally isotropic PZT-4 material

Table 8: Natural frequencies [Hz] for the layered ring presented in Ref. [22]. The values in
parentheses are the relative percentual difference with respect to the reference solution.

n = 4 n = 8 n = 12 n = 16 n = 20

Ref. [22] 31.27 170.42 407.29 745.21 1190.48

LD4 31.64 (1.18) 171.60 (0.69) 406.87 (0.10) 736.08 (1.23) 1158.53 (2.68)
LD1 33.28 (6.43) 180.51 (5.92) 427.99 (5.08) 774.25 (3.90) 1218.56 (2.36)

ED4 31.65 (1.22) 171.64 (0.72) 406.98 (0.08) 736.28 (1.20) 1158.87 (2.66)
ED1 35.54 (13.66) 192.74 (13.10) 456.95 (12.19) 826.54 (10.91) 1300.67 (9.26)



of the ring is depicted in Fig. 6 (left), where the coordinates and notations defined in Fig. 4 have
been employed. To reduce the computational cost, only a quarter of the ring has been consid-
ered in Ref. [22], and various symmetry conditions holding on the edgesθ = 0, θ = π/2 and
x = 0 (see Fig. 6) are given as boundary conditions for the dynamic analysis. The piezoelec-
tric layer is polarized in radial direction and has a thickness ofhP = 0.25h = 0.001 m. The
employed material parameters for the titanium layer areE = 114 GPa,ν = 0.3, ρ = 2768
kg/m3 andε = ε0 = 8.85 10−12 C/Vm; those for PZT-4 are given in Fig. 6 (right). In Ref. [22],
a Finite Element (FE) formulation is presented based on a layerwise description of the coupled
electro-mechanical problem. The symmetry conditions corresponding to a vanishing circumfer-
ential displacement on the edgesθ = 0 andθ = π/2 as well as to a vanishing axial displacement
atx = 0 (group 7 of the cited reference) are represented within the present formulation bym = 0
andn = 4, 8, 12, 16, 20. Only the mode characterized by a pure circumferential deformation has
been considered, i.e.̂uk

α τ = 0. The electrical boundary conditions consist of a short-circuit be-
tween the top and bottom surface of the piezoelectric layer. Tab. 8 reports the results obtained by
the present formulations as well as the relative difference (in percent) with respect to the values of
Ref. [22]. It can be seen that a qualitative jump is associated to the consideration of the electrical
stiffness introduced by an at least quadratic assumption for the electric potential: in fact, all linear
formulations (LD1, ED1) provide results of clearly lower quality, the relative models resulting
always too stiff. Except for slight differences in the higher modes, the closed-form solutions of all
formulations present a good agreement with the approximate FE solution proposed in literature. It
is interesting to note that, for higher modes, the analytical solution for less accurate formulations
represents better the FE solution. This may be due to the superimposition of two distinct errors,
i.e. the discretization error and the error in the thickness assumptions, which cancel out, thus pro-
viding a better agreement.

7 FE ANALYSIS BY RMVT AND PVD STATEMENTS

PVD results are in this section compared to RMVT(u, φ, σn) ones. Results are restricted to plate
geometries. A few results are taken by the quite exhaustive archivial articles [?]. The exact solution
for a hybrid laminate containing both piezoelectric and elastic layers under applied surface traction
(direct effect) and applied electric potential (converse effect) has been presented by Heyliger [14]
and will be herein used as a benchmark for our finite element models, even if only results for a
thick plate (S=4) are given.

The results are presented for a simply supported cross-ply laminate[0◦/90◦] composed of an
elastic material with piezoelectric layers bonded to the upper and lower surfaces. The plate has
side lengthsa = b and a total thicknessh. The elastic layers have thickness of0.4h and the
thickness of the piezoelectric layers is0.1h. The material data are listed in Tab.(1). Only the
electric potential is compared in the case of actuators and sensors layers. In the sensor problem
the electric boundary condition are those of a short-circuited plate. From the obtained results the
following main remarks can be pointed out:

• All the results are very close to those obtained by the closed-form solution.

• The first order models ED1 and EM1 lead to inaccurate results especially for thick plates. At
the same time these models are very sensible to the introduction of the Murakami’s function.
See Tab.(9).

• Slight differences are appreciable in the changing of the variational principle for displace-
ments and electric fields but the use of the RMVT is fundamental in first order models for
the modelization of normal stress.



