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Abstract: This work extends advanced beam models to carry out a more accurate free-vibration analysis of conventional (straight, or
with sweep/dihedral angles) and joined wings. The beam models are obtained by assuming higher-order (up to fourth) expansions for the
unknown displacement variables over the cross-section. Higher-order terms permit bending/torsion modes to be coupled and capture any other
vibration modes that require in-plane and warping deformation of the beam sections to be detected. Classical beam analyses, based on the Euler-
Bernoulli and on Timoshenko beam theories, are obtained as particular cases. Numerical solutions are obtained by using the finite element (FE)
method, which permits various boundary conditions and different wing/section geometries to be handled with ease. A comparison with other
shell/solid FE solutions is given to examine the beam model. The capability of the beam model to detect bending, torsion, mixed and other
vibration modes is shown by considering conventional and joined wings with different beam axis geometries as well as with various sections
(compact, plate-type, thin-walled airfoil-type). The accuracy and the limitations of classical beam theories have been highlighted for a number of
problems. It has been concluded that the proposed beam model could lead to quasi-three-dimensional dynamic responses of classical and
nonclassical beam geometries. It provides better results than classical beam approaches, and it is much more computationally efficient than
shell/solid modeling approaches. DOI: 10.1061/(ASCE)AS.1943-5525.0000130. © 2012 American Society of Civil Engineers.
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Introduction

The free-vibration analysis of aircraft wings represents one of the
most challenging issues of the design process of aircraft. An appro-
priate evaluation of natural frequencies and modes plays a funda-
mental role in analyzing gust responses and aeroelastic phenomena.
Wings are generally thin-walled, nonuniform, arbitrary-shaped
structures. They are usually tapered and have sweep and/or dihedral
angles. All of these features introduce complicated effects that
require refined structural modelings.

The structural analysis of an aircraft wing can be dealt with
by exploiting different models: one-dimensional (1D) (beams), two-
dimensional (2D) (plates/shells), and three-dimensional (3D) (solids).
One-dimensional theories are attractive because they generally require
less computational effort than the analysis of shells or solids. Some

well-known classical beam models are the Euler-Bernoulli (Euler
1744) and Timoshenko (Timoshenko 1921, 1922; Timoshenko and
Goodier 1970)models; the latter includes transverse shear-deformation
and rotary inertia effects. The applicability of classical beam models
becomes imprudent as the importance of the nonclassical effects
increases. Typical nonclassical effects in a wing structure are those
caused by in- and out-of-plane warping, twisting, bending-torsion
coupling, and higher-order shear effects, among others.

Many refined higher-order beam theories with enhanced capa-
bilities have been proposed to overcome the limitations of classical
models. A discussion of some significant contributions is given
hereafter. An excellent review of several beam and plate theories
has been presented by Kapania and Raciti (1989) for vibration,
wave propagations, buckling, and postbuckling. Thin- and thick-
walled beams were considered. The importance of the shear defor-
mation was pointed out. Bishop et al. (1989) have studied coupled
bending-torsion modes of uniform beams by combining the
Euler-Bernoulli flexural beam theory with the Saint-Venant torsion
theory. They underlined the importance of including warping
effects for open-section beams. A higher-order beam theory for
the analysis of the bending modes was presented by Senjanović
and Fan (1989). Comparisons were made with 2D model results.
They underlined the convenience of 1D models compared with
more cumbersome 2D models for the analysis of complex thin-
walled multicell structures, at least for the mid-frequency domain.
The effect of shear-deformation on the natural frequencies of
composite beam models for rotor blades has been investigated
by Chandrashekhara et al. (1990) by means of a first-order,
shear-deformation theory. Arbitrary boundary conditions were con-
sidered. Song and Librescu (1993) have addressed the dynamic
problem of thick- and thin-walled composite beams. They high-
lighted the role played by various nonclassical effects in predicting
the vibrational behavior of beams. The exact vibration frequencies
of asymmetrical laminated beams have been computed by
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Eisenberger et al. (1995). General layouts and geometries as well as
shear-deformation and rotary inertia effects were considered. Marur
and Kant (Marur and Kant 1996; Kant et al. 1997) have proposed a
model that does not require a shear correction coefficient. Cubic
axial and quadratic shear strain variations on the cross-section were
used. The free-vibration and transient analyses of laminated beams
were conducted. They showed that the higher-order models furnish
lower frequencies; that is, a more flexible structure is modeled by
the refined theories. The importance of transverse shear and in- and
out-of-plane warping in the dynamic analyses of composite beam
has been underlined by McCarthy and Chattopadhy (1998).
A comparison of classical and refined beam theories for buckling
and free-vibration analyses of laminated structures has been
made by Song and Waas (1997). It was shown that, whereas
the Euler-Bernoulli model represents a first-order solution, the
Timoshenko model furnishes solutions that lie outside the bounds
of the classical elasticity solution. Dancila and Armonios (1998)
have presented a solution procedure to deal with the coupling of
extension, bending, and twist vibration modes of slender thin-
walled composite beams with particular interest for dynamic and
aeroelastic applications. The influence of the beam length on the
coupling effects was highlighted. The flexural frequencies of
composite beams have been investigated by Shi and Lam
(1999). They used a finite element (FE) formulation based on a
third-order, shear-deformation beam theory. It was shown that
the influence of higher-order terms is negligible on the fundamental
frequencies, whereas it is significant on the frequencies of high
flexural modes. Kameswara Rao et al. (2001) have studied the
effect of higher-order theories on the natural frequencies of
composite beams. A closed-form solution was used. Numerical ex-
amples were conducted on beams of various span-to-height ratios.
The results showed that the presented theory offers significantly
lower natural frequencies than those computed using the Timo-
shenko model in the case of thick sandwich beams. The free-
vibration analysis of a composite pipe, by means of the asymptotic
method, has been conducted by Yu and Hodges (2005). The differ-
ences between the generalized Timoshenko theory and classical
models in computing the bending frequencies were underlined.
No differences were found in the torsional frequencies. Simsek
and Kocaturk (2007) have used a third-order shear-deformation
theory to study free vibrations of beams with different boundary
conditions. The results were compared with the Timoskenko and
Euler-Bernoulli model responses. It was highlighted that higher-
order models provide significantly better results than classical
theories in the case of short beams and high mode numbers. A
higher-order finite element model, based on the classical laminated
theory, has been developed by Ganesan and Zabihollah (2007). The
vibration response of laminated tapered composite beams was in-
vestigated considering the curvature as a degree of freedom of each
element. This feature ensured continuous curvature and stress
distribution across element interfaces, and it enhanced higher-
frequency analysis capabilities. It was also shown how a higher-
order formulation needs fewer elements to obtain accurate results.
Kiani et al. (2009) have used different theories to investigate the
prediction capability of the dynamic response of a beam subjected
to a moving mass. It was shown that classical theories are unable to
predict an accurate solution in the case of small slenderness ratios.
Other important contributions are those by Banerjee and coworkers
(Banerjee and Williams 1992, 1994; Banerjee et al. 1996; Banerjee
1998; Eslimy-Isfahany and Banerjee 2000; Banerjee and Sobey
2005) who have dealt with the free-vibration analysis and response
problems of beam structures. Their analyses were based on the dy-
namic stiffness formulation. Nonuniform, thin-walled structures
were considered as well as composite and sandwich beams. The

