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abstract

The present work deals with dynamic models for the analysis of shimmy
phenomenon of helicopter A109 landing gear. The investigation has been
conducted accounting for different models. In the first ones, shimmy has
been faced with analitical simplified approaches. The equations of motion
has been written according to two multibody models with two and five de-
grees of freedom respectively. Linear and non linear cases have been solved.
A parametric analysis shows the influence of some geometrical and mechan-
ical properties, like the caster lenght and the stem stiffness. The same
problem has been implemented then by using the multibody dynamics code
ADAMS: in this case, the analysis was principally based on the joints and
on the contact conditions represented by the dynamic and static friction
parameters.

∗The content of this paper has been partially presented at EUROMECH-427, Cachan,
Paris, 24-27 Sept. 2001.
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1 Introduction

The landing gear dynamic plays an important role in the aircraft design.
Take off and landing represent in fact severe load conditions. Landing gear
system has to resist to the landing and to damp as soon as possible the air-
craft kinetic energy avoiding too much high dangerous deceleration. During
the landing, the landing gear system has to assure a stable rolling on the
runway, avoiding dangerous lateral skids that can lead the aircraft out of
the runway. A violent vibration of the nose landing gear about the spindle
axis, i.e. shimmy phenomenon, can appear in such case. Although these
vibrations are not usually catastrophic, they can lead to accidents due to
excessive wear and shortened life of gear parts and contribute to pilot and
passenger discomfort.

The shimmy phenomenon is very much related to the mechanical be-
haviour of tire. Many mathematical models were developed to obtain forces
and moments on the tire: “the elastic string theory” of Dietrich, V. Schlippe,
Pacejka and “ the point of contact method” of Moreland [1],[2],[4],[5]. It
seems that these models give suitable results, but these are difficult to be
compared. In the present work, “the string elastic theory” is employed.

The dynamic models presented are related to the three-wheeler landing
gear helicopter A109. Although it can be unusual to treat the shimmy
phenomenon of helicopters, it should be underlined that the landing and
take-off taxing is a common procedure for helicopter equiped with landing
gears. Of course, the helicopter taxing speeds are lower than the airplane
taxing speeds: but not so low to grant a safe taxing. The A109 specifications,
in fact, say that “a safe taxing has to be granted till 20 [knots]”. This means
that taxing instability problems can appear.

2 Preliminary

2.1 Tire mathematical model

Many mathematical models describing the tire mechanical behaviour can
be found in technical literature [1],[2],[4]. In the present work, a semiem-
pirical model, derived in part from experimental tests and in part from
semiempirical formulas [3], is adopted. In fact, vertical reaction force vs.
tire vertical deflection and lateral spring constant have been evaluated from
experimental tests. The others characteristic have been derived by using
the semiempirical formulas showed in Appendix A. In figure 4 the vertical
reaction force vs. tire deflection has been represented. In figure 5 the lateral
spring constant vs. vartical reaction force has been represented. In figure 3
tire footprint has been represented.
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2.2 Vertical reactions on landing gears

The vertical reactions on landing gears can be derived from forces and mo-
mentums equilibrium equations. Neither rolling nor pitching rotations are
considered: so the vertical reactions are constant and are expressed by the
following relations:

N1 + 2N2 = mg (1)

N1l1 = 2N2l2 (2)

Therefore:
N1 =

l2
l1 + l2

mg (3)

N2 =
1
2

l1
l1 + l2

mg (4)

Through the vertical reactions, it is possible to calculate all the tire mechan-
ical properties such as elastic spring constant and relaxation length (figure
4-5 and Eq. 17-28).

2.3 Friction in the bearings

The friction in the bearings of the oil pneumatic shock absorber, can be
evaluated considering the reaction forces on the bearings (see figure 1). The
reaction forces R1 and R2 can be calculated from these two equilibrium
equation: {

R1 (x + c)−Nz −Rx (b− x) = 0
R2 (x + c)−Nz −Rx (b + c) = 0

(5)

where Rx = µvolvN , µvolv = 0.013 + 0.0000065V 2 (see [1]) and N is the
vertical reaction force on the tire.

