
Chapter 45
A Best Theory Diagram for Metallic and
Laminated Shells

Erasmo Carrera, Maria Cinefra and Marco Petrolo

Abstract In this work, refinements of classical theories are proposed in order to
analyze isotropic, orthotropic and laminated plates and shells. Higher order theories
have been implemented according to the Carrera Unified Formulation (CUF) and,
for a given problem, the effectiveness of each employed generalized displacement
variable has been established, varying the thickness ratio, the orthotropic ratio and
the stacking sequence of the lay-out. A number of theories have therefore been
constructed imposing a given error with respect to the available ’best solution’. The
results have been restricted to the problems for which closed-form solutions are
available. These show that the terms that have to be used according to a given error
vary from problem to problem, but they also vary when the variable that has to be
evaluated (displacement, stress components) is changed.

Keywords Refined classical theories · Laminated shells and plates · Unified
formulation

45.1 Introduction

Laminated structures such as traditional composite panels are frequently found in
aerospace vehicle applications. High transverse shear and normal deformability as
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well as discontinuity of physical properties make the use of structural models diffi-
cult. Accurate stress and strain fields evaluation demand the development of ad hoc
theories for the analysis of these structures.

Most known theories were originated from the intuition of some structural anal-
ysis pioneers. Among these, Kirchhoff [25], Love [29], Reissner [38], Mindlin [30],
Vlasov [42], Koiter [26] and Naghdi [31], and others. In most cases, these ‘ax-
iomatic’ intuitions lead to a simplified kinematics of the true three-dimensional de-
formation state of the considered structure: the section remains plane, the thickness
deformation can be discarded, shear strains are negligible, etc... For a complete re-
view of this topic, including laminated composite structures, the readers can refer to
the many available survey articles on plates and shells [28]- [36].

As an alternative to the axiomatic approach, approximated theories have been
introduced employing ’asymptotic-type’ expansions of unknown variables over the
thickness. The order of magnitude of significant terms is evaluated referring to a
geometrical parameter (thickness-to-length in the case of plates and shells). The
asymptotic approach furnishes consistent approximations. This means that all the
retained terms are those which have the same order of magnitude as the intro-
duced perturbation parameter when the latter vanishes. Articles on the application
of asymptotic methods to shell structures can be found in Cicala [17], Fettahlioglu
and Steele [19], Berdichevsky [1, 2], Widera and coauthors [43, 44], and Spencer et
alii [40], as well as in the monographes by Cicala [18] and Gol’denweizer [20].

Both the axiomatic and the asymptotic methods have historically been motivated
by the need to work with simplified theories that are capable of leading to simple
formulas and equations which can be solved by hand calculation. Up to five decades
ago, in fact, it was quite prohibitive to solve problems with many unknowns (more
than 5, 6); nowadays, this limitation no longer holds. Of course, the formulation of
more complicated problems would be difficult without the introduction of appropri-
ate techniques that are suitable for computer implementations. The approach herein
discussed makes use of such a suitable condensed notation technique that was in-
troduced by the first author during the last decade and it is referred to as the Carrera
Unified Formulation, CUF, for beams, plates and shell structures [3,4,6–8,10]. Gov-
erning equations are given in terms of a few ’fundamental nuclei’ whose form does
not depend on either the order of the introduced approximations or on the choices
made for the base functions in the thickness direction.

In short, CUF makes it possible to implement those terms which had been ne-
glected by the above cited pioneers. In order to obtain more general conclusions and
to draw general guidelines and recommendations in building bidimensional theories
for metallic and composite plates and shells, it would be of great interest to evalu-
ate the effectiveness of each refined theory term. This has been done in the present
paper. In CUF, in fact, the role of each displacement variable in the solution is in-
vestigated by measuring the loss of accuracy due to its being neglected. A term is
considered ineffective, i.e. negligible, if it does not affect the accuracy of the solu-
tion with respect to a reference 3D solution. Reduced kinematics models, based on
a set of retained displacement variables, are then obtained for each considered con-
figuration. Full and reduced models are then compared in order to highlight the
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sensitivity of a kinematics model to variations in the structural problem. This
method can somehow be considered as a mixed axiomatic/asymptotic approach
since it furnishes asymptotic-like results, starting from a preliminary axiomatic
choice of the base functions. A companion investigation, related to plates, has been
proposed in [14, 15].

