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Abstract

In this thesis I discuss the implementation of advanced finite elements for large deflec-
tion and large strain analysis by Unified Formulation. The geometrically nonlinear anal-
ysis of beam, plates and solid structures is a fundamental topic in structural mechanics
thanks to its applications in different engineering fields. In automotive or civil applica-
tions, small deformations are a fundamental requirement of the design process, like spur
gears in mechanical engineering or beam structures in building design processes, other-
wise structures do not work properly in their field of applications. Even so, models for high
flexible and deformable components are recently spread due to renewed interests in bio-
logical applications, complex systems modeling and fluid-structure interaction problems.
Also, in mechanical and aerospace engineering application, innovative materials allow
to design structures capable of carrying high loads without failure after instabilities oc-
cur, becoming more and more used in aircraft components design. In the moderate/large
displacements regime, however, instability caused by large displacements and rotations
occurs. Accurate prediction of displacements and rotation, as well as stresses distribution
in the medium/large displacement regime, is a challenging topic in solid mechanics and
numerical analysis due to some already known mathematical limitations that, in the case
of large-deflection analysis, are amplified by the presence of nonlinear terms in the gov-
erning equations.
The first part is devoted to the mathematical description of continuum mechanics gov-
erning equation for linear elastic and hyperelastic materials. Derivation of the large dis-
placement formulation and stress tensors both in case of Hooke’s law and strain energy
functions is described. Strain and stress measures are here presented, introducing Cauchy
"true" stress tensor and its expression in case of linear elastic materials and hyperleastic
materials, Piola-Kirchoff 1 and Piola-Kirchoff 2 stress tensors. First-invariant hyperleastic-
ity is here presented, deriving the constitutive law in terms of invariants of right Cauchy-
Green tensor.
The second part is devoted to the description of numerical methods involved in nonlin-
ear analysis: refined fully-nonlinear finite elements for beam, plate and solid structures
under Unified Formulation are analysed. Carrera Unified Formulation is adopted in the
implementation of finite elements: the primary unknown variables are discretized by kine-
matic models and arbitrary expansion cross-section function or thickness function cou-
pled with the classical Finite Element Approximation. The nonlinear governing equation
is exploited by means of principle of virtual displacements, taking into account the full
Green-Lagrange tensor for finite deformations and expressed in terms of stiffness ma-
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trices: the explicit forms of the secant and tangent stiffness matrices of unified beam,
plate and generic 3D solid elements are presented in terms of fundamental nuclei.In the
case of hyperelastic beam and solid model, also strain energy function expression are pre-
sented, and derivation of the tangent stiffness matrix and internal forces vector by means
of Piola-Kirchoff 2 stress tensor is carried out, as well as the expression of the tangent
elasticity tensor components required by the incremental scheme. The numerical solution
of the nonlinear structural problem is obtained by means of linearized Newton-Raphson
scheme combined by a path-following method based on the arc-length method, an adap-
tive parametrization incremental-iterative scheme that postulates simultaneous variations
of primary displacements variables with load variations.
The last part is devoted to the discussion and validation of numerical results obtained
by the present implementation: large deflection and post-buckling analysis of beam and
plates structures obtained by 1D and 2D models are presented, and used as reference re-
sults to validate the one obtained adopting 3D nonlinear finite elements, implemented
afterwards. Popular benchmark problems in geometrically non-linear solid mechanics are
also analyzed to establish the capabilities of present implementation of fully-nonlinear
solid elements in case of post-buckling analysis of beams, plates and curved structures,
obtaining accurate results.
The present work is the first step in understanding complex structural problem also in-
volving geometrical non-linearities. However, in this context, several aspects require fur-
ther research efforts. Possible future works include large strain analysis, accounting of
material non-linearities, hyperelasticity, fracture mechanics, nonlinear vibrations, fluid-
structure interaction applications.
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Chapter 1
Continuum Mechanics

1.1 Strain and stress analysis

1.1.1 Continuum bodies, displacements and deformations
Let Ω be a closed volume with regular surface of the three-dimensional euclidean space:
this region has a continuous distribution of matter in space and time, namely is a con-
tinuum body, and it can be described by macroscopic quantities. Consider a continuum
body Ω0 and a particle 𝑃 which is embedded in the body. As the continuum body moves
in space, following its evolution in time, it occupies a continuous sequence of regions of
the euclideian space: the regions occupied by the body at a certain time 𝑡 are the configu-
rations of the body. Starting from the reference configuration Ω0, the configuration of the
body at the generic instant 𝑡 is called the current configuration.

𝑒2

𝑒3

𝑒1

𝑃0
𝑃

𝑢 (𝑃)
Ω0

Ω

Figure 1.1.1: Refecence and actual configuration of a deformable body.

Introducing the classical orthonormal reference frame {𝑒1, 𝑒2, 𝑒3}, the position of a ma-
terial point of a continuum body can be defined in terms of component:

P0 = 𝑥0e1 + 𝑦0e2 + 𝑧0e3 (1.1.1)

A deformation is a continous function that associates the position of the material point in
the actual configuration to the related position in the reference, configuration:

f (P0) = 𝑥e1 + 𝑦e2 + 𝑧e3 = 𝑓1(𝑥0, 𝑦0, 𝑧0)e1 + 𝑓2(𝑥0, 𝑦0, 𝑧0)e2 + 𝑓3(𝑥0, 𝑦0, 𝑧0)e3 (1.1.2)

6



CONTINUUM MECHANICS Fundamentals

The deformation function needs to fullfil physical plausibility conditions, namely f is in-
jective and𝐶1, and f preserves the local orientation, namely do not allow compenetration
of matter. In mathematical terms, these conditions are satified if 𝑑𝑒𝑡F ≠ 0, where F is the
deformation gradient defined as:

F = ∇f =



𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓1
𝜕𝑧

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦

𝜕𝑓2
𝜕𝑧

𝜕𝑓3
𝜕𝑥

𝜕𝑓3
𝜕𝑦

𝜕𝑓3
𝜕𝑧


(1.1.3)

If P0 is a material point in the reference configuration, and P is the associated point in the
actual configuration, let’s define the displacement of the point as:

u(P) = P − P0 = 𝑢e1 + 𝑣y2 +𝑤e3 (1.1.4)

As done for the deformation function, the displacement gradient H is defined as:

H = ∇u =



𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧


(1.1.5)

Considering the definition of displacement function, denoting with i(P) is the identity
vector transformation, and I the 3x3 identity matrix, fundamental kinematics relation in a
continuum body is carried out:

u(P) = P − P0 = f (P0) − i(P0) (1.1.6)
H = ∇u(P) = ∇f (P0) − ∇i(P0) = F − I (1.1.7)

During the deformation, the most representantive quantity is the deformation gradient
F: by the definition, it maps points from the reference configuration to the actual one.
Consider now a unit versor 𝑁 associated on an infinitesimal material surface element 𝑑𝑆 :
differently then before, the deformation do not map it to an unitary versor associated to
an infinitesimal spacial surface element in the current configuration 𝑑𝑠 , namely during the
deformation there is change in volume of the infinitesimal surface element.
One can prove that, after the deformation, the volume of the generic infinitesimal volume
is given by:

𝑑𝑣 = (det F) 𝑑𝑉 = 𝐽 𝑑𝑉 (1.1.8)

where 𝐽 = det F is the determinant of the deformation gradient, also called volume ratio.
Let’s consider two unit versors, 𝑛 and𝑁 on an arbitrary material line𝑑X mapped to𝑑x due
to the deformation. The infinitesimal volumes in the reference and current configuration
will be:

𝑑𝑣 = 𝑑𝑥1𝑑𝑥2𝑑𝑥3 = 𝑑s · 𝑑x = n𝑑𝑠 · 𝑑x (1.1.9)
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CONTINUUM MECHANICS Fundamentals

𝑑𝑉 = 𝑑𝑋1𝑑𝑋2𝑑𝑋3 = 𝑑S · 𝑑X = N𝑑𝑆 · 𝑑X (1.1.10)

so, by considering the definition of volume ratio:

𝑑𝑣 = 𝐽 𝑑𝑉 → n𝑑𝑠 · 𝑑x = 𝐽 N𝑑𝑆 · 𝑑X → 𝑑s · 𝑑x = 𝐽 𝑑S · 𝑑X (1.1.11)

Considering now the deformation gradient map and matrix identities, one can obtain:

𝑑s · F · 𝑑X = 𝐽 𝑑S · 𝑑X (1.1.12)

(F𝑇 · 𝑑s)𝑑X· = 𝐽 𝑑S · 𝑑X (1.1.13)

(F𝑇 · 𝑑s − 𝐽 𝑑S) · 𝑑X = 0 (1.1.14)

finally, since the final equation holds for any arbitrary 𝑑X, one obtain the Nanson’s for-
mula:

F𝑇 · 𝑑s − 𝐽 𝑑S = 0 (1.1.15)

8



CONTINUUM MECHANICS Strain measures

1.1.2 Material strain tensors
Starting from above definitions, it is possible to study nowwhat happens to two neighbor-
hood points in the reference configuration during the evolution of the continuum body.
Let P and Q two neighborhood points in Ω, P′ and Q′ the associated points in the actual
configuration, as shown in the figure below:

𝑒2

𝑒3

𝑒1

𝑃

𝑄
𝑑s 𝑃 ′

𝑄′

𝑑S

𝑓

Ω0

Ω

Figure 1.1.2: Finite deformation of a continuum body.

In differential terms, since the two point are considered very near, it is possible to
linearize the change in lenght of the vector (Q′ − P′) in terms of deformation gradient:

𝑑S = Q′ − P′ = F (Q − P) = F𝑑s (1.1.16)

𝑑s = F−1𝑑S (1.1.17)

thus, the modulus of these vectors are:

∥𝑑S∥2 = 𝑑S · 𝑑S = 𝑑S𝑇𝑑S = (F𝑑s)𝑇 (F𝑑s) = 𝑑s𝑇 (F𝑇F)𝑑s (1.1.18)

∥𝑑s∥2 = 𝑑s · 𝑑s = 𝑑s𝑇𝑑s = 𝑑s𝑇 (I)𝑑s (1.1.19)

therefore, the variation of the distance between two near points from the reference con-
figuration to the actual one is:

𝜖2 = ∥𝑑S∥2 − ∥𝑑s∥2 = 𝑑s𝑇 (F𝑇F)𝑑s − 𝑑s𝑇 (I)𝑑s = 𝑑s𝑇 (F𝑇F − I)𝑑s (1.1.20)

where the terms in brackets is related to the Green-Lagrange tensor for finite deforma-
tions, defined as the tensor:

E =
1
2

(
F𝑇F − I

)
(1.1.21)
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CONTINUUM MECHANICS Strain measures

Starting again from the fundamental kinematics relation eq.(1.1.7), the Green-Lagrange
strain tensor can be rexpressed introducing the right Cauchy-Green strain tensor as follow:

C = F𝑇F = (H + I)𝑇 (H + I)
= H𝑇H + H𝑇 I + I𝑇H + I𝑇 I
= H𝑇H + H𝑇 + H𝑇 + I (1.1.22)

E =
1
2

(
F𝑇F − I

)
=

1
2

(
H𝑇H + H𝑇 + H𝑇 + I − I

)
=

1
2

(
H𝑇H + H𝑇 + H

)
(1.1.23)

In continuum mechanics, the analysis of strains corresponds to the computation of de-
formation gradient: in the general case, by the Polar Decomposition Theorem, it can be
written as the matrix product of a pure strech tensor and a pure rotation tensor, namely F
admits an unique polar decomposition in such a way F = RU.
The tensor U is the (right) material stretch tensor defined as:

U2 = UU = C (1.1.24)

and it represents a measure of local stretching/contraction along the eigenvectors, namely
principal directions, instead R is the unique rotation matrix defined in such a way R𝑇R =

I. The physical interpretation of the tensor U can be found in the definition of strech
vector and its variation during the deformation: starting again from the initial spacial
configuration of the body and considering two neighborhood points defining the direction
a0 at distance 𝑑𝜖 , the stretch vector 𝜆a0 is defined as follows:

𝜆a0 = Fa0 (1.1.25)

a0 x

y

X Y
𝜆a0

𝑓
Ω0

Ω

Figure 1.1.3: Stretch during deformation of a continuum body.
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Considering the two same point in the actual current configuration, the vector the
modulus of the distance can be computed by the previously adopted linearization:

𝑦 − 𝑥 = F (𝑌 − 𝑋 ) = F𝑑𝜖a0 = 𝜆a0𝑑𝜖 (1.1.26)

|𝑦 − 𝑥 | =
√︁
(𝑦 − 𝑥) · (𝑦 − 𝑥) = 𝑑𝜖

√︁
𝜆a0 · 𝜆a0 = 𝜆𝑑𝜖 (1.1.27)

𝜆2 = 𝜆a0 · 𝜆a0 = Fa0 · Fa0 = a0
𝑇FTFa0 (1.1.28)

where FTF is the already defined right Cauchy-Green strain tensor: it is a measure of
stretches between two neighborhood points during the deformation. One can note that
C is a symmetric and positive-definite tensor. In addition, starting from this definition,
using the Polar Decomposition Theorem:

𝜆 = Fa0 = RUa0 →

𝜆2 = (RUa0) · (RUa0) = a0U𝑇R𝑇RUa0 =

= a0U𝑇Ua0 = (Ua0) · (Ua0) = |Ua0 |2

In other words, the right stretch tensor, and so Cauchy-Green strain tensor does not pro-
vide any information about the local change in orientation of two neighborhood points in
the material configuration after the deformation.
Finally, it has to be noted that the Green-Lagrange strain tensor is a symmetric tensor and
its components are:

E =


𝜖𝑥𝑥 𝛾𝑥𝑦 𝛾𝑥𝑧
𝛾𝑥𝑦 𝜖𝑦𝑦 𝛾𝑦𝑧
𝛾𝑥𝑧 𝛾𝑦𝑧 𝜖𝑧𝑧

 (1.1.29)

The components of E, following the displacement gradient tensor definition eq.(1.1.5) and
substituting into eq.(1.1.24), are then:

𝜖𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+ 1

2

[ (
𝜕𝑢

𝜕𝑥

)2
+
(
𝜕𝑣

𝜕𝑥

)2
+
(
𝜕𝑤

𝜕𝑥

)2 ]
(1.1.30)

𝜖𝑦𝑦 =
𝜕𝑣

𝜕𝑥
+ 1

2

[ (
𝜕𝑢

𝜕𝑦

)2
+
(
𝜕𝑣

𝜕𝑦

)2
+
(
𝜕𝑤

𝜕𝑦

)2 ]
(1.1.31)

𝜖𝑧𝑧 =
𝜕𝑢

𝜕𝑧
+ 1

2

[ (
𝜕𝑢

𝜕𝑧

)2
+
(
𝜕𝑣

𝜕𝑧

)2
+
(
𝜕𝑤

𝜕𝑧

)2 ]
(1.1.32)

𝛾𝑥𝑦 =
1
2

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥

)
+ 1

2

[
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
+ 𝜕𝑤
𝜕𝑥

𝜕𝑤

𝜕𝑦

]
(1.1.33)

𝛾𝑥𝑧 =
1
2

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤
𝜕𝑥

)
+ 1

2

[
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑧
+ 𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑧
+ 𝜕𝑤
𝜕𝑥

𝜕𝑤

𝜕𝑧

]
(1.1.34)

𝛾𝑥𝑧 =
1
2

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤
𝜕𝑦

)
+ 1

2

[
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧
+ 𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
+ 𝜕𝑤
𝜕𝑦

𝜕𝑤

𝜕𝑧

]
(1.1.35)
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1.1.3 Equilibrium conditions and stress tensor
Consider a continuum body 𝛺 subjected to surface and volume forces and geometrical
constraints. Fixing a generic material point inside the body P ∈ 𝛺 let’s consider a plane
𝛱 , passing through this point, and let n be its normal vector: this plane cuts the body and
identifies two sub-bodies, 𝛺+ and 𝛺−.

𝑒2

𝑒3

𝑒2

n

Ω−

𝑃

𝑑A

𝑡 (𝑛) (𝑃)

Ω+

Figure 1.1.4: Cutting plane, tension vector in actual configuration

Euler-Cauchy deformable body assumption, also known as Cauchy’s section principle:
in an infinitesimal neighborhood 𝑑𝐴 of P (in the cutting plane) the action of a sub-body
on the other one is a surface forces field defined over 𝑑𝐴. If 𝑑R is the resultant vector of
this vector force field, Cauchy’s section principle means that 𝑑R admits finite limit when
the infinitesimal neighborhood of P namely 𝑑𝐴 approaches zero:

t(𝑛) (P) = lim
𝑑𝐴→0

𝑅 (n)

𝑑𝐴
(1.1.36)

This finite limit is called tension, in the point P related to the plane of normal vector n.
Under the Cauchy’s section principle assumption, the tension vector is then function both
of the material point and the cutting plane, but, fixing the material point, the tension
vector changes only if the normal vector of the cutting plane changes.
Global equilibrium conditions for a deformable body are given by the Cauchy’s Theorem
for continuum body: if𝛺 is a deformable body, the internal forces and external forces field
is known and the body is in equilibrium under the Euler-Cauchy assumption, then:

1. Existance of the stress tensor, namely Cauchy’s "true" stress tensor :

∃ 𝝈 ∋ t(𝑛) (P) = 𝝈 (P)n ∀P, n ∈ 𝛺 (1.1.37)

2. Translational equilibrium of the body: if b is the vector of volume forces, then

∇ · 𝝈 + b = 0 (1.1.38)
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3. Rotational equilibium: the stress tensor is symmetric

𝝈 (P) = 𝝈𝑇 (P) ∀P ∈ 𝛺 (1.1.39)

Let {𝑒1, 𝑒2, 𝑒3} be the orthonormal cartesian reference frame: the components of the
stress tensor can be characterized by considering the three planes passing through the
material point P and parallel to the coordinate planes: fixing as normal vector of the cut-
ting plane the three normal vector of the cartesian basis, normal stress components and
tangential stress components can be identified:

𝜎𝑥𝑥 = t1 · e1 = (T e1) · e1 𝜏𝑥𝑦 = t1 · e2 = (T e1) · e2 𝜏𝑥𝑧 = t1 · e3 = (T e1) · e3

𝜏𝑦𝑥 = t2 · e1 = (T e2) · e1 𝜎𝑦𝑦 = t2 · e2 = (T e2) · e2 𝜏𝑦𝑧 = t2 · e3 = (T e2) · e3

𝜏𝑧𝑥 = t3 · e1 = (T e3) · e1 𝜏𝑧𝑦 = t3 · e2 = (T e3) · e2 𝜎𝑧𝑧 = t3 · e3 = (T e3) · e3

1.1.4 Piola-Kirchoff stress tensors
Starting from the definition, for every surface elements considered on the cutting plane of
normal vector 𝒏 the resultant tension vector can be defined starting either from reference
or material configuration:{

Actual: 𝑅 (𝑛) = t(x, n)𝑑𝑠 = 𝝈 (x) n 𝑑𝑠 = 𝝈 (x) 𝑑s

Reference: 𝑅 (𝑁 ) = T(X, n)𝑑𝑆 = P(X) N 𝑑𝑆 = P(X) 𝑑S
(1.1.40)

Since the volume is in equilibrium:

𝝈 (x) 𝑑s = P(X) 𝑑S (1.1.41)

applying now Nanson’s formula (1.1.15), 𝑑s = F−𝑇 𝐽𝑑S:

𝝈 (x) 𝑑s = 𝝈 (x) F−𝑇 𝐽𝑑S = P(X) 𝑑S (1.1.42)

The definition of PK1 (Piola-Kirchoff 1) stress tensor is obtained:

P(X) = 𝐽𝝈 (x)F−𝑇 (1.1.43)

By energetic arguments and consideration, one can also define the work-conjugate of the
Green-Lagrange strain tensor, the PK2 (Piola-Kirchoff 2) stress tensor, referred to the orig-
inal configuration defined as:

S(x) = 𝐽F−1𝝈 (x)F−𝑇 = F−1P (1.1.44)

Starting from these definitions, constitutive laws are mathematical model that characterize
the behavior of the material by relation between strain measures and stresses measures.
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1.2 Principle of Virtual Displacements
Structural problem governing equations based on displacement formulation typically are
derived from variational principles: these mathematical tools allow the formulations of
many problems in the so-called weak form. Finite Element Method considered in the
present work rely on the PVD (Principle of Virtual Displacement), a formulation of gov-
erning equation based on variational statement.