Therefore: {
R1 = N(z+µvolv(b−x))

x+c

R2 = N(z+µvolv(b+c))
x+c

(6)

The modulus of the friction torque can be evaluated with this relation:

|Mbearing| = µbearing (rb1R1 + rb2R2) (7)

where rb1 and rb2 are the the bearing radius.
Finally it follows that the friction torque is:

Mbearing = |Mbearing|
(
ϑ̇1 − ϑ̇2

)
(8)

3



2.4 Nose landing gear inertia momentum

The landing gear total inertia momentum around the spindle axes, is repre-
sented by the following contributes: Js stem inertia moment, Jf fork inertia
moment, Jp tire inertia moment, Jt transport inertia moment. Therefore:

Jc = Js + Jf +
Jp

2
+ Jt (9)

Where:
Jf = kfmfz2

The spin tire inertia moment can be calculated with an approximated ap-

proach, considering the tire and the hubcap as two cylinders, therefore:

Jp = mpnr2
pn + mcer

2
ce

where rpn represents the tire medium radius, rce is the peripheral hubcap
radius (the hubcap mass is mainly distributed around the hubcap peripheral
radius), mpn is the tire mass and mce is the hubcap mass. The transport

inertia moment is:
Jt = z2 (mpn + mce)

3 Linear analytical models.

In the present section some results developed in MATLAB enviroment are
showed. Linear and non-linear solutions are given.

3.1 Two degrees of freedom model.

This mathematical model is a two degrees of freedom model that neglects the
whole helicopter dynamic: the only nose landing gear dynamic is considered.
The first degree of freedom is represented by the nose landing gear yaw
rotation around the spindle axis; the second degree of freedom is represented
by lateral distortion of tire equator at center of tire-ground contact area (see
figure 1 and figure 3).

The torsional dynamics of the lower parts of the landing gear is described
by a 2nd order differential equation for the angle ϑ about the spindle axis:

−Jcϑ̈− βzϑ̇− Fy(z + t)− βz,pnϑ̇−G = 0 (10)

The lateral distortion of the tire is described by the model of an elastic string
theory. This is the lateral no-skid condition 1:

V sin (ϑ) + (z − a) ϑ̇− σ

σ + a

(
ẏ + V

y

σ

)
= 0 (11)

1where y = α (σ + a)
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The system of equation represented by Eq.10-11 consist of a non-linear sys-
tem. For a first understanding of the dynamics, the nonlinear model is lin-
earized and eigenvalues are computed, applying MATLAB routines. After

linearization and reduction to the first order, the linear system reads:




p− ϑ̇ = 0
V ϑ + (z − a) p− σ

σ+a

(
ẏ + V y

σ

)
= 0

−Jc − βz,pnp− βzp−Ky (z + t) y − CGJpω
ẏ
r = 0

(12)

This system can be rewritten by using matrix notation:

[A] ˙̄r + [B] r̄ = 0 (13)

Posing r̄ = c̄eλit, eigenvalues λi are derived from the following matrix:

[M ]stab = − [A]−1 [B] (14)