The present work deals with problems with only displacement variables formu-
lated using the Principle of Virtual Displacements (PVD). The results have been
restricted to simply supported orthotropic plates and shells, subjected to harmonic
distributions of transverse pressure for which closed-form solutions are available.
Among the theories contained in the CUF, only the Equivalent Single Layer (ESL)
models are considered, in which a laminate plate/shell is reduced to a single lamina
of equivalent characteristics. The effectiveness of each displacement variable has
been established, varying the thickness ratio, the orthotropic ratio and the stacking
sequence of the lay-out. For a given problem, the best theory has been constructed
imposing a given error with respect to the available best results.

45.2 Carrera Unified Formulation

The main feature of the Carrera Unified Formulation (CUF) is the unified manner
in which a large variety of beam/plate/shell structures are modeled. Details of CUF
can be found in the already mentioned papers [3, 4, 6, 7, 10]. According to this for-
mulation, the governing equations are written in terms of a few fundamental nuclei
which do not formally depend on both the order of the expansion N and the approx-
imating functions, in the thickness direction. In the case of ESL approach, which is
herein considered, the displacement field is modeled in the following manner:

u = Fτuτ, τ = 1,2, ....,N (45.1)

where Fτ are functions of z. uτ is the displacements vector and N stands for the
order of the expansion. According to Einstein’s notation, the repeated subscript τ
indicates summation. In this work, Taylor polynomials are used for the expansion:

Fτ = zτ−1, τ = 1,2, ....,N (45.2)

N is assumed to be as high as 4. Therefore the displacement field is:

u = u1+ z u2+ z2 u3+ z3 u4+ z4 u5

v = v1+ z v2+ z2 v3+ z3 v4+ z4 v5

w = w1 + z w2+ z2 w3+ z3 w4 + z4 w5

(45.3)

The Reissner-Mindlin model [30,38] (also known as First Order Shear Deformation
Theory, FSDT, in the case of laminates) for the plate and the Naghdi model [31]
for the shell, can be obtained acting on the Fτ expansion. Two conditions have
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to be imposed. 1) First-order approximation kinematics field, 2) the displacement
component w has to be constant above the cross-section, i.e. w2 = 0. The resultant
displacement model is:

u = u1+ z u2

v = v1+ z v2

w = w1

(45.4)

The Kirchhoff-type approximation [25] (also known as Classical Laminate Theory,
CLT) for plate and the Koiter approximation [26] for the shell, can also be obtained
using a penalty technique for the shear correction factor.

45.2.1 Governing Differential Equations

In this work, the Principle of Virtual Displacements (PVD) is used to obtain the
governing equations and boundary conditions. In the general case of multi-layered
plates/shells subjected to mechanical loads, the governing equations are:

δuk
s
T

: Kkτs
uu uk

τ = Pk
uτ (45.5)

where T indicates the transpose and k the layer. Kkτs
uu and Pk

uτ are the fundamental
nuclei for the stiffness and load terms, respectively, and they are assembled through
the depicted indexes, τ and s, which consider the order of the expansion in z for the
displacements.

The corresponding Neumann-type boundary conditions are:

ΠΠΠkτs
d uk

τ = ΠΠΠ
kτs
d ūk

τ , (45.6)

whereΠΠΠkτs
d is the fundamental nucleus for the boundary conditions and the over-line

indicates an assigned condition.
For the explicit form of fundamental nuclei for the Navier-type closed-form so-

lution and more details about the constitutive equations and geometrical relations
for laminated plates and shells in the framework of CUF, one can refer to [6].

