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THERMO-MECHANICAL BENDING OF FUNCTIONALLY
GRADED PLATES

S. Brischetto1, R. Leetsch2, E. Carrera1,
T. Wallmersperger2, and B. Kröplin2
1Department of Aeronautics and Space Engineering,
Politecnico di Torino, Italy
2Institute for Statics and Dynamics of Aerospace Structures,
Universität Stuttgart, Germany

In this work the deformations of a simply supported, functionally graded, rectangular
plate subjected to thermo-mechanical loadings are analysed, extending Unified Formula-
tion by Carrera. The governing equations are derived from the Principle of Virtual
Displacements accounting for the temperature as an external load only. The required
temperature field is not assumed a priori, but determined separately by solving Fourier’s
equation. Numerical results for temperature, displacement and stress distributions are
provided for different volume fractions of the metallic and ceramic constituent as well
as for different plate thickness ratios. They correlate very well with three-dimensional
solutions given in the literature.

Keywords: Closed form solutions; Functionally graded materials; Mechanical load; Principle of
virtual displacements; Refined models; Thermal load; Unified formulation

INTRODUCTION

The severe temperature loads involved in many engineering applications, such
as thermal barrier coatings, engine components or rocket nozzles, require high-
temperature resistantmaterials. In Japan in the late 1980s the concept of Functionally
Graded Materials (FGMs) has been proposed as a thermal barrier material.
FGMs are advanced composite materials wherein the composition of each material
constituent varies gradually with respect to spatial coordinates. Therefore, in FGMs
the macroscopic material properties vary continuously, distinguishing them from
laminated composite materials in which the abrupt change of material properties
across layer interfaces leads to large interlaminar stresses allowing for damage
development. As in the case of laminated composite materials, FGMs combine the
desirable properties of the constituent phases to obtain a superior performance, but
avoid the problem of interfacial stresses.
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THERMO-MECHANICAL BENDING OF FUNCTIONALLY GRADED PLATES 287

In the field of FGMs we face substantially three problems, namely: (1)
development of processing routes for functionally graded materials, (2) determination
of the spatially varying material properties (material modeling), and (3) modeling
of structures comprising FGMs. Even though the attention of the present work is
focused on the latter topic, a short discussion including literature overview of the
three topics is given.

1. Several techniques have been used for the manufacturing of FGMs, see
Burkes and Moore [1], Chung and Das [2], Khor et al. [3] and Kim et al. [4]. For a
comprehensive review about the design, processing, modeling as well as applications
of FGMs the interested reader is refered to the books by Miyamoto et al. [5] and
Suresh and Mortensen [6].

2. Since the determination of macroscopic material properties of
inhomogeneous materials in laboratory is very inconvenient for any possible
combination of volume fractions of the constituents, a large variety of theoretical
models – generally known as micromechanics or homogenization – has been
developed. In [7] Aboudi gives an overview of several micromechanical models
including simple analytical methods like the Rule of Mixture (ROM) as well as
more sophisticated computational models like the Method of Cells (MOC). Pindera
et al. [8] indicate that standard micromechanical models reflect the response of
FGMs only with restricted validity. This is due to the assumed decoupling of
micro- and macroscale by introducing a representative volume element (RVE)
that actually cannot be found in FGMs. In [9] Aboudi and co-workers introduce
the Higher Order Theory for Functionally Graded Materials (HOTFGM) that
explicitly couples micro- and macroscale. Applying HOTFGM, Aboudi et al. [10]
analysed the thermo-elastic response of FGMs. Reiter et al. [11] investigated the
elastic response of FGMs. They compared results of a finite element discretized
microstructure with homogenized models obtained from Mori-Tanaka and self-
consistent theory and found good agreement, albeit under certain loading conditions
the homogenized models could not reproduce the FGM response correctly.
In [12] Zuiker compares several homogenization techniques and specifies simple
requirements that micromechanical models should fulfil. Moreover, it is stated that
an exponential variation of material properties which is often assumed in FGM
structure modeling cannot in general be reproduced by micromechanical models.

3. In the last decade extensive research has been done on modeling of
structures comprising FGMs. Cheng and Batra [13] present a three-dimensional
analytical solution based on an asymptotic expansion for the thermo-elastic
deformation of an elliptic, functionally graded ceramic/metal plate. The through-
thickness variation of the volume fraction of the ceramic phase is assumed to be
a power law function while the effective material properties are obtained by a
Mori-Tanaka approach. In [14] the transient nonlinear thermo-elastic behavior of
a functionally graded ceramic/metal plate is investigated by Praveen and Reddy
applying the von Karman plate theory and the finite element method. It is found
that the response of a plate with material properties between those of ceramics
and metals is in general not intermediate to the responses of ceramic and metal
plates. Reddy [15] proposes analytical as well as finite element solutions for through-
thickness functionally graded plates based on third order shear deformation theory.
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288 S. BRISCHETTO ET AL.

The effective material properties are calculated from a simple Rule of Mixture
assuming a power law volume fraction distribution of the constituents. The model
accounts for thermo-mechanical coupling, time dependency and von Karman-
type nonlinearity. In [16] a three-dimensional analytical solution for the thermo-
mechanical response of simply supported, functionally graded, rectangular plates is
given by Reddy and Cheng using an asymptotic expansion method. Applying Mori–
Tanaka’s method and assuming a power law volume fraction distribution of the
constituents, they investigate the influence of the exponent of the volume fraction
law on the structural response under pure thermal or mechanical loads.

In previous authors’ work, the Unified Formulation (UF) developed by
Carrera for multi-layered structures [17] was extended to account also for func-
tionally graded plates under mechanical loadings. In [18, 19] the Principle of Virtual
Displacements (PVD) has been proposed and the extension to Reissner’s Mixed
Variational Theorem was given in [20]. This work addresses the static response of
functionally graded, rectangular plates subjected to thermal loads.