3.1.1 Stability curves in parameter space

The stability system analisy was performed respect a reference configuration
1 and through some parameters such as the taxing speed, the caster length,
the damping rotation constant and the torque torsional stiffness(taxing with
locked commands). The real part of eigenvalues (on the left) and the char-
acteristic frequencies (on the right) are showed vs. the variation of taxing
speed and caster length in figure 6. It can be easily seen that large values
of taxing speed cause more instability; large values of relaxation length in-
stead cause more stability. Therefore it is possible to stabilize the system
adopting large value of the caster length. Nevertheless this method is usu-
ally not adopted because the landing gear slot is narrow and large values
of caster length mean a more complex kinematic mechanism, too high fork
bending moments and an increased mass of the landing gear. The real part
of eigenvalues (on the left) and the characteristic frequencies (on the right)
are showed vs. the variation of taxing speed and damping torque constant In
figure 7 . It can be easily seen that large values of taxing speed cause more
instability and that large values of damping constant cause more stability.
Usually, the damping torque is mainly due to viscous friction in the bearings
of the oil-pneumatic shock absorber and from shimmy damper. There are
two groups of shimmy dampers. To the the first ones belongs oleodynamic
dampers that produces damping with the oil drawing from the chambers of
the damper: it can produce very large damping and it is usually adopted
by large airplanes. To the second group belong dry friction dampers. In
this work a dry friction ring fitted in the torque link revolving bearing is
considered : the relative rotation between the stem (sliding member) and
the leg of the landing gear causes dry friction. This solution is quite cheap
and simple but it can be adopted only for small airplanes or helicopters. The
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real part of eigenvalues (on the left) and the characteristic frequencies (on
the right) are showed vs. the variation of taxing speed and stem stiffness in
figure 8 . It can be easily seen that large values of taxing speed cause more
instability and that large values of stem stiffness cause more stability. This
kind of configuration is typical of taxing with locked commands. Military
aircraft usually land on the aircraft carrier with locked commands because
of the narrow runaway. Of course, this method produces a safe taxing but
it doesn’t allow to change the direction of taxing.

3.2 Five degrees of freedom model.

This mathematical model considers the dynamic of the whole mechanical
system. These are the degree of freedom(see figure 2): nose landing gear
absolute yaw angle ϑ1, helicopter absolute yaw angle ϑ2, nose landing gear
tire lateral distortion y1, main landing gear tire lateral distortion y2(the
same for each tire), helicopter lateral shift η. The equation of motion which
describes the dynamic of the whole mechanical system are represented by
the momentum equilibrium of the nose landing gear around the spindle axis,
by the momentum equilibrium of the helicopter about the yaw axis, by the
force equilibrium along the direction perpendicular to the taxing direction
(nose landing gear and helicopter) and by two no lateral skid (respectively
for nose landing gear and main landing gear) equations derived by string
elastic theory. A damping torque was introduced for main landing gear not
depending on taxing speed but only on lateral distortion speed ẏ2. The total
set of differential equation is summarized below:





η̇ − l1ϑ̇2 + (z − a) ϑ̇1 + V ϑ1 − σ1
σ1+a

(
ẏ1 + V y1

σ1

)
= 0

(l2 − a2) ϑ̇2 + V ϑ2 + η̇ − σ2
σ2+a

(
ẏ2 + V y2

σ2

)
= 0

−Jeϑ̈2 − 2Ky,2 (l2 + t2) y2 − 2βy,2 (l2 + t2) ẏ2 − F1l1+
−Kz (ϑ2 − ϑ1)− (βz + βz,pn)

(
ϑ̇2 − ϑ̇1

)
= 0

−Jcϑ̈1 − (βz + βz,pn)
(
ϑ̇1 − ϑ̇2

)
−Kz (ϑ1 − ϑ2) +

−Ky,2 (z + t1) y1 − CGJpω
ẏ1

r = 0
−mη̈ − 2Ky,2y2 − 2βy,2ẏ2 + F1 = 0
−mc

(
η̈ − l1ϑ̈2 + bG,cϑ̈1

)
−Ky,2y1 + F1 = 0

(15)

The equation of motion are 6 instead of 5 because the lateral reaction force
F1 (between the nose landing gear and the helicopter) is unknown. Solving
for F1, it is possible to lower the number of equation to 5. The resultant
differential equations system can be reduced to the first order and rewritten
the same notation given at Eq. 13-14.
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3.2.1 Stability curves.

The stability analysis was performed only varying the taxing speed V for
estimating the influence of the whole mechanical system on the nose landing
gear dynamic presented in §3.1. In figure 9 the real part of eigenvalues (on
the left) and the characteristic frequencies (on the right) are showed at vari-
ation of taxing speed. It can be easily seen that there are small differences
between some eigenvalues found with the two degrees of freedom and with
the 5 degrees of freedom model. It could be concluded that neglecting the
helicopter dynamic consists of a good hypothesis. The others eigenvalues
have all negative real part for every value of taxing speed. The helicopter
dynamic is therefore always stable. In the frequency graph two characteris-
tic frequency are showed. By comparing the two mathematical model, it is
found that the highest frequency is mainly due to nose landing gear dynamic
and the lowest frequency is mainly due to helicopter dynamic. The damping
constant that makes stable the mechanical system, is showed in figure 10.
From these results descend that the most critical velocity (with the highest
damping constant) is 10.5[m/s]. Almost the same value will be found in non
linear analysis.