1.2.1 Governing equation in weak form
Let Ω be a continuum body: suppose that u is the displacement field and the body is in
equilibrium under the Cauchy’s conditions (1.1.38), with b is the vector of volume forces.
On the body, both geometrical constraints and loads are applied, defining then initial and
boundary value problem of the global equilibrium: one can consider a subdomain of the
whole surface 𝜕𝛺𝜎 on which only loads are applied, and 𝜕𝛺𝑢 on which geometrical con-
straints are applied, in such a way 𝜕𝛺 = 𝜕𝛺𝜎 ∪ 𝜕𝛺𝑢 . In other words Dirichlet boundary
conditions on the displacement field and Neumann boundary conditions on the loads are
considered. In this formulation then, the governing equation are expressed as:

∇ · 𝝈 + b = 0
u = ū on 𝜕𝛺𝑢
t = 𝜎n = t̄ on 𝜕𝛺𝜎

(1.2.1)

𝑒2

𝑒3

𝑒1

Ω0

Figure 1.2.1: Initial and boundary value problem for structural governing equation

Analytical solutions of governing equations (1.2.1) are available only for very special
and limited cases: the general solution can be obtained by approximated methods based
on variational principles. Most variational principles are based on calculus of variations:
let’s consider a generic test function 𝜂 and let’s define the functional:

𝑓 (u, 𝜂) =
∫
𝛺

(∇ · 𝝈 + b) · 𝜂𝑑𝑉 = 0 (1.2.2)

Eq.(1.2.2) is the so call weak-form of equations of motion. The fundamental lemma of
calculus of variations says that, since the test function is arbitrary, then∇·𝝈+bmust be null
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in the whole domain of integration, obtaining again Cauchy’s equilibrium conditions: in
other words, the solution of the strong form equilibrium equations is absolutely equivalent
to the solution in weak form. Exploiting the scalar products, considering tensor calculus
properties and Divergence’s theorem, one can rewrite the weak form equation for the
structural problem in a more convenient notation:

𝑓 (u, 𝜂) =
∫
𝛺

(𝝈 : ∇𝜂 + b · 𝜂)𝑑𝑉 −
∫
𝜕𝛺

𝝈𝜂 · n𝑑𝑆 = 0 (1.2.3)

If the arbitrary test-function considered is the virtual variation of the displacement field,
namely 𝛿u, the principle of Virtual Work is obtained:

𝑓 (u, 𝛿u) =
∫
𝛺

(𝝈 : 𝛿𝝐 + b · 𝛿u) 𝑑𝑉 −
∫
𝜕𝛺

�̄� · 𝛿u 𝑑𝑆 = 0 (1.2.4)

This principle is one of the easiest variational principle: neglecting the contribution of
the volume forces, the work contribution of the internal stresses (𝝈 : 𝛿𝝐 is equal to the
work done by external loads along the virtual displacements �̄� · 𝛿u. Defining the internal
(mechanical) virtual work and external (mechanical) virtual work as:

𝛿W𝑖𝑛𝑡 =

∫
𝛺

𝝈 : 𝛿𝝐 𝑑𝑉 (1.2.5)

𝛿W𝑒𝑥𝑡 =

∫
𝜕𝛺

�̄� · 𝛿u 𝑑𝑆 −
∫
𝛺

b · 𝛿u 𝑑𝑉 (1.2.6)

PVD states that the virtual variation of the internal work is equal to the virtual variation
of external work for any arbitrary virtual displacement.
In the framework of the present thesis, due to compact vector notation adopted both for
displacements and strains, the internal work can be explicitly expressed as:

𝛿W𝑖𝑛𝑡 =

∫
𝛺

𝛿𝝐𝑇𝝈 𝑑𝑉 =

=

∫
𝛺

(𝜎𝑥𝑥𝛿𝜖𝑥𝑥 + 𝜎𝑦𝑦𝛿𝜖𝑦𝑦 + 𝜎𝑧𝑧𝛿𝜖𝑧𝑧 + 𝜏𝑥𝑧𝛿𝜖𝑥𝑧 + 𝜏𝑦𝑧𝛿𝜖𝑦𝑧 + +𝜏𝑥𝑦𝛿𝜖𝑥𝑦) 𝑑𝑉 (1.2.7)

Finally, the external work can be expressed as the sum of different contribution: volume
forces b, pressure forces 𝑝 , distributed load on lines q and concentrated loads P, obtaining

𝛿W𝑒𝑥𝑡 =

∫
𝜕𝛺

�̄� · 𝛿u 𝑑𝑆 −
∫
𝛺

b · 𝛿u 𝑑𝑉 =

=

∫
𝛺

𝛿u𝑇g 𝑑𝑉 +
∫
𝜕𝛺

𝛿u𝑇p 𝑑𝑆 +
∫
𝜕𝛺𝐿

𝛿u𝑇q 𝑑𝑦 + 𝛿u𝑇P (1.2.8)

This formulation is the starting point for the present implementation of 1D, 2D and 3D
FEM-CUF finite elements: by imposing the polynomial expansion of the displacement field
and by fixing the consititutive law for the Cauchy’s stress tensor, governing equations in
weak form will be written in matrix form.
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Chapter 2
Constitutive laws

Consitutive laws are relations between the stress tensor and the strain tensor: in the gen-
eral case, they are mathematical model for representing the actual behavior of materials
and structures, describing the actual (or approximated) response of the material from a
deformation point of view when loads and geometrical constraints are applied. In the spe-
cific case of structural mechanics, constitutive laws are mathematical relation describing
connection between stresses or loads to strains.

2.1 Linear elastic materials
In the case of a linear elastic material, in a generic configuration of the body, the stress
tensor 𝝈 is only function of instantaneous strain tensor previously defined as the Green-
Lagrange strain tensor E. In mathematical terms, a deformable body is linearly elastic if
there exists an elasticity tensor C such that:

𝝈 (P) = CE 𝜎𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑚𝐸𝑘𝑚 (2.1.1)

Where, in the expression in terms of components, Einstein notation is adopted: repeated
indeces means sum over the indeces. The tensor C then is a fourth-order tensor, identified
by 81 constant terms, that defines a linear transformation from the deformation space to
the stress space, and it is able to characterize the behaviour of the material. By assigning
the elasticity tensor of a material, is automatically assigned the behaviour of the body in
terms of deformation and tension components.
Since both the strain tensor and the stress tensor are symmetric tensors, C need to satisfy
particular simmetries, called minor and major symmetries. In the present work, mainly
isotropic material are considered: in every material point of the body the constitutive
properties of the material are the same in every direction of the space, namely the me-
chanical properties do not depend on the considered direction. The elasticity tensor of
isotropic material fullfil both minor and major symmetries, therefore only two constants
are required, namely:

C𝑖 𝑗𝑘𝑚 = C 𝑗𝑖𝑚𝑘 = C𝑖 𝑗𝑚𝑘 = C𝑘𝑚𝑖 𝑗 (2.1.2)

C𝑖 𝑗𝑘𝑚 = 𝐺 (𝛿𝑖 𝑗𝛿𝑘𝑚 + 𝛿𝑖𝑚𝛿 𝑗𝑘) + 𝜆𝛿𝑖 𝑗𝛿𝑘𝑚 (2.1.3)
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2.2 Isotropic hyperelastic materials
In the case of a hyperelastic material, the existance of a potential function𝛹 is postulated:
the material is described by a Helmholtz free-energy function defined per unit volume.
When this free-energy function depends only on the deformation gradient, namely𝛹 =

𝛹 (F), this function is also called strain-energy or stored-energy function.
The physical relation between strains and stresses in the case of an hyperleastic material
is given in terms of Piola-Kirchoff 1 stress tensor:

P =
𝜕𝛹 (F)
𝜕F

(2.2.1)

By thermodynamics argument, often P is said the thermodynamic force work conjugate to
F. It satisfy the normalization conditions, namely𝛹 (I) = 0 and in general is a non-negative
function for each value of the deformation gradient (restricting the possible admissible de-
formation fields).
Recalling that, by Polar Decomposition Theorem, the deformation gradient can be ex-
pressed as a pure-rotational part and a pure stretch term, namely F = RU, by objectivity
arguments one can find that the strain energy function is only depending on the stretch-
ing part of the deformation gradient, so𝛹 =𝛹 (F) =𝛹 (U).
Finally, by imposing the chain rule of differentiation considering that the right Cauchy-
Green strain tensor and the Green-Lagrange strain tensor are given by C = 2E+ I, one can
finally find that𝛹 =𝛹 (F) =𝛹 (U) =𝛹 (E).
Reduced form of constitutive equations can be obtained analyzing the time derivative of
the strain-energy function. Since the right Cauchy-Green strain tensor is a symmetric
tensor, the following relation holds:(

𝜕𝛹 (F)
𝜕F

)𝑇
= 2

(
𝜕𝛹 (C)
𝜕C

)𝑇
F𝑇 (2.2.2)

From the already known definition of Piola-Kirchoff 1 stress tensor definition, remember-
ing that the "true" Cauchy stress tensor is a symmetric tensor, one can obtain:

𝜎 = 𝐽−1PF𝑇 = 𝐽−1FP𝑇 = 𝐽−1F
(
𝜕𝛹 (F)
𝜕F

)𝑇
= 2𝐽−1F

(
𝜕𝛹 (C)
𝜕C

)𝑇
F𝑇 (2.2.3)

Alternatively useful expression for the PK1 and PK2 stress tensor can be obtained:

P = 2F
𝜕𝛹 (C)
𝜕C

(2.2.4)

S = F−1P = 2F−1F
𝜕𝛹 (C)
𝜕C

= 2𝜕𝛹 (C)
𝜕C

=
𝜕𝛹 (E)
𝜕E

(2.2.5)

These expression represents the starting point for the derivation of the governing equation
for an incompressible and compressible hypereleastic material, and they are independent
on the model of strain-energy function adopted.
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2.2.1 Constitutive equations in terms of invariants
In the case of isotropic hyperelastic material, invariance under rotation is fulfilled: gov-
erning equation can be expressed then in terms of invariant of tensor-variables by the
representation theorem for invariants in the case of isotropic scalar functions. The defini-
tion of strain energy function in terms of invariants of right Cauch-Green tensor will be
then:

𝛹 (C) =𝛹 (C) (𝐼1(C), 𝐼2(C), 𝐼3(C)) (2.2.6)

where 𝐼1, 𝐼2, 𝐼3 are the invariants defined as:

𝐼1 = tr(C) (2.2.7)

𝐼2 =
1
2 (𝐼

2
1 − tr(C2)) (2.2.8)

𝐼3 = det(C) = det(F𝑇F) = 𝐽 2 (2.2.9)

In particular 𝐼3 is square the volume ratio coefficient, a measure of the change in volume of
an infinitesimal particle of the body during the deformation. If the material preserves the
volume, namely it remains constant during the deformation, incompressibility constraint
holds, 𝐼3 = 𝐽 = 1.
The derivative of the strain-energy function with respect of C can be computed by apply-
ing the chain rule:

𝜕𝛹 (C)
𝜕C

=
𝜕𝛹 (C)
𝜕𝐼1

𝜕𝐼1
𝜕C

+ 𝜕𝛹 (C)
𝜕𝐼2

𝜕𝐼2
𝜕C

+ 𝜕𝛹 (C)
𝜕𝐼3

𝜕𝐼3
𝜕C

(2.2.10)

By tensor-algebra and tensor calculus, remembering the properties of double contraction,
the general expression of derivatives of the invariant are obtained:

𝜕𝐼1
𝜕C

=
𝜕trC
𝜕C

=
𝜕(I : C)
𝜕C

= I (2.2.11)

𝜕𝐼2
𝜕C

=
1
2

(
trC I − 𝜕trC2

𝜕C

)
= 𝐼1I − C (2.2.12)

𝜕𝐼3
𝜕C

= 𝐼3C−1 (2.2.13)

Substituting these three above relations in (2.2.5), the most general expression of PK2
stress tensor in terms of invariant is found, and it characterize the behavior of isotropic
hyperelastic materials in the finite strains scenario:

S = 2𝜕𝛹 (C)
𝜕C

= 2
[(
𝜕𝛹

𝜕𝐼1
+ 𝐼1

𝜕𝛹

𝜕𝐼2

)
I − 𝜕𝛹

𝜕𝐼2
C + 𝐼3

𝜕𝛹

𝜕𝐼3
C−1

]
(2.2.14)
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CONSTITUTIVE LAWS Hyperelasticity: compressible hyperelasticity

2.2.2 Compressible hyperelastic materials constitutive equations
In literature, since there exists materials that behaves differently depending on the direc-
tion of loads applied, according to Flory [21] the deformation gradient is split into the so
called volumetric and isochoric parts:

F = (𝐽 1
3 I)F̄ = FvolF̄ (2.2.15)

and, consistently with the strain measure already defined by the right Cauchy-Green ten-
sor:

C = (𝐽 2
3 I)C̄ = CvolC̄ (2.2.16)

In the above relations, Fvol, Cvol are associated to a volume-chaning behavior, instead F̄, C̄
to a volume-preserving behavior. In the principal reference frame of the eigenvector of
each tensor, one can define then the so-called modified principal stretches.
In this framework then, the strain-energy function is assumed as a decoupled representa-
tion, in which the volumetric and isochoric part are distinct contributes:

𝛹 (C) =𝛹𝑣𝑜𝑙 (𝐽 ) +𝛹𝑖𝑠𝑜 (C̄) =𝛹𝑣𝑜𝑙 (𝐼3) + �̄� (𝐼1, 𝐼2) (2.2.17)

where 𝐼1, 𝐼2 are the invariants of the isochoric part of the right Cauchy-Green tensor C̄. In
the present work, first-invariant hyperelasticity is considered: the strain-energy isochoric
function depends only on 𝐼1, namely �̄� = �̄� (𝐼1).
Again, according to this decomposition, also the PK2 can be split in the sum of a purely
volumetric part and a purely isochoric part:

S = 2𝜕𝛹 (C)
𝜕C

= S𝑣𝑜𝑙 + S𝑖𝑠𝑜 (2.2.18)

where, in the above definition:

S𝑣𝑜𝑙 = 2𝜕𝛹𝑣𝑜𝑙
𝜕C

= 𝐽 𝑝 C−1 (2.2.19)

S𝑣𝑜𝑙 = 2𝜕�̄�
𝜕C

= 2𝐽−
2
3
𝜕�̄�

𝜕𝐼1

(
I − 1

3 𝐼1C−1
)

(2.2.20)

In this explicit form of governing equation, one important parameter appearing in the
derivation is the hydrostatic pressure 𝑝 =

𝜕𝛹𝑣𝑜𝑙

𝜕𝐽
.

As said before, this derivation holds independently on the specific strain energy function
considered. In the present work, different hyperelastic models will be adopted, and the
specific expression of strain-energy function considered can be found in App.C.
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CONSTITUTIVE LAWS Hyperelasticity: tangent elasticity matrix

2.2.3 Material Jacobian tensor and incremental formulation
In the framework of total-Lagrangian formulation of nonlinear problems, typically incre-
mental formulations are considered. According to Holzapfel [5], the constitutive equation
(2.2.14) can be written by the total differential form considering and incremental formu-
lation:

𝛥S = C 1
2𝛥C (2.2.21)

where C is the so-calledmaterial Jacobian tensor : in the linearized framwork of governing
equation and in analogy with Hooke’s law, it represents the tangent elasticity tensor, and
is expressed as

C = 2𝜕S(C)
𝜕C

=
𝜕S(E)
𝜕E

= 4 𝜕2𝛹

𝜕C𝜕C
(2.2.22)

According to [19], under the hypothesis of first-invariant hyperleasticity (namely, again,
�̄� = �̄� (𝐼1)), the material Jacobian tensor can be expressed, as already done for the PK2
stress tensor and strain energy function, as sum of a volumetric and isochoric part:

C = C𝑣𝑜𝑙 + C𝑖𝑠𝑜 (2.2.23)

C𝑣𝑜𝑙 = 𝐽
𝜕𝛹𝑣𝑜𝑙

𝜕𝐽
(C−1 ⊗ C−1 − 2IC−1) + 𝐽 2 𝜕

2𝛹𝑣𝑜𝑙
𝜕𝐽 2 C−1 ⊗ C−1 (2.2.24)

C𝑖𝑠𝑜 = −4
3 𝐽

− 2
3
𝜕�̄�

𝜕𝐼1
[I ⊗ C−1 + C−1 ⊗ I − 𝐼1(IC−1 + 1

3C−1 ⊗ C−1)] + 𝐽− 4
3 C̄�̄� (2.2.25)

C̄�̄� = 4 𝜕
2�̄�

𝜕𝐼1
2 [I ⊗ I − 1

3 𝐼1(I ⊗ C−1 + C−1 ⊗ I) + 1
9 𝐼

2
1 C−1 ⊗ C−1] (2.2.26)

where IC−1 = − 𝜕C−1

𝜕C . A more detailed derivation can be found again in [5].
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Chapter 3
Carrera Unified Formulation

This chapter is devoted to the description of the Finite Element Method and Carrera Uni-
fied Formulation, both adopted in the implementation of finite elements for geometrically
nonlinear structural problems. After a brief introduction to adopted notation, derivation
of nonlinear equation is carried out and methods of discretization are described.
Governing equations will be written in terms of nonlinear algebraic systems of equation
considering each fundamental nuclei involved. The numerical schemes involved in algo-
rithm for nonlinear problems will be presented, with particular focus on Crisfield modified
formulation of arc-lenght method.