effects of warping, shear deformation, and bending-torsion cou-
pling on dynamic behavior were evaluated. The study of unconven-
tional wing configurations is one of the important issues in this
paper. Examples include joined wing and strut-braced configura-
tions. Interest in these configurations is motivated by their en-
hanced aerodynamic properties. Some important research works
that are related to joined wing structures are those by Wolkowich
(1986), Frediani et al. (1999), and Demasi (2007). An interesting
paper that has focused on the strut-braced configuration is by
Gundlach et al. (2000).

This work presents the finite element, free-vibration analysis of
several wing models by means of higher-order beam theories. Re-
fined models are obtained within the framework of the Carrera
Unified Formulation (CUF) (Carrera 2002, 2003). CUF has been
developed over the last decade for plate and shell theories. It has
recently been extended to beam modeling (Carrera and Giunta
2010; Carrera et al. 2010a; Carrera and Petrolo 2011). The main
feature of CUF is its hierarchical formulation. In other words,
the order of the model is a free-parameter (i.e., an input) of the
analysis; that is, refined models are obtained with no need for
ad hoc formulations. Arbitrary cross-section geometries can be
modeled. Taylor-type expansions are herein exploited to define
the kinematics field above the cross-section. Up to the fourth-order
models are adopted. Classical models are obtained as particular ex-
amples of the general case. The finite element formulation is used
to overcome the limits of closed-form solutions in dealing with ar-
bitrary beam geometries and loading conditions. Different beam
configurations are investigated. These include compact, thin-
walled, conventional wing models (straight, swept, with dihedral
angles, tapered), and unconventional wing models (joined wing).
Isotropic materials are used. A preliminary static assessment is con-
ducted to show the correctness of the model. The dynamic analysis
is conducted by computing natural frequencies and modes. Static
and dynamic results are compared with those obtained from con-
ventional finite element models, which are based on shell and solid
elements. This paper is organized as follows: a brief description of
the adopted beam theories and the finite element formulation is fur-
nished first; the main structural problems, together with the results
and discussion, are then provided; finally, the main conclusions and
outlook are outlined in the Conclusions section.

Preliminaries

The adopted coordinate frame is shown in Fig. 1. The beam boun-
daries over y are 0 ≤ y ≤ L. The displacements vector is as follows:

uðx; y; zÞ ¼ f ux uy uz gT ð1Þ

x

y

z

Fig. 1. Coordinate frame of the beam model
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Superscript “T” represents the transposition operator. The stress,
σ, and the strain, ϵ, are grouped as follows:

σp ¼ f σzz σxx σzx gT ; ϵp ¼ f ϵzz ϵxx ϵzx gT
σn ¼ f σzy σxy σyy gT ; ϵn ¼ f ϵzy ϵxy ϵyy gT ð2Þ

Subscript “n” stands for terms laying on the cross-section, Ω,
whereas “p” stands for terms laying on planes orthogonal to Ω.
Linear strain-displacement relations are used:

ϵp ¼ Dpu ϵn ¼ Dnu ¼ ðDnΩ þ DnyÞu ð3Þ

with:

Dp ¼
0 0 ∂∕∂z

∂∕∂x 0 0

∂∕∂z 0 ∂∕∂x

2
64

3
75; DnΩ ¼

0 ∂∕∂z 0

0 ∂∕∂x 0

0 0 0

2
64

3
75;

Dny ¼
0 0 ∂∕∂y

∂∕∂y 0 0

0 ∂∕∂y 0

2
64

3
75 ð4Þ

Next, the Hooke’s law is exploited:

σ ¼ Cϵ ð5Þ

According to Eq. (2), the previous equation becomes:

σp ¼ ~Cppϵp þ ~Cpnϵn σn ¼ ~Cnpϵp þ ~Cnnϵn ð6Þ

In the case of isotropic material, the matrices ~Cpp, ~Cnn, ~Cpn and
~Cnp areas follows:

~Cpp ¼
~C11

~C12 0
~C12

~C22 0
0 0 ~C66

2
4

3
5; ~Cnn ¼

~C55 0 0
0 ~C44 0
0 0 ~C33

2
4

3
5;

~Cpn ¼ ~CT
np ¼

0 0 ~C13

0 0 ~C23

0 0 0

2
4

3
5

ð7Þ

For the sake of brevity, the dependence of the coefficients ½~C�ij
versus Young’s moduli and Poisson’s ratio is not reported here. It
can be found in Tsai (1988) or Reddy (2004).