4 Non linear analytical model

The dynamics of the system can be directly solved by numerical simulation
with respect to time; even for large amplitudes where linearization no longer
holds. This analysis was performed for testing a very simple and cheap
damper system based on dry friction. This system consists of a isogliss (or
carbogliss) ring with big dry friction constant: the ring is fitted in the torque
link revolving bearing. The friction torque is constant and depends on the
locking torque: the sign of the torque depends on the sign of the angular
velocity.

Usually the locking torque is not calculated but it is determined through
experimental test: from highest value of the torque (almost with locked com-
mands) to lower ones till no shimmy phenomenon happens in the prescribed
range of taxing speed.

4.1 Two degrees of freedom model.

In this section, the only nose landing gear dynamic is considered. Therefore
two degrees of freedom are needed to describe the mechanical behaviour of
the mechanical system. This model is completely non linear and it is referred
to system of equation represented by Eq. 10-11. In this case an additional
term due to dry friction torque is introduced in the rotation equilibrium
equation.

C = (|Misogliss|+ |Mbearing|) sign
(
ϑ̇
)

(16)
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The locking torque can be considered proportional to the friction torque
Misogliss: the proportionality constant depends on the kind of bush adopted
to lock the friction ring. In this work this constant was assumed to be 3.84.

4.1.1 Stability curves.

The numerical simulation has demonstrated that instability occurs for every
taxing speed if the lateral perturbative load is below a critical stability value:
this critical value depends on the taxing speed and the friction torque. The
perturbative loading-time is assumed to be 0.01[s]: almost impulsive.

In figure 11 some results are showed. It can be easily seen that the
highest critical speed that needs the largest damping is almost 11[m/s]: the
same value was found in the linear analysis. The system is always stable for
any given taxing speed value lower than 5[m/s]. For example, if the taxing
has to be stable if the lateral load is below 200[N], a friction torque equal to
1[Nm] has to be adopted: this corresponds to have a locking torque equal
to 0.384[daNm] (typical unit adopted by dynamometric wrench)

5 Description and results rolled by using ADAMS

A large investigation has been conducted by means of a general pourpose
multibody code. The most representative results are showed in the present
section.

The multibody code adopted is ADAMS, that is Automatic Analysis of
Mechanical Systems. This code was chosen because its simplicity, reliability
and robustness as well as its friendly to use interface.

5.1 ADAMS model

The present model include the whole helicopter but it neglects the vertical
stiffness of the tire: only the lateral stiffness is considered.

The implemented ADAMS model includes: helicopter cell-case-main
landing gear stems (one body), hubcap-axle groups (3 bodies), tires (3 bod-
ies), stem-nose landing gear fork group (one body). The number of bodies
is therefore equal to 8: this means 48 degrees of freedom.

The nose landing gear stem is joined to the fuselage with a revolute.
The main landing gear hubcaps are joined to axles with revolutes. The nose
landing gear hubcap is joined to stem-fork group with a revolute. The tires
are joined to the hubcaps with a prismatic joint. The helicopter center of
gravity has to stay in a plain.

Spring between the tires and hubcaps pretend the lateral spring constant
of tires The contact between tires and runaway is circular and is described by
these static and dynamic friction parameters: µstatic = 0.9, µdynamic = 0.83.
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The helicopter taxing speed in x direction is fixed by a motion generator
and it is equal to 11000[m/s]. The lateral perturbative load on the tire is
equal to 250[N] for .01[s]: the force is applied after 0.19[s] from the beginning
of the simulation.

In figure 12 two views of the helicopter are showed: the ellipsoid pretends
all the inertial properties of the helicopter.

5.2 Results

The angular velocity and its FFT-module are showed vs. the variation of
time in figure 13 . From the observation of FFT-module, it is possible
to emphasize two main frequencies which correspond to the values 1.9[Hz]
and 24[Hz]. These results confirm the previous analyses performed with
MATLAB.