3.1 Governing equations in matrix form

3.1.1 Geometrical relations
Let u be the continuous displacement field of the body, function of the material point,
expressed as coloumn vector:

u = u(𝑥,𝑦, 𝑧) = { 𝑢 (𝑥,𝑦, 𝑧), 𝑣 (𝑥,𝑦, 𝑧), 𝑤(𝑥,𝑦, 𝑧) }𝑇 (3.1.1)

Since both strain tensor and stress tensor are symmetric tensors, both will be expressed
by Voigt’s notation in vector form as follow:

𝝐 = { 𝜖𝑥𝑥 , 𝜖𝑦𝑦, 𝜖𝑧𝑧, 2𝛾𝑥𝑧, 2𝛾𝑦𝑧, 2𝛾𝑥𝑦 }𝑇 =

= { 𝜖𝑥𝑥 , 𝜖𝑦𝑦, 𝜖𝑧𝑧, 𝜖𝑥𝑧, 𝜖𝑦𝑧, 𝜖𝑥𝑦 }𝑇 (3.1.2)

𝝈 = { 𝜎𝑥𝑥 , 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑧, 𝜎𝑦𝑧, 𝜎𝑥𝑦 }𝑇 (3.1.3)

Starting from the general expression of the Green-Lagrange strain tensor eq.(1.1.24), the
strain vector can be expressed as:

𝝐 = (bl + bnl) u (3.1.4)

where the matrices bl and bnl are the formal matrix of the linear derivatives operator and
non-linear derivative operators defined as follow:

21



CARRERA UNIFIED FORMULATION Equations in matrix form

bl =



𝜕

𝜕𝑥
0 0

0 𝜕

𝜕𝑦
0

0 0 𝜕

𝜕𝑧

𝜕

𝜕𝑧
0 𝜕

𝜕𝑥

𝜕

𝜕𝑧

𝜕

𝜕𝑦
0

𝜕

𝜕𝑦

𝜕

𝜕𝑥
0



bnl =



1
2

(
𝜕

𝜕𝑥

)2 1
2

(
𝜕

𝜕𝑥

)2 1
2

(
𝜕

𝜕𝑥

)2

1
2

(
𝜕

𝜕𝑦

)2 1
2

(
𝜕

𝜕𝑦

)2 1
2

(
𝜕

𝜕𝑦

)2

1
2

(
𝜕

𝜕𝑧

)2 1
2

(
𝜕

𝜕𝑧

)2 1
2

(
𝜕

𝜕𝑧

)2

𝜕

𝜕𝑥

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑥

𝜕

𝜕𝑦


3.1.2 Constitutive equation
In the present work, constitutive linear elastic material are considered. The constitutive
equationin Voigt’s notation can be rewritten as:

𝝈 = C𝝐 (3.1.5)

where C is the symmetric elasticity tensor defined as:

C =



𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36
𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46
𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56
𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66


(3.1.6)

In the present work, mainly isotropic material are considered: in this particular case, the
elasticity tensor assume a simplyfied expression depending only on two constants:

C =



𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44


(3.1.7)

In which every component is expressed in terms of Lamè parameters, Young modulus and
Poisson coefficient:

𝐶11 = 2𝐺 + 𝜆; 𝐶12 = 𝜆; 𝐶44 = 𝐺 ; 𝐺 =
𝐸

2(1 + 𝜈) ; 𝜆 =
𝜈𝐸

(1 + 𝜈) (1 − 2𝜈) (3.1.8)
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CARRERA UNIFIED FORMULATION Equations in matrix form

For sake of completeness, elasticity tensor for orthotropic material (for which there exists
principal direction) is reported. The properties in the transversal direction of the fiber are
different in respect of the main direction of the fiber: it is then necessary to define Young
moduli and more coefficient for each direction. The elasticity tensor assume this form:

C =



𝐶11 𝐶12 𝐶13 0 0 0
𝐶21 𝐶22 𝐶23 0 0 0
𝐶31 𝐶32 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66


(3.1.9)

The generic element of the elasticity tensor will be function of (in general) all this coeffi-
cient just defined:

𝐶𝑖 𝑗 = 𝐶𝑖 𝑗 ( 𝐸1, 𝐸2, 𝐸3, 𝐺23, 𝐺13, 𝐺12, 𝜈23, 𝜈13, 𝜈12 ) (3.1.10)

The previous expression are referred to the material reference frame. Considering the
expression of the same elasticity tensor in the global reference frame, it is necessary to
apply a rotation as defined:

T =



cos2 𝜃 sin2 𝜃 0 0 0 − sin 2𝜃
sin2 𝜃 cos2 𝜃 0 0 0 sin 2𝜃

0 0 1 0 0 0
0 0 0 cos𝜃 sin𝜃 0
0 0 0 − sin𝜃 cos𝜃 0

sin𝜃 cos𝜃 − sin𝜃 cos𝜃 0 0 0 cos 2𝜃


(3.1.11)

Applying this rotation, Hooke’s law written in the global ref. frame becomes:

𝝈 = T𝑇CT𝜖 = Q𝝐 (3.1.12)

Where the compact global matrix is:

Q =



𝑄11 𝑄12 𝑄13 0 0 𝑄16
𝑄21 𝑄22 𝑄23 0 0 𝑄26
𝑄31 𝑄32 𝑄33 0 0 𝑄36

0 0 0 𝑄44 𝑄45 0
0 0 0 𝑄54 𝑄55 0
𝑄16 𝑄26 𝑄36 0 0 𝑄66


(3.1.13)
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CARRERA UNIFIED FORMULATION Equations in matrix form

The components of the matrix [𝑄] are given by:

𝑄11 = 𝑚4𝐶11 + 2𝑚2𝑛2𝐶12 + 𝑛4𝐶22 + 4𝑚2𝑛2𝐶66

𝑄12 = 𝑄21 = 𝑚2𝑛2𝐶11 +𝑚4𝐶12 + 𝑛4𝐶12 + 𝑛2𝑛2𝐶22 − 4𝑚2𝑛2𝐶66

𝑄13 = 𝑄31 = 𝑚2𝐶13 + 𝑛2𝐶23

𝑄16 = 𝑚3𝑛𝐶11 +𝑚3𝑛𝐶12 +𝑚𝑛3𝐶12 +𝑚𝑛3𝐶22 − 2𝑚3𝑛𝐶66 + 2𝑚𝑛3𝐶66

𝑄22 = 𝑛4𝐶11 + 2𝑚2𝑛2𝐶12 +𝑚4𝐶22 + 4𝑚2𝑛2𝐶66

𝑄23 = 𝑄32 = 𝑛2𝐶13 +𝑚2𝐶23

𝑄26 = 𝑚𝑛3𝐶11 +𝑚3𝑛𝐶12 +𝑚3𝑛𝐶22 + 2𝑚3𝑛𝐶66 − 2𝑚𝑛3𝐶66

𝑄33 = 𝐶33

𝑄36 = 𝑚𝑛𝐶13 +𝑚𝑛𝐶23

𝑄44 = 𝑚2𝐶44 + 𝑛2𝐶55

𝑄45 = 𝑄54 = −𝑚𝑛𝐶44 +𝑚𝑛𝐶55

𝑄55 = 𝑛2𝐶44 +𝑚2𝐶55

𝑄66 = 𝑚2𝑛2𝐶11 + 2𝑚2𝑛2𝐶12 +𝑚2𝑛2𝐶22 +𝑚4𝐶66 − 2𝑚2𝑛2𝐶66 + 𝑛4𝐶66

where𝑚 = cos𝜃 and 𝑛 = sin𝜃 .
In the present work, mainly isotropic material are considered but, for future works, the
full elasticity tensor without anymaterial hypotesis superimpositions has been considered
and implemented during the derivation of governing equation: in this way, the all the gov-
erning equation in weak form are completely independent from the material considered,
and the derivation is straightforword.
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CARRERA UNIFIED FORMULATION Beam 1D elements

3.2 Carrera Unified Formulation
According to Carrera Unified Formulation, the displacement field is expressed as an ex-
pansion of basic polynomial terms, increasing as necessary the order of expansion. The
displacement field is then written as a combination of the nodal displacements of the finite
element and it depends on the model considered: in 1D CUF models, thickness functions
are used to approximate the displacement field along the cross-section of the beam, in
2D models thickness functions are used to approximate the displacement field along the
thickness of the plate/shell.
The choice of cross-section/thickness expansion function is completely arbitrary but this
choice characterize themodel adopted: when Taylor polynomials are involved, structure is
solved by considering an equivalent single layer for the whole cross-section (ESL models),
instead when Lagrange polynomials are chosen a Layer-Wise description of the displace-
ment field is allowed (LW models).

3.2.1 Beam 1D CUF-FEM finite element
In elongated structures namely beam structure, for which the characteristic length is far
greater then the cross-section dimensions, 1D CUF models are adopted. In this model, the
primary variables of the 3D displacement field are discretized by a classical FEM approxi-
mation along the axis, and used for the interpolation of the nodal cross-section displace-
ment components.

𝑥

𝑧

𝑦
𝑥′

𝑧′

𝑦′
𝐹𝜏 (𝑥, 𝑧)

If 𝑦 is the direction of the beam axis, and 𝑥′, 𝑧′ is the reference plane for the cross-
section, according to Carrera Unified Formulation the displacement field is then:

u(𝑥,𝑦, 𝑧) = 𝐹𝜏 (𝑥, 𝑧)u𝜏 (𝑦) = 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖 (𝑦)q𝜏 i 𝜏 = 1, 2, .., 𝐾 (3.2.1)
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CARRERA UNIFIED FORMULATION Plate 2D elements

where 𝐹𝜏 (𝑥, 𝑧) are the cross-section expansion function, 𝐾 is the order of expansion,
q𝜏 i are the nodal discrete displacements and 𝑁𝑖 (𝑦) are the classical 1D shape functions
involved in FEM used for the approximation along the beam axis. In the context of geo-
metrically non linear elasticty, the geometrical relations can be rewritten as:

𝝐 = (bl + bnl) u = (bl + bnl) 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖 (𝑦)q𝜏 i = (B𝜏 i
l + B𝜏 i

nl)q𝜏 i (3.2.2)

where B𝜏 i
l and B𝜏 i

nl are the formal matrices of derivatives operators applied to shape func-
tions and cross-section functions, that can be rewritten then as:

B𝜏 i
l =



𝐹𝜏,𝑥𝑁𝑖 0 0
0 𝐹𝜏𝑁𝑖,𝑦 0
0 0 𝐹𝜏,𝑧𝑁𝑖

𝐹𝜏,𝑧𝑁𝑖 0 𝐹𝜏,𝑥𝑁𝑖

0 𝐹𝜏,𝑧𝑁𝑖 𝐹𝜏𝑁𝑖,𝑦

𝐹𝜏𝑁𝑖,𝑦 𝐹𝜏,𝑥𝑁𝑖 0


(3.2.3)

B𝜏 i
nl =

1
2



𝑢𝑥,𝑥𝐹𝜏,𝑥𝑁𝑖 𝑢𝑦,𝑥𝐹𝜏,𝑥𝑁𝑖 𝑢𝑧,𝑥𝐹𝜏,𝑥𝑁𝑖

𝑢𝑥,𝑦𝐹𝜏𝑁𝑖,𝑦 𝑢𝑦,𝑦𝐹𝜏𝑁𝑖,𝑦 𝑢𝑧,𝑦𝐹𝜏𝑁𝑖,𝑦

𝑢𝑥,𝑧𝐹𝜏,𝑧𝑁𝑖 𝑢𝑦,𝑧𝐹𝜏,𝑧𝑁𝑖 𝑢𝑧,𝑧𝐹𝜏,𝑧𝑁𝑖

𝑢𝑥,𝑥𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑥,𝑧𝐹𝜏,𝑥𝑁𝑖 𝑢𝑦,𝑥𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑦,𝑧𝐹𝜏,𝑥𝑁𝑖 𝑢𝑧,𝑥𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑧,𝑧𝐹𝜏,𝑥𝑁𝑖
𝑢𝑥,𝑦𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑥,𝑧𝐹𝜏𝑁𝑖,𝑦 𝑢𝑦,𝑦𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑦,𝑧𝐹𝜏𝑁𝑖,𝑦 𝑢𝑧,𝑦𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑧,𝑧𝐹𝜏𝑁𝑖,𝑦
𝑢𝑥,𝑥𝐹𝜏𝑁𝑖,𝑦 + 𝑢𝑥,𝑦𝐹𝜏,𝑥𝑁𝑖 𝑢𝑦,𝑥𝐹𝜏𝑁𝑖,𝑦 + 𝑢𝑦,𝑦𝐹𝜏,𝑥𝑁𝑖 𝑢𝑧,𝑥𝐹𝜏𝑁𝑖,𝑦 + 𝑢𝑧,𝑦𝐹𝜏,𝑥𝑁𝑖


(3.2.4)

3.2.2 Plate 2D CUF-FEM finite element
In structures where only the thickness is at least one order of dimension less then the other
dimensions, 2D CUF models are adopted. In this model, the primary variables of the 3D
displacement field are expressed adopting through-the-thickness expansion of finite nodes
on the mid-surface of the plate, already discretized by a classical FEM approximation.
If 𝑧 is the thickness direction, and 𝑥,𝑦 is the reference plane for the mid-surface of the
plate, according to Carrera Unified Formulation the displacement field is written as:

u(𝑥,𝑦, 𝑧) = 𝐹𝜏 (𝑧)u𝜏 (𝑥,𝑦) = 𝐹𝜏 (𝑥)𝑁𝑖 (𝑥,𝑦)q𝜏 i 𝜏 = 1, 2, .., 𝐾 (3.2.5)
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CARRERA UNIFIED FORMULATION Plate 2D elements

𝑥

𝑧

𝑦

Ni(x, y)

F𝜏 (z)

where 𝐹𝜏 (𝑧) are the thickness expansion function, used for the approximation of the dis-
placement field along the thickness, 𝐾 is the order of expansion, q𝜏 i are the nodal discrete
displacements and 𝑁𝑖 (𝑥,𝑦) are the classical 2D shape functions involved in FEM used for
the approximation of the displacement field along the mid-surface. In the context of geo-
metrically non linear elasticity, the geometrical relations can be rewritten as:

𝝐 = (bl + bnl) u = (bl + bnl) 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖 (𝑦)q𝜏 i = (B𝜏 i
l + B𝜏 i

nl)q𝜏 i (3.2.6)

where B𝜏 i
l and B𝜏 i

nl are the formal matrices of derivatives operators applied to shape func-
tions and thickness function that can be rewritten then as:

B𝜏 i
l =



𝐹𝜏𝑁𝑖,𝑥 0 0
0 𝐹𝜏𝑁𝑖,𝑦 0
0 0 𝐹𝜏,𝑧𝑁𝑖

𝐹𝜏,𝑧𝑁𝑖 0 𝐹𝜏𝑁𝑖,𝑥

0 𝐹𝜏,𝑧𝑁𝑖 𝐹𝜏𝑁𝑖,𝑦

𝐹𝜏𝑁𝑖,𝑦 𝐹𝜏𝑁𝑖,𝑥 0


(3.2.7)

B𝜏 i
nl =

1
2



𝑢𝑥,𝑥𝐹𝜏𝑁𝑖,𝑥 𝑢𝑦,𝑥𝐹𝜏𝑁𝑖,𝑥 𝑢𝑧,𝑥𝐹𝜏𝑁𝑖,𝑥

𝑢𝑥,𝑦𝐹𝜏𝑁𝑖,𝑦 𝑢𝑦,𝑦𝐹𝜏𝑁𝑖,𝑦 𝑢𝑧,𝑦𝐹𝜏𝑁𝑖,𝑦

𝑢𝑥,𝑧𝐹𝜏,𝑧𝑁𝑖 𝑢𝑦,𝑧𝐹𝜏,𝑧𝑁𝑖 𝑢𝑧,𝑧𝐹𝜏,𝑧𝑁𝑖

𝑢𝑥,𝑥𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑥,𝑧𝐹𝜏𝑁𝑖,𝑥 𝑢𝑦,𝑥𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑦,𝑧𝐹𝜏𝑁𝑖,𝑥 𝑢𝑧,𝑥𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑧,𝑧𝐹𝜏𝑁𝑖,𝑥
𝑢𝑥,𝑦𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑥,𝑧𝐹𝜏𝑁𝑖,𝑦 𝑢𝑦,𝑦𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑦,𝑧𝐹𝜏𝑁𝑖,𝑦 𝑢𝑧,𝑦𝐹𝜏,𝑧𝑁𝑖 + 𝑢𝑧,𝑧𝐹𝜏𝑁𝑖,𝑦
𝑢𝑥,𝑥𝐹𝜏𝑁𝑖,𝑦 + 𝑢𝑥,𝑦𝐹𝜏𝑁𝑖,𝑥 𝑢𝑦,𝑦𝐹𝜏𝑁𝑖,𝑦 + 𝑢𝑦,𝑦𝐹𝜏𝑁𝑖,𝑥 𝑢𝑧,𝑥𝐹𝜏𝑁𝑖,𝑦 + 𝑢𝑧,𝑦𝐹𝜏𝑁𝑖,𝑥


(3.2.8)
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3.2.3 Isoparametric 3D finite element
In structures with complex geometries or without any prevalent dimension, 3Dmodels are
adopted. In this model, the primary variables of the 3D displacement field are expressed as
an expansion of nodal displacement variables of the generic element, in which only shape
FEM functions are involved because there is no other approximation along any direction:
the displacement field is obtained only by FEM approximation of the considered domain.

𝑥

𝑧

𝑦

In the classical 𝑥,𝑦, 𝑧 reference frame, according to Finite Element Method, the dis-
placement field is then:

u(𝑥,𝑦, 𝑧) = 𝑁𝑖 (𝑥,𝑦, 𝑧)qi 𝑖 = 1, 2, .., 𝑁 (3.2.9)

where 𝑁 is the order of the finite element, qi are the nodal discrete displacements and
𝑁𝑖 (𝑥,𝑦, 𝑧) are the classical 3D shape functions involved in FEM used for the approxima-
tion of the displacement field over the whole domain. In the contex of geometrically non
linear elasticty, the geometrical relations can be rewritten as:

𝝐 = (bl + bnl) u = (bl + bnl) 𝑁𝑖 (𝑥,𝑦, 𝑧)qi = (Bi
l + Bi

nl)qi (3.2.10)

where Bi
l and Bi

nl are the formal matrices of derivatives operators applied to shape func-
tions that can be rewritten then as:

Bi
l =



𝑁𝑖,𝑥 0 0
0 𝑁𝑖,𝑦 0
0 0 𝑁𝑖,𝑧

𝑁𝑖,𝑧 0 𝑁𝑖,𝑥

0 𝑁𝑖,𝑧 𝑁𝑖,𝑦

𝑁𝑖,𝑦 𝑁𝑖,𝑥 0


(3.2.11)

Bnl =
1
2



𝑢𝑥,𝑥𝑁𝑖,𝑥 𝑢𝑦,𝑥𝑁𝑖,𝑥 𝑢𝑧,𝑥𝑁𝑖,𝑥

𝑢𝑥,𝑦𝑁𝑖,𝑦 𝑢𝑦,𝑦𝑁𝑖,𝑦 𝑢𝑧,𝑦𝑁𝑖,𝑦

𝑢𝑥,𝑧𝑁𝑖,𝑧 𝑢𝑦,𝑧𝑁𝑖,𝑧 𝑢𝑧,𝑧𝑁𝑖,𝑧

𝑢𝑥,𝑥𝑁𝑖,𝑧 + 𝑢𝑥,𝑧𝑁𝑖,𝑥 𝑢𝑦,𝑥𝑁𝑖,𝑧 + 𝑢𝑦,𝑧𝑁𝑖,𝑥 𝑢𝑧,𝑥𝑁𝑖,𝑧 + 𝑢𝑧,𝑧𝑁𝑖,𝑥
𝑢𝑥,𝑦𝑁𝑖,𝑧 + 𝑢𝑥,𝑧𝑁𝑖,𝑦 𝑢𝑦,𝑦𝑁𝑖,𝑧 + 𝑢𝑦,𝑧𝑁𝑖,𝑦 𝑢𝑧,𝑦𝑁𝑖,𝑧 + 𝑢𝑧,𝑧𝑁𝑖,𝑦
𝑢𝑥,𝑥𝑁𝑖,𝑦 + 𝑢𝑥,𝑦𝑁𝑖,𝑥 𝑢𝑦,𝑦𝑁𝑖,𝑦 + 𝑢𝑦,𝑦𝑁𝑖,𝑥 𝑢𝑧,𝑥𝑁𝑖,𝑦 + 𝑢𝑧,𝑦𝑁𝑖,𝑥


(3.2.12)
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3.2.4 Lagrange Expansion Model
The Lagrange Expansion (LE) models adopts Lagrange polynomials to interpolate dis-
placement variables: in the case of 1D/2Dmodels, unknowns over the cross-section/thickness
domain are interpolated, instead in the case of 3D models the displacement field is ex-
pressed as an expansion over all the unknown nodal displacements of the finite element.
In the code, for 1D/2D element, different LE orders elements are implemented, namely Q4
(four node element), Q9 (nine node element) and Q16 (sixteen node element); in the case
of 3D LE elements instead H8 (eight-node element), H20 (twenty-node element) and H27
(twentyseven-node element) are implemented.
In general, the expansion is defined in the natural reference frame: each polynomial is
defined in the real interval [−1; 1]: physical quantities depending on the Lagrange expan-
sions need a change of variable where Jacobian is required.