45.3 Method to Build the Best Plate/Shell Theories

Significant advantages are offered by refined plate/shell theories in terms of accu-
racy of the solution, but a higher computational effort is necessary because of the
presence of a larger number of displacement variables. This work is an effort to un-
derstand the convenience of using a fully refined model rather than a reduced one.
The effectiveness of each term, as well as the terms that have to be retained in the
formulation, are investigated as follows.
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1. The problem data are fixed (geometry, boundary conditions, loadings, materials
and layer lay-outs).

2. A set of output variables is chosen (maximum displacements, stress/displacement
component at a given point, etc.).

3. A theory is fixed, that is, the terms that have to be considered in the expansion of
u, v, and w are established.

4. A reference solution is used to establish the accuracy (the N = 4 case is assumed
as the best-reference solution since it offers an excellent agreement with the 3D
solutions).

5. The effectiveness of each term is numerically established measuring the error
produced compared to the reference solution.

6. Any term which does not give any contribution to the mechanical response is not
considered as effective in the kinematics model.

7. The most suitable kinematics model is then detected for a given structural
lay-out.

A graphical notation has been introduced to make the representation of the obtained
results more readable. This consists of a table with three lines for the displacement
components and a number of columns that depends on the number of displacement
variables which are used in the expansion. All 15 terms of the expansion are reported
in Table 45.1. The table is referred to the fourth-order model, N = 4, expressed in

Table 45.1 Locations of the displacement variables within the tables layout

N = 0 N = 1 N = 2 N = 3 N = 4

u1 u2 z u3 z2 u4 z3 u5 z4

v1 v2 z v3 z2 v4 z3 v5 z4

w1 w2 z w3 z2 w4 z3 w5 z4

Eq.(45.3). White and black triangles are used to denote the inactive and active terms
respectively, as in Table 45.2. Table 45.3 shows the case in which the parabolic term
of the expansion of the in-plane displacement v is discarded. The elimination of a

Table 45.2 Symbols to indicate the status of a displacement variable

Active term Inactive term

� 	

term, as well as the evaluation of its effectiveness in the analysis, can be obtained by
exploiting a penalty technique. The corresponding results are compared with those
given by a full fourth-order model using the percentage variations δw and δσ. These
parameters are defined according to the following formulas:
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Table 45.3 Symbolic representation of the reduced kinematics model with v3 deactivated

� � � � �

� � 	 � �

� � � � �

δw =
w

wN=4
×100, δσzz =

σzz
σzzN=4

×100, (45.7)

Where subscript ’N = 4’ denotes the values that correspond to the plate/shell theory
given by Eq.(45.3). Parameters related to other stress or displacement values could
also be introduced ( δu, δσxx , etc.).

It is important to notice that a displacement variable of the expansion can be
considered non effective with respect to a specific output component (displacement
or stress) when, if neglected (removed from the formulation), it does not introduce
any changes in the results according to a fixed accuracy. The accuracy is here fixed to
be as 0.05 %, that is, a term is considered negligible if the error caused by its absence
in the kinematics model is lower than 0.05 %. When conducting the analysis of
each displacement variable, a reduced kinematics model, if any exists, is established
which is equivalent to a fourth-order expansion.

The numerical investigation has considered either plates and shells with different
lay-outs: isotropic, orthotropic and cross-ply composite plates and shells. Further-
more, the effects on the definition of the reduced model of the following geomet-
rical/mechanical parameters have been evaluated: length-to-thickness ratio a/h (for
shells R/h), orthotropic ratio EL/ET and ply sequence.

45.4 Results and Discussion

In the following discussion, either plate and shell structures with different geome-
tries and lay-outs are considered. For each case, it is taken for granted that the so-
lution obtained with the theory of Eq.(45.3) is very close to the 3D solution, as
demonstrated in many first-author’s works among which [5,7,12,13,15]. Therefore,
the fourth-order model has been chosen as the reference solution for the present
analysis.