UNIFIED FORMULATION

In case of bi-dimensional multi-layered structures (plates and shells), Unified
Formulation (UF) by Carrera [17] permits to obtain a large variety of 2D models
that differ in the order of used expansion in thickness direction and in the manner
the variables are modelled (Equivalent Single Layer (ESL) or Layer Wise (LW)
approach). The salient feature of Unified Formulation is the unified manner in
which all considered variables and fields (displacement, temperature, material) can
be treated. As usual in plate theories, the considered variables and their variation
are splitted in a set of thickness functions and the relative terms depending on in-
plane coordinates (x� y) only. According to this separation, a general variable a and
its respective variation �a can be written as:

a�x� y� z� = F��z� a��x� y� �a�x� y� z� = Fs�z� �as�x� y� with �� s = 1� � � � � N (1)

where N is the order of expansion in the thickness direction.
In a multi-layered plate the thickness functions of the considered variables

can be assumed for the whole structure (ESL approach) or for each single layer
(LW approach). In the former case Taylor polynomials are employed as thickness
functions while in the latter combinations of Legendre polynomials are used. For
further details about UF for multi-layered structures and the relative assembling
procedure we refer the reader to [17], [21], and [22].

Unified Formulation for Displacement Components

Due to the unified treatment of all variables, the three displacement
components ux, uy and uz and their relative variations can be modelled via Unified
Formulation, irrespective of whether FGM layers or constant property layers (also
indicated here as classical layers) are considered. A typical single layer FGM plate
is reported in Figure 1, a plate with a FGM interlayer between two different
“classical” layers is shown in Figure 2. In case of the ESL model, the expansion of
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THERMO-MECHANICAL BENDING OF FUNCTIONALLY GRADED PLATES 289

Figure 1 Example of a single-layered FGM plate.

the displacement components is assumed for the whole multi-layer:

�ux� uy� uz� = F��ux�� uy�� uz�� ��ux� �uy� �uz� = Fs��uxs� �uys� �uzs� (2)

with Taylor expansions from first up to the 14th-order: F0 = z0 = 1, F1 = z1 =
z� � � � � FN = zN � � � � � F14 = z14.

The LW model is obtained if we consider separately each layer k of the given
multi-layered structure:(

uk
x� u

k
y� u

k
z

) = Fk
�

(
uk
x�� u

k
y�� u

k
z�

) (
�uk

x� �u
k
y� �u

k
z

) = Fk
s

(
�uk

xs� �u
k
ys� �u

k
zs

)
(3)

In this case, a combination of Legendre polynomials is employed as thickness
functions:

Ft =
P0 + P1

2
Fb =

P0 − P1

2
Fl = Pl − Pl−2 with �� s = t� b� l and l = 2� � � � � 14

(4)

Here, t and b indicate the top and bottom values for each layer, Pl are the Legendre
polynomials

(
P0 = 1� P1 = �k� P2 = �3�2k−1�

2 and so on
)
with �k = 2zk

hk
as the non-

dimensionalized thickness coordinate ranging from −1 to +1 in each layer k. zk is
the local coordinate and hk the thickness of the kth layer.

Figure 2 Example of a multi-layered structure with an internal FGM layer: evaluation of the
displacement u in case of Equivalent Single-Layer model (left) and Layer-Wise model (right).
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290 S. BRISCHETTO ET AL.

The chosen functions have the following interesting properties:{
�k = +1 � Ft = 1	 Fb = 0	 Fl = 0 at the top

�k = −1 � Ft = 0	 Fb = 1	 Fl = 0 at the bottom
(5)

Typical ESL and LW displacement evaluations through the thickness direction of
a multi-layered FGM plate are reported in Figure 2. It is obvious from Figures 1
and 2 that for a single layer plate the ESL and LW evaluations coincide.

Unified Formulation for Temperature Profile

In the present model the temperature is seen as an external loading. If the
values of the temperature are known at the top and bottom surface of the plate, the
thermal load can be considered in two different ways. The first method introduces
an assumed profile T�z� that varies linearly from the top to the bottom; the second
one computes T�z� by solving Fourier’s heat conduction equation. In this article
only the second way is considered. Even for a very thin FGM layer the temperature
profile is nonlinear. Therefore, the assumption of a linear T�z� would cause very
large errors.

The temperature profile is described in the same way as the displacements in
case of the Layer-Wise approach:

Tk�x� y� z� = F�

k
� with � = t� b� l and l = 2� � � � � 14 (6)

Again, t and b indicate top and bottom of the considered kth layer. The
thickness functions F� are a combination of Legendre polynomials.

If the temperature was assumed linear through the thickness, the two values at
the top and bottom surface, and therefore Ft and Fb, would be sufficient to describe
the assumed profile via UF. The calculation procedure for the actual temperature in
case of FGM layers is reported in Appendix A, giving the values of 
k� for Eq. (6).