1 𝑢1

𝑣1

2 𝑢2

𝑣2

3 𝑢3

𝑣34 𝑢4

𝑣4

𝜉

𝜂

𝑥

𝑦

1 ≡ (−1,−1)

4 ≡ (−1, 1)

2 ≡ (1,−1)

3 ≡ (1, 1)

J

Figure 3.2.1: Lagrange Q4 linear plane element: from material to natural ref. frame

As an example, in the case of linear Q4 element as shown in fig.3.2.1, Lagrange poly-
nomials in the natural reference frame are expressed as follows:

𝑁1(𝜉, 𝜂) =
1
4 (1 − 𝜉) (1 − 𝜂) 𝑁2(𝜉, 𝜂) =

1
4 (1 + 𝜉) (1 − 𝜂)

𝑁3(𝜉, 𝜂) =
1
4 (1 + 𝜉) (1 + 𝜂) 𝑁1(𝜉, 𝜂) =

1
4 (1 − 𝜉) (1 + 𝜂)

therefore, once the nodal displacements are computed, the displacement field of a Q4
domain in the physical reference frame is written as:

𝑢𝑥 = 𝑁1𝑢𝑥1 + 𝑁2𝑢𝑥2 + 𝑁3𝑢𝑥3 + 𝑁4𝑢𝑥4

𝑢𝑦 = 𝑁1𝑢𝑦1 + 𝑁2𝑢𝑦2 + 𝑁3𝑢𝑦3 + 𝑁4𝑢𝑦4

𝑢𝑧 = 𝑁1𝑢𝑧1 + 𝑁2𝑢𝑧2 + 𝑁3𝑢𝑧3 + 𝑁4𝑢𝑧4
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For example, in the case of linear H8 hexaedral element as shown in fig.3.2.2, Lagrange
polynomials in the natural reference frame are expressed as follows:

𝑁1(𝜉, 𝜂, 𝜈) =
(1 − 𝜉) (1 − 𝜂) (1 − 𝜈)

8 𝑁2(𝜉, 𝜂, 𝜈) =
(1 + 𝜉) (1 − 𝜂) (1 − 𝜈)

8

𝑁3(𝜉, 𝜂, 𝜈) =
(1 + 𝜉) (1 + 𝜂) (1 − 𝜈)

8 𝑁4(𝜉, 𝜂, 𝜈) =
(1 − 𝜉) (1 + 𝜂) (1 − 𝜈)

8

𝑁5(𝜉, 𝜂, 𝜈) =
(1 − 𝜉) (1 − 𝜂) (1 + 𝜈)

8 𝑁6(𝜉, 𝜂, 𝜈) =
(1 + 𝜉) (1 − 𝜂) (1 + 𝜈)

8

𝑁7(𝜉, 𝜂, 𝜈) =
(1 + 𝜉) (1 + 𝜂) (1 + 𝜈)

8 𝑁8(𝜉, 𝜂, 𝜈) =
(1 − 𝜉) (1 + 𝜂) (1 + 𝜈)

8

1
𝑢1

𝑣1

𝑤1 2
𝑢2

𝑣2

𝑤2

3
𝑢3

𝑣3

𝑤3

4
𝑢4

𝑣4

𝑤4

7
𝑢7

𝑣7

𝑤76
𝑢6

𝑣6

𝑤6

5
𝑢5

𝑣5

𝑤5

8
𝑢8

𝑣8

𝑤8

𝑥

𝑦

𝑧

𝜉

𝜂

𝜈

1 ≡ (−1,−1,−1)

2 ≡ (1,−1,−1) 3 ≡ (1, 1,−1)

4 ≡ (−1, 1,−1)

5 ≡ (−1,−1, 1)

6 ≡ (1,−1, 1) 7 ≡ (1, 1, 1)

8 ≡ (−1, 1, 1)

J

Figure 3.2.2: Lagrange H8 linear solid element: from material to natural ref. frame

therefore, once the nodal displacements are computed, the displacement field of a H27
domain in the physical reference frame is written as:

𝑢𝑥 = 𝑁1𝑢𝑥1 + 𝑁2𝑢𝑥2 + 𝑁3𝑢𝑥3 + ... + 𝑁9𝑢𝑥9

𝑢𝑦 = 𝑁1𝑢𝑦1 + 𝑁2𝑢𝑦2 + 𝑁3𝑢𝑦3 + ... + 𝑁9𝑢𝑦9

𝑢𝑧 = 𝑁1𝑢𝑧1 + 𝑁2𝑢𝑧2 + 𝑁3𝑢𝑧3 + ... + 𝑁9𝑢𝑧9
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3.2.5 Jacobian matrix
The computation of primary variables, derivatives of the thickness, cross-section or shape
functions in the physical reference frame are in general required by the mathematical de-
scription of the Finite Element Method. In the present work, isoparametric finite elements
adopted: computation can be performed in a convenient reference frame and express then
results in terms of physical variabile by adopting the Jacobian.

Considering isoparametric elements, if 𝑛𝑛 is the number of nodes in the element, the
geometrical variables can be computed by the nodal coordinates:

𝑥 =

𝑛𝑛∑︁
𝑖=1
𝑁𝑖 (𝜉, 𝜂, 𝜈) · 𝑥𝑖

𝑦 =

𝑛𝑛∑︁
𝑖=1
𝑁𝑖 (𝜉, 𝜂, 𝜈) · 𝑦𝑖

𝑧 =

𝑛𝑛∑︁
𝑖=1
𝑁𝑖 (𝜉, 𝜂, 𝜈) · 𝑧𝑖

(3.2.13)

as well as the computation of the derivatives, that becomes:

𝜕𝑥

𝜕𝜉
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜉

· 𝑥𝑖
𝜕𝑥

𝜕𝜂
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜂

· 𝑥𝑖
𝜕𝑥

𝜕𝜈
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜈

· 𝑥𝑖

𝜕𝑦

𝜕𝜉
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜉

· 𝑦𝑖
𝜕𝑦

𝜕𝜂
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜂

· 𝑦𝑖
𝜕𝑦

𝜕𝜈
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜈

· 𝑦𝑖

𝜕𝑧

𝜕𝜉
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜉

· 𝑧𝑖
𝜕𝑧

𝜕𝜂
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜂

· 𝑧𝑖
𝜕𝑧

𝜕𝜈
=

𝑛𝑛∑︁
𝑖=1

𝜕𝑁𝑖 (𝜉, 𝜂, 𝜈)
𝜕𝜈

· 𝑧𝑖

So, in general, starting from the natural reference frame and considering the total-differential
of each variabile, the Jacobian can be defined as:

𝜕

𝜕𝜉

𝜕

𝜕𝜂

𝜕

𝜕𝜈


=



𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉

𝜕𝑧

𝜕𝜉

𝜕𝑥

𝜕𝜂

𝜕𝑦

𝜕𝜂

𝜕𝑧

𝜕𝜂

𝜕𝑥

𝜕𝜈

𝜕𝑦

𝜕𝜈

𝜕𝑧

𝜕𝜈





𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧


(3.2.14)

and finally, all known the derivatives in the natural reference frame can be easily computed
by the inverse Jacobian Matrix:

𝜕

𝜕𝜉

𝜕

𝜕𝜂

𝜕

𝜕𝜈


=


𝐽−1




𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧


(3.2.15)
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Chapter 4
Nonlinear Unified Formulation

4.1 Linear elastic materials: stiffness matrices
The weak form governing equation of the nonlinear problem are carried out by means
of Principle of Virtual Displacement. Supposing that the body volume gravity forces are
negligible, PVD can be written as:

𝛿L𝑖𝑛𝑡 = 𝛿L𝑒𝑥𝑡 (4.1.1)

where 𝛿L𝑖𝑛𝑡 is the internal strain energy done by virtual displacement, 𝛿L𝑒𝑥𝑡 is the work
of external loads done by virtual displacements and 𝛿 denotes the variation. The internal
strain energy can be written as:

𝛿L𝑖𝑛𝑡 =

∫
𝛺

𝛿𝝐𝑇𝝈𝑑𝑉 (4.1.2)

4.1.1 Derivation of secant stiffness matrix
Explicit expression of the secant stiffness matrix is now derived: for a more general de-
scription and derivation, general expansion for a 1D or 2D element is considered, taking
into account also CUF. The expression of the secant matrix for the 3D element is similar,
but there is no CUF approximation.
Starting from eq.(4.1.2), since the strain vector can be written in terms of generalized nodal
displacements (unknown), as done in eq.(3.2.2) and (3.2.6):

𝝐 = (B𝜏 i
l + B𝜏 i

nl)q𝜏 i

the virtual variation of the strains can be derived in the sameway by introducing the nodal
virtual displacement (indeces 𝑠, 𝑗 ) as follows:

𝛿𝝐 = 𝛿 ((B𝜏 i
l + B𝜏 i

nl)q𝜏 i) = (Bsj
l + 2Bsj

nl)𝛿qsj (4.1.3)
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CARRERA UNIFIED FORMULATION Linear elasticity: secant stiffness matrix

Substituting eq.(4.1.3) and the constitutive law in matrix form (3.1.5) into the expression
of the internal work eq.(4.1.2):

𝛿L𝑖𝑛𝑡 =

∫
𝛺

𝛿qsj
𝑇 (Bsj

l + 2Bsj
nl)

𝑇
C(B𝜏 i

l + B𝜏 i
nl)q𝜏 i 𝑑𝑉 =

= 𝛿qsj
𝑇

[ ∫
𝛺

Bsj
l
𝑇
C B𝜏 i

l 𝑑𝑉

]
q𝜏 i + 𝛿qsj

𝑇

[ ∫
𝛺

Bsj
l
𝑇
C B𝜏 i

nl𝑑𝑉

]
q𝜏 i +

𝛿qsj
𝑇

[ ∫
𝛺

2Bsj
nl
𝑇
C B𝜏 i

l 𝑑𝑉

]
q𝜏 i + 𝛿qsj

𝑇

[ ∫
𝛺

2Bsj
nl
𝑇
C B𝜏 i

nl𝑑𝑉

]
q𝜏 i (4.1.4)

Introducing, starting from eq.4.1.4, some 3x3 matrices components:

K𝜏𝑠𝑖 𝑗
𝑙𝑙

=

∫
𝛺

Bsj
l
𝑇
C B𝜏 i

l 𝑑𝑉 linear contribution

K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

=

∫
𝛺

Bsj
l
𝑇
C B𝜏 i

nl𝑑𝑉 nonlinear contribution of I order

K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙

=

∫
𝛺

2Bsj
nl
𝑇
C B𝜏 i

l 𝑑𝑉 nonlinear contribution of I order

K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

=

∫
𝛺

2Bsj
nl
𝑇
C B𝜏 i

nl𝑑𝑉 nonlinear contribution of II order

(4.1.5)

the virtual variation of the internal work can be rewritten as:

𝛿L𝑖𝑛𝑡 =

∫
𝛺

𝛿qsj
𝑇 (Bsj

l + 2Bsj
nl)

𝑇
C(B𝜏 i

l + B𝜏 i
nl)q𝜏 i 𝑑𝑉 =

= 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙
q𝜏 i + 𝛿qsj

𝑇K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

q𝜏 i + 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑙
q𝜏 i + 𝛿qsj

𝑇K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

q𝜏 i = (4.1.6)

= 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑆
q𝜏 i (4.1.7)

where the secant stiffness matrix is

K𝜏𝑠𝑖 𝑗
𝑆

= K𝜏𝑠𝑖 𝑗
𝑙𝑙

+ K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

+ K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙

+ K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

(4.1.8)

Matrices components K𝜏𝑠𝑖 𝑗
𝑙𝑙

, K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

, K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙

and K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

are given in terms of fundamental nuclei:
by imposing the cross-section (or thickness) functions and shape functions, expanding the
summation over the indices 𝜏, 𝑠 and 𝑖, 𝑗 , elemental stiffness matrix is obtained. It is im-
portant to note that, under CUF formulation, FN (fundamental nucleus) of secant stiffness
matrix can be easily derived for any kinematics model and any cross-section polynomial
function: for any arbitrary model, FN can be obtained just by exploiting the summation
over the CUF indices. The complete expression of the secant stiffness matrix components
are given in the appendix A, for 1D, 2D and 3D elements.
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CARRERA UNIFIED FORMULATION Linear elasticity: tangent stiffness matrix

4.1.2 Derivation of tangent stiffness matrix
Explicit expression of the tangent stiffness matrix is now derived: for a more general
description and derivation, general expansion for a 1D or 2D element is considered, taking
into account also CUF. The expression of the secant matrix for the 3D element is similar,
but there is no CUF approximation.
As done for the secanmatrix, the strain vector can be written in terms of generalized nodal
displacements (unknown), as done in eq.(3.2.2) and (3.2.6):

𝝐 = (B𝜏 i
l + B𝜏 i

nl)q𝜏 i

the virtual variation of the strains can be derived in the sameway by introducing the nodal
virtual displacement (indeces 𝑠, 𝑗 ) as follows:

𝛿𝝐 = 𝛿 ((B𝜏 i
l + B𝜏 i

nl)q𝜏 i) = (Bsj
l + 2Bsj

nl)𝛿qsj

The expression of fundamental nucleus of the tangent stiffness matrix is exploited by
means of the linearization of the equilibrium equation: considering conservative loads,
namely the virtual variation of the external work is null, only the virtual variation of the
internal work has to be linearized. Starting from its, definition, distributing the virtual
variation operator overe the product:

𝛿 (𝛿L𝑖𝑛𝑡 ) =
∫
𝛺

𝛿 (𝛿𝝐𝑇𝝈)𝑑𝑉 =

∫
𝛺

𝛿𝝐𝑇𝛿𝝈𝑑𝑉 +
∫
𝛺

𝛿 (𝛿𝝐𝑇 )𝝈𝑑𝑉 (4.1.9)

The two terms at the right-hand side of eq.(4.1.9) side are now analysed separately.
The first term represents the linearization of constitutive equation. Assuming that the
elasticity tensor is made by constant material coefficients (namely 𝛿C = 0), from the defi-
nition of the virtual variation operator:

𝛿𝝈 = 𝛿 (C𝝐) = C𝛿𝝐 = C(Bsj
l + 2Bsj

nl)𝛿qsj (4.1.10)

Since the indeces 𝑠, 𝑗 are already assumed for the virtual variation of the strains, this virtual
variation of stresses is exploited by means of indeces 𝜏, 𝑖 consistently with the notation.
Thus, substituting into the first integral at the right-hand side of eq.(4.1.9):∫
𝛺

𝛿𝝐𝑇𝛿𝝈𝑑𝑉 =

∫
𝛺

𝛿qsj
𝑇 (Bsj

l + 2Bsj
nl)

𝑇
C(B𝜏 i

l + 2B𝜏 i
nl)𝛿q𝜏 i 𝑑𝑉 =

= 𝛿qsj
𝑇

[ ∫
𝛺

Bsj
l
𝑇
C B𝜏 i

l 𝑑𝑉

]
𝛿q𝜏 i + 𝛿qsj

𝑇

[ ∫
𝛺

Bsj
l
𝑇
C 2B𝜏 i

nl𝑑𝑉

]
𝛿q𝜏 i +

+ 𝛿qsj
𝑇

[ ∫
𝛺

2Bsj
nl
𝑇
C B𝜏 i

l 𝑑𝑉

]
𝛿q𝜏 i + 𝛿qsj

𝑇

[ ∫
𝛺

2Bsj
nl
𝑇
C 2B𝜏 i

nl𝑑𝑉

]
𝛿q𝜏 i
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CARRERA UNIFIED FORMULATION Linear elasticity: tangent stiffness matrix

Introducing, starting from eq.4.1.4, some 3x3 matrices components:

K𝜏𝑠𝑖 𝑗
𝑙𝑙,𝑡𝑎𝑛

=

∫
𝛺

Bsj
l
𝑇
C B𝜏 i

l 𝑑𝑉 = K𝜏𝑠𝑖 𝑗
𝑙𝑙

K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙,𝑡𝑎𝑛

=

∫
𝛺

Bsj
l
𝑇
C 2B𝜏 i

nl𝑑𝑉 = 2K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙,𝑡𝑎𝑛

=

∫
𝛺

2Bsj
nl
𝑇
C B𝜏 i

l 𝑑𝑉 = K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙

K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙,𝑡𝑎𝑛

=

∫
𝛺

2Bsj
nl
𝑇
C 2B𝜏 i

nl𝑑𝑉 = 2K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

the linearized constitutive equation can be rewritten as:∫
𝛺

𝛿𝝐𝑇𝛿𝝈𝑑𝑉 =

∫
𝛺

𝛿qsj
𝑇 (Bsj

l + 2Bsj
nl)

𝑇
C(B𝜏 i

l + 2B𝜏 i
nl)𝛿q𝜏 i 𝑑𝑉 =

= 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙,𝑡𝑎𝑛
𝛿q𝜏 i + 𝛿qsj

𝑇K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙,𝑡𝑎𝑛

𝛿q𝜏 i + 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑙,𝑡𝑎𝑛
𝛿q𝜏 i + 𝛿qsj

𝑇K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙,𝑡𝑎𝑛

𝛿q𝜏 i =

= 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙
𝛿q𝜏 i + 𝛿qsj

𝑇 (2K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

)𝛿q𝜏 i + 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑙
𝛿q𝜏 i + 𝛿qsj

𝑇 (2K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

)𝛿q𝜏 i =

= 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙
𝛿q𝜏 i + 𝛿qsj

𝑇K𝜏𝑠𝑖 𝑗
𝑇1
𝛿q𝜏 i (4.1.11)

where K𝜏𝑠𝑖 𝑗
𝑇1

= 2K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

+ K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙

+ 2K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

is the non linear contribution to the tangent stiffness
matrix coming from the linearization of the constitutive equation, K𝜏𝑠𝑖 𝑗

𝑙𝑙
is the same linear

contribution of the secant stiffness matrix. It’s important to note that in eq.(4.1.11), the
fundamental nuclei K𝜏𝑠𝑖 𝑗

𝑙𝑙
, K𝜏𝑠𝑖 𝑗

𝑙𝑛𝑙
, K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑙
and K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑛𝑙
are the same fundamental nuclei already

defined for the secant stiffness matrix eq.(4.1.5).
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CARRERA UNIFIED FORMULATION Linear elasticity: tangent stiffness matrix

The second term is the linearization of geometrical relations. From the definition of
the virtual variation operator, the virtual variation of the virtual strains is written as:

𝛿 (𝛿𝝐) =



(𝛿𝑢𝑥,𝑥 )𝑣 𝛿𝑢𝑥,𝑥 + (𝛿𝑢𝑦,𝑥 )𝑣 𝑢𝑥,𝑦 + (𝛿𝑢𝑧,𝑥 )𝑣 𝛿𝑢𝑧,𝑥
(𝛿𝑢𝑥,𝑦 )𝑣 𝛿𝑢𝑥,𝑦 + (𝛿𝑢𝑦,𝑦 )𝑣 𝑢𝑦,𝑦 + (𝛿𝑢𝑧,𝑦 )𝑣 𝛿𝑢𝑧,𝑦
(𝛿𝑢𝑥,𝑧 )𝑣 𝛿𝑢𝑥,𝑧 + (𝛿𝑢𝑦,𝑧 )𝑣 𝑢𝑦,𝑧 + (𝛿𝑢𝑧,𝑧 )𝑣 𝛿𝑢𝑧,𝑧

[(𝛿𝑢𝑥,𝑥 )𝑣 𝛿𝑢𝑥,𝑧 + 𝑢𝑥,𝑥 (𝛿𝑢𝑥,𝑧 )𝑣 ] + [(𝛿𝑢𝑦,𝑥 )𝑣 𝛿𝑢𝑦,𝑧 + 𝑢𝑦,𝑥 (𝛿𝑢𝑦,𝑧 )𝑣 ] + [(𝛿𝑢𝑧,𝑥 )𝑣 𝛿𝑢𝑧,𝑧 + 𝑢𝑧,𝑥 (𝛿𝑢𝑧,𝑧 )𝑣 ]
[(𝛿𝑢𝑥,𝑦 )𝑣 𝛿𝑢𝑥,𝑧 + 𝑢𝑥,𝑦 (𝛿𝑢𝑥,𝑧 )𝑣 ] + [(𝛿𝑢𝑦,𝑦 )𝑣 𝛿𝑢𝑦,𝑧 + 𝑢𝑦,𝑦 (𝛿𝑢𝑦,𝑧 )𝑣 ] + [(𝛿𝑢𝑧,𝑦 )𝑣 𝛿𝑢𝑧,𝑧 + 𝑢𝑧,𝑦 (𝛿𝑢𝑧,𝑧 )𝑣 ]
[(𝛿𝑢𝑥,𝑥 )𝑣 𝛿𝑢𝑥,𝑦 + 𝑢𝑥,𝑥 (𝛿𝑢𝑥,𝑦 )𝑣 ] + [(𝛿𝑢𝑦,𝑥 )𝑣 𝛿𝑢𝑦,𝑦 + 𝑢𝑦,𝑥 (𝛿𝑢𝑦,𝑦 )𝑣 ] + [(𝛿𝑢𝑧,𝑥 )𝑣 𝛿𝑢𝑧,𝑦 + 𝑢𝑧,𝑥 (𝛿𝑢𝑧,𝑦 )𝑣 ]


This vector can be rearranged by considering FEM and CUF approximation to the virtual
variation variables (already defined as 𝛿u = 𝐹𝑠𝑁 𝑗qsj ) and linearized variables (already
defined as (𝛿u)𝑣 = 𝐹𝜏𝑁𝑖q𝜏 i ) and written in matrix form. Defining the formal matrix B∗

𝑛𝑙
of

differential operators, then:

𝛿 (𝛿𝝐) = B∗
𝑛𝑙


𝛿𝑞𝑥𝜏𝑖𝛿𝑞𝑥𝑠 𝑗
𝛿𝑞𝑦𝜏𝑖𝛿𝑞𝑦𝑠 𝑗
𝛿𝑞𝑧𝜏𝑖𝛿𝑞𝑧𝑠 𝑗

 (4.1.12)

therefore, the second contribution related to linearized geometrical relations is:

∫
𝛺

𝛿 (𝛿𝝐)𝑇𝝈𝑑𝑉 =

∫
𝛺


𝛿𝑞𝑥𝜏𝑖𝛿𝑞𝑥𝑠 𝑗
𝛿𝑞𝑦𝜏𝑖𝛿𝑞𝑦𝑠 𝑗
𝛿𝑞𝑧𝜏𝑖𝛿𝑞𝑧𝑠 𝑗


𝑇

B∗𝑇
𝑛𝑙
𝝈𝑑𝑉

=

∫
𝛺

𝛿q𝑇𝑠 𝑗diag(B∗𝑇
𝑛𝑙
𝜎) 𝛿q𝜏𝑖𝑑𝑉 =

= 𝛿q𝑇𝑠 𝑗K
𝜏𝑠𝑖 𝑗
𝜎 𝛿q𝜏𝑖 (4.1.13)

where diag(B∗𝑇
𝑛𝑙
𝝈) is a 3x3 diagonal matrix, defined in such a way on themain diagonal the

components of the vector B∗𝑇
𝑛𝑙
𝝈 are present. This contribution, coming from linearization

of nonlinear strains-displacement relation, defines the geometric stiffness matrix K𝜏𝑠𝑖 𝑗𝜎 .