• Second order models are at least required to describe the through-thickness profile of the
electric potential for ESL models: see Tab.(9). On the contrary, first order LW models
match very well the exact solution.

• The use of the mixed variational principle improves the results of the electric potential es-
pecially for lower order models. See Tab.(9)

• In general the actuator model could show some difficulties in matching the top and bottom
surface values.

Table 9: Piezoelastic analysis - sensor and actuator configurations: Electric potentialφ(a
2 , b

2 , 0)
results.

Piezoelastic analysis - sensor configuration
φ(a

2 , b
2 , 0) Q9 [6× 6]

S 4 10 20 100
Exact[14] 6.11E − 3 − − −
LD 1 6.0111E − 3 4.4392E − 2 1.8349E − 1 4.6512
LM 1 6.0388E − 3 4.4781E − 2 1.8469E − 1 4.6689
LD 4 6.1176E − 3 4.4776E − 2 1.8463E − 1 4.6770
LM 4 6.1180E − 3 4.4786E − 2 1.8464E − 1 4.6770
ED 1 2.6635E − 3 1.5154E − 2 6.0010E − 2 1.5016
EM 1 3.2110E − 3 2.0136E − 2 8.1124E − 2 2.0401
ED 4 6.1351E − 3 4.4705E − 2 1.8425E − 1 4.6676
EM 4 6.1442E − 3 4.4735E − 2 1.8427E − 1 4.6667
EDZ1 6.1365E − 3 4.1434E − 2 1.6882E − 1 4.2611
EMZ1 6.1073E − 3 4.1508E − 2 1.6927E − 1 4.2733
EDZ3 6.3462E − 3 4.5007E − 2 1.8481E − 1 4.6764
EMZ3 6.3326E − 3 4.5000E − 2 1.8478E − 1 4.6748

Piezoelastic analysis - actuator configuration
φ(a

2 , b
2 , 0) Q9 [6× 6]

S 4 10 20 100
Exact[14] 4.476E − 1 − − −

LD 1 4.4693E − 1 4.9788E − 1 4.9101E − 1 4.9992E − 1
LM 1 4.4698E − 1 4.9788E − 1 4.9101E − 1 4.9992E − 1
LD 3 4.4801E − 1 4.9785E − 1 4.9103E − 1 4.9992E − 1
LM 3 4.4801E − 1 4.9785E − 1 4.9102E − 1 4.9992E − 1
LD 4 4.4801E − 1 4.9785E − 1 4.9103E − 1 4.9992E − 1
LM 4 4.4801E − 1 4.9785E − 1 4.9102E − 1 4.9992E − 1
ED 1 4.4621E − 1 4.9784E − 1 4.9088E − 1 4.9992E − 1
EM 1 4.4614E − 1 4.9783E − 1 4.9087E − 1 4.9992E − 1
ED 4 4.4844E − 1 4.9787E − 1 4.9110E − 1 4.9992E − 1
EM 4 4.4840E − 1 4.9787E − 1 4.9109E − 1 4.9992E − 1
EDZ1 4.4816E − 1 4.9785E − 1 4.9104E − 1 4.9992E − 1
EMZ1 4.4807E − 1 4.9785E − 1 4.9102E − 1 4.9992E − 1
EDZ3 4.4842E − 1 4.9787E − 1 4.9110E − 1 4.9992E − 1
EMZ3 4.4839E − 1 4.9787E − 1 4.9109E − 1 4.9992E − 1



8 FE ANALYSIS BY RMVT WITH A PRIORI EVALUATION OF ELECTRICAL DISPLACE-
MENT

This section shows the performances of the FEs based on RMVT(u, φ, σn,Dz) for static re-
sponse (sensor configuration). Results are taken by [6] and [7]. Results for the plate problem
already considered in the previous analysis are given in Tab.10; here a comparison between the
RMVT(u, φ, σn,Dz) and the RMVT(u, φ,Dz) statements for different thickness ratios and dif-
ferent FEs is made. It has been showed results concerning aQ4 element because is the best
solution in terms of adequacy of the responses and time required. What deserves to be mentioned
is the importance of the UF where the order of the expansion N is taken as a free parameter
and in this case a better solution is obtained when a higher order of expansion is considered.
The RMVT(u, φ, σn,Dz) is also suitable for the electric potential. In fact, in order to obtain
the exact profile in the-through-the-thickness direction, a second order LW-FE is required with
the RMVT(u, φ,Dz) whereas the same response is obtained with a first order by means of the
RMVT(u, φ, σn,Dz) : as a consequence the same appropriate response is obtained with the third
part of the time required by the RMVT(u, φ,Dz).