Application of the Unified Formulation to the Elastic
and Thermal Properties of FGMs

In FGM layers the elastic and thermal properties change continuously in
thickness direction. The variation of the elastic characteristics is usually given in terms
of exponential and/or polynomial functions applied directly to the engineering
constants such as Young’s Moduli Ei, Shear Moduli Gij , Bulk Moduli Bi and/or
Poisson ratio �ij or directly to the material stiffnessesCij . Actually, since in each point
of the plate a relation between the engineering constants and the material stiffnesses
holds, only the second case can be treated. Generally, the variation of the stiffness
matrix in the thickness direction can be described by multiplying a material constant
by a function of z, i.e.,

C�z� = C0 · f�z� (7)
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THERMO-MECHANICAL BENDING OF FUNCTIONALLY GRADED PLATES 291

The same variation in the thickness direction can be supposed for the thermal
conductivity coefficients Ki and the thermal expansion coefficients �i:

K�z� = K0 · g�z� (8)

��z� = �0 ·h�z� (9)

The thermo-mechanical coupling coefficients are given by:

��z� = C�z� · ��z� = C0 · �0 ·m�z� (10)

The procedure does not depend on the thickness laws f�z�, g�z�, h�z�, and m�z�.
Thus, any possible material gradient can be accounted for. Now, applying the ideas
behind UF, the following expansions are made:

C�z� = Fb�z�Cb + F
�z�C
 + Ft�z�Ct = FrCr (11)

K�z� = Fb�z�Kb + F
�z�K
 + Ft�z�Kt = FrKr (12)

��z� = Fb�z��b + F
�z��
 + Ft�z��t = Fr�r (13)

��z� = Fb�z��b + F
�z��
 + Ft�z��t = Fr�r (14)

where the thickness functions Fr are taken in the same manner as in the LW
expansion:

Ft =
P0 + P1

2
Fb =

P0 − P1

2
F
 = P
 − P
−2 with 
 = 2� � � � � Nr (15)

Figure 3 explains the above expansion procedure in case of the stiffness matrix, the
same loop is employed for all material properties.

The actual values of C , K , �, and � are then recovered as a weighted
summation on the terms Cr , Kr , �r , and �r , respectively. The weights are given by
the thickness functions Fr . The order of the expansion can be freely chosen as for
the displacements. In this article the maximum value of Nr is 10. It is mandatory to
choose such a high order of expansion to ensure the necessary accuracies.

The procedure to include the varying stiffnesses, thermal conductivity, thermal
expansion and coupling coefficients in the model requires the computation of the Cr ,
Kr , �r , and �r arrays. This task can be accomplished by solving for each component
Cijr , Kir , �ir , and �ir a simple algebraic system of order Nr . The actual values are
calculated at Nr different locations along the thickness (z1� � � � � zNr

).

 �Cij� Ki� �i� �i��z1�
���

�Cij� Ki� �i� �i��zNr
�

 =
 Fb�z1� · · · F
�z1� · · · Ft�z1�

���
���

���
Fb�zNr

� · · · F
�zNr
� · · · Ft�zNr

�




Cijb� Kib� �ib� �ib
���

Cijr � Kir � �ir � �ir
���

Cijt� Kit� �it� �it

 (16)
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292 S. BRISCHETTO ET AL.

Figure 3 Example of the assembling procedure for the elastic coefficients array in case of a FGM layer.

GOVERNING EQUATIONS

This section presents the derivation of the governing equations based on the
Principle of Virtual Displacements (PVD) in the case of a FGM plate subjected to
thermal and/or external mechanical loads. A closed form solution will be developed
considering particular material and boundary conditions. The procedure permits
to obtain the so-called fundamental nuclei, which are simple matrices representing
the basic element from which the stiffness matrices of the whole structure can be
computed.

We consider a multi-layered plate with Nl layers, some of which could be FGM
layers. The PVD for the thermo-mechanical case reads:

Nl∑
k=1

∫
�k

∫
Ak

{
��kT

pG �k
pC + ��kT

nG �k
nC

}
d�kdz =

Nl∑
k=1

�Lk
e (17)

where �k and Ak are the integration domains in plane (x� y) and z direction,
respectively. k indicates the layer and T the transpose of a vector. �Lk

e is the external
work for the kth layer. G means geometrical relations and C constitutive ones. �pC

and �nC contain the mechanical (d) and thermal (t) contributions, so:

Nl∑
k=1

∫
�k

∫
Ak

{
��kT

pG

(
�k
pd − �k

pt

)+ ��kT

nG

(
�k
nd − �k

nt

)}
d�kdz =

Nl∑
k=1

�Lk
e (18)

The steps to obtain the governing equations are:

• Substitution of geometrical relations (subscript G)
• Substitution of appropriate constitutive equations (subscript C)
• Introduction of the Unified Formulation.
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THERMO-MECHANICAL BENDING OF FUNCTIONALLY GRADED PLATES 293

Geometrical Relations

From this point on, stresses and strains are going to be separated into in-plane
and normal components denoted respectively by the subscripts p and n. Mechanical
strains in the kth layer can be related to the displacement field uk = �uk

x� u
k
y� u

k
z� via

the geometrical relations:

�k
p = Dp u

k �k
n = �Dnp +Dnz� u

k (19)

wherein the differential operator arrays are defined as follows

Dp =
�x 0 0
0 �y 0
�y �x 0

 Dnp =
0 0 �x
0 0 �y
0 0 0

 Dnz =
�z 0 0
0 �z 0
0 0 �z

 (20)

with �p = ��1� �2� �6� = ��xx� �yy� �xy� and �n = ��5� �4� �3� = ��xz� �yz� �zz�. Here, �p
and �n contain both mechanical and thermal contributions.

Constitutive Equations

In case of thermo-mechanical problems, the constitutive equations are
given as:

�k
pC = �k

pd − �k
pt = C k

pp�z� �
k
pG + C k

pn�z� �
k
nG − �kp�z�T

k

�k
nC = �k

nd − �k
nt = C k

np�z� �
k
pG + C k

nn�z� �
k
nG − �kn�z�T

k
(21)

where the coefficients �kp�z� and �kn�z� are linked to the coefficients of thermal
expansion �kp�z� and �kn�z� by:

�kp�z� = �kpp�z�+ �kpn�z� = C k
pp�z� �

k
p�z�+ C k

pn�z� �
k
n�z�

�kn�z� = �knp�z�+ �knn�z� = C k
np�z� �

k
p�z�+ C k

nn�z� �
k
n�z�

(22)

with

C k
pp�z� =

C11�z� C12�z� C16�z�

C12�z� C22�z� C26�z�

C16�z� C26�z� C66�z�

 C k
pn�z� =

0 0 C13�z�

0 0 C23�z�

0 0 C36�z�


C k

np�z� =
 0 0 0

0 0 0
C13�z� C23�z� C36�z�

 C k
nn�z� =

C55�z� C45�z� 0
C45�z� C44�z� 0

0 0 C33�z�


(23)

The thermal expansion coefficients and the coefficients of thermo-mechanical
coupling are:

�kp�z� =
�1�z��2�z�

�6�z�

 �kn�z� =
 0

0
�3�z�

 �kp�z� =
�1�z��2�z�

�6�z�

 �kn�z� =
 0

0
�3�z�

 (24)
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294 S. BRISCHETTO ET AL.