Advanced Beam Model Based on the Unified
Formulation

In the framework of the CUF (Carrera 2002, 2003; Carrera and
Giunta 2010; Carrera et al. 2010a, 2011; Carrera and Petrolo
2011), the displacement field is assumed as an expansion in terms
of generic functions, Fτ :

u ¼ Fτuτ ; τ ¼ 1; 2; :…;M ð8Þ

where Fτ are functions of the coordinates x and z on the cross-
section. uτ is the displacement vector, andM stands for the number
of terms of the expansion. According to the Einstein notation, the
repeated subscript τ indicates summation. Eq. (8) consists of a Ma-
claurin expansion that uses as base the 2D polynomials xizj, where i
and j are positive integers. The maximum expansion order, N, is
supposed to be 4. Table 1 presents M and Fτ as functions of N.
For example, the second-order displacement field is as follows:

ux ¼ ux1 þ xux2 þ zux3 þ x2ux4 þ xzux5 þ z2ux6

uy ¼ uy1 þ xuy2 þ zuy3 þ x2uy4 þ xzuy5 þ z2uy6
uz ¼ uz1 þ xuz2 þ zuz3 þ x2uz4 þ xzuz5 þ z2uz6 ð9Þ

The beam model described by Eq. (9) has 18 generalized displace-
ment variables. The in-plane linear terms, i.e., ux2 , ux3 , uz2 , and uz3 ,
are not present in the classical models by Euler and Timoshenko:
these variables are needed to provide at least a linear distribution of
twisting above the cross-section. The nine parabolic terms,
i.e., ux4 ;…; uz6 , enhance the in-plane and out-of-plane warping
capabilities of the model. Similar considerations can be found in
El Fatmi and Ghazouani (2010). A more detailed description of
the role played by each higher-order term can be found in Carrera
and Petrolo (2011). The present unified formulation permits us to
embed higher-order terms in the beam models with no need of case-
dependent implementations such as the insertion of warping func-
tions as shown in the excellent book by Novozhilov (1961). The
Timoshenko beam model (TBM) can be obtained by acting on
the Fτ expansion. Two conditions have to be imposed: (1) a
first-order approximation kinematic field:

ux ¼ ux1 þ xux2 þ zux3
uy ¼ uy1 þ xuy2 þ zuy3
uz ¼ uz1 þ xuz2 þ zuz3 ð10Þ

(2) the displacement components ux and uz have to be constant
above the cross-section:

ux2 ¼ uz2 ¼ ux3 ¼ uz3 ¼ 0 ð11Þ

The Euler-Bernoulli beam (EBBM) can be obtained through the
penalization of ϵxy and ϵzy. This condition can be imposed by using
a penalty value χ in the following constitutive equations:

σxy ¼ χ~C55ϵxy þ χ~C45ϵzy σzy ¼ χ~C45ϵxy þ χ~C44ϵzy ð12Þ

The classical theories and the first-order models require the
assumption of opportunely reduced material stiffness coefficients
to correct Poisson’s locking [see Carrera and Brischetto (2008)].
Unless differently specified, for classical and first-order models
Poisson’s locking is corrected according to Carrera and Giunta
(2010). Introducing the shape functions, Ni, and the nodal displace-
ment vector, qτ i:

q ¼ f quxτ i quyτ i quzτ i gT ð13Þ

The displacement vector becomes:

u ¼ NiFτqτ i ð14Þ

Table 1. Maclaurin’s Polynomials

N M Fτ

0 1 F1 ¼ 1

1 3 F2 ¼ xF3 ¼ z

2 6 F4 ¼ x2F5 ¼ xzF6 ¼ z2

3 10 F7 ¼ x3F8 ¼ x2zF9 ¼ xz2F10 ¼ z3

… … …
N ðNþ1ÞðNþ2Þ

2 FðN2þNþ2Þ
2

¼ xNFðN2þNþ4Þ
2

¼ xN�1z…FNðNþ3Þ
2

¼ xzN�1FðNþ1ÞðNþ2Þ
2

¼ zN
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For the sake of brevity, the shape functions are not reported here.
They can be found in many books, for instance in Bathe (1996).
Elements with four nodes (B4) are formulated; that is, a cubic
approximation along the y axis is adopted. It has to be highlighted
that, although the order of the beam model is related to the expan-
sion on the cross-section, the number of nodes per each element is
related to the approximation along the longitudinal axis. These
two parameters are totally free and not related to each others.
An N-order beam model is therefore a theory that exploits an
N-order polynomial to describe the kinematics of the cross-section.
The stiffness matrix of the elements and the external loadings,
which are consistent with the model, are obtained via the Principle
of Virtual Displacements:

δLint ¼
Z
V
ðδϵTpσp þ δϵTn σnÞdV ¼ δLext ð15Þ

where Lint stands for the strain energy, and Lext is the work of the
external loadings. δ stands for the virtual variation. The virtual
variation of the strain energy is rewritten using Eqs. (3), (6),
and (14), and in a compact format it becomes:

δLint ¼ δqTτ iKijτsqsj ð16Þ

where Kijτs is the stiffness matrix in the form of the fundamental
nucleus. Its components are as follows:

Kijτs
xx ¼ ~C22

Z
Ω
Fτ ;xFs;x dΩ

Z
l
NiNjdyþ ~C66

Z
Ω
Fτ ;zFs;z dΩ

Z
l
NiNjdyþ ~C44

Z
Ω
FτFsdΩ

Z
l
Ni;yNj;ydy

Kijτs
xy ¼ ~C23

Z
Ω
Fτ ;xFsdΩ

Z
l
NiNj;y dyþ ~C44

Z
Ω
FτFs;xdΩ

Z
l
Ni;yNjdy

Kijτs
xz ¼ ~C12

Z
Ω
Fτ ;xFs;z dΩ

Z
l
NiNjdyþ ~C66

Z
Ω
Fτ ;zFs;x dΩ

Z
l
NiNjdy

Kijτs
yx ¼ ~C44

Z
Ω
Fτ ;xFsdΩ

Z
l
NiNj;y dyþ ~C23

Z
Ω
FτFs;xdΩ

Z
l
Ni;yNjdy

Kijτs
yy ¼ ~C55

Z
Ω
Fτ ;zFs;z dΩ

Z
l
NiNjdyþ ~C44

Z
Ω
Fτ ;xFs;x dΩ

Z
l
NiNjdyþ ~C33

Z
Ω
FτFsdΩ

Z
l
Ni;yNj;ydy

Kijτs
yz ¼ ~C55

Z
Ω
Fτ ;zFsdΩ

Z
l
NiNj;ydyþ ~C13

Z
Ω
FτFs;z dΩ

Z
l
Ni;yNjdy

Kijτs
zx ¼ ~C12

Z
Ω
Fτ ;zFs;xdΩ

Z
l
NiNjdyþ ~C66

Z
Ω
Fτ ;xFs;z dΩ

Z
l
NiNjdy

Kijτs
zy ¼ ~C13

Z
Ω
Fτ ;zFsdΩ

Z
l
NiNj;ydyþ ~C55

Z
Ω
FτFs;z dΩ

Z
l
Ni;yNjdy

Kijτs
zz ¼ ~C11

Z
Ω
Fτ ;zFs;z dΩ

Z
l
NiNjdyþ ~C66

Z
Ω
Fτ ;xFs;x dΩ

Z
l
NiNjdyþ ~C55

Z
Ω
FτFsdΩ

Z
l
Ni;yNj;ydy

ð17Þ

The virtual variation of the work of the inertial loadings is as
follows:

δLine ¼
Z
V
ρ€uδuTdV ð18Þ

where ρ stands for the density of the material, and €u is the accel-
eration vector. Eq. (18) is rewritten using Eqs. (3) and (14):

δLine ¼
Z
l
δqTτ iNi

�Z
Ω
ρðFτ IÞðFsIÞdΩ

�
Nj€qsjdy ð19Þ

where €q is the nodal acceleration vector. The last equation can be
rewritten in the following compact manner:

δLine ¼ δqTτ iMijτs€qsj ð20Þ
where Mijτs is the mass matrix in the form of the fundamental
nucleus. Its components are:

Mijτs
xx ¼ Mijτs

yy ¼ Mijτs
zz ¼ ρ

Z
Ω
FτFsdΩ

Z
l
NiNjdy

Mijτs
xy ¼ Mijτs

xz ¼ Mijτs
yx ¼ Mijτs

yz ¼ Mijτs
zx ¼ Mijτs

zy ¼ 0

ð21Þ

It should be noted that no assumptions on the approximation order
have been done. It is therefore possible to obtain refined beam
models without changing the formal expression of the nucleus
components. This is the key point of CUF, which permits, with only
nine FORTRAN statements, to implement any-order beam theories.
The shear locking is corrected through the selective integration [see
Bathe (1996)]. The undamped dynamic problem can be written as it
follows:

M €aþKa ¼ p ð22Þ
where a is the vector of the nodal unknowns and p is the loadings
vector. With the introduction of harmonic solutions, it is possible to
compute the natural frequencies, ωi, for the homogenous case, by
solving an eigenvalues problem:

ð�ω2
iMþKÞai ¼ 0 ð23Þ

where ai is the i-th eigenvector. Generally oriented structures have
to be analyzed in the outlook of aeroelastic applications. The finite
element matrices are computed with respect to an arbitrary oriented
local reference system. The relation that furnishes the global
coordinated of the local reference system is as follows:

JOURNAL OF AEROSPACE ENGINEERING © ASCE / APRIL 2012 / 285



iloc ¼ eloc11 iþ eloc12 jþ eloc13 k jloc ¼ eloc21 iþ eloc22 jþ eloc23 k

kloc ¼ eloc31 iþ eloc32 jþ eloc33 k
ð24Þ

where i, j, and k are the unit vectors of the global reference system;
iloc, jloc, kloc are the unit vectors of the local reference system; and
the nine coefficients eloc11 ; :::; e

loc
33 are the global coordinates of the

local unit vectors. They are grouped in the matrix eloc. The finite
element matrices in the global reference system are given by:

Kijτs ¼ eloc
T
Kijτs

loc e
loc ð25Þ

Mijτs ¼ eloc
T
Mijτs

loc e
loc ð26Þ

Results and Discussion

A free-vibration analysis of different beam models is conducted in
this section. An isotropic material is used. Young’s modulus, E, is
equal to 75 [GPa]. The Poisson ratio, ν, is equal to 0.33. The den-
sity of the material, ρ, is equal to 2;700 ½kg∕m3�. Beams geometries
are described in the following sections.