Table 10:Dz × 1013 for (a
2 , b

2 , 0.5), mesh[12× 12] and Q4 elements.
a
h 2 4 10

exact 3D [17] / 160.58 /
LM4 261.73 161.50 137.55
LM4* 316.30 301.4 941.94
LD4 284.94 212.66 439.78
LM3 263.79 161.89 137.70
LM3* 306.17 299.41 942.06
LD3 286.90 213.17 417.54
LM2 254.67 153.87 130.17
LM2* 310.83 290.39 923.49
LD2 300.96 223.83 430.72

EMZ3 549.81 371.98 350.39
EM4 516.85 357.11 346.49
EM3 608.59 283.71 235.48

Shell geometries were discussed in [6]. Results in Tab.11 confirm the conclusions made for plates
geometries.

9 FE ANALYSIS BY RMVT-Dz

A quite interesting application of Reissner ideas is obtained by only considering interlaminar con-
tinuity of normal electric displacementDz. No additional degrees of freedom are introduced by
transverse shear stresses. Evaluation of normal electrical displacement is very much improved
with respect to PVD evaluation. Such accurate evaluation permits a priori calculation of electrical
charge which plays a fundamental role in practical applications of smart structures. Results are
given in Tabs.12-13 and Figure 7.
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Figure 7: Comparison between FEM and 3D-exact solutions, sensor case; the electric displace-
ment is in[c/m2]; Dz = Dz(a/2, b/2); theDz RMVT-Dz* is calculated by constitutive relations
in the RMVT-Dz analysis
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Table 11: Proposed benchmark: one piezoelectric layer for the Varadan and Bhaskar cylindrical
shell. Comparison of various approaches. Actuator case.

Rβ/h 2 4 10 100

Φ az = 0
LD4 0.3431 0.4611 0.5037 0.5254
LM1 0.5000 0.5000 0.5000 0.5000
LM4 0.3431 0.4611 0.5037 0.5254
LFM1 0.5000 0.5000 0.5000 0.5000
LFM4 0.3431 0.4611 0.5037 0.5254

Dz1011 az = h/2
LD4 −605.73 −801.76 −1622.9 −10416
LM1 −350.00 −662.37 −1608.6 −11711
LM4 −605.73 −801.76 −1622.9 −10416
LFM1 −327.37 −642.20 −1599.7 −16656
LFM4 −584.80 −783.99 −1615.6 −16266

W1011 az = 0
LD4 −9.6220 −11.285 6.4540 11277
LM1 −21.851 −18.528 2.9362 9531.4
LM4 −9.6220 −11.285 6.4540 11277
LFM1 −21.850 −18.528 2.9353 9531.4
LFM4 −9.6220 −11.285 6.4540 11277

σzz az = h/2
LD4 3.0350 2.5512 1.0498 −836.32
LM1 −0.4037 −0.1264 0.6259 54.231
LM4 0.0431 0.0114 0.0004 −0.0001
LFM1 −0.4037 −0.1264 0.6258 54.231
LFM4 0.0431 0.0114 0.0004 −0.0001

Table 12: Comparison between FEM and 3D-exact solutions, actuator case. LD2 and LM2 FEs
are employed for PVD and RMVT case, respectively. The electric displacement is in[c/m2].
Dz = Dz(a/2, b/2). TheDz RMVT-Dz

∗ is calculated by constitutive relations in the RMVT-Dz

analysis.

Dz × 1013

Height RMV T -Dz PV D RMV T -D∗
z

1.000 -2.4431 -2.4382 -2.4385
0.900 -4.1321 -4.1504 -4.0924
0.900 -4.1321 -4.1274 -4.1294
0.500 -3.1229 -3.1182 -3.1145
0.500 -3.1229 -3.1275 -3.1313
0.100 -2.8095 -2.8142 -2.8123
0.100 -2.8095 -2.8425 -2.8823
0.000 -2.7316 -2.7507 -2.7307



Table 13: Comparison between PVD and RMVT-Dz results, sensor case. LD2 or LM2 FEs are
employed.Q is the charge at the top surface of the top layer and it is expressed in[c]. RMVT-
Dz* result is computed starting from theDz calculated by constitutive relations in the RMVT-Dz

analysis.

Qx1011(RMV T −Dz) Qx1011(PV D) Qx1011(RMV T −Dz∗)
10.219 8.8763 8.5457