Moreover,observing the time-response, it is possible to recognize that the
mechanical system is unstable because is underdamped.

In figure 14 the helicopter lateral shift is showed: the system is unstable.
Main landing gear tire lateral distortion has been plotted in figure 15.

It is possible to notice that the two distortions are equal in module (the
opposite sign is due to different reference system). It follows that to consider
the main landing gear lateral distortions equal in the five degrees of freedom
model, it is a right hypothesis.

Conclusions

Different models of helicopter shimmy has been analyzed in the present
work. These all have led to comparable results. The ADAMS mechanical
model has validate the hypothesis that were adopted to write the motion
equations of simplified models.

Many other investigations can be performed about the lateral perturba-
tive load that that induce the shimmy phenomenon: probably, these lateral
perturbative loads are due to the runway caracteristic and to the aircraft
weight. Experimental tests, about many kinds of aircraft, could provide
important correlations between the principal parameters that describe the
whole system.

These analyses could be important to find a right criteria about anti-
shimmy design and to improve aircraft normative laws.
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List of symbols
α slip angle [rad]
a tire half footprint length [m]
Ag footprint area [m2]
An net footprint area [m2]
b footprint width [m]
bG,c distance between nose-landing-gear center of gravity and

the spindle axis. [m]
bsa characteristic length shock absorber [m]
βy,2 linear damping coefficient for tires main

landing gear [Ns/m]
βz torque damping coefficient [Nms/rad]
βz,pn tire torque damping coefficient[Nms/rad]
C friction torque Nm
Cα cornering power [N/rad]
csa characteristic length shock absorber [m]
d tire diameter [m]
Fy lateral force [N ]
Fz vertical force [N ]
G gyroscopic torque [Nm]
g gravity acceleration [m/s2]
kβ torque friction parameter
kf fork shape constant
Kx fore-and-aft sring constant [N/m]
Ky o Ky,1 nose landing gear tire lateral spring

constant[N/m]
Ky,2 main landing gear tire lateral spring constant[N/m]
Jc nose landing gear inertia moment [Kgm2]
Je helicopter inertia moment about yaw axis [Kgm2]
Js stem inertia moment [Kgm2]
µy lateral static friction coefficient
l1 distance between helicopter center of gravity and nose

landing gear spindle axis [m]
l2 distance between helicopter center of gravity and main

landing gear [m]
m helicopter mass [Kg]
mce hubcap mass [Kg]
mf fork mass[Kg]
mpn tyre mass [Kg]
ms stem massa [Kg]
Mz damping torque [Nm]
Nz autoaligning torque [Nm]
p tyre inflation pressure [Pa]
p0 tyre inflation pressure at zero vertical load [Pa]
pr tyre rated inflation pressure[Pa]
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List of symbols
r tyre radius [m]
rb1 and rb2 bearing radius [m]
s tyre vertical deflection [m]
σ o σ1 nose landing gear rolling relaxation length [m]
σ2 main landing gear rolling relaxation length [m]
t o t1 nose landing gear pneumatic caster [m]
t2 main landing gear pneumatic caster [m]
ϑ o ϑ1 nose landing gear absolute rotation [rad]
ϑ2 helicopter absolute rotation [rad]
V speed [m/s]
Vx longitudinal speed [m/s]
Vsy lateral slip velocity [m/s]
y o y1 nose landing gear tire lateral deflection[m]
y2 main landing gear tire lateral deflection [m]
x crushing of the shock absorber [m]
ω tyre spin [rad/s]
w maximum width of undeflected tire [m]
z caster [m]
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A Mechanical properties of the tire.

