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Background and objectives 
The theory of homogenization of highly heterogeneous structures is well established. One of the best 

models is the well-known Caillerie-Kohn-Vogelius that is mathematically elegant and rigorous but 

appliesonly to simple engineering models, such as the Kirchhoff plate. Pruchnicki (2017a) proposed 

arigorous mathematical extension to higher-order plate models but this approach requires the proper 

scaling of the dimensions of the representative volume element (RVE), as discussed previously by 

Lewinski (1992). The most important problem results from the a-priori scaling that assumes applied loads, 

or deformations, concerning the shell thickness. In engineering applications, the applied loads are external 

and, often, cannot relate to the thickness. Such a shortcoming affects the quality ofresults for 

homogeneous thin structures. Recently, Pruchnicki 2018 (a, b) has proposed an approach to improve the 

framework via a multiscale finite-strain shell theory for simulating the mechanical response of highly 

heterogeneous shells with varying thickness for linear and nonlinear cases. The method exploits a higher-

order stress-resultant shell formulation based on the multiscale homogenization. At the macroscopic scale, 

the displacement field isa fourth-order Taylor-Young expansion along the thickness. A boundary value 

problem over the 3D RVE accounts for the microscale fluctuations. For the sake of simplicity, the 

microstructure is periodic and has curvilinear coordinates. The RVE has body forces and stress vectors 

acting on the upper and lower faces. The geometry of the RVE complies with the representative 

heterogenous microstructure andthe in-plane homogenization is combined with a through-the-thickness 

stress integration. The macroscopic stress resultants stem from the microscopic stress via the macro-micro 

Hill-Mandel condition expressing the equivalence between the internal macroscopic and microscopic 

energies. All microstructural constituents are 3D first-order continua described by the standard 



  
  

 
 

 
equilibrium and the constitutive equations. The main shortcoming of this method is the lack ofa double 

scale displacement field making difficult to considerthe well-known edge effects. According to the work 

of Lee, et al. (2014), the double scale displacement field is the sum of a macroscopic displacement field 

depending only on the global variable and a microscopic displacement field depending on local 

(microscopic) and global (macroscopic) scales. The macroscopic displacement field can be the one 

proposed by Song and Dai (2016) and Pruchnicki 2018 (a, b). Then, as in Pruchnicki (2006), a double 

scale variational formulation is used to show that the microscopic part of the displacement field satisfies 

the local variational formulation. The two problems are coupled, and the solution is numerical. The most 

important advantage of this formulation is that it enables the treatment of edge effects. Examples of 

theoretical developments of this type are in Berdichevsky (1979) and Pruchnicki 1998 (a, b). The latest 

developments are the topic of a presentation of Pruchnicki at the fourth congress of Mechanicsin Krakow 

- September 2019 - and Gaeta - May 2019, www.math.uzh.ch/gaeta2019.  

The thesis aims to numerically implement and assess this new theory. The implementation focuses, first, 

on the local macroscopic constitutive laws, then, on the structural computation with and without the 

boundary layer on the lateral boundary. Finally, the candidate student can implement numerically the new 

theoretical model for heterogeneous plates as proposed by Pruchnicki (2017b) as an extension of a new 

type of bidimensional models for homogeneous plates (Schneider et al. 2014).  
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