36
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Substituting finally the expression of the contribution coming from the linearization
of the constitutive equation eq.(4.1.11) and the one coming from linearization of the ge-
ometrical relations eq.(4.1.13), the fundamental nucleus of the tangent stiffness matrix is
defined as:

𝛿 (𝛿L𝑖𝑛𝑡 ) =

∫
𝛺

𝛿𝝐𝑇𝛿𝝈𝑑𝑉 +
∫
𝛺

𝛿 (𝛿𝝐𝑇 )𝝈𝑑𝑉 =

= 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙
𝛿q𝜏 i + 𝛿qsj

𝑇K𝜏𝑠𝑖 𝑗
𝑇1

q𝜏 i + 𝛿q𝑇𝑠 𝑗K
𝜏𝑠𝑖 𝑗
𝜎 𝛿q𝜏𝑖 =

= 𝛿qsj
𝑇K𝜏𝑠𝑖 𝑗

𝑇
𝛿q𝜏 i (4.1.14)

Some fundamental remark in this derivation of the linearized governing equation inmatrix
form refer to secant and tangent stiffness matrix symmetry condition: it is verified that
the fundamental nucleus of the tangent stiffness matrix is symmetric, unlike the secant
stiffness matrix that in general is non-symmetric. From a numerical point of view, the
numerical solution of a linear system of equation inwhich thematrix of system coefficients
is not symmetric can lead to numerical problem: a symmetric form of the secant stiffness
matrix can be easily derived, rewriting the nonlinear governing equation in such a way to
solve symmetric systems for which numerical solver are faster and more accurate.
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4.2 Isotropic hyperelastic materials: stiffness matrix
Explicit expression of the tangent stiffness matrix for an hyperelastic CUF-FEM formu-
lation is now derived: for a more general description and derivation, general expansion
for a 1D or 2D element is considered, taking into account also CUF. The expression of the
secant matrix is not provided due to consistent-linearized formulation of the problem that
do not require the secant matrix, but only the tangent matrix.
As done before, the strain vector can be written in terms of generalized nodal displace-
ments (unknown), as done in eq.(3.2.2) and (3.2.6). Assuming in this case E the strain
vector coming from the full Green-Lagrange strain tensor and 𝑈𝑠 𝑗 the nodal virtual dis-
placements, one can write:

𝑬 = (bl + bnl) u = (bl + bnl) 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖 (𝑦)U𝜏 i = (B𝜏 i
l + B𝜏 i

nl)U𝜏 i (4.2.1)

𝛿𝑬 = 𝛿 ((B𝜏 i
l + B𝜏 i

nl)U𝜏 i)Usj) = (Bsj
l + 2Bsj

nl)𝛿Usj (4.2.2)

The expression of fundamental nucleus of the tangent stiffness matrix is exploited by
means of the linearization of the equilibrium equation: considering conservative loads,
namely the virtual variation of the external work is null, only the virtual variation of the
internal work has to be linearized. Starting from its, definition, distributing the virtual
variation operator over the product:

𝛿 (𝛿L𝑖𝑛𝑡 ) =
∫
𝛺

𝛿 (𝛿𝑬𝑇 𝑺)𝑑𝑉 =

∫
𝛺

𝛿𝑬𝑇𝛿𝑺𝑑𝑉 +
∫
𝛺

𝛿 (𝛿𝑬𝑇 )𝑺𝑑𝑉 (4.2.3)

As done for the FN of the tangent stiffness matrix for a linear elastic materials, the two
terms at the right-hand side of eq.(4.2.3) are now analyzed separately.
The first term is the linearization of constitutive equation. According to Holpfazel formu-
lation adopted in first-invariant hyperelasticity already discussed:

𝛿S = C
1
2𝛿C = C𝛿E = C (Bsj

l + 2Bsj
nl)𝛿Usj (4.2.4)

where C is the tangent elasticity tensor already discussed before. Thus, the linearization
of the constitutive weak-form equation can be written as:∫
𝛺

𝛿𝑬𝑇𝛿𝑺𝑑𝑉 =

∫
𝛺

𝛿Usj
𝑇 (Bsj

l + 2Bsj
nl)

𝑇
C (B𝜏 i

l + 2B𝜏 i
nl)𝛿U𝜏 i 𝑑𝑉 =

= 𝛿Usj
𝑇

[ ∫
𝛺

Bsj
l
𝑇

C B𝜏 i
l 𝑑𝑉

]
𝛿U𝜏 i + 𝛿Usj

𝑇

[ ∫
𝛺

Bsj
l
𝑇

C 2B𝜏 i
nl𝑑𝑉

]
𝛿U𝜏 i +

+ 𝛿Usj
𝑇

[ ∫
𝛺

2Bsj
nl
𝑇

C B𝜏 i
l 𝑑𝑉

]
𝛿U𝜏 i + 𝛿Usj

𝑇

[ ∫
𝛺

2Bsj
nl
𝑇

C 2B𝜏 i
nl𝑑𝑉

]
𝛿U𝜏 i (4.2.5)
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Introducing, starting from eq.4.2.5, some 3x3 matrices components:

K𝜏𝑠𝑖 𝑗
𝑙𝑙,𝑡𝑎𝑛

=

∫
𝛺

Bsj
l
𝑇

C B𝜏 i
l 𝑑𝑉 = K𝜏𝑠𝑖 𝑗

𝑙𝑙

K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙,𝑡𝑎𝑛

=

∫
𝛺

Bsj
l
𝑇

C 2B𝜏 i
nl𝑑𝑉 = 2K𝜏𝑠𝑖 𝑗

𝑙𝑛𝑙

K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙,𝑡𝑎𝑛

=

∫
𝛺

2Bsj
nl
𝑇

C B𝜏 i
l 𝑑𝑉 = K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑙

K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙,𝑡𝑎𝑛

=

∫
𝛺

2Bsj
nl
𝑇

C 2B𝜏 i
nl𝑑𝑉 = 2K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑛𝑙

the linearized constitutive equation can be rewritten as:∫
𝛺

𝛿𝑬𝑇𝛿𝑺𝑑𝑉 =

∫
𝛺

𝛿Usj
𝑇 (Bsj

l + 2Bsj
nl)

𝑇
C (B𝜏 i

l + 2B𝜏 i
nl)𝛿U𝜏 i 𝑑𝑉 =

= 𝛿Usj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙,𝑡𝑎𝑛
𝛿U𝜏 i + 𝛿Usj

𝑇K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙,𝑡𝑎𝑛

𝛿U𝜏 i + 𝛿Usj
𝑇K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑙,𝑡𝑎𝑛
𝛿U𝜏 i + 𝛿Usj

𝑇K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙,𝑡𝑎𝑛

𝛿U𝜏 i =

= 𝛿Usj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙
𝛿U𝜏 i + 𝛿Usj

𝑇 (2K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

)𝛿U𝜏 i + 𝛿Usj
𝑇K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑙
𝛿U𝜏 i + 𝛿Usj

𝑇 (2K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

)𝛿U𝜏 i =

= 𝛿Usj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙
𝛿U𝜏 i + 𝛿Usj

𝑇K𝜏𝑠𝑖 𝑗
𝑇1
𝛿U𝜏 i (4.2.6)

where K𝜏𝑠𝑖 𝑗
𝑇1

= 2K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

+ K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙

+ 2K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑛𝑙

is the non linear contribution to the tangent stiffness
matrix coming from the linearization of the constitutive equation and K𝜏𝑠𝑖 𝑗

𝑙𝑙
is the same

linear contribution of the secant stiffness matrix. It’s important to note that in eq.(4.1.11),
the fundamental nuclei K𝜏𝑠𝑖 𝑗

𝑙𝑙
, K𝜏𝑠𝑖 𝑗

𝑙𝑛𝑙
, K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑙
and K𝜏𝑠𝑖 𝑗

𝑛𝑙𝑛𝑙
are the same fundamental nuclei already

defined for the tangent stiffness matrix for linear-elastic materials but the elasticity tensor
is the tangent elasticity tensor coming from first-invariant hyperelastic formulation.
The second term is the linearization of geometrical relations: the derivation is the same
described before, thus one can defining the formal matrix B∗

𝑛𝑙
of differential operators and

rewrite the virtual variation of the virtual strains as:

𝛿 (𝛿𝑬) = B∗
𝑛𝑙


𝛿𝑈𝑥𝜏𝑖𝛿𝑈𝑥𝑠 𝑗
𝛿𝑈𝑦𝜏𝑖𝛿𝑈𝑦𝑠 𝑗
𝛿𝑈𝑧𝜏𝑖𝛿𝑈𝑧𝑠 𝑗

 (4.2.7)

therefore, the second contribution related to linearized geometrical relations is:

∫
𝛺

𝛿 (𝛿𝑬)𝑇 𝑺𝑑𝑉 =

∫
𝛺


𝛿𝑈𝑥𝜏𝑖𝛿𝑈𝑥𝑠 𝑗
𝛿𝑈𝑦𝜏𝑖𝛿𝑈𝑦𝑠 𝑗
𝛿𝑈𝑧𝜏𝑖𝛿𝑈𝑧𝑠 𝑗


𝑇

B∗𝑇
𝑛𝑙
𝑺𝑑𝑉

=

∫
𝛺

𝛿U𝑇𝑠 𝑗diag(B∗𝑇
𝑛𝑙
𝑆) 𝛿U𝜏𝑖𝑑𝑉 =

= 𝛿U𝑇𝑠 𝑗K
𝜏𝑠𝑖 𝑗
𝜎 𝛿U𝜏𝑖 (4.2.8)
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where diag(B∗𝑇
𝑛𝑙
𝑺) is a 3x3 diagonal matrix, defined in such a way on the main diagonal the

components of the vector B∗𝑇
𝑛𝑙
𝑺 are present. This contribution, coming from linearization

of nonlinear strains-displacement relation, defines the geometric stiffness matrix K𝜏𝑠𝑖 𝑗𝜎 .
Substituting finally the expression of the contribution coming from the linearization of the
constitutive equation eq.(4.1.11) and the one coming from linearization of the geometrical
relations eq.(4.1.13), the fundamental nucleus of the tangent stiffness matrix is defined as:

𝛿 (𝛿L𝑖𝑛𝑡 ) =

∫
𝛺

𝛿𝑬𝑇𝛿𝑺𝑑𝑉 +
∫
𝛺

𝛿 (𝛿𝑬𝑇 )𝑺𝑑𝑉 =

= 𝛿Usj
𝑇K𝜏𝑠𝑖 𝑗

𝑙𝑙
𝛿U𝜏 i + 𝛿Usj

𝑇K𝜏𝑠𝑖 𝑗
𝑇1

U𝜏 i + 𝛿U𝑇𝑠 𝑗K
𝜏𝑠𝑖 𝑗
𝜎 𝛿U𝜏𝑖 =

= 𝛿Usj
𝑇K𝜏𝑠𝑖 𝑗

𝑇
𝛿U𝜏 i (4.2.9)
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4.3 Load vector and internal forces vector
Explicit expression of the external load vector, common either in case of linear elastic
materials and hyperleastic material, is now derived: for a more general description and
derivation, general expansion for a 1D or 2D element is considered, taking into account
also CUF.
Starting from CUF definition, displacement field can be written in terms of generalized
nodal displacements (unknown), as done in eq.(3.2.1):

u(𝑥,𝑦, 𝑧) = 𝐹𝜏 (𝑥, 𝑧)u𝜏 (𝑦) = 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖 (𝑦)q𝜏 i

Same line of reasoning applies to virtual variation of the displacements, that can be derived
in the same way by introducing the nodal virtual displacement (indeces 𝑠, 𝑗 ) as follows:

𝛿u(𝑥,𝑦, 𝑧) = 𝐹𝑠 (𝑥, 𝑧)𝛿us(𝑦) = 𝐹𝑠 (𝑥, 𝑧)𝑁𝑖 (𝑦)𝛿qsj

The expression of fundamental nucleus of the external load vector is exploited by means
of the definition of virtual variation of external works: if 𝑝 is the vector of conservative
loads:

𝛿L𝑒𝑥𝑡 =

∫
𝛺

𝛿𝒖𝑇𝒑𝑑𝑉 =

∫
𝛺

𝛿qsj
𝑇 𝐹𝑠 (𝑥, 𝑧)𝑁𝑖 (𝑦)𝒑𝑑𝑉 = 𝛿qsj

𝑇𝒑𝑠 𝑗 (4.3.1)

In the case of hyperelastic material, due to the incremental formulation of the PK2 stress
tensor, the secant matrix is not even defined. The virtual variation of the internal work
then can be expressed by the 3x1 fundamental nucleus of the internal forces vector, ob-
tained by its definition:

𝛿L𝑖𝑛𝑡 =

∫
𝛺

𝛿𝑬𝑇 𝑺𝑑𝑉 (4.3.2)

where E is the full Green-Lagrange strain tensor and S is the PK2 stress tensor. As done
during the derivation of the fundamental nucleus of the secant matrix, adopting the same
definition of generalized strains expressed by nodal displacement unknowns, one can
write:

𝛿𝑬 = 𝛿 ((B𝜏 i
l + B𝜏 i

nl)U𝜏 i) = (Bsj
l + 2Bsj

nl)𝛿Usj

and substituting into the definition of internal work:

𝛿L𝑖𝑛𝑡 =

∫
𝛺

𝛿𝑬𝑇 𝑺𝑑𝑉 =

∫
𝛺

𝛿Usj
𝑇 (Bsj

l + 2Bsj
nl)

𝑇 𝑺𝑑𝑉 (4.3.3)

one finally obtain the fundamental nucleus of the internal forces vector:

F𝑠 𝑗
𝑖𝑛𝑡

=

∫
𝛺

(Bsj
l + 2Bsj

nl)
𝑇 𝑺𝑑𝑉 (4.3.4)
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4.4 Assembly of the global stiffness matrix
Once defined the fundamental nucleus for the single element of the discretized domain by
the Principle of Virtual Displacements, in a Lagrange-exp. based model the total stiffness
matrix is assembled considering the connectity between elements both of purely FEM
nodes with the CUF expansion nodes, remembering that:

• Indices 𝜏 and 𝑠 define the accuracy of the model, since they represents the order of
expansion of CUF models, 𝜏, 𝑠 = 1, 2, ... 𝑀 ;

• Indices 𝑖 and 𝑗 are defined starting from the number of nodes of the single finite
element: 𝑖, 𝑗 = 1, 2, ... 𝑁𝑛;

Each fundamental nucleus defined do not change considering different number of nodes of
the element or different shape functions: formally, its general form is independent on the
expansion model adopted. Starting from the definition, one can observe that fundamen-
tal nucleus of a stiffness matrix is a 3x3 matrix, obtained by the row-by-column product
between formal matrices of differential operator and the elasticity tensor, thus:

K𝜏𝑠𝑖 𝑗 =
∫
𝛺

Bsj𝑇
C B𝜏 i𝑑𝑉 =

∫
𝛺

 3𝑥6
︸      ︷︷      ︸

Bsj𝑇

C︷      ︸︸      ︷ 6𝑥6

 6𝑥3

︸      ︷︷      ︸
B𝜏 i

𝑑𝑉 =


𝑘
𝑖 𝑗
𝑥𝑥 𝑘

𝑖 𝑗
𝑥𝑦 𝑘

𝑖 𝑗
𝑥𝑧

𝑘
𝑖 𝑗
𝑥𝑦 𝑘

𝑖 𝑗
𝑦𝑦 𝑘

𝑖 𝑗
𝑦𝑧

𝑘
𝑖 𝑗
𝑥𝑧 𝑘

𝑖 𝑗
𝑦𝑧 𝑘

𝑖 𝑗
𝑧𝑧


(4.4.1)

Exploiting the summation over the indices i and j, one can obtain the matrix of the single
element, instead summation over the indices 𝜏 and 𝑠 are required for summation over CUF
expansion for every single node of the element. Once obtained the fundamental nucleus
for a single element, by considering the common nodes and the connectivity between
elements, stiffness matrix is then assembled by classical FEM assembly procedures. A
graphical representation of assembly procedure is provided in fig.4.4.1.

Figure 4.4.1: Assembly procedure with FEM-CUF elements
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Chapter 5
Numerical schemes for nonlinear
equations

5.1 Matrix form of the nonlinear governing equations
The elastic equilibrium problem is formulated, as described in ch.4.1, in its weak form:
governing equation of the nonlinear problem are carried out by means of Principle of
Virtual Displacement.