Solid Rectangular Cross-Section Beam

A rectangular compact beam is considered as a first example to
assess the proposed FE model. The coordinate frame and the
cross-section geometry are shown in Fig. 2. The span-to-height ra-
tio, L∕h, is equal to 100. The straight and the swept beams have
square cross-sections with b equal to 0.2 m. Fig. 3 shows the nota-
tion used to deal with the swept configuration. The case considered
has hΛ equal to 5 m, this choice makes the sweep angle, Λ, equal to
14.3°. The swept-tapered beam keeps this angle, whereas b varies
linearly along the spanwise direction, y. The clamped section is

square with b ¼ 0:2 m and the free-tip section is rectangular with
b equal to 0.1 m, and h equal to 0.2 m. A static analysis of a can-
tilever is first performed to evaluate the convergence properties of
the finite element mesh. Four-node elements are used (B4). A ver-
tical force is applied at the center of the free-tip cross-section, [b∕2,
L, 0]. The vertical displacement, uz, is evaluated at [0, L, 0]. An
MSC Nastran model made of solid elements is used as a reference
solution. The computed results are presented in Table 2. The free-
vibration analysis is also considered. The first five bending modes
are analyzed. The natural frequencies, f i, are compared with those
obtained by the EBBM:

f i ¼
1
2π

�ðλiLÞ2
L2

�
EI
ρA

�1
2
�

ð27Þ

For the sake of brevity, the values of λiL are not reported here. They
can be found in Craig (1981) or Mcconnell (1995). Table 3 shows

z

x
O

y

b

h

Fig. 2. Rectangular cross-section

z

Fig. 3. Graphical definition of the sweep angle, Λ

Table 3. First Four Bending Frequencies, Hz, for Different Beam Models
and Meshes. Cantilever Straight Beam with Rectangular Cross-Section

Number of
elements EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

f 1 0.426a

10 0.428 0.426 0.426 0.428 0.428 0.428

20 0.426 0.426 0.426 0.427 0.427 0.427

30 0.426 0.426 0.426 0.426 0.426 0.426

f 2 2.668a

10 2.668 2.667 2.667 2.680 2.679 2.679

20 2.668 2.667 2.667 2.673 2.673 2.673

30 2.668 2.667 2.667 2.671 2.671 2.671

f 3 7.470a

10 7.468 7.461 7.461 7.498 7.497 7.497

20 7.468 7.461 7.461 7.480 7.479 7.479

30 7.468 7.461 7.461 7.474 7.473 7.473

f 4 14.639a

10 14.630 14.607 14.607 14.680 14.676 14.676

20 14.630 14.607 14.607 14.644 14.639 14.639

30 14.630 14.607 14.607 14.632 14.628 14.628

aReference value computed by means of Eq. (27).

Table 2. Vertical Displacement, uz × 10�2 m, for Different Beam Models
and Meshes. Rectangular Cross-Section Cantilever Beam

Number of
elements EBBM TBM n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Straight beam �1:332a

10 �1:333 �1:333 �1:333 �1:324 �1:324 �1:324

20 �1:333 �1:333 �1:333 �1:328 �1:329 �1:329

30 �1:333 �1:333 �1:333 �1:330 �1:330 �1:330

Swept beam �1:507a

10 �1:515 �1:515 �1:515 �1:504 �1:504 �1:504

20 �1:515 �1:515 �1:515 �1:510 �1:510 �1:510

30 �1:515 �1:515 �1:515 �1:510 �1:510 �1:510

Swept-tapered

beam �1:753a

10 �1:755 �1:755 �1:755 �1:744 �1:744 �1:744

20 �1:753 �1:753 �1:753 �1:748 �1:748 �1:748

30 �1:753 �1:753 �1:753 �1:749 �1:749 �1:749

aComputed with MSC Nastran, solid elements.
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the first four bending frequencies in the case of a cantilever straight
beam for different models and meshes. Fig. 4 presents the fourth
bending frequency values obtained with and without the Poisson
locking correction for the EBBM, TBM, and full linear models.
Table 4 shows the first four bending frequencies of a fixed-pinned
straight beam, and values from Eq. (27) are used as references. The
cantilever swept and swept-tapered beam models are addressed in
Tables 5 and 6, respectively. The first three bending frequencies
along the x- and z-directions are reported. An MSC Nastran solid
model is used as a benchmark. Solid elements with an almost
unitary aspect ratio have been used. The first row reports the total
number of degrees of freedom (DOF) of the considered models,
that is, the computational cost of each analysis. The static analysis

of the compact, rectangular, slender beam suggests the following
conclusions.
1. In all the considered beam configurations, the linear models,

N < 2, furnishes the largest displacement values. This result
is because of the Poisson locking correction that is just activated
for the linear cases, and it is coherent with Carrera et al. (2010a).

2. No significant differences have been observed among the
classical models, EBBM and TBM, and the full linear case;
that is, the shear effect and the linear terms of the cross-section
displacements have not had remarkable effects in this case.
This is due to the fact that the beam is slender, L∕h ¼ 100,
the section is compact, and a bending load is applied.

3. The results are in good agreement with those furnished by the
solid elements.

4. As far as the mesh refinement is concerned, the use of 30 four-
node elements offers appreciable convergent capabilities.