1. Tire footprint length;

a

d
= .85

√
s

d
−

(
s

d

)2

(17)

2. Tire footprint width:

b

w
= 1.7

√
s

w
− 2.5

(
s

w

)4

+ 1.5
(

s

w

)6

(18)

3. Gross footprint area:

Ag = 2.25 (s− .03w)
√

wd (19)

4. Net footprint area:

An = aAg (20)

dove a ∼= .675

5. pressure rise (semiempirical):

∆p = nκp0

(
s

w

)2

(21)

where κ = 1.5w
d and n = 1 for isotherm process. Therefore:

p = p0 + ∆p

6. Vertical force active on tire from ground:

Fz

(p + 0.08pr)w
√

wd
= 2.4

[
s

w
− Cz

(
1− e−

.6 s
w

Cz

)]
(22)

where Cz depends on tire type:

Cz =

{
0.02 Type I

0.03 Type III e VII

.

7. Average gross footprint pressure:

pn =
Fz

An
(23)
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8. Lateral spring constant:

Ky = τyw (p + 0.24pr)
[
1− .7

s

w

]
(24)

where τy depends on tire type:

τy =

{
3 Tipo I

2 Tipo III e VII

.

9. fore-and-aft spring constant:

Kx = .8d (p + 4pr) 3

√
s

w
(25)

10. Relaxation length:

σ(
2.8− 0.8 p

pr

)
w

=





11 s
d

(
s
d ≤ .053

)

64 s
d − 500

(
s
d

)2 − 1.4045
(
.053 ≤ s

d ≤ .068
)

.9075− 4 s
d

(
.068 ≤ s

d

)

(26)

11. drag coefficient of friction:

µy = .93− .0011pn (27)

12. Cornering power constant:

Cα = (a + σ) Ky (28)

13. Cornering force:

Fy

µyFz
=

{
φ− 4

27φ3 (0 ≤ φ ≤ 1.5)
1 (φ ≥ 1.5)

(29)

where φ = Cα
µyFz

α.

14. Moment parameter:

t

a
=





.8
1− 4

27
φ2 (φ ≤ .1)

(φ−φ2−.01)
φ− 4

27
φ3 (.1 ≤ φ ≤ .55)

.2925−.1φ
φ− 4

27
φ3 (.55 ≤ φ ≤ 1.5)

.2925− .1φ (φ ≥ 1.5)

(30)
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15. Self aligning torque:
Nz = tFy (31)

16. Lateral damping constant:

βz = kβ
a2Cα

V
(32)

17. Damping torque:
Mz = βzϑ̇ (33)

where ϑ is the angular position of the nose landing gear.

18. Gyroscopic torque(in case of low distortions):

G = CGJpω
ẏ

r
(34)

where Cg is a correction parameter and ω ∼= V
r . It was assumed that

CG = .4.

If there isn’t tire lateral skidding (only if the lateral perturbative load is
smaller than the friction lateral load), the string elastic hypothesis is correct
and the lateral speed of the point of contact respect to the tire medium plane,
must be equal to zero.

ẏ1 +
Vx

σ
y1 − Vsy = 0 (35)

where y1 is the lateral distortion of the first point of contact, Vx is the taxing
speed and Vsy is the lateral slip speed of the tire [2],[6],[7].
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Table 1: Reference configuration:
bsa 0.474[m]
csa 0.097[m]
l1 2.843[m]
l2 .6931[m]
m 2942[Kg]

mpn 3.65[Kg]
mce 2.75[Kg]
ms 2.719[Kg]
mf 2.015[Kg]
Js .006932[Kgm2]
kf 1.05226
rb1 0.031745[m]
rb2 0.025375[m]
r .184[m]

rce .072[m]
rpn .128[m]
w .126[m]
z .08[m]
p0 600000[Pa]
pr 600000[Pa]
κ .15
βz 0[Ns/rad]

µbearing 0.05
x 0.155124[m]

Table 2: Reference configuration

l1 2.843[m]
l2 .6931[m]
Jz 9000[Kgm2]
βy,2 140[Ns/m]
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Figure 7: Damping torque effect.
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Figure 8: Stem stiffness effect.
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Figure 9: Comparison between 2 dof and 5 dof models.
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Figure 10: Damping constant.
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Figure 11: Critical impulsive load
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Figure 12: Helicopter views

Figure 13: Angular velocity and its FFT-module.
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Figure 14: Lateral helicopter shift.

Figure 15: Main landing gear tire lateral distortions.
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