𝛿L𝑖𝑛𝑡 = 𝛿L𝑒𝑥𝑡 (5.1.1)

where L𝑖𝑛𝑡 is the internal strain energy, 𝛿L𝑒𝑥𝑡 is the work of external loads and 𝛿 denotes
the variation. In this specific application of Finite Element Analysis to large deflection
structural problems, the equilibrium condition is expressed as an nonlinear algebraic sys-
tem of equations. Carrera Unified Formulation and theory of finite elements approxima-
tion here both implemented led to a unified governing equilibrium equation:

K𝜏𝑠𝑖 𝑗
𝑆

q𝜏𝑖 − p𝜏𝑖 = 0 (5.1.2)

where K𝜏𝑠𝑖 𝑗
𝑆

is the fundamental nucleus of the secant stiffness matrix and p𝜏𝑖 is the fun-
damental nucleus of the external nodal loading vector. After the assembly procedure de-
scribed in ch.4.4, the global final system fo equations (at equilibrium) is:

K𝑆 (q) q − p = 0 (5.1.3)

By its definition, the global coefficient matrix K𝑆 is function of the nodal displacements
q𝜏𝑖 : the final assembled stiffness matrix depends on the unknown solution vector, so it
can not be directly evaluated. Most common numerical procedures to solve these kind of
systems are iterative. According to Reddy [4], the nonlinear system can be expressed as
an equivalent minimization problem of the residual function defined as:

𝜙res = K𝑆 (q) q − p (5.1.4)

In eq.(5.1.4), 𝜙res is also called the unbalanced nodal forces vector: at equilibrium, due to
balance, the residual nodal forces are obviously null, 𝜙res = 0.
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NUMERICAL METHODS Nonlinear algebraic system of equations

5.1.1 Newton-Raphson linearization of nonlinear equations
The expression (5.1.4) can be linearized around a known condition (q, p):

𝜙res(q + 𝛿q, p + 𝛿p) = 𝜙res(q, p) +
𝜕𝜙res

𝜕q
𝛿q + 𝜕𝜙res

𝜕p
𝛿p = 0 (5.1.5)

Assuming now the direction of load vector p remains constant during the analysis, so only
the magnitude can change, the external nodal loading vector is expressed as a reference
nodal loading vector p𝑟𝑒 𝑓 in such a way p = 𝜆p𝑟𝑒 𝑓 . Virtual variation of the nodal loading
vector is expressed then as virtual variation of the rate of change 𝛿p = 𝛿 (𝜆p𝑟𝑒 𝑓 ) = 𝛿𝜆p𝑟𝑒 𝑓 .
Under this assumption, it is possible to control how the external loading nodal vector
increases or decreases by controlling the scalar load parameter 𝜆. Observing that 𝜕𝜙res

𝜕q = K𝑇
is the tangent stiffness matrix and 𝜕𝜙res

𝜕p = −I, equation (5.1.5) can be rewritten as:

K𝑇𝛿q = 𝛿𝜆p𝑟𝑒 𝑓 − 𝜙res (5.1.6)

In (5.1.6), the unknowns are q and 𝜆: since the load-scaling parameters is taken as un-
known, an additional constraint equation is needed for closure condition:{

K𝑇𝛿q = 𝛿𝜆p𝑟𝑒 𝑓 − 𝜙res

𝑐 (𝛿q, 𝛿𝜆) = 0
(5.1.7)

The constraint equation (5.1.7)(2) characterizes the numerical procedure considered. In
the next section, different numerical schemes are described, derived starting from the def-
inition of constraint equation.

5.1.2 Linearization for hyperelastic materials
The expression (5.1.4) can be linearized around a known condition (q, p):

𝜙res(U + 𝛿U, F𝑒𝑥𝑡 + 𝛿F𝑒𝑥𝑡 ) = 𝜙res(U, F𝑒𝑥𝑡 ) +
𝜕𝜙res

𝜕U
𝛿U + 𝜕𝜙res

𝜕F𝑒𝑥𝑡
𝛿𝜆𝛿F𝑟𝑖 𝑓𝑒𝑥𝑡 = 0 (5.1.8)

where the virtual variation of the nodal loading vector is expressed as virtual variation
of the rate of change F𝑒𝑥𝑡 = 𝛿 (𝜆F𝑟𝑒 𝑓𝑒𝑥𝑡 ) = 𝛿𝜆F𝑟𝑒 𝑓𝑒𝑥𝑡 . Observing that 𝜕𝜙res

𝜕U = K𝑇 is the tangent
stiffness matrix and 𝜕𝜙res

𝜕F𝑒𝑥𝑡
= −I, equation (5.1.5) can be rewritten as:

K𝑇𝛿q = 𝛿𝜆F𝑟𝑒 𝑓𝑒𝑥𝑡 − 𝜙res (5.1.9)

The constraint equation and the numerical methods adopted in the computation of
the numerical nonlinear solution are the same for linear-elastic material finite element
formulation. A more detailed derivation can be found in [22].
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5.1.3 Picard method
Picardmethod, known also as successive substitutionmethod, is the simplest method for the
solution of nonlinear system of equations: is a fixed-point iteration method that computes
the solution for a specific external nodal forces vector (applied as boundary conditions),
and specifically deals with eq.(5.1.3). The general algorithm is repeated until convergence
is reached: during iterations, the approximated solution become close to the actual one.
Starting from a fixed initial guess q(0) , a first approximation of the unknown vector can
be found by considering:

q(1) = [K𝑆 (q(0))]−1 · p (5.1.10)

with q(1) ≠ q(0) . A second approximation can be obtained by using the last approximation
to compute the updated secant stiffness matrix, obtaining so:

q(2) = [K𝑆 (q(1))]−1 · p (5.1.11)

This procedure is repeated iteratively until convergences is reached: thus, convergence
criterion has to be defined. In general, Picard iterations are repeated until the relative
error norm between two successive iteration is less then the convergence tolerance, that
can be arbitrary superimposed:

q(𝑘) = [K𝑆 (q(𝑘−1))]−1 · p√︄
| |q(𝑘) − q(𝑘−1) | |2

| |q(𝑘) | |2
< 𝜖

(5.1.12)

From a geometrical point of view, Picard method can be depicted as a general fixed-point
iteration method, in which solution is reached slowly by successive iterations, as depicted
in fig.5.1.1. Starting from the initial guess configuration q(0) , secant matrix K𝑆 (q(0)) is
computed and by inversion the displacement vector associated to the external forces vector
𝐹 , q(1) is then obtained. In the new displacement configuration, secant matrix K𝑆 (q(1)) is
updated and used to obtain q(2) associated to external forces vector 𝐹 . Following this
procedure iteratively, the solution q̄ is reached.

Eq. path

q̄

F̄

K𝑆 (q(0))

q(1)

K𝑆 (q(1))

q(2)

K𝑆 (q(2))

q(3) q

p

Figure 5.1.1: Picard method: geometrical interpretation
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5.1.4 Load control method
Iterative solvers for nonlinear problems, in the general case, deal at the same time both
with nodal displacements q unknowns and scalar load parameter 𝜆 unknown: most of
them make use of incremental iterative approaches, obtaining the new convergent solu-
tion computing increments of the unknown displacements and an increment for the load
parameter, that are in general mutually linked.
Newton load control method is an iterative method that postulates a fixed variation of the
load at each iteration: in this method, at every increment, variation of 𝜆 is considered fixed
up to a certain increment 𝛥𝜆 and, by the unbalanced residual forces, the actual configura-
tion that satisfies the equilibrium in this new load condition is calculated: this procedure
is then an iterative one only with respect of displacement variations.
If the last convergent solution is (q(0), 𝜆0), postulating an increment as:

𝜆′ = 𝜆0 + 𝛥𝜆 (5.1.13)

the new updated load configuration, obtained by 𝛥𝜆, immediately violates equilibrium
condition. Thus, it is necessary to update the nodal displacement vector by a factor 𝛥q in
such a way:

q′ = q(0) + 𝛥q (5.1.14)

the configuration q′ satisfies equilibrium condition. Starting from the Taylor expansion
around of the unbalanced residual forces eq.(5.1.5), imposing constraint condition on the
load parameter variation, one can obtain:

𝜙res |q(0) + K𝑇|q(0) ∆q − 𝛥𝜆p𝑟𝑒 𝑓 = 0 (5.1.15)

Since (q(0), 𝜆0) is an equilibrium condition, the unbalanced nodal forces computed at the
equilibrium condition are identically null, the increment of the displacement vector can
be easily computed:

K𝑇|q(0) ∆q − 𝛥𝜆p𝑟𝑒 𝑓 = 0 → ∆q = [K𝑇|q(0) ]
−1(𝛥𝜆p𝑟𝑒 𝑓 ) (5.1.16)

However, even if the displacement correction ∆q is defined in such a way eq.(5.1.15) is
satisfied, the truncation at first-order of Taylor expansion prevents the immediate achieve-
ment of the new equilibrium condition at the configuration (q(0) + 𝛥q, 𝜆0 + 𝛥𝜆). Thus, by
the unbalanced residual forces, another displacement correction 𝛿q has be evaluated, su-
perimposing a variation only of the displacement variables in the Taylor series:

𝜙res(q(0) + 𝛥q + 𝛿q) = 0 → 𝜙res(q(0) + 𝛥q) + K𝑇|q(0) +𝛥q
𝛿q = 0 (5.1.17)

𝛿q = −[K𝑇|q(0) +𝛥q
]−1𝜙𝑟𝑒𝑠 (q(0) + 𝛥q) (5.1.18)
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Subsequently, the new displacement correction is then obtained, so is new configu-
ration (q(0) + 𝛥q + 𝛿q, 𝜆0 + 𝛥𝜆): in general, this configuration leads to a smaller residual
unbalanced forces. By updating iteratively the displacement variable, the equilibrium con-
dition at incremented value of the external forces is finally computed. Again, convergence
criterion on the unbalanced residual forces has to be satisfied.

From this final convergent configuration, a new increment of the load scaling param-
eter can be considered, starting again with the same procedure in order to find the new
condition at a new load condition. From a geometrical point of view, the general itera-
tions of Newton’s load control method in the single step increment can be depicted as a
general Newton’s tangent method in nonlinear equations, as depicted in fig.5.1.2. Below,
q(0) is taken as the solution of the linear problem, and each q(𝑖) is the solution at the i-th
iteration, that tends iteratively to q̄. At each iteration, the nodal displacement vector is
used for the update of the tangent matrix that is used then to obtain the following nodal
displacement vector associated to the external forces vector 𝐹 .

Eq. path

F̄

K𝑆 (q(0))

q(1)

K𝑇 (q(1))

q(2)

K𝑇 (q(2))

q(3)

𝛿u(1) 𝛿u(2) 𝛿u(3)

q̄ q

p

Figure 5.1.2: Load control method: geometrical interpretation
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5.1.5 Arc-length modified Crisfield method
Arc-length method is a very efficient iterative numerical method for nonlinear problems,
especially in the presence of one ormore critical points. The nonlinear problem is solved as
an equivalent optimization problem of the residual unbalanced forces, as described before:

𝜙res = K𝑆 (q) q − p = 0 → K𝑆 (q) q = p (5.1.19)

In this method, in spite of load control method, simultaneous variations of displacement
variables and scalar load parameter are that postulated, and eq.(5.1.19) is solved for both
variables. As done for the load control method, if (q(0), 𝜆) is the starting equilibrium con-
dition, considering an increment (𝛥q, 𝛥𝜆) one can write:

𝜙res(q(0) + 𝛥q, 𝜆0 + 𝛥𝜆) = K𝑆 (q(0)) (q(0) + 𝛥q) − (𝜆0 + 𝛥𝜆)p (5.1.20)

If, in the updated configuration (q(0) + 𝛥q, 𝜆0 + 𝛥𝜆), the unbalanced residual forces vec-
tor 𝜙res(q(0) + 𝛥q, 𝜆0 + 𝛥𝜆) = 0, then the updated point belong to the equilibrium path
and solution can be updated. However, as observed previously, this condition is not guar-
anteed in general due to truncation of Taylor series up to the first order. Thus, another
displacement and load factor correction (𝛿q, 𝛿𝜆) is required in order to satisfy eq.(5.1.20).
Hence,

𝜙res(q(0)+𝛥q+𝛿q, 𝜆0+𝛥𝜆+𝛿𝜆) = K𝑆 (q(0)+𝛥q) (q(0)+𝛥q+𝛿q)−(𝜆0+𝛥𝜆+𝛿𝜆)p = 0 (5.1.21)

Finally, as done for the load control method, considering a Taylor series of the unbalanced
residual forces, the new system of equation will have form:

[K𝑇|q(0) +𝛥q
]𝛿q − 𝛿𝜆p = −𝜙𝑟𝑒𝑠 (q(0) + 𝛥q) (5.1.22)

This approach lead to an undetermined system of equations since there is one more un-
constrained degree-of-freedom, 𝜆: system of equation eq.(5.1.22) is not sufficient for both
displacement correction and load correction unknowns. This problem is overcome consid-
ering an additional constraint equation, typically referred as "arc-length equation", whose
general expression is:

(𝛥q + 𝛿q)𝑇 (𝛥q + 𝛿q) +𝜓 2(𝛥𝜆 + 𝛿𝜆)𝑇 (p𝑇 · p) = 𝛥𝑙2 (5.1.23)

in which 𝜓 and 𝛥𝑙 are user-defined parameter. Particularly, 𝛥𝑙 has the same meaning of
𝛥𝜆 in load control method, it is a measure of "how far" the next equilibrium point is.

Combining eq.(5.1.22) and eq.(5.1.23), governing equation for the correction parame-
ters can be rewritten in a more compact way:[[K𝑇|q(0) +𝛥q

] −p
2𝛥q𝑇 2𝜓 2𝛥𝜆(p𝑇 · p)

]
·
[
𝛿q
𝛿𝜆

]
=

[
−𝜙𝑟𝑒𝑠 (q(0) + 𝛥q)

−(𝛥q𝑇 · 𝛥q +𝜓 2𝛿𝜆2(p𝑇 · p) − 𝛥𝑙2)

]
(5.1.24)
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Eq.(5.1.24) is solved for the updating correction value displacements and load factor
(𝛿q, 𝛿𝜆).
The procedure here described is iteratively repeated until correction factors obtained by
eq.(5.1.24) fulfill eq.(5.1.21): in this case, iterations are repeated until convergence is reached
up to a certain tolerance factor on the unbalanced residual nodal vector, that can be su-
perimposed a priori before the computation.
However, the present implementation of geometrically nonlinear finite elements makes
use of Crisfield’a approach for arc-length method. Starting from eq.(5.1.22), the displace-
ment correction can be rearranged as:

𝛿q = −[K𝑇|q(0) +𝛥q
]−1𝜙𝑟𝑒𝑠 (q(0) + 𝛥q) + [K𝑇|q(0) +𝛿𝜆𝛥q

]−1p = 𝛿 q̄ + 𝛿𝜆𝛿qt (5.1.25){
𝛿 q̄ = −[K𝑇|q(0) +𝛥q

]−1𝜙𝑟𝑒𝑠 (q(0) + 𝛥q)
𝛿qt = [K𝑇|q(0) +𝛿𝜆𝛥q

]−1p
(5.1.26)

Note that the expressions of auxiliary variables 𝛿 q̄ and 𝛿qt in eq.(5.1.26) are known since
they require only known quantities. Substituting this decomposition of 𝛿q into the arc-
length constraint equation eq.(5.1.23), a quadratic equation for 𝛿𝜆 is obtained:

𝛼1𝛿𝜆
2 + 𝛼2𝛿𝜆 + 𝛼3 = 0

𝛼1 = 𝛿q𝑇q +𝜓 2(p𝑇p)
𝛼2 = 2(𝛥q + 𝛿 q̄)𝑇𝛿qt + 2𝜓 2𝛥𝜆(p𝑇p)
𝛼3 = (𝛥q + 𝛿 q̄)𝑇 (𝛥q + 𝛿 q̄) +𝜓 2𝛥𝜆2(p𝑇p) − 𝛥𝑙2

(5.1.27)

Once 𝛿𝜆 is obtained from this simple equation, in which all the coefficients are known, it
can be directly substituted into eq.(5.1.25) to compute the displacement correction, com-
pleting the iteration procedure. This whole algorithm is iteratively repeated until conver-
gence is reached (criteria con unbalanced residual forces), so finally displacement and load
are updated to the new equilibrium convergent point of the equilibrium path.

On of the most important application of modified Crisfield arc-length procedure is the
case of𝜓 = 1 that is also called spherical arc-length procedure, since the arc-length equation
eq.(5.1.23) takes the form of an hyper-sphere constraint equation. From a geometrical
point of view, Crisfield formulation of arc-lengthmethod can be interpreted as a successive
updated of the solution by a circular constraint equation.
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Eq. path

(q(0), 𝜆)

𝛥𝑙

q(1) q(2) q(3)

𝛿u(1) 𝛿u(2) 𝛿u(3)

𝛥u(1)

𝛥u(2)

𝛥u(3)

q̄

q

p

Figure 5.1.3: Crisfield arc-length method: geometrical interpretation
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5.2 Description of the MUL2 code
All the simulations have been carried out by means of the 𝑀𝑈𝐿2 code built by 𝑀𝑈𝐿2 re-
search group in Polytechnic University of Turin: Carrera Unified Formulation and Node
Dependent Kinematics are implemented for purely structural and multifield problem in
the linear elastic domain, geometrically nonlinear elastic domain and constitutive inelas-
tic problems. It is entirely written in Fortran language.
The code is made up by a collection of libraries and modules that contains all the pro-
cedures and routines related to a specific analysis. All the numerical procedures imple-
mented in the code refers to structural variables, that allow the implementation of NDK
(Node Dependent Kinematics) and general algorithms independently on the nature of fi-
nite element considered. One of the most powerful aspect of the NDK is the simulations of
structures with discretization made up by different elements: it is possible to combine 1D,
2D and 3D elements by superimposing the connectivity between FEM indeces and CUF
indeces.

In the pre-processor step, inputs related to the geometry, discretization adopted and
material properties are processed and NDK is inizialized. In the procedure step, finite
element procedures implemented are executed: computation and assembly of stiffness
matrices fundamental nuclei are performed, then PARDISO solver is used to obtain the
solution of sparse linear system of equations. Integrals required by the fundamental nu-
clei are computed by means of Gauss-Legendre quadrature implemented in the code: in
specific Fortran modulus, displacements derivatives and shape functions are evaluated at
specified Gauss integration points and used for the computation of fundamental nuclei.
Distinct numerical schemes considering different problems are implemented in specific
and independent subroutines, which call external routines for the computation of stiffness
matrices: this programming choice allow the computation of same matrices in different
procedures.
After obtaining the solution, post-processing step prints out results in term of displace-
ments, strain and stresses in the requested points, as well as Paraview 3D post-processing
of the deformed configurations.

The most important part of this thesis work was dedicated to the implementation of
the 3D nonlinear finite element using Carrera Unified Formulation and Node Dependent
Kinematics in the already available interface.
Fundamental nuclei of secant and tangent stiffness matrices for 3D geometrically nonlin-
ear elements were derived by means of Mathematica Notebook and were implemented in
the related routines. In addition, computation of displacements derivatives, strains and
stresses for 3D finite elements were required and implemented, as well as adaption of the
already available code in which specific select-cases for 3D element variables computation
were added.
In the implementation, the computation of fundamental nuclei were implemented in two
different ways: the first one, secant and tangent stiffness matrices are computed compo-
nent by component, and then memorized in the single 3x3 nucleus; instead, in the second
one, formal matrices of derivatives B𝜏𝑖

𝑙
, and B𝜏𝑖

𝑛𝑙
, (B𝑠 𝑗

𝑙
)𝑇 and (B𝑠 𝑗

𝑛𝑙
)𝑇 are implemented and

the following raw-by-coloumn product is left to Fortran commands, so each fundamental
nucleus is derived by imposing manually the matrix product 𝐵𝑇𝐶𝐵. During the compu-
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tation and analysis of considered case, the second way results in faster calculation with
respect of the first way, since the matrix operation are made by the the processor and it
is not necessary to implement hundreds of manual operations. Solution of nonlinear sys-
tems of equations require in general the computation of residuals: in the specific case of
constitutive linear elastic materials, they can be calculated adopting the secant matrix, but
computation of residual internal forces by integration of internal strain energy has been
also implemented for further applications and future works, since including also material
non-linearities, the secant matrix is no more representative of the residues.