Applying the extension of UF to FGM plates, the material coefficients are modelled
in the following way:(

C k
pp�z��C

k
pn�z��C

k
np�z��C

k
nn�z�

) = Fr�z�
(
C k

ppr �C
k
pnr �C

k
npr �C

k
nnr

)
(25)(

�kp�z�� �
k
n�z�

) = Fr�z�
(
�kpr � �

k
nr

)
(26)

with r = 1� � � � � 10.
Therefore, in case of FGM plates, the constitutive equations Eqs. (21) read:

�k
pC = �k

pd − �k
pt = FrC

k
ppr�

k
pG + FrC

k
pnr�

k
nG − Fr�

k
prT

k

�k
nC = �k

nd − �k
nt = FrC

k
npr�

k
pG + FrC

k
nnr�

k
nG − Fr�

k
nrT

k
(27)

Differential Equilibrium Equations

Substituting the geometrical relations Eqs. (19) and constitutive equations
Eqs. (27) into the variational statement Eq. (17), we obtain for the kth layer:∫

�k

∫
Ak

[(
Dp�u

k
)T (

FrC
k
pprDp u

k + FrC
k
pnr

(
Dnp +Dnz

)
uk − Fr�

k
prT

k
)

+ (
�Dnp +Dnz��u

k
)T (

FrC
k
nprDp u

k + FrC
k
nnr�Dnp +Dnz�u

k

− Fr�
k
nrT

k
)]
d�kdz = �Lk

e (28)

Now, we implement the expansions of UF Eqs. (2), (3) and (6), yielding:∫
�k

∫
Ak

[(
DpFs�u

k
s

)T (
FrC

k
pprDp F�u

k
� + FrC

k
pnr�Dnp +Dnz�F�u

k
� − Fr�

k
prF�


k
�

)
+ (

�Dnp +Dnz�Fs� u
k
s

)T (
FrC

k
nprDp F�u

k
�

+ FrC
k
nnr�Dnp +Dnz�F�u

k
� − Fr�

k
nrF� 


k
�

)]
d�kdz = �Lk

e (29)

Introducing the following notations:

(
E�sr � E��zsr

� E�s�zr
� E��zs�zr

) = ∫
Ak

(
F�FsFr� F��z

FsFr� F�Fs�z
Fr� F��z

Fs�z
Fr

)
dz (30)

where, z indicates the partial derivative with respect to z, Eq. (29) can be written in
compact form as:∫

�k

[(
Dp�u

k
s

)T (
E�srC

k
pprDp u

k
� + E�srC

k
pnrDnp u

k
� + E��zsr

C k
pnr u

k
� − E�sr�

k
pr


k
�

)
+ (

Dnp�u
k
s

)T (
E�srC

k
nprDp u

k
� + E�srC

k
nnrDnp u

k
� + E��zsr

C k
nnr u

k
� − E�sr�

k
nr


k
�

)
+ (

�uks
)T (

E�s�zr
C k

nprDpu
k
� + E�s�zr

C k
nnrDnpu

k
� + E��zs�zr

C k
nnr u

k
� − E�sr�

k
nr


k
�

)]
d�k

= �Lk
e (31)
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THERMO-MECHANICAL BENDING OF FUNCTIONALLY GRADED PLATES 295

After integration by parts, the governing differential equations on domain �k

and boundary conditions on edge �k are obtained. Further details on the procedure
of integration by parts are reported in [19].

The governing equations for a FGM multi-layered plate subjected to thermal
and mechanical loadings are:

�uks
T
� K k�sr

uu uk� = K k�sr
u
 �k� + Pk

u� (32)

where (K k�sr
u
 �k� ) is the thermal load and Pk

u� is the external mechanical one. The
fundamental nuclei K k�sr

uu and K k�sr
u
 have to be assembled by expanding the indices

as described in the following: in case of a FGM layer, an internal loop on index r
accounts for the variation of the material properties, via � and s we consider the
expansion in z for the considered variables, and via k the assembling on the number
of layers is accomplished.

The fundamental nuclei are:

K k�sr
uu = −DT

p

(
E�srC

k
pprDp + E�srC

k
pnrDnp + E��zsr

C k
pnr

)
−DT

np

(
E�srC

k
nprDp + E�srC

k
nnrDnp + E��zsr

C k
nnr

)
+ E�s�zr

C k
nprDp + E�s�zr

C k
nnrDnp + E��zs�zr

C k
nnr (33)

K k�sr
u
 = −DT

p

(−E�sr�
k
pr

)−DT
np

(−E�sr�
k
nr

)− E�sr�
k
nr (34)

Closed Form Solutions

A Navier-type closed form solution is obtained via substitution of harmonic
expressions for the displacements and temperature as well as considering transversely
isotropic materials.