45.4.1 Plates

A simply supported plate has been considered. A bi-sinusoidal transverse distributed
load is applied to the top surface:

pz = p̄z sin(
mπx

a
) sin(

nπy
b

) (45.8)
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with a = 0.1 [m], b is assumed equal to a. p̄z is the applied load amplitude, p̄z = 1
[kPa], and m, n are the wave number in the two in-plane, plate directions. Attention
has been restricted to the case m = n = 1. w, σxx and σzz are computed at [a/2, b/2,
h/2], while σxz is computed at [0, b/2, 0]. An isotropic plate has been considered
first. Young’s modulus, E, is equal to 73 [GPa]. Poisson’s ratio, ν, is equal to 0.34.
Four different length-to-thickness ratios, a/h, are considered: 100, 10, 5 and 2, that
is, thin, moderately thick, thick and very thick plates, respectively.
The results of the effectiveness of each displacement variable are given in Table
45.4. A thin plate geometry has been considered (a/h = 100).

The percentage variation, δ, introduced neglecting each displacement variable, is
evaluated for w, σxx, σxz and σzz. The following comments can be made.

1. The constant term w1, the linear terms, u2 and v2 and the parabolic term w3 are
the most important ones to detect w, σxx and σxz.

2. Accurate evaluations of σzz require the use of w1, ...,w5 variables.

For the sake of brevity, the tables referring to different a/h values are not reported
here, but they can be found in [15]. A rather quite comprehensive analysis is instead
given in Table 45.5, which considers different plate geometries. The sets of effec-
tive terms are reported, that is, the plate models required to detect the fourth-order
solution are shown.

The last column gives the expansion terms needed to ’exactly’ detect the whole
considered outputs ’exactly’. Me states the number of terms (i. e. computational
costs) of the theory necessary to meet the fourth-order accuracy requirements. The
required terms are again those corresponding to the black triangles. Some remarks
can be made.

1. As a/h decreases, the theories become more computationally expensive (Me

increases).
2. Different choices of displacement variables are required to obtain exact different

outputs.
3. All 15 terms are necessary for very thick plate geometries.

Table 45.5 is, as in the paper title, an attempt to offer both guidelines and recom-
mendations for building the best plate/shell theories for the considered problems.

Orthotropic plates have been considered to assess the accuracy of the plate theory
vs. orthotropic ratio, EL/ET . It is a well known fact that orthotropic plates, such
as laminated composite structures, exhibit larger shear deformations than metallic
structures made of isotropic materials. The analysis of such plates is therefore of
particular interest for the present investigation.

Young’s modulus along the transverse direction, ET , is assumed as high as 1
[GPa]. Different orthotropic ratios, EL/ET , are assumed: 5, 25 and 100, where EL

stands for Young’s modulus along the longitudinal direction. Young’s thickness
modulus, Ez, is assumed equal to ET . The shear moduli are assumed as high as
0.39 [GPa]. Poisson’s ratios, νLT and νLz, are equal to 0.25, and a/h is assumed
equal to 10.

The sets of effective variables for different orthotropic ratios are summarized in
Table 45.6.
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Table 45.4 Influence of each displacement variable of a fourth order model on the solution. a/h=
100. Isotropic plate [15]

δw [%] δσxx [%] δσxz [%] δσzz [%]
� � � � �

� � � � �

� � � � �

100.0 100.0 100.0 100.0

	 � � � �

� � � � �

� � � � �

100.0 100.0 100.0 100.0

� � � � �

	 � � � �

� � � � �

100.0 100.0 100.0 100.0

� � � � �

� � � � �

	 � � � �

1.3×10−5 1.2×10−2 1.3×10−2 81.3

� 	 � � �

� � � � �

� � � � �

0.2 0.2 299.7 100.0

� � � � �

� 	 � � �

� � � � �

0.2 0.2 0.2 100.0

� � � � �

� � � � �

� 	 � � �

100.0 100.0 100.0 139.1

� � 	 � �

� � � � �

� � � � �

100.0 100.0 100.0 100.0

� � � � �

� � 	 � �

� � � � �

100.0 100.0 100.0 100.0

� � � � �

� � � � �

� � 	 � �

94.6 74.2 101.8 −8.1×104

� � � 	 �

� � � � �

� � � � �

100.0 100.0 72.3 100.0

� � � � �

� � � 	 �

� � � � �

100.0 100.0 100.0 100.0

� � � � �

� � � � �

� � � 	 �

100.0 100.0 100.0 100.0

� � � � 	

� � � � �

� � � � �

100.0 100.0 100.0 100.0

� � � � �

� � � � 	

� � � � �

100.0 100.0 100.0 100.0

� � � � �

� � � � �

� � � � 	

100.0 100.0 100.0 127.6
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Table 45.5 Comparison of the sets of effective terms for isotropic plates with different a/h [15]