After the implementation of solid FEM elements for linear-elastic materials, the same
procedure have been imported and adapted in the available code for isotropic hyperelas-
tic materials: once the code is validated from a procedural point of view by linear-elastic
material study cases, it has been adopted for the computation of isotropic hyperelastic
stiffness matrices and internal forces vector. As said before, the programming choice
adopted in the already available interfaces allowed a rapidly implementation same proce-
dures in different parts of the codes. Referring then to hyperleastic materials, computation
of derivatives and integral required by the fundamental nuclei have been implemented, but
routines for the computation of PK1 and PK2 and tangent elasticity tensor have been used
with their nominal definition since they are independent on the model chosen.
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Chapter 6
Numerical results

This chapter is devoted to the analysis of the numerical results of different study cases,
involving 1D, 2D and 3D refined non-linear finite elements according to Carrera Unified
Formulation and Finite Element analysis described before. Aim of this chapter is to val-
idate the present formulation of 3D non-linear finite elements by comparing the actual
numerical results with study cases takes from literature, demonstrating the capabilities of
the present formulation of 3D elements. All the numerical simulations were carried out
by using the𝑀𝑈𝐿2 in-house code.

6.1 Refined fully-nonlinear 1D beam elements

6.1.1 Large deflections of cantilever square cross-section beam
First, large deflections of 1D solid cross section are analyzed. In the first case, a cantilever,
square cross-section beam subjected to a vertical concentrated load in considered. The
beam ismade in aluminum, themechanical properties are given in terms of elasticmodulus
𝐸 = 75 GPa and Poisson’s ratio 𝜈 = 0.3. For convergence reasons, 20 B4 elements are used
along the beam axis, and one Q9 quadratic element is considered in the description of the
cross-section discretization, as described in Pagani et al.[10]

𝐿 ℎ

𝑥

𝑧

𝑦

𝑃

(a) Geometrical features

𝑥

𝑧

(b) Single Q9 element

Figure 6.1.1: Cantilever beam: geometrical properties and cross-section discretization
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The effects of lenght to cross-section side ratio are analyzed: given the lenght 𝐿 = 1m
of the beam, two cases are analyzed: 𝐿/ℎ = 10 and 𝐿/ℎ = 100.
Fig.6.1.2 shows the equilibrium curves of the beam subjected to a verical loading, instead
fig.6.1.3 shows the distribution of the non-dimensional axial stress component 𝜎𝑦𝑦 2𝐼

𝑃𝐿ℎ
for

different loading conditions.
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(b) 𝐿/ℎ = 100

Figure 6.1.2: Cantilever square cross-section beam: equilibrium curves obtained by refined 1D
CUF elements
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Figure 6.1.3: Cantilever square cross-section beam: through-the-thickness distribution of non-
dimensional
axial stress 𝜎𝑦𝑦 2𝐼

𝑃𝐿ℎ
obtained by refined 1D CUF elements
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6.1.2 Post-buckling of cantilever square cross-section beam
Let’s consider again the cantilever square cross-section beam beam, case 𝐿/ℎ = 100, sub-
jected now to an eccentric concentrated compression load 𝑃 directed along the axis of the
beam, with a defect load 𝑑 = 0.002𝜋2𝐸𝐼/4𝐿2 to drive instability.
Fig.6.1.5 shows the post-buckling equilibrium curves of the cantilever square-cross section
beam, depending on the compression load 𝑃 , scaled with respect of the critical Eulerian’s
instability load:

𝐿 ℎ

𝑥

𝑧

𝑦

𝑑

𝑃

Figure 6.1.4: Square cross-section beam: geometrical features and load conditions for post-
buckling analysis
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Figure 6.1.5: Cantiliver square cross-section beam: post-buckling equilibrium curves obtained by
refined 1D CUF elements
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6.1.3 Large deflections of thin-walled unsymmetricC-section beam
Large deflection analysis in the case of a cantilever, unsymmetrical cross-section beam
subjected to large deflection due to a vertical load is now carried out. The beam is made in
aluminum, themechanical properties are given in terms of elastic modulus 𝐸 = 75GPa and
Poisson’s ratio 𝜈 = 0.3. The dimensions of the cross-section are ℎ1 = 48𝑚𝑚, ℎ2 = 88𝑚𝑚,
𝑡 = 8𝑚𝑚 and 𝑤 = 100𝑚𝑚. For convergence reasons, 20 B4 elements are used along the
beam axis, and seven Q9 quadratic element are emplyoed in the discretization of the cross-
section, as depicted in fig.6.1.7(b), as described in Pagani et al. et al.[10]

𝐿

𝑦

𝑥

𝑧

𝑃

Figure 6.1.6: Unsymmetric C-section beam: geometrical features and load conditions
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(a) Cross-section geom. features (b) Discretization with 7 Q9 ele-
ments

Figure 6.1.7: Unsymmetric C-section beam: cross section geometrical properties and adopted dis-
cretization
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Fig.6.1.8 shows the equilibrium curves of the beam in the ranges of small/moderate
displacements and large displacements, evaluated at the point 𝐴 = (46, 1000, 40) 𝑚𝑚 on
the free end of the beam:
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Figure 6.1.8: Unsymmetric C-section beam: displacement component at point A on the tip cross-
section of the beam depending on the load. Behaviour in the range of small/moderate
and large displacements
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Figure 6.1.9: Unsymmetric C-section beam: displacement component at point A on the tip cross-
section of the beam depending on the load. Behaviour in the range of small/moderate
and large displacements
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6.2 Refined fully-nonlinear 2D plate elements

6.2.1 Large deflections of square plates
Large deflection of 2D thin and thick squared plates are now analyzed. An homogeneous
isotropic square plate subjected to large deflection due to a vertical uniform pressure ap-
plied in the 𝑧 direction is considered. The mechanical properties of the plate are given in
terms of elastic modulus 𝐸 = 75 GPa and Poisson’s ratio 𝜈 = 0.3. The sides of the plate are
𝑎 = 𝑏 = 1.2𝑚 and two thickness-to-side ratio ℎ/𝑎 are considered to analyze the behavior
of relatively thin plates and relatively thick plates. For convergence reasons, 10 Q9 ele-
ments for each direction of the mid surface are employed in the discretization, and one B3
quadratic element is considered in the thickness direction.

𝑦𝑥

𝑧

𝑝𝑧

𝑎 𝑏

(a) Square plate geom. features (b)Mesh: 10x10 Q9 elem.

Figure 6.2.1: Square plate: geometrical properties and adopted discretization

Different geometrical support constraints conditions are considered for the same load-
ing case:

1. "CCCC", all edges clamped, namely 𝑢 = 𝑣 = 𝑤 = 0 at 𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0 and 𝑦 = 𝑎;

2. "SSSS", all edges simply supported, namely 𝑢 = 𝑣 = 𝑤 = 0 at 𝑧 = 0, 𝑥 = 0, 𝑎 and
𝑧 = 0, 𝑦 = 0, 𝑎;

3. "CSCS", alternated edge conditions, clamped-(simply supported)-clamped-(simply
supported), namely 𝑢 = 𝑣 = 𝑤 = 0 at 𝑧 = 0, 𝑥 = 0, 𝑎, 𝑦 = 0 and 𝑦 = 𝑎;

𝑦𝑥

𝑧

𝐶𝐶

𝐶 𝐶

(a) CCCC

𝑦𝑥

𝑧

𝑆𝑆

𝑆 𝑆

(b) SSSS

𝑦𝑥

𝑧

𝑆𝐶

𝑆 𝐶

(c) CSCS

Figure 6.2.2: Different edge support conditions: (a) CCCC, (b) SSSS, (c) CSCS
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The large deflection equilibirium curves for the square plate subjected to a vertical
uniform pressure load is shown in fig.6.2.3:
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(a) Thin plate: ℎ/𝑎 = 0.02
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Figure 6.2.3: Square plate:equilibrium curves of the plate subjected to transvers pressure for each
boundary condition considered
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6.3 Fully-nonlinear 3D elements

6.3.1 Cantilever square cross-section beam: convergence analysis
First, large deflections of a square cross-section beam are analyzed: again, the same can-
tilever beam subjected to large deflection due to a vertical load, made of the same material,
in considered. In this study case, a convergence analysis adopting solid finite elements is
carried out, considering the effects of length to cross-section side ratio: given the length
𝐿 = 1m of the beam, the same two cases are analyzed: 𝐿/ℎ = 10 and 𝐿/ℎ = 100. In this
case, reference solution is known by previous analysis and taken by Pagani et al.[10]: for
the fixed value of 𝑃 such that 𝑃𝐿2/𝐸𝐼 = 3, 𝑢𝑟𝑒 𝑓𝑧 /𝐿 = 0.603. The numerical scheeme adopted
in this case is the Picard method: only the secant matrix is adopted.

𝐿 ℎ

𝑥

𝑧

𝑦

𝑃

Figure 6.3.1: Cantilever square cross-section beam: geometrical features and load conditions

Linear model (H8) Parabolic model (H27)
N. elem. DOFs uz/L DOFs uz/L

L/h = 10 10 132 0.4494 567 0.5638
15 192 0.4875 837 0.5654
20 252 0.5043 1107 0.5638
25 312 0.5254 1377 0.5663

L/h = 100 40 492 0.2606 2187 0.6002
50 612 0.3267 2727 0.6006
60 732 0.3768 3267 0.6008
80 972 0.4392 4347 0.6010

Table 6.1: Cantilever square cross-section beam: convergence analysis results

As shown in table 6.1, any linear model is not suitable for the large displacement analy-
sis of this study case: locking phenomenon prevents the computation of a correct solution
adopting a linear model, therefore at least a parabolic model is needed. In the case of
parabolic model, for the case 𝐿/ℎ = 10, convergent results are near the analytic reference
solution but are not accurate as in the case of 𝐿/ℎ = 100 beam in which, adopting every
discretization, reference value is correctly obtained. This very simple study case is able to
prove the limitation of linear solid elements in the case of large deflection analysis: there-
fore, starting from this point, adopted discretization will be the one with 20 H27 in the
case of 𝐿/ℎ = 10 beam, and 60 H27 in the case of 𝐿/ℎ = 100.
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6.3.2 Cantilever square cross-section beam: 3D model results
First, large deflections of a square cross-section beam are analyzed: again, the same can-
tilever beam subjected to large deflection due to a vertical load, made of the same material,
in considered. The effects of lenght to cross-section side ratio is analyzed: given the lenght
𝐿 = 1m of the beam, the same two cases are analyzed: 𝐿/ℎ = 10 and 𝐿/ℎ = 100, by consid-
ering the two previously obtained convergent meshes, made of 60H27 for 𝐿/ℎ = 100 case
and 20H27 for 𝐿/ℎ = 10 case.
Fig.6.3.2 shows the equilibrium curves of the beam subjected to a vertical loading com-
paring the solution obtained by 1D beam elements with the present implementation of 3D
fully nonlinear elements.
Fig.6.3.4 and fig.6.3.3 shows the distribution of the non-dimensional axial stress compo-
nent 𝜎𝑦𝑦 both in the case of 𝐿/ℎ = 10 and 𝐿/ℎ = 100: the solution obtained by the present
implementation of 3D fully nonlinear elements is compared with the one obtained by 1D
beam elements.
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Figure 6.3.2: Cantiliver beam equilibrium curve: 1D and 3D model results

As already proven in the previous study case, for the𝐿/ℎ = 10 cantilever beam, solution
obtained by the solid elements discretization is a bit far from the one obtained by refined
fully non-linear 1D CUF elements: this can be justified by the behavior of deep beams in
the range of large displacements, due to geometry of the structures. Also, this behavior is
also observed in the description of non-dimensional 𝜎𝑦𝑦 along the thickness of the beam:
in order to cope with these errors, much more efforts in the discretization of the structure
are required, adopting for examplemore elements in the discretization along the thickness.
At the contrary, for the 𝐿/ℎ = 100 cantilever beam, results are accurate.

61



NUMERICAL RESULTS 3D FEM elements

-1

-0.5

 0

 0.5

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

�

y
y
 2

I/
P
L
h

z/h

3D

1D - Ref

(a) 𝑃𝐿2/𝐸𝐼 = 0.10

-1

-0.5

 0

 0.5

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

�

y
y
 2

I/
P
L
h

z/h

3D

1D - Ref

(b) 𝑃𝐿2/𝐸𝐼 = 1.15

-1

-0.5

 0

 0.5

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

�

y
y
 2

I/
P
L
h

z/h

3D

1D - Ref

(c) 𝑃𝐿2/𝐸𝐼 = 3.53
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Figure 6.3.3: Cantiliver beam, case 𝐿/ℎ = 10, non-dimensional 𝜎𝑦𝑦 plot: 1D and 3D model results
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Figure 6.3.4: Cantiliver beam, case 𝐿/ℎ = 100, non-dimensional 𝜎𝑦𝑦 plot: 1D and 3Dmodel results
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Afterwards, post-buckling analysis of the same cantilever beam is carried out. Con-
sider the same cantilever beam, case 𝐿/ℎ = 100, subjected now to an eccentric compression
load 𝑃 and a vertical load 𝑑 = 0.002𝜋2𝐸𝐼/4𝐿2: solution is obtained in this case using solid
elements instead of 1D beam elements, adopting the convergent mesh with 60H27 dis-
cretization.
Fig.6.3.6 shows the post-buckling equilibrium curves of the cantilever square-cross section
beam, depending on the compression load 𝑃 , scaled with respect of the critical Eulerian’s
instability load: the solution obtained by the present implementation of 3D fully nonlinear
elements is compared with the one obtained by 1D beam elements.
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𝑑

𝑃

Figure 6.3.5: Cantiliver beam, post-buckling analysis: geom. features and load conditions
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Figure 6.3.6: Cantiliver beam, 𝐿/ℎ = 100, post-buckling equilibrium curves: 1D and 3D model
results
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6.3.3 Simply supported square beam: 3D model results
Again, large deflections of a square cross-section beam are analyzed: in this case, a simply
supported square cross-section beam subjected to large deflection due to a vertical load
applied at the mid-span of its axis, made of the same material of the previous case, in con-
sidered. This case has been proposed and carried out to analyze the influence of boundary
condition application. The effects of length to cross-section side ratio is analyzed: given
the lenght 𝐿 = 1m of the beam, the same two cases are analyzed: 𝐿/ℎ = 10 and 𝐿/ℎ = 100.
The discretization of the beam is carried out by considering 20B41Q9 1D beam elements
for both cases, and the two convergent meshes, made of 60H27 for 𝐿/ℎ = 100 case and
20H27 for 𝐿/ℎ = 10 case.
Fig.6.3.8 shows the equilibrium curves of the beam: the solution obtained by the present
implementation of 3D fully nonlinear elements is compared with the one obtained by 1D
beam elements.
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𝑦

𝑃

Figure 6.3.7: Simply supported beam, central shear load: geom. features and load condition

Fig.6.3.8(a) and fig.6.3.8(b) show the comparison between the equilibrium curve ob-
tained adopting both 1D CUF-FEM elements and 3D FEM elements: results are matching,
so numerical solution obtained by the present implementation of 3D FEM elements can
be considered valid and accurate.
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Figure 6.3.8: Simply supported beam equilibrium curves: 1D and 3D model results
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Afterwards, post-buckling analysis of the simply-supported square-cross section beam
is now carried out, considering the case of the beam 𝐿/ℎ = 100, subjected now to an eccen-
tric compression load 𝑃 and a vertical load 𝑑 = 0.004𝜋2𝐸𝐼/𝐿2: solution is obtained in this
case using using solid elements instead of 1D beam elements, employing the convergent
mesh with 60H27 discretization.
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Figure 6.3.9: Simply supported beam, post-buckling analysis: geom. features and load conditions

Fig.6.3.10 shows the post-buckling equilibrium curves of the cantilever square-cross
section beam, depending on the non-dimensional compression load 𝑃 , scaled with respect
of the critical Eulerian’s instability load: the solution obtained by the present implemen-
tation of 3D fully nonlinear elements is compared with the one obtained by 1D beam
elements. The post-buckling behavior of the beam can be correctly described adopting
solid elements, as observed in the range of small/moderate displacement range and in the
value of critical buckling load but the large displacement range of the actual solution is
far from reference one: this can be justified by the limited model adopted.
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Figure 6.3.10: Simply supported beam, post-buckling equilibrium curves: 1D and 3Dmodel results
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6.3.4 Unsymmetric C-section beam: 3D model results
Large deflection analyses of 1D solid cross section is carried out in the case of a cantilever,
unsymmetric C-section beam subjected to large deflection due to a vertical load: again, the
same beam of the previous case is considered. The two beam discretization considered are
the previously defined convergent meshes made of 20B4-12Q9 1D elements and another
one made of 600 H27 solid elements.
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𝑧

𝑃

Figure 6.3.11: Unsymmetric C-section beam: geometrical features and load conditions

Fig.6.3.15 shows the equilibrium curve of the unsymmetric C-section cantilever beam
in the range of small/moderate displacements, comparing solutions obtained by adopt-
ing different elements; the same comparison is made in fig.6.3.12 in the range of moder-
ate/large displacement. As seen, solution are perfectly overlapping and actual numerical
results obtained by 3D elements are validated. However, from a computational cost point
of view, due to aspect ratio constraints on the definition of 3D mesh, the adoption of solid
elements is again not convenient since the total number of degrees of freedom increases.