The following harmonic assumptions can be made for the field variables:

uk
x�
= ∑

m�n

(
Û k

x�

)
cos

(
m�xk
ak

)
sin

(
n�yk
bk

)
k = 1� Nl

uk
y�
= ∑

m�n

(
Û k

y�

)
sin

(
m�xk
ak

)
cos

(
n�yk
bk

)
� = t� b� r

uk
z�
= ∑

m�n

(
Û k

z�

)
sin

(
m�xk
ak

)
sin

(
n�yk
bk

)
r = 2� N


k� =
∑
m�n

(

̂k�
)
sin

(
m�xk
ak

)
sin

(
n�yk
bk

)
(35)

where Û k
x�
, Û k

y�
, Û k

z�
, and 
̂k� are the amplitudes, m and n the wave numbers, and ak

and bk the plate dimensions.
The explicit forms of the fundamental nuclei K k�sr

uu and K k�sr
u
 are given in

Appendix B. If 
k� = 0 in Eq. (32), only a mechanical load is considered. Vice versa,
if Pk

u� = 0, only a thermal load is applied. If we consider a multi-layered structure
comprising FGM and/or “classical” layers, two types of assembling procedures are
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296 S. BRISCHETTO ET AL.

Figure 4 Example of assembling procedure for nucleus K k�sr in case of a multi-layered plate with an
internal FGM layer: ESL model.

possible: Equivalent Single Layer approach as indicated in Figure 4 and Layer Wise
model as illustrated in Figure 5. The fundamental nuclei are formally the same
in case of “classical” or FGM layers. The only difference is the assembling loop
on index r which accounts for the variation of material properties through the
thickness. In case of a single FGM layer, no multi-layer assembling procedure is
necessary. Thus, in this case there is no difference between ESL or LW modeling.

Implemented Theories

The proposed assessment considers only one FGM layer, with two different
loading conditions: a pure mechanical or thermal load, both applied at the top
of the plate. In the case of only one layer, there is no difference between ESL or
LW models. So, the proposed kinematics are indicated with the order N used for
the description of the displacement u and the temperature T along the thickness
direction (N = 1� � � � � 14) where the same order is used for these two variables. The
proposed model is able to describe multi-layered FGM/classical structures also.
These new benchmarks will be proposed in a future authors’ work.

RESULTS AND DISCUSSION

To validate the theory presented in the previous sections, we consider a plate
problem for which a three-dimensional solution was given in [16]. A rectangular
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THERMO-MECHANICAL BENDING OF FUNCTIONALLY GRADED PLATES 297

Figure 5 Example of assembling procedure for nucleus K k�sr in case of a multi-layered plate with an
internal FGM layer: LW model.

plate comprising a single functionally graded layer, as shown in Figure 6, is
analyzed. As a typical example for high-temperature applications, the constituent
materials of the functionally graded plate are taken to be Monel (70Ni-30Cu), a
nickel-based alloy, and the ceramic zirconia (ZrO2). The required material properties
are those reported in [16]:

Bm = 227�24GPa� �m = 65�55GPa�

�m = 15× 10−6/K� Km = 25W/mK� for Monel

Bc = 125�83GPa� �c = 58�08GPa�

�c = 10× 10−6/K� Kc = 2�09W/mK� for zirconia

For this two-phase composite material different micromechanical models can be
applied for the computation of the effective local material properties. According
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298 S. BRISCHETTO ET AL.

Figure 6 Considered plate for the numerical assessment: a single-layered, functionally graded plate
subjected to pure thermal or pure mechnanical bi-sinusoidal loads.

to [16], we choose the following formulas:

• The effective bulk modulus B and shear modulus � are given by the mean field
estimate of Mori and Tanaka [23, 24]:

B − Bm

Bc − Bm

= V2

1+ �1− V2�
Bc−Bm

Bm+ 4
3 �m

(36)

� − �m

�c − �m

= V2

1+ �1− V2�
�c−�m
�m+f1

with f1 =
�m�9Bm + 8�m�

6�Bm + 2�m�
(37)

• The effective heat conduction coefficient K is given by the model of Hatta and
Taya [25]:

K − Km

Kc − Km

= V2

1+ �1− V2�
Kc−Km

3Km

(38)

• For the coefficient of thermal expansion � a correspondence relation holds
[26, 27], reading:

�− �m
�c − �m

=
1
B
− 1

Bm

1
Bc

− 1
Bm

(39)

In Eqs. (36) to (39), the indices m and c refer to the metallic and ceramic phase,
respectively. V2 is the volume fraction of the ceramic phase that is assumed for the
computations as

V2 = Vc = �z/h�ng (40)
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THERMO-MECHANICAL BENDING OF FUNCTIONALLY GRADED PLATES 299

Figure 7 Through-thickness distribution of the volume fraction Vc of the ceramic phase (left) and of
the bulk modulus (right).

where by changing the exponent ng different material gradients can be
accomplished. Figure 7 shows the through-thickness distribution of the volume
fraction Vc of the ceramic phase and the resulting evolution of the bulk modulus.

At the top surface the plate is subjected to pure mechanical or pure thermal,
transverse bi-sinusoidal loads, see Figure 6, reading:

p+
z = p̂+

z sin
(
m�x

a

)
sin

(
n�y

b

)
T+ = T̂+ sin

(
m�x

a

)
sin

(
n�y

b

)
(41)

Here m, n are the wave numbers and a� b the plate dimensions, respectively. A
quantity with a superimposed hat denotes the amplitude of the respective load. Since
we propose a linear theory, more complicated load cases can be accomplished by
superimposing the pure thermal and mechanical contributions.

As we consider an analytical Navier-type solution, the plate is assumed to be
simply supported, i.e. the boundary conditions read

uy = uz = 0 at x = 0� a

ux = uz = 0 at y = 0� b

T = 0 at x = 0� a and y = 0� b

(42)

which is fulfilled by the assumed harmonic in-plane displacement and temperature
fields, compare Eqs. (35). In addition, we assume m = n = 1 for the wave numbers.