w σxx σxz σzz COMBINED

a/h = 100

Me = 4 Me = 4 Me = 5 Me = 4 Me = 7
	 � 	 	 	

	 � 	 	 	

� 	 � 	 	

	 � 	 	 	

	 � 	 	 	

� 	 � 	 	

	 � 	 � 	

	 � 	 	 	

� 	 � 	 	

	 	 	 	 	

	 	 	 	 	

� � � 	 �

	 � 	 � 	

	 � 	 	 	

� � � 	 �

a/h = 10

Me = 6 Me = 10 Me = 6 Me = 9 Me = 13
	 � 	 � 	

	 � 	 � 	

� 	 � 	 	

� � 	 � 	

� � 	 � 	

� � � 	 �

	 � 	 � 	

	 � 	 � 	

� 	 � 	 	

� 	 � 	 	

� 	 � 	 	

� � � � �

� � � � '
	 � � � 	

� � � � �

a/h = 5

Me = 9 Me = 11 Me = 7 Me = 9 Me = 13
� � 	 � 	

� � 	 � 	

� � � 	 	

� � 	 � 	

� � 	 � 	

� � � � �

	 � 	 � 	

	 � 	 � 	

� 	 � 	 �

� 	 � 	 	

� 	 � 	 	

� � � � �

� � � � 	

� � � � 	

� � � � �

a/h = 2

Me = 13 Me = 14 Me = 7 Me = 13 Me = 15
� � � � 	

� � � � 	

� � � � �

� � 	 � �

� � � � �

� � � � �

	 � 	 � 	

	 � 	 � 	

� 	 � 	 �

� 	 � � �

� 	 � � �

� � � � �

� � � � �

� � � � �

� � � � �

Table 45.6 Comparison of the sets of effective terms for orthotropic plates with different EL/ET

[15]

w σxx σxz σzz COMBINED

EL/ET = 5

Me = 7 Me = 10 Me = 6 Me = 9 Me = 13
	 � 	 � 	

	 � 	 � 	

� � � 	 	

� � 	 � 	

� � 	 � 	

� � � 	 �

	 � 	 � 	

	 � 	 � 	

� 	 � 	 	

� 	 � 	 	

� 	 � 	 	

� � � � �

� � � � 	

� � � � 	

� � � � �

EL/ET = 25

Me = 6 Me = 10 Me = 4 Me = 9 Me = 13
	 � 	 � 	

	 � 	 � 	

� � 	 	 	

� � 	 � 	

� � 	 � 	

� � � 	 �

	 � 	 � 	

	 � 	 	 	

� 	 	 	 	

� 	 � 	 	

� 	 � 	 	

� � � � �

� � � � 	

� � � � 	

� � � � �

EL/ET = 100

Me = 5 Me = 6 Me = 3 Me = 7 Me = 11
	 � 	 � 	

	 � 	 	 	

� � 	 	 	

� � 	 	 	

� � 	 	 	

� � 	 	 	

	 � 	 	 	

	 � 	 	 	

� 	 	 	 	

	 	 	 	 	

� 	 � 	 	

� � � � �

� � 	 � 	

� � � 	 	

� � � � �
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The obtained results suggest the following comments.

1. The conclusions made for the isotropic plate are confirmed for the orthotropic
plate.

2. The plate theory needed to furnish an accurate description of several outputs
tends to have lower Me for larger EL/ET values (as shown in the last column of
Table 45.6);

3. The orthotropic ratio, EL/ET , plays a similar role as the length-to-thickness ratio,
a/h; these two parameters are the most significant in evaluating the accuracy of
a given plate theory.