5. The good match between the results given by the present beam
formulation and MSC Nastran is confirmed, even in the cases

Table 4. First Four Bending Frequencies, Hz, for Different Beam Models
and Meshes. Fixed-Pinned Straight Beam with Rectangular Cross-Section,
30 B4 Mesh

EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 Nastran (solid)

f 1 1.866a

1.867 1.866 1.866 1.869 1.869 1.869 1.868

f 2 6.050a

6.048 6.044 6.044 6.054 6.053 6.053 6.049

f 3 12.621a

12.617 12.598 12.598 12.620 12.617 12.617 12.609

f 4 21.584a

21.570 21.518 21.518 21.556 21.546 21.546 21.535

aReference value computed by means of Eq. (27).

Table 5. First Three Bending Frequencies, Hz, in the x-and z-Directions.
Cantilever Swept Rectangular Beam, 30 B4 Mesh

Model
type EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

Nastran
(solid)

Number

of DOF 273 455 819 1,638 2,730 4,095 5,565

x-direction

f 1 0.388 0.387 0.387 0.388 0.388 0.388 0.389

f 2 2.427 2.426 2.426 2.430 2.430 2.430 2.437

f 3 6.795 6.789 6.789 6.801 6.800 6.800 6.819

z-direction

f 1 0.400 0.400 0.400 0.400 0.400 0.400 0.400

f 2 2.505 2.504 2.504 2.508 2.508 2.508 2.507

f 3 7.012 7.006 7.006 7.018 7.017 7.017 7.014

Table 6. First Three Bending Frequencies, Hz, in the x-and z-Directions.
Cantilever Swept-Tapered Rectangular Beam, 30 B4 Mesh

Model
type EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

Nastran
(solid)

Number

of DOF 273 455 819 1,638 2,730 4,095 5,565

x-direction

f 1 0.430 0.422 0.422 0.422 0.422 0.422 0.427

f 2 2.020 2.018 2.018 2.021 2.021 2.021 2.046

f 3 5.207 5.205 5.205 5.212 5.212 5.212 5.279

z-direction

f 1 0.499 0.491 0.491 0.491 0.491 0.491 0.490

f 2 2.675 2.672 2.672 2.677 2.676 2.676 2.668

f 3 7.181 7.175 7.175 7.187 7.186 7.186 7.165

 14
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 15.5

 16

 16.5

 17

 17.5

 18

EBBM TBM N = 1 N = 2 N = 3 N = 4

H
z

Beam model

Corrected
Not corrected
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 14.7

EBBM TBM N = 1 N = 2 N = 3 N = 4
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z

Beam model

Corrected

(a)

(b)

Fig. 4. Effect of the Poisson locking correction on the fourth bending
frequency of the straight beam with rectangular cross-section (a) with
and without correction (b) with correction

z

x
O

y

b

h

Fig. 5. Wing cross-section
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of swept and swept-tapered beam configurations. This aspect
offers validation of the adopted formulation. As far as the
free-vibration analysis is concerned, the following conclusions
hold.

Fig. 6. Graphical definition of the dihedral angle, Γ

Table 7. Bending Natural Frequencies, Hz, of the Cantilever Wing Models for Different Theories, 10 B4 Mesh

Model type EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 Nastran (solid)

Number of DOF 93 155 279 558 930 1,395 > 6;000;000

Straight

f 1, bending z-dir 5.872 5.866 5.866 5.984 5.934 5.925 5.864

f 2, bending x-dir 33.340 32.709 32.709 32.891 32.712 32.696 32.335

f 3, bending z-dir 36.735 36.581 36.581 37.206 36.447 36.288 34.844

f 4, bending z-dir 102.634 101.617 101.617 103.430 99.100 98.318 81.976

Sweepþ dihedral

f 1, bending z-dir 4.126 4.128 4.128 4.200 4.171 4.166 4.114

f 2, bending x-dir 23.736 23.432 23.432 23.560 23.472 23.465 23.778

f 3, bending z-dir 25.854 25.782 25.783 26.189 25.798 25.722 24.991

f 4, bending z-dir 72.288 71.815 71.815 73.035 70.837 70.459 64.731

Note: dir, direction.

Table 9. First Torsional Natural Frequency, Hz, of the Cantilever Wing models for Different Theories, 30 B4 Mesh

Model type EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 Nastran (solid)

Number of DOF 273 455 819 1,638 2,730 4,095 > 6;000;000a

Straight —a —a 161.581 56.857 54.457 53.979 44.481

Sweepþ dihedral —a —a —b 48.689 46.692 46.304 39.443
aNo torsional modes are provided by this model.
bNo torsional modes have been found for frequencies up to 200 Hz.

Table 8. Bending Natural Frequencies, Hz, of the Cantilever Wing Models for Different Theories, 30 B4 Mesh

Model type EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 Nastran (solid)

Number of DOF 273 455 819 1,638 2,730 4,095 > 6;000;000

Straight

f 1, bending z-dir 5.872 5.866 5.866 5.972 5.922 5.913 5.864

f 2, bending x-dir 33.340 32.709 32.709 32.834 32.656 32.625 32.335

f 3, bending z-dir 36.735 36.581 36.581 37.127 36.376 36.216 34.844

f 4, bending z-dir 102.634 101.617 101.617 103.210 98.918 98.133 81.976

Sweepþ dihedral

f 1, bending z-dir 4.126 4.128 4.128 4.191 4.162 4.157 4.114

f 2, bending x-dir 23.736 23.432 23.432 23.513 23.426 23.411 23.778

f 3, bending z-dir 25.854 25.782 25.783 26.132 25.746 25.668 24.991

f 4, bending z-dir 72.288 71.815 71.815 72.866 70.696 70.317 64.731

Note: dir, direction.