As done in [16], non-dimensionalized quantities are introduced:

ūi =
ûi�z�

Pa
�̄ij =

�̂ij�z�

PB∗
�T = �∗T̂ �z�

P
(43)
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300 S. BRISCHETTO ET AL.

where either P = p̂+
z /B

∗ or P = �∗T̂+ is taken for the applied load p+
z or for the

applied temperature T+ at the top, respectively. The scale factors are B∗ = 1GPa
and �∗ = 1× 106. The indices i and j can be x, y, and z.

Analysis of the Temperature Profile T�z�

Since in the present model the temperature is taken into account as an external
loading only, its through-thickness distribution must be given a priori as an input
to the formulation. In the literature the temperature field is often assumed to vary
linearly between the plate’s top and bottom surface, see e.g., [28]. To compute
the actual through-thickness distribution of the temperature for any given material
gradient ng and plate dimensions, the theory reported in Appendix A has been used
in this work. The boundary conditions at the top and bottom surface of the plate
read, respectively,

T
+ = 1 at z = +h

2
T

− = 0 at z = −h

2
(44)

Figure 8 depicts the through-thickness distribution of the non-dimensionalized
temperature �T for a plate thickness ratio of a/h = 10, a/b = 1 and different material
gradients ng. For comparison reasons the temperature variation for a “classical”
layer with constant material properties is also shown. It can be clearly seen that the
temperature distribution of a functionally graded layer differs significantly from that
of a “classical” layer. Furthermore, it is obvious that the temperature distribution
is strongly nonlinear which contradicts the assumption of a linear temperature
variation often found in the literature. Even for the “classical” layer it is seen
that the consideration of the three-dimensional Fourier equation, see Eq. (48) in

Figure 8 Through-thickness distribution of the non-dimensionalized temperature �T .
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THERMO-MECHANICAL BENDING OF FUNCTIONALLY GRADED PLATES 301

Figure 9 Through-thickness distribution of the non-dimensionalized transverse deflection ūz due to
a thermal load for different plate thickness ratios (ng = 2) (left) and for different material gradients
(a/h = 10) (right).

Appendix A, leads to a nonlinear temperature distribution if the layer is subjected
to a non-constant thermal load. Concerning the alteration of the temperature
distribution due to different material gradients ng the influence of the material
composition is considerable.

Transverse Deflection under Thermal or Mechanical Load

In Figures 9 and 10 the through-thickness distribution of the transverse
deflection uz is shown for different plate thickness ratios (a/h = 4� 10� 50� and
material gradients (ng = 0�5� 1� 2), respectively, taking a/b = 1. It can be clearly seen

Figure 10 Through-thickness distribution of the non-dimensionalized transverse deflection ūz due to a
mechanical load for different plate thickness ratios (ng = 2) (left) and for different material gradients
(a/h = 10) (right).
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302 S. BRISCHETTO ET AL.

Table 1 Mechanical load; Non-dimensional transverse displacement ūz and in-plane displacement ūx
at top (t), middle (m) and bottom (b) of the considered plate (ng = 2)

a/h = 4 a/h = 10

3D N = 1 N = 3 N = 5 3D N = 1 N = 3 N = 5

ūz(t) −13�46 −11�23 −13�46 −13�46 −168�9 −126�2 −168�9 −168�9
ūz(m) −13�70 −10�83 −13�71 −13�70 −170�7 −125�9 −170�7 −170�7
ūz(b) −12�73 −10�43 −12�73 −12�73 −168�5 −125�5 −168�5 −168�5
ūx(t) 4�021 2�932 4�020 4�022 26�17 19�29 26�17 26�17
ūx(m) −0�08998 −0�05419 −0�09095 −0�08991 0�7108 0�7807 0�7109 0�7112
ūx(b) −4�069 −3�041 −4�067 −4�069 −24�72 −17�73 −24�72 −24�72

3D solution is reported in [16].

from Figure 9 that in the case of a thermal loading the transverse deflection varies
considerably through the thickness. Therefore, the usual assumption of a constant
through-thickness distribution of uz made by most lower-order plate theories is
not justified in the thermal case. As it is seen from Figure 9, the influence of
different material gradients ng is substantial for a thermal loading. This is due to the
combined effects of the varying thermal field – and therefore the loading – as well
as the altering mechanical properties. However, in the case of a pure mechanical
loading, the influence of different material gradients ng is less pronounced, see
Figure 10. Furthermore, as can be seen from this figure, the variation of the
transverse deflection uz through the thickness is small. Therefore, in the mechanical
case the assumption of a constant through-thickness distribution is valid.

The results obtained by UF for a pure thermal or pure mechanical loading are
compared with three-dimensional solutions reported by Reddy and Cheng in [16].
Tables 1–4 provide results for the in-plane stress ��xx� and transverse shear/normal
stresses ��xz� and ��zz� in non-dimensionalized form for different plate thickness
ratios, taking a/b = 1 and the exponential index ng = 2. It can be concluded that
Unified Formulation yields very accurate results compared to 3D solutions both
for the mechanical and the thermal case and even for very thick plates. However,
to capture all effects of the displacement and stress distributions higher-order plate
theories are necessary. Comparing the cases of thermal and mechanical loading,

Table 2 Mechanical load; Non-dimensional stresses �̄ij at top (t), middle (m) and bottom (b)
of the considered plate (ng = 2)

a/h = 4 a/h = 10

3D N = 2 N = 4 N = 5 3D N = 2 N = 4 N = 5

�̄xx(t) −3�154 −2�8473 −3�152 −3�154 −18�17 −16�96 −18�17 −18�17
�̄xx(m) −0�2037 −0�3079 −0�2027 −0�2038 −0�8722 −1�498 −0�8738 −0�8726
�̄xx(b) 3�631 3�633 3�633 3�632 22�06 22�88 22�06 22�06
�̄xz(m) −0�9500 −0�6854 −0�9535 −0�9500 −2�396 −1�739 −2�398 −2�396
�̄zz(m) −0�5130 −0�7165 −0�5110 −0�5131 −0�5142 −1�691 −0�5166 −0�5143