Composite plates have been analyzed to assess the plate theory accuracy vs. stack-
ing sequence. Attention is restricted to higher order theories, as in Eq. (45.3). The
authors are aware that laminated structures require more adequate descriptions, such
as those given by the so-called zig-zag theories as well as a layer-wise description.
Such analysis are herein omitted but could be the subject of future investigations.
The readers are addressed to the already mentioned review papers as well as to the
historical review on zig-zag theories in [11].

A three-layer composite plate has been analyzed. EL is equal to 40 [GPa]. ET

and Ez are equal to 1 [GPa]. νLT and νLz are equal to 0.5 and 0.6, respectively. Each
layer is 0.001 [m] thick. Three stacking sequences are considered: two symmetrical
(0◦) and (0◦/90◦/0◦), and one asymmetrical (0◦/0◦/90◦).

Table 45.7 shows the plate model for each stacking sequence and output variable
as well as for the combined evaluation of w, σxx, σxz andσzz to obtain a fourth-order
model accuracy.

Table 45.7 Comparison of the sets of effective terms for composite plates with different stacking
sequences [15]

w σxx σxz σzz COMBINED

0◦

Me = 5 Me = 5 Me = 4 Me = 4 Me = 7
	 � 	 � 	

	 � 	 	 	

� 	 � 	 	

	 � 	 � 	

	 � 	 	 	

� 	 � 	 	

	 � 	 � 	

	 � 	 	 	

� 	 	 	 	

	 	 	 	 	

	 	 	 	 	

� � � 	 �

	 � 	 � 	

	 � 	 	 	

� � � 	 �

0◦/90◦/0◦

Me = 5 Me = 5 Me = 4 Me = 7 Me = 7
	 � 	 � 	

	 � 	 	 	

� 	 � 	 	

	 � 	 � 	

	 � 	 	 	

� 	 � 	 	

	 � 	 � 	

	 � 	 	 	

� 	 	 	 	

	 � 	 � 	

	 � 	 	 	

� � � 	 �

	 � 	 � 	

	 � 	 	 	

� � � 	 �

0◦/0◦/90◦

Me = 9 Me = 12 Me = 10 Me = 14 Me = 14
� � � � �

� � 	 	 	

� 	 � 	 	

� � � � �

� � 	 	 	

� � � � �

� � � � �

� � 	 	 	

� � � 	 	

� � � � �

� � � 	 �

� � � � �

� � � � �

� � � 	 �

� � � � �
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The table highlights the following main aspects related to the choice of the plate
theory.

1. The stacking sequence influences the construction of adequate plate models to a
great extent; it plays a similar role as the geometry and the orthotropic ratio;

2. An asymmetric lamination sequence requires a considerably higher number of
displacement variables than a symmetric one.

45.4.2 Shells

An isotropic shell has been considered first. The geometry of the shell is described
in Fig. 45.1. Referring to Ren’s work [39], a simply supported shell and a sinusoidal

Fig. 45.1 Geometry of shell

distribution of transverse pressure applied at the top surface have been considered
(cylindrical bending problem):

pz = p̄z sin
(nπβ

b

)
(45.9)

where β is the curvilinear coordinate. The attention has been restricted to the case
n = 1. Rβ is assumed equal to 10 [m] and the dimension b = π

3 Rβ. The amplitude of
the applied load is p̄z = 1 [kPa]. Young’s modulus, E, is equal to 73 [GPa] and Pois-
son’s ratio, ν, is equal to 0.34. Four different thickness ratios, Rβ/h, are considered:
100, 50, 10 and 4. The displacement w and the stresses σyy and σzz are computed at
[a/2, b/2, h/2], while σyz is computed at [a/2, 0, 0].