N = 4
NACA 2415

Fig. 7. Wing cross-section 17th natural modal shape, f ¼ 604 Hz,
straight wing model
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1. The results match those obtained with the analytical model.
As seen for the static case, the Poisson locking correction
greatly enhances the flexibility of the finite element model
for EBBM, TBM, and full linear models. Note that this cor-
rection can lead to lower frequencies than those from higher-
order models. This result agrees with that of Carrera et al.
(2010a, 2011).

2. The free-vibration analysis highlights the difference between
the EBBM solution and the TBM one. The higher the mode
number, the larger the differences. No very significant differ-
ences were observed between TBM and the full linear case.

3. A 10-element mesh furnishes the first natural frequency with
an appreciable accuracy. However, the higher the mode num-
ber, the larger the influence of a finer mesh. Because the 30-
element mesh offers good convergent behavior, it will be used
for all the subsequent analyses.

4. The results show a good match with those obtained with the
solid model. This confirms the validity of the adopted formu-
lation in dealing with arbitrary oriented structures (swept) with
varying cross-section geometries along the longitudinal axis
(tapered).

5. The higher the order of the beam model, the larger the total
number of DOF. A fourth-order model requires a similar total
number of DOF to that of the solid model because b∕h is close
to unity and the cross-section is compact.

Airfoil-Shaped Beam

A cantilever arbitrary-shaped, thin-walled beam is considered in
this section. The cross-section contour is defined by the NACA
2415 airfoil profile. The cross-section geometry is shown in
Fig. 5. The chord length, b, is assumed equal to 1 m. A three-cell
section is evaluated. The cells are obtained by inserting two beams
along the spanwise direction at 25% and 75% of the chord. The
span-to-chord ratio, L∕b, is assumed to be equal to 5; that is, a
moderately short structure is considered. The graphical definitions
of the sweep and dihedral angles are shown in Figs. 3 and 6.
Two different configurations are considered: a straight wing,
i.e., hΔ; hΓ ¼ 0, and a wing with both sweep and dihedral angle.
In this latter case, hΔ and hΓ are equal to 2 m, i.e., Δ ¼ 21:8° and
Γ ¼ 21:8°. An Ansys solid model is adopted for result comparison
purposes. Tables 7 and 8 show the first four bending frequencies
for the two considered wing configurations, 10 B4 and 30 B4
meshes are used, respectively. The first torsional frequency is
shown in Table 9. Fig. 7 shows the cross-section modal shape
of the free-tip obtained via a fourth-order model with a significant
distortion of the airfoil contour. The following considerations can
be made.
1. A good match is found with the reference solutions.
2. The bending modes can be detected using classical models.

However, the importance of higher-order terms increases for
higher vibration modes.

3. The investigation of the torsional modes underlines the impor-
tance of the refined models. At least a second-order theory is
needed to obtain a reliable estimation of the torsional fre-
quency. In the presence of sweep and dihedral angles, the in-
effectiveness of linear models is even more evident. It has to be
highlighted that, although EBBM and TBM cannot provide
torsional modes, the N ¼ 1 model is able to detect the torsion
of the cross-section; however, higher-order terms are needed to
compute more accurate torsional frequencies. This aspect is
consistent to what is presented in Carrera et al. (2010a) for
the static case.

4. The influence of the higher-order terms is more relevant on the
torsional modes than on the bending ones.

x

y

z

L1

L2

L3

Fig. 8. Joined-wing scheme, the horizontal segments are both clamped
at y ¼ 0

Table 10. Natural Frequencies, Hz, of the Joined Rectangular Wing for Different Beam Models and Comparison with Those obtained via Shell Elements in
Nastran

Model type EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 Nastran (shell)

Number of DOF 408 680 1,224 2,448 4,080 6,120 4,242

Bending z-direction

f 1 1.203 1.152 1.148 1.175 1.164 1.162 1.116

f 2 5.417 5.414 5.373 5.532 5.466 5.454 4.620

f 3 6.620 6.613 6.575 6.760 6.680 6.667 6.287

f 4 14.929 14.911 14.798 15.260 15.052 15.022 13.110

f 5 16.571 16.553 16.450 16.961 16.725 16.693 15.738

Bending x-direction

f 1 11.510 11.361 7.913 7.933 7.882 7.875 6.682

f 2 65.600 62.511 46.150 46.296 45.965 45.941 43.112

Torsional

f 1 —a —a —b 33.774 33.548 33.177 31.417

f 2 —a —a —b 34.034 33.803 33.442 31.658

Others

f 1 119.290 107.005 56.101 47.803 47.553 47.512 47.118
aNo torsional modes are provided by this model.
bNo torsional modes have been found for frequencies up to 200 Hz.
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5. Refined models are able to detect the distortion of the cross-
section. It is noteworthy that this aspect is particular relevant
when thin-walled structures are considered.

6. The TBM and the full linear models provide the same results
for bending modes.

7. The combined presence of the sweep and dihedral angles does
not corrupt the accuracy of the solution.

8. The difference in computational cost between the beam and the
solid models is more evident in the case of a thin-walled struc-
ture than for the compact one of the previous section.

9. A fourth-order model cannot be enough to detect the exact tor-
sional frequency or higher bending modes. This issue is typical
of thin-walled structures as clearly shown in Carrera et al.
(2010b), where N ¼ 11 models were used to detect the right
distortion of a thin-walled cylinder loaded by a point force.