3D solution is reported in [16].
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Table 3 Thermal load; Non-dimensional transverse displacement ūz and in-plane displacement ūx at
top (t), middle (m) and bottom (b) of the considered plate (ng = 2)

a/h = 4 a/h = 50

3D N = 1 N = 6 N = 14 3D N = 1 N = 6 N = 14

ūz(t) 3�043 5�452 3�074 3�043 28�53 55�61 28�81 28�54
ūz(m) 2�143 4�453 2�170 2�144 28�45 55�52 28�74 28�46
ūz(b) 1�901 3�456 1�928 1�901 28�43 55�44 28�71 28�44
ūx(t) −1�681 −3�111 −1�694 −1�681 −1�703 −3�092 −1�714 −1�703
ūx(m) −0�6822 −1�370 −0�6841 −0�6822 −0�8081 −1�348 −0�8101 −0�8080
ūx(b) 0�08240 0�3710 0�08999 0�08266 0�08528 0�3695 0�09209 0�08553

3D solution is reported in [16].

Table 4 Thermal load; Non-dimensional stresses �̄ij at top (t), middle (m) and bottom (b) of the
considered plate (ng = 2)

a/h = 4 a/h = 50

3D N = 1 N = 6 N = 14 3D N = 1 N = 6 N = 14

�̄xx(t) −1018 −241�2 −1015 −1018 −1003 −235�7 −1001 −1003
�̄xx(m) −204�8 −989�9 −197�2 −204�7 −251�2 −980�1 −244�4 −251�2
�̄xx(b) −73�53 884�6 −108�8 −74�03 −76�10 893�1 −107�4 −76�59
�̄xz(m) 4�186 3�9833 5�036 4�203 0�3122 0�3292 0�3742 0�3135
�̄zz(m) 6�217 −521�8 17�10 6�300 0�04067 −469�61 9�3567 0�1178

3D solution is reported in [16].

it is seen that a thermal load requires higher-order thickness assumptions. As stated
in the previous section, this is due to the coupling between the thermal and the
mechanical field claiming higher order thickness assumptions to obtain the same
accuracy.

CONCLUSIONS

In this work an extension of Unfied Formulation (UF) has been presented
accounting for functionally graded plates subjected to thermal loads. It has been
demonstrated that the unified treatment of all considered variables (displacements,
temperature, material), inherently included in UF, provides an adequate means for
taking into account any kind of material gradient. UF for functionally graded
materials provides very accurate results compared to 3D solutions although higher
order expansions in thickness direction are mandatory. It was found that the
assumption of a constant transverse deflection through the thickness is not valid in
the thermal case but still a justified approximation for the mechanical loading. The
influence of different material gradients is more pronounced for a thermal loading.
This claims also a very precise description of the thermal field contradicting any
simple through-thickness assumptions for the temperature field often found in the
literature.
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APPENDIX A

If the considered plate is subjected to a bi-sinusoidal thermal load at the top
and the bottom, the thermal boundary conditions are:

T = 0 at x = 0� a and y = 0� b

T = Tb sin
(
m�x

a

)
sin

(
n�y

b

)
at z = −h

2
with b � bottom (45)

T = Tt sin
(
m�x

a

)
sin

(
n�y

b

)
at z = +h

2
with t � top

where m and n are the wave numbers along the two in-plane plate directions (x� y).
a and b are the plate dimensions, h is the plate thickness, and Tb and Tt are the
amplitudes of the temperature at the bottom and top, respectively.

In the case of multi-layered structures, continuity conditions for the
temperature T and the heat flux qz hold in the thickness direction at each kth layer
interface, reading:

Tk
t = Tk+1

b qk
zt = qk+1

zb for k = 1� � � � � Nl − 1 (46)

where Nl is the number of layers in the considered structure.
The relationship between heat flux and temperature is given as:

qk
z = Kk

3

�Tk

�z
(47)
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In general for the kth homogeneous orthotropic layer, the differential Fourier
equation of heat conduction reads:

Kk
1

�2T

�x2
+ Kk

2

�2T

�y2
+ Kk

3

�2T

�z2
= 0 (48)

Kk
1 , K

k
2 , and Kk

3 are the thermal conductivities along the three plate directions, x,
y, and z, that are constant in each “classical” layer while they vary through the
thickness in FGM layers. � indicates the partial derivative.

For a “classical” layer, both governing equations and boundary conditions are
satisfied by assuming the following temperature field:

T�x� y� z� = f�z� sin
(
m�x

a

)
sin

(
n�y

b

)
(49)

with

f�z� = T0 exp
(
skz

)
(50)

Here, T0 is a constant and sk a parameter. Substituting Eq. (49) in Eq. (48) and
solving for sk, we obtain:

sk1�2 = ±
√
Kk

1�
m�
a
�2 + Kk

2�
n�
b
�2

Kk
3

(51)

Therefore:

f�z� = Tk
01 exp

(
sk1z

)+ Tk
02 exp

(
sk1z

)
or f�z� = Ck

1 cosh
(
sk1z

)+ Ck
2 sinh

(
sk1z

)
(52)

The solution for a “classical” layer k can be written as:

Tc�x� y� z� = Tk = [
Ck

1 cosh
(
sk1z

)+ Ck
2 sinh

(
sk1z

)]
sin

(
m�x

a

)
sin

(
n�y

b

)
(53)

wherein the coefficients Ck
1 and Ck

2 are constant for each classical layer k.
In the case of a FGM layer, the coefficients Kk

1� K
k
2 , and Kk

3 depend on the
thickness coordinate z. Therefore, Fourier’s equation does not hold in the simple
form given in Eq. (48). In fact, the continuously varying thermal conductivities in a
FGM layer avoid an analytical solution as shown before.