For the sake of brevity, the study of the effectiveness of each displacement vari-
able is not here reported, but in Table 45.8 the sets of effective terms required to
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Table 45.8 Comparison of the sets of effective terms for isotropic shells with different Rβ/h

w σyy σyz σzz COMBINED

Rβ/h = 100

Me = 4 Me = 6 Me = 5 Me = 9 Me = 9
	 	 	 	 	

� � 	 	 	

� 	 � 	 	

	 	 	 	 	

� � 	 	 	

� � � � 	

	 	 	 	 	

� � 	 � 	

� 	 � 	 	

	 	 	 	 	

� � � � 	

� � � � �

	 	 	 	 	

� � � � 	

� � � � �

Rβ/h = 50
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detect the fourth-order solution are reported for each thickness ratio Rβ/h. The con-
clusions made for the isotropic plate are valid also for the shell: as the thickness ra-
tio decreases, the theories become more computationally expensive (Me increases).
Moreover, as in the plate w3 is important to detect w, σyy and σyz and all the terms
of w expansion are necessary for the exact evaluation of σzz. In this particular case,
the terms of the expansion of u are non influential because a cylindrical bending
problem has been considered. One can note that the constant term of the in plane
displacement v is more important in the shell than in the plate because the shell has
a membranal deformation even when it is very thin. This fact is due to the curvature.

Orthotropic shells have been considered to assess the accuracy of the shell theory
vs. orthotropic ratio, EL/ET . The geometry of the shell is cylindrical, with a/Rβ = 4,
and the loading is internal sinusoidal pressure pz = p̄z sin( mπα

a ) sin( nπβ
b ), with m = 1

and n = 8. Young’s modulus along the transverse direction, ET , is assumed as high
as 1 [GPa]. Different orthotropic ratios, EL/ET , are assumed: 5, 25 and 100, where
EL stands for Young’s modulus along the longitudinal direction. The shear moduli
GLT and GT T are assumed 0.5ET and 0.2ET , respectively, and Poisson’s ratios, νLT

and νT T , are equal to 0.25. Rβ/h is assumed equal to 100. The displacement w and
the stresses σyy and σzz are computed at [a/2, b/2, −h/2], while σyz is computed
at [a/2, 0, 0]. The 3D solution for this problem is given by Varadan and Bhaskar
in [41].
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A single-layered (90◦) shell has been analyzed (the lamination angle is measured
with respect to the longitudinal axis). The sets of effective variables for different
orthotropic ratios are summarized in Table 45.9.

Table 45.9 Comparison of the sets of effective terms for orthotropic shells with different EL/ET
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The obtained results confirm the conclusions made for the plate. The orthotropic
ratio plays a similar role as the thickness ratio in evaluating the accuracy of a given
theory and the sets of effective terms differ to a great extent with changing of EL/ET .

Finally, composite shells have been analyzed to assess the shell theory accuracy
vs. stacking sequence. In addition to the shell considered above, a three-layered
symmetrical (90◦/0◦/90◦) shell and a two-layered asymmetric (90◦/0◦) shell have
been considered. In all the cases, the layers are of equal thickness. The orthotropic
ratio EL/ET is taken equal to 25 and the thickness ratio Rβ/h = 100.
Table 45.10 shows the shell model for each stacking sequence in order to obtain
a fourth-order model accuracy. As in the plate case, the table highlights that the
stacking sequence influences the construction of adequate models to a great extent
and an asymmetric lamination sequence requires a higher number of displacement
variables than a symmetric one.

In general, from the analysis of the shell geometry, one can note that more and
different displacement variables are effective in the evaluation of the different out-
puts, compared with the plate, if analogous problems are considered. This fact is
due to the curvature that appear in the strain-displacement relations and couples
membranal and bending behaviors of the shell.
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Table 45.10 Comparison of the sets of effective terms for composite shells with different stacking
sequences

w σyy σyz σzz COMBINED
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45.4.3 The Best Theory Diagram

The approach here presented has proved its validity in constructing:

1. reduced models equivalent to a full higher-order theory;
2. reduced models able to fulfil a given accuracy input.

The construction of these models has highlighted that Unified Formulation allows
us, for a given problem, to obtain a diagram that in terms of accuracy (input) gives
an answer to the following fundamental questions:

• what is the ’minimum’ number of the terms, Nmin, to be used in a plate/shell
model?

• Which are the terms to be retained, that is, which are the generalized displace-
ment variables to be used as degrees od freedom?