Joined Wing

A joined wing model is considered as the last assessment of the
present beam formulation. The geometry of the wing is shown
in Fig. 8. The structure is composed of three segments: two hori-
zontal and one vertical. As far as the boundary conditions are con-
sidered, the horizontal segments are both clamped at y ¼ 0. Two
cross-section geometries are considered: rectangular and airfoil-
shaped. A compact rectangular cross-section is first considered,
as shown in Fig. 2. The height, h, is equal to 0.1 m and the width,

Fig. 9. Comparison between the present beam and the Nastran solu-
tion of a torsional mode of the joined-wing: (a) present Beam,
f ¼ 33:216 Hz; (b) nastran, f ¼ 31:417 Hz

Fig. 10. Differential bending mode of the rectangular joined wing.
f ¼ 47:512 Hz

Table 11. Natural Frequencies, Hz, of the Joined Wing with
the Airfoil-shaped Cross-Section

Model type EBBM TBM N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4

Number of

DOF 408 680 1,224 2,448 4,080 6,120

Bending z-direction

f 1 1.735 1.728 1.717 1.747 1.739 1.736

f 2 8.125 8.115 8.010 8.193 8.135 8.118

f 3 9.923 9.912 9.817 10.024 9.957 9.939

f 4 22.384 22.324 22.043 22.566 22.384 22.337

f 5 24.850 24.786 24.530 25.100 24.898 24.850

Bending x-direction

f 1 11.511 11.361 8.148 8.158 8.089 8.080

f 2 65.600 62.511 46.827 46.918 46.528 46.476

Torsional

f 1 —a — 152.689 49.721 49.409 48.375

f 2 — — 162.443 52.803 52.476 52.722

Others

f 1 119.291 107.005 56.488 45.982 45.722 45.338
aNo torsional modes are provided by this model.
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b, is equal to 1 m. The horizontal segments have L1∕h and L3∕h
equal to 100, whereas for the vertical segment, L2∕h is equal to 30.
Forty-five four-node beam elements are used as the mesh. An MSC
Nastran shell model is used to compare the results. The different
types of natural frequencies are reported in Table 10. A torsional
mode shape is shown in Fig. 9. The last row in Table 10 is related to
a particular mode shape characterized by a differential bending of
the horizontal segments, which induces a torsion of the vertical
part. This mode is shown in Fig. 10. The second joined wing model
has the airfoil-shaped cross-section, as shown in Fig. 5. The hori-
zontal segments have L1∕b and L3∕b equal to 10, whereas for the
vertical segment, L2∕b is equal to 3. Some natural frequencies are
reported in Table 11. Some modal shapes are reported in Fig. 11.
The following remarks can be made.
1. In the case of a rectangular cross-section, the total number of

degrees of freedom is lower than that of the shell model in the
cases of linear and parabolic beam models. In the case of cubic
expansion, the number of DOF’s is almost the same, whereas
the fourth-order model requires a larger number of displace-
ment variables than the shell model. This is because a compact
rectangular cross-section is considered. It should be pointed
out that the analysis of the airfoil-shaped cross-section requires
the same amount of DOF’s as the compact rectangular one,
whereas modeling via shell elements would probably need a
considerably larger effort.

2. The results are in good agreement with those furnished by the
shell model.

3. It has been confirmed that the torsional modes are detected by
higher-order models than the linear ones.

4. The proper detection of the torsional modes as well as of the

differential bending ones shows that the present beam model is
able to detect complex modal deformed configurations that are
usually furnished by shell models. This kind of result is there-
fore referred to as shell-like.

5. The x-direction bending frequencies by TBM and EBBM
present larger differences with respect to the refined models
than the z-direction ones. This is most likely because such a
bending mode makes the vertical portion of the joined wing
rotate along its local longitudinal axis, and this rotation cannot
be properly detected by TBM and EBBM because no in-plane
distortions are foreseen by these models.

Conclusions

The free-vibration analysis of classical and joined wings, based on
higher-order beam theories, has been presented in this paper. CUF
has been used for the systemic implementation of refined models.
According to CUF, the element stiffness and mass matrices are ob-
tained in a compact form, named fundamental nucleus, that does
not depend on the theory approximation order; that is, the order
of the model is assumed as a free-parameter of the modeling.
Elements based on classical theories have been derived as particular
cases. A preliminary static analysis has been conducted to validate
the present formulation in comparison with 3D solid element mod-
els. The analysis conducted has shown an excellent match between
the models. The numerical analysis has been conducted for the
investigation of dynamic behavior in terms of natural frequencies
and vibration modes. Comparisons with shell and solid wing mod-
els of commercial FE codes have been made. The following main

Fig. 11. Various modal shapes of the joined-wing with airfoil-shaped cross-section: (a) f ¼ 45:892 Hz; (b) f ¼ 49:721 Hz; (c) f ¼ 52:803 Hz;
(d) f ¼ 100:364 Hz
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conclusions can be drawn. The built beam formulation permits us
to deal in an unified manner with the following:
1. Arbitrary cross-sections geometries;
2. Compact and thin-walled structures;
3. Straight as well as arbitrary orientated structures; and
4. Unconventional joined wing configurations.
The use of higher-order theories has permitted classical beam
model limitations to be overcome. The comparison with shell
and solid models has shown the shell capabilities of the refined
beam theories; that is, accurate modal shapes for thin-walled struc-
tures can be obtained by means of significantly less cumbersome
1D elements. Furthermore, the effects of the higher-order terms
become significant when:
1. Thin-walled cross-section geometries are adopted;
2. The beam is not slender; and
3. The aim of the structural dynamics analysis is the proper

prediction of vibration modes such as torsional ones.
The use of the proposed beam models appears suitable for aeroelas-
tic applications that include airfoil in-plane deformations, and for
extensions to wings made of advanced composite materials. These
topics could be the subject of future work.
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