This problem can be fixed if we know the thickness law of the coefficients
Kk

1� K
k
2 , and Kk

3 . We resolve Eq. (48) with a mathematical layer-wise method. The
underlying idea is to divide the kth FGM layer in Nml mathematical layers with
constant properties. Then, the procedure illustrated above for the kth layer is also
applied to the jth mathematical layer.

In a FGM layer the laws for the conductivity coefficients along the thickness
z have the following form:(

Kk
1�z�� K

k
2�z�� K

k
3�z�

) = (
Kk

10� K
k
20� K

k
30

)
g�z� (54)
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where Kk
10, Kk

20, and Kk
30 are constants and g�z� is a particular function of the

thickness coordinate z.
We can divide the kth FGM layer in a certain number of mathematical layers

Nml for which each layer j is assumed to possess constant values of the coefficients
K1� K2, and K3. Those constant, “effective” properties are calculated by taking the
mean of the values that are obtained at the interfaces of the mathematical layers by
applying Eq. (54), yielding K

j
1, K

j
2, and K

j
3 for each mathematical layer j. For each

mathematical layer j the parameter s1 is given as:

s
j
1 =

√
K

j
1�

m�
a
�2 + K

j
2�

n�
b
�2

K
j
3

(55)

From Eq. (52)2, the amplitude of the temperature reads:

f�z� = C
j
1 cosh

(
s
j
1z
)+ C

j
2 sinh

(
s
j
1z
)

(56)

In Eq. (56) for each mathematical layer j two unknowns (Cj
1 and C

j
2) remain.

Therefore, if the number of mathematical layers is Nml, the number of unknowns is
2Nml and we need 2Nml equations to determine the unknowns.

As we know the temperature at the top and the bottom surface, we have
already two conditions:

Ttop = C1
1 cosh

(
s11ztop

)+ C1
2 sinh

(
s11ztop

)
Tbot = C

Nml

1 cosh
(
s
Nml

1 zbot
)+ C

Nml

2 sinh
(
s
Nml

1 zbot
) (57)

Another �Nml − 1� equations can be obtained from the continuity of temperature
at each mathematical interface, and finally �Nml − 1� equations result from the
continuity of the heat flux through the mathematical interfaces, compare Eq. (46).
Thus, we have:

C
j
1 cosh

(
s
j
1z

j
t

)+ C
j
2 sinh

(
s
j
1z

j
t

)− C
j+1
1 cosh

(
s
j+1
1 z

j+1
b

)+ C
j+1
2 sinh

(
s
j+1
1 z

j+1
b

) = 0

s
j
1K

j
3

[
C

j
1 cosh�s

j
1z

j
t �+ C

j
2 sinh�s

j
1z

j
t �
]

(58)

− s
j+1
1 K

j+1
3

[
C

j+1
1 cosh

(
s
j+1
1 z

j+1
b

)+ C
j+1
2 sinh

(
s
j+1
1 z

j+1
b

)] = 0

In Eqs. (57) and (58), ztop and zbot indicate the coordinates of top and bottom of the
whole FGM layer. zjt and z

j+1
b represent the top of the jth mathematical layer and

the bottom of the �j + 1�th mathematical layer, respectively.
Resolving the system given by Eqs. (57) and (58), we gain the 2Nml coefficients

C
j
1 and C

j
2. The actual temperature in the kth FGM layer is then given by:

Tc�x� y� z� = Tj = [
C

j
1 cosh

(
s
j
1z
)+ C

j
2 sinh

(
s
j
1z
)]
sin

(
m�x

a

)
sin

(
n�y

b

)
(59)

We compute the temperature at different values zN of the thickness coordinate.
By solving the system Eq. (60), we obtain the N values of 
� for the Unified
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Formulation:


Tc�z1�

Tc�z2�
���

Tc�zN �

 =


F0�z1� F1�z1� · · · FN�z1�

F0�z2� F1�z2� · · · FN�z2�

���
���

���
���

F0�zN � F1�zN � · · · FN�zN �





0

1
���
���

N

 (60)

So, if we consider a generic kth FGM layer, the temperature profile is approximated
by Eq. (6) and the N values of 
k� are given by Eq. (60).

APPENDIX B

The explicit expressions of the fundamental nuclei are listed below for the
case of a closed form solution. � = m�/a and � = n�/b, with m and n as the wave
numbers in in-plane directions and a and b as the plate dimensions.

• Ku


Ku
11
= −�E�sr��pp1r + �pn1r �

Ku
12
= Ku
13

= Ku
21
= 0

Ku
22
= −�E�sr��pp2r + �pn2r �

Ku
23
= Ku
31

= Ku
32
= 0

Ku
33
= E�sr��nn3r + �np3r �

• Kuu

Kuu11
= C55rE��zs�zr

+ C11r�
2E�sr + C66r�

2E�sr

Kuu12
= C12r��E�sr + C66r��E�sr

Kuu13
= −C13r�E��zsr

+ C55r�E�s�zr

Kuu21
= Kuu12

Kuu22
= C44rE��zs�zr

+ C22r�
2E�sr + C66r�

2E�sr

Kuu23
= −C23r�E��zsr

+ C44r�E�s�zr

Kuu31
= C55r�E��zsr

− C13r�E�s�zr

Kuu32
= C44r�E��zsr

− C23r�E�s�zr

Kuu33
= C33rE��zs�zr

+ C44r�
2E�sr + C55r�

2E�sr