To the best of the authors’ knowledge, there are no other available methods that can
provide this kind of results. The present method of analysis is able to create plots
like the one in Fig. 45.2 that gives the number of terms as function of the permitted
error.

This plot can be defined as the Best Theory Diagram BTD since it allows us
to edit an arbitrary given theory in order to have a lower amount of terms for a
given error (vertical shift, ΔN) or, to increase the accuracy keeping the computational
cost constant (horizontal shift, Δerror). Most times, the plot presented appears as
an hyperbole. CUF makes the computation of such a plot possible. Note that the
diagram has the following properties:

• it changes by changing problems (thickness ratio, orthotropic ratio, stacking
sequence, etc.);



45 A Best Theory Diagram for Metallic and Laminated Shells 695

Error

N
u
m

b
er

 o
f 
T

er
m

s

Error

N

B
est T

heory Diagram

Arbitrary 
Theory

Fig. 45.2 An example of Best Theory Diagram (BTD) [16]

Fig. 45.3 Accuracy of all the possible combinations of plate models in computing w for the simply-
supported plate loaded by a bi-sinusoidal load (each ’+’ indicates a different plate model) [16]

• it changes by changing output variable (displacement/stress components, or a
combination of these).

The validity of the BTD is tested by computing the accuracy of all the plate/shell
models obtainable as a combination of the 15 terms of the fourth-order theory. The
results are reported in Fig. 45.3 in the case of a simply-supported plate loaded by a
bi-sinusoidal load; the transversal displacement w is considered as output variable.

The BTD perfectly matches the lower boundaries of the region where all the
models lie. This confirms that the BTD represents the best theory (i.e. the least
cumbersome) for a given problem. The BTD permits the evaluation of any existing
plate/shell model, as in the previous sections. The distance from the BTD of a given
known model represents a guideline to recommend any other theory. More complex
analyses will be conducted using the Finite Element Method in future work to in-
vestigate the effects of loadings, boundary conditions, etc. Some of these analyses
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have been already studied in [14, 16] where the attention was restricted to plates.
Future investigations could consider the shells.

45.5 Conclusions

The effectiveness of each displacement variable of higher order plate/shell theories
has been investigated in this paper. The Carrera Unified Formulation (CUF) has been
used for the systematic implementation of refined models. Navier-type closed-form
solutions have been adopted for the analysis. Isotropic, orthotropic and compos-
ite plates and shells have been considered. The role of each displacement variable
has been described in terms of displacement and stress components, referring to a
fourth-order model solution. The contribution of each term to the accuracy of the
solution has been evaluated, introducing the so-called mixed axiomatic/asymptotic
method, which is able to recognize the effectiveness of each displacement variable
of an arbitrary refined theory.

It can be stated that the choice of the model which suits the accuracy requirements
for a given problem is dominated by the length-to-thickness ratio, the orthotropic ra-
tio and the lamination sequence. It has also been found that each displacement/stress
component would require its own model to obtain exact results. Moreover, the num-
ber of retained terms is very closely related to the geometrical/mechanical config-
uration of the considered problem. In particular, the shell configurations require
more displacement variables than the plates because the curvature introduces cou-
pling effects. Remarkable benefits, in terms of total amount of problem variables,
are obtained for thin structures or for symmetrical laminations. Finally, the use of
full models is mandatory when a complete set of results is needed.

CUF has shown to be well able to deal with a method that could be stated as
a mixed assiomatic/asymptotic structural analysis of different structures. Two main
benefits can be obtained.

1. It permits the accuracy of each problem variable to be evaluated by comparing
the results with more detailed analyses (also provided by CUF); no mathemati-
cal/variational techniques are needed as in the case of asymptotic-type analyses.

2. It offers the possibility of considering the accuracy of the results as an input,
while the output is represented by the set of displacement variables which are
able to fulfill the requirement.

From this analysis it is possible to draw a curve, the Best Theory Diagram BTD,
that allows us to edit an arbitrary given theory in order to have a lower amount of
terms for a given error or to increase the accuracy keeping the computational cost
constant.
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