P = 21 kN

P = 30.6 kN

P = 37.6 kN

P = 47.3 kN

P = 60.4 kN

P = 185 kN

(a) Side view
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(b) Front view

Figure 6.3.12: Unsymmetric C-section beam: deformed configuration shapshots
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Figure 6.3.13: Unsymmetric C-section beam: equilibrium curves obtained with solid elements
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6.3.5 L-shape angle-frame structure: 3D models results
Large deflections of an isotropic angle-frame structure are analyzed. This example is a
popular benchmark problem in geometrically nonlinear analysis, proposed by Battini [14]
and analyzed by Zouari et al.[15]: the frame is clamped at left end and subjected to an
uniform distribution of horizontal forces at the top-right end. The mechanical properties
are expressed in terms of Young’s modulus and Poisson’s ratio, respectively set to 𝐸 = 3 ·
1011 𝑁 /𝑚2 and 𝜈 = 0.3. The dimensions of the frame are 𝐿 = 0.1𝑚,ℎ = 0.01𝑚 and thickness
𝑡 = 0.01𝑚, as shown in fig.6.3.14(b). The structure has been discretized by adopting two
different meshes: solutions are obtained employing 152 H8 linear in the first case, and
76 H27 parabolic in the second case, for geometrical and numerical reasons due to solid
elements aspect ratio constraints.
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(a) Isometric view
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(b) Front view

Figure 6.3.14: L-shape angle-frame: geom. features and load condition

Fig.6.3.15 shows the equilibrium curve of the angle-frame in the range of moder-
ate/large displacements, considering the horizontal displacement of the point A vs the
horizontal pressure.
Fig.6.3.16 shows some snapshot of the deformed structure under the same load conditions,
comparing the solution obtained with the different discretization adopted: as it is possi-
ble to see, for critical loads, the major effect of non-linearities are captured by parabolic
elements, instead linear ones are not able to follow precisely the equilibrium path due
to numerical limitations during the bending. This simple example shows immediately the
limitations of a linear elements in the range of moderate/large displacements regime: lock-
ing correction of the solid elements by adopting more complex theories in the definition
of the variational principle are intended to deal with this kind of problems, due to the fact
that stiffness matrix is overestimated and the resulting displacement configuration results
underestimated.
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Figure 6.3.15: L-shape clamped angle-frame: equilibrium curves

(a) 𝑃 = 12𝑘𝑁 (b) 𝑃 = 24𝑘𝑁

(c) 𝑃 = 33𝑘𝑁 (d) 𝑃 = 45𝑘𝑁

Figure 6.3.16: L-shape angle-frame: deformed configuration shapshots 76H27 vs 152H8
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6.3.6 Symmetric thin shallow arch: 3D models results
Large deflections of a symmetric isotropic shallow arch are analyzed. This example is a
popular benchmark problem for geometrically nonlinear analysis, proposed by Battini[14]:
the frame is clamped at both ends and subjected to a concentrated vertical load 2𝑃 at the
mid-span. Due to the symmetry of the problem, only half structure is analyzed. The
mechanical properties are expressed in terms of Young’s modulus and Poisson’s ratio,
respectively set to 𝐸 = 3 · 1011 𝑁 /𝑚2 and 𝜈 = 0.25. The dimensions of the frame are
𝑅1 = 0.2𝑚, 𝑑 = 0.01𝑚 and thickness 𝑡 = 0.01𝑚, geometry is depicted in fig.6.3.17(b). The
half-structure has been discretized by adopting 30H27 solid elements for geometrical and
numerical reasons due to solid elements aspect ratio constraints.
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(a) Constraints and load conditions
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(b) Semi-half structure

Figure 6.3.17: Symmetric shallow arch: geometry and load conditions

Fig.6.3.18 shows the equilibrium curve of the symmetric shallow arch in the range of
moderate/large displacements, considering the horizontal displacement of the point A vs
the modulus of the vertical concentrated force.
Fig.6.3.19 shows some snapshot of the deformed structure under different load conditions.
This interesting case proves the capabilities of the present implementation of linear-elastic
solid elements dealing with curvilinear geometries: these kind of features can be useful
in the analysis of curved structures, since one can avoid the definition of finite elements
in curvilinear coordinates that requires much more mathematical and numerical efforts.
Actually, the solution can be obtain by considering only an arc-lenght method for the
solution of the nonlinear system of equation due to snap-through phenomenon, that one
can observe from the actual numerical solution.
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Figure 6.3.18: Symmetric shallow arch: equilibrium curve

Figure 6.3.19: Symmetric shallow arch: deformed configuration shapshots
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6.3.7 Cylindrical hinged panel: 3D models results
Large deflections of a symmetric isotropic cylindrical panel are analyzed. This example
is a popular benchmark problem for geometrically nonlinear analysis, proposed by Sze
et al.[12] and analyzed by Carrera et al.[11] and Payette et al.[18]: the panel is hinged at
lateral straight edges and subjected to a concentrated vertical load 𝑃 at the mid-span. Due
to the symmetry of the problem, only a quarted of structure is analyzed. The mechanical
properties are expressed in terms of Young’s modulus and Poisson’s ratio, respectively set
to E=3.10275 GPa and 𝜈 = 0.3. The dimensions of the panel are R=0.254 m, L=0.508 m
but two different thickness values are considered: thin panel with h=12.7mm and thick
panel with h=25.4 mm. Geometry is depicted in fig.6.3.17(b). The two structures has been
discretized by adopting 200H27 solid elements in the case of thick plate, and 400H27 solid
elements for geometrical and numerical reasons due to solid elements aspect ratio con-
straints.
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(a) Constraints and load conditions

𝑢𝑦 = 0

𝑢𝑧 = 0

𝑃
4

(b) Quarter of structure

Figure 6.3.20: Symmetric cylindrical panel: geometry and load conditions

Fig.6.3.21 shows the equilibrium curve of the hinged panel in the range of moder-
ate/large displacements, considering the vertical displacement of the point A, 𝑢𝑥𝐴 , with
respect of the modulus of the vertical concentrated force.
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Figure 6.3.21: Cylindrical hinged plate: equilibrium curves

Thewhole equilibrium curves are correctly predicted, solution obtainedwith the present
3D model match the reference one: the present implementation of 3D solid elements is ca-
pable to predict the behaviour of the structure in all the regimes, small differences can be
observed in the case of thick hinged panel.
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6.3.8 Plate strip: 3D models results
Post-buckling analysis of an isotropic plate strip is now carried out. This example, pro-
posed by Massin et al.[16] has also been studied by Arciniega et al.[17] and Payette et
al.[18]: the frame is clamped at left end and subjected to an linear uniform compression
load at the free end. The mechanical properties are expressed in terms of Young’s modulus
and Poisson’s ratio, respectively set to 𝐸 = 2 · 1011 𝑁 /𝑚2 and 𝜈 = 0.3. The dimensions
of the frame are 𝐿 = 0.50𝑚, ℎ = 0.0045𝑚 and 𝑤 = 0.075𝑚, as shown in fig.6.3.22. The
critical compression load applied at the free end is the Euler’s buckling load, that can be
computed analytically and equal to 𝑃𝑐𝑟 = 𝜋2𝐸𝐼/(4𝐿2) = 1124.41𝑁 but, differently with
respect of the reference case, it is applied on the top edge of the free cross-section, instead
of its application at mid thickness span with a small inclination angle different from zero.
The structure has been discretized by adopting 270 H27 parabolic, due geometrical and
numerical reasons due to solid elements aspect ratio constraints.

𝑦

𝑥

𝑧

q
𝐿

𝑤

A

Figure 6.3.22: Plate strip post-buckling: geometrical features and load conditions

Fig.6.3.23(a) shows the equilibrium curves of the plate strip in the range of moder-
ate/large displacements, considering both horizontal and vertical displacement of the point
A vs the modulus of the vertical concentrated force, comparing reference solution from
Arciniega et al[17] with the actual one obtained by solid elements-.
Fig.6.3.23(b) shows some snapshot of the deformed structure under different load condi-
tions. This interesting case proves the capabilities of the present implementation of linear-
elastic solid elements dealing with post-buckling analysis: the critical value of compres-
sion load that causes instability is evaluated correctly and the post-buckling behavior of
the structure is followed.
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Figure 6.3.23: Plate strip post-buckling: solid elements results
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6.3.9 Square plates: comparison with 2D model results
Large deflection analyses of 2D plate are analyzed: consider again the same homogeneous
isotropic square plate subjected to large deflection and the same boundary conditions al-
ready depicted in ch.6.2.1. For geometrical and numerical reason, 100H27 3D elements
are employed for the discretization of the thick plate, instead for the thin plate 400 H27
elements are employed. In order to replicate the results, since for the 3D solid elements
pressure boundary conditions is not implemented in the code, pressure is applied as an
equivalent distribution of concentrated forces applied on top-surface nodes.
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Figure 6.3.24: Square plate, equilibrium curves: comparison between 2D and 3D model results

75



NUMERICAL RESULTS Hyperelastic models: uniaxial tension test

This popular study proves the capabilities of the present implementation of linear-
elastic solid elements dealing with large deflection of plates but some inaccuracy can be
observed depending on the thickness and the support conditions considered. Thus, in-
vestigations about boundary conditions influence on large deflections of squadre plates
are now carried out: how derivatives at the boundaries influences solutions obtained by
3Dmodels is now investigated, by considering different geometrical boundary conditions.
The same square plate is now considered in two new configurations, characterized by dif-
ferent boundary conditions: clamped-free-clamped-free plate, simply supported-free and
clamped plate supports conditions are analyzed, as depicted in fig.6.3.25, in other words
now only two edges/faces of the plate are constrained. Load boundary conditions is the
same of previous cases: pressure is applied on the top surface of the plate as an equiv-
alent distribution of concentrated forces. The present implementation of solid elements
can reproduce precisely the actual behavior of thin and thick structures:
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𝑦𝑥

𝑧

(b) SFSF

Figure 6.3.25: Different edge support conditions: (a) CFCF, (b) SFSF
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Figure 6.3.26: Square plate, equilibrium curves: comparison between 2D and 3D model results
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6.4 Hyperelastic 1D and 3D elements

6.4.1 Uniaxial tension problem: validation of the constitutive law
Large strains of an incompressible cubic block under uniaxial tension are now analyzed.
This popular benchmark problem in hyperelasticity, analyzed by Pagani et al.[22] and Su-
chochi [19], is a special case for which analytical solution is known: in this study case,
validation of the numerical solution obtained by the present implementation of hypere-
lastic finite elements is carried out, comparing results with analytic solutions. Geometry
and boundary conditions are depicted in fig.6.4.1.

𝑦 = 0, 𝑢𝑦 = 0

𝑧 = 0, 𝑢𝑧 = 0
𝑦

𝑧

𝑥

(a) Geometry and boundary conditions

𝑦

𝑧

𝑥

(b) Behavior of the cube

Figure 6.4.1: Uniaxial tension test: description of the problem

Considering first-invariant hyperelasticity model described before, explicit expression
of deformation gradient in terms of eigenvalues is known, so analytic expression of PK1,
PK2 and Cauchy’s stress tensor are known. If 𝜆1 is the principal stretch along the 𝑦:

𝜆2,3 =
1

√
𝜆1

→ 𝐼1 = 𝐼1 = 𝜆
2
1 +

2
𝜆1

Given the expression of strain-energy function adopted, considering uniaxial tension, an-
alytic expression of axial stress components are know, by definition:

𝑃11 =
𝜕𝛹

𝜕𝜆1
=
𝜕𝛹

𝜕𝐼1

𝜕𝐼1
𝜕𝜆1

= 2 𝜕𝛹
𝜕𝐼1

(
𝜆1 −

1
𝜆2

1

)
𝑆11 =

1
𝜕𝜆1

𝜕𝛹

𝜕𝜆1
=

1
𝜆1
𝑃11 → 𝜎11 = 𝐽

−1𝜆1
𝜕𝛹

𝜕𝜆1
= 𝜆1𝑃11

Two different discretization are adopted in the following: in the case of 1D CUF-FEM ele-
ments, 1B2-1Q4 linear element is considered, instead in the case of 3D solid elements, the
equivalent eight-node H8 finite elements is employed.
In this study case, four different strain-energy function are employed to show the capa-
bilities of present formulation of hyperleastic CUF-FEM elements with respect of differ-
ent strain energy function. Numerical constants and material parameter adopted in each
strain energy function is listed in the table T.6.2. Again, analytic expression of strain en-
ergy functions adopted can be found in App.C.
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Model Parameter

Neo-Hookean 𝜇 = 0.27 [MPa]
Gent 𝜇 = 0.27 [MPa]

𝐽𝑚 = 85.91 -
Exp-Ln 𝐴 = 0.195 [MPa]

𝑎 = 0.018 -
𝑏 = 0.22 -

Fung-Demiray 𝛽 = 0.2 [MPa]
𝛼 = 16 -

Penalty par. 𝐷1 = 33 · 10−9 [MPa−1]
Table 6.2: Material parameter adopted in each strain energy function considered
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Figure 6.4.2: Uniaxial tension test: comparison between analytic, 1D and 3D CUF-FEM solutions
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6.4.2 Neo-Hookean beam subjected to bending
Large displacement and large strains analysis of an hyperelastic cantilever beam subjected
to shear load at the free end are now carried out. This study case has been analyzed by
Maas et at.[26], and reference solutions are taken by Pagani et al.[22]. The cross-section
of the cantilever beam is rectangular, whose side are respectively equal to t=100 mm
and h=150 mm, and the length-to-thickness ratio has been set equal to 100, as shown in
fig.6.4.3. The hyperleastic beam is modeled adopting a neo-Hooekan strain energy func-
tion with infinitesimal shear modulus 𝜇 = 50 MPa and bulk modulus 𝑘 = 2/3𝜇.

𝐿 𝑡

ℎ
𝑦

𝑥

𝑧

𝑃

Figure 6.4.3: Hyperleastic neo-Hookean beam: geometrical features and load conditions

In the following, 20B4-1L16 are adopted in the discretization adopting 1D FEM-CUF
elements; in the meanwhile, 120 H27 parabolic elements are adopted in the case of dis-
cretization by solid elements, obtained from 2 sub-division of the cross section along the
z-axis of the thickness and 60 subdivision along the axis of the beam.
Fig.6.4.4 shows the equilibrium curve of the cantilever hyperelastic beam in the range of
moderate/large displacements, considering the horizontal displacement of the point A vs
the modulus of the vertical concentrated force, comparing the reference results with the
one obtained adopting the H27 discretization described before. Results are matching.
Fig.6.4.5 and 6.4.6 show the through-the-thickness distribution of Piola-Kirchoff 2 normal
and shear stress components, comparing results obtained by adopting 1D FEM-CUF ele-
ments with the one obtained by the present implementation of hyperelastic solid elements.
In this case, the employment of parabolic solid elements is not sufficient for the description
of the degenerate parabolic behavior captured only by adopting cubic expansion elements
in the discretization of the cross section, like in 1D FEM-CUF elements, thus much more
effort in mathematical 3D models are required.
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Figure 6.4.4: Hyperleastic neo-Hookean beam: equilibrium curve
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Figure 6.4.5: Hyperleastic neo-Hookean beam: 𝑃𝐾2𝑦𝑦 through-the-thickness distribution
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Figure 6.4.6: Hyperleastic neo-Hookean beam: 𝑃𝐾2𝑦𝑧 through-the-thickness distribution
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6.4.3 Nearly incompressible block under compression
Large displacement and large strains analysis of nearly incompressible block under uni-
form pressure is now carried out. This study case has been proposed by Reese et al.[25] and
analyzed by many authors as in [22, 29, 28]. Geometrical features, boundary conditions
and loads applied are depicted in fig.6.4.7. Thanks to symmetry, only one half of structure
has been considered: symmetric Dirichlet boundary conditions have been applied on the
lateral symmetric face, and a uniform vertical pressure is applied on the top free surface.
Material is modeled adopting a neo-Hookean strain energy function, with bulk modulus
𝑘 = 400′653.269 MPa and infinitesimal shear modulus fixed to 𝜇 = 80.194 MPa.

The block is a 2𝑚𝑚 x 2𝑚𝑚, but in the case of symmetry geometry considered is an
half block 1𝑚𝑚 x 2𝑚𝑚 and a fixed height of 1𝑚𝑚. Analysis are carried out considering
as reference solution Pagani et al.[22], adopting different discretization to compete with
locking: in the following, each mesh will be named by the number of split of 𝑥 ,𝑦 and 𝑧
base edges of the structures, that will identify the global number of parabolic elements
adopted 𝑁 = 𝑁𝑥 · 𝑁𝑦 · 𝑁𝑧 , due to the cartesian structures of the discretization.

𝑦

𝑧

𝑥

𝑢𝑥 = 0

Figure 6.4.7: Geometry and boundary conditions for the uniaxial cube under uniform pressure

Solutions obtained by the present implementation of hyperleastic solid elements are
affected by locking, as fig.6.4.8(a) and fig.6.4.8(b) show. In order to contrast locking phe-
nomenon, one can consider different approach to hyperelasticity or more accurate evalu-
ation of the hydrostatic pressure by computing it as a general variable of the problem and
not as penalty parameter of the strain-energy function in first-invariant hyperelasticity
formulation here adopted. In the case of 6x12x8 H27 mesh, the actual numerical results
are able to follow the general path of the equilibrium curve, but much more meshing effort
in the discretization of the structure are required.
In the following, for a more detailed analysis of locking phenomenon, only a quarter of
structure is considered: the block is a 2𝑚𝑚 x 2𝑚𝑚, in the case of symmetry, geometry
considered is an quarter block 1𝑚𝑚 x 1𝑚𝑚 and a fixed height of 1𝑚𝑚. Analysis are car-
ried out considering different discretization to compete with locking: in the following, the
nomenclature of the mesh follows the previous definition. By adopting only one quarter
of structure, one can increase the global number of elements describing the structure, with
a comparable computational cost.
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Figure 6.4.8: Neo-Hookean block, half structure: equilibrium curves
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Figure 6.4.9: Neo-Hookean block, quarter of structure: equilibrium curve

In this study case, locking prevents the computation of the whole equilibrium curve:
there are local effects that do not allow the complete description of the behavior of the
structure. This can be justified by the fact that, in the present implementation, the hydro-
static pressure is a penalty variable and is not computed as an unknown of the problem.
Enhanced volumetric locking prevent the computation of accurate solution: thus, much
more research effort are required. Mixed formulation from a variational principle point of
view and computation the hydrostatic pressure as a general variable of the problem can
compete with volumetric locking.
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6.4.4 Neo-Hookean hyperelastic cylinder
Large displacement and large strains analysis of neo-Hookean thick cylinder under ver-
tical linear pressure is now carried out. This study case has been proposed and analyzed
by different researchers adopting brick/shell finite elements, as done in [25, 29, 28]. Re-
ferring to the description of the problem in Pagani et al.[22], only a quarter of cylinder
is analyzed by symmetries: the lower edge of the structures is hinged, uniform vertical
pressure is applied on the top free edge and Dirichlet symmetry boundary conditions are
considered at planes x=0 and y=0.
The length of the quarter of cylinder is 𝐿 = 15 𝑐𝑚, and the inner and outer radius are
respectively 𝑅1 = 8 𝑐𝑚 and 𝑅2 = 10 𝑐𝑚, resulting in a global thickness of the cylinder of 2
cm. The hyperleastic cylinder is modeled adopting a neo-Hooekan strain energy function
with bulk modulus 𝑘 = 280′000 kN/cm2 and infinitesimal shear modulus 𝜇 = 6000 kN/cm2.
This analysis are carried out considering first 1D CUF elements then 3D FEM elements, to
validate the actual implementation of hyperelastic higher-order beam models and acutal
implementation of solid elements: in the case of 1D CUF elements, one cubic element B4
has been adopted along the axis of the cylinder and cubic L16 elements are used in the
discretization of the cross section; in the case of 3D elements, the cross section has been
described splitting into 16 portion the whole cross section arch in the first case, in the
second case by splitting into 2 portions along the radial direction and in 20 equal portions
along the arch span. Different number of splits along the axis of the cylinder have been
considered.

𝐴

𝑝

𝑦

𝑧

𝑥

𝑅1

𝑅2

(a) Geometry and boundary condi-
tions

(b) Discretization adopted: 16x6 H27

Figure 6.4.10: Neo-Hookean cylinder: quarter of structures features

Fig.6.4.11 shows the equilibrium curve obtained by each discretization adopted: lock-
ing prevent the evaluation of the real behavior adopting a limited number of elements.
Fig.6.4.12 shows some snapshots of deformed configuration for load value of linear pres-
sure applied at the top free edge.
After the analysis, solutions obtained by the present implementation of hyperleastic solid
elements, in the case of curvilinear structures, are affected by locking: thus, much more
meshing effort in the discretization of the structure are required, adopting an higher num-
ber of elements satisfying aspect ratio constraints, in a resulting increasing computational
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cost. In the case of 40x10 H27 mesh, the actual numerical results are able to follow the
general path of the equilibrium curve.
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Figure 6.4.11: Neo-Hookean cylinder: equilibrium curve

(a) 𝑝 = 230 𝑘𝑁 /𝑐𝑚2 (b) 𝑝 = 426 𝑘𝑁 /𝑐𝑚2

(c) 𝑝 = 660 𝑘𝑁 /𝑐𝑚2 (d) 𝑝 = 961 𝑘𝑁 /𝑐𝑚2

Figure 6.4.12: Neo-Hookean cylinder: deformed configuration for different load conditions
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Chapter 7
Conclusions

In the present thesis, geometrical nonlinear analyses based on linear elasticity and hy-
perelasticity have been presented. As already said, CUF allows the implementation of
higher-order theories for beams, plates, shells and solid structure, where the full Green-
Lagrange strain tensor is considered. Starting from the definition, beam (1D) models and
plate (2D) models have been presented and adopted for the analysis of popular study cases,
and finally isogeometric solid (3D) models have been built and adopted for research study
cases.
Actual implementation of solid elements has been validated by studying popular problems
in non-linear analysis described in literature and adopted for research study cases: large-
deflection of beams and plates and post-buckling of simple structures, and large strains of
hyperelastic soft structures have been analyzed. During the work, 3D models have been
validated in very different cases, showing both the capabilities and the limitations arising
from the adoption of classical FEM models instead of higher-order ones.
Starting from the linear-elastic constitutive law, only isotropic materials have been consid-
ered. Study cases with very simple Cartesian geometries and curvilinear symmetrical ge-
ometries have been analyzed: in all the cases, behavior of structures in the moderate/large
displacement regime can be predicted, and these results validate the present implemen-
tation of geometrically non-linear solid finite elements. Specifically, in the case of large
displacement regime, an accurate prediction of the stress state is obtained only by refined
discretization of structures, due to mathematical limitation of the actual models.
The adoption of the solid elements in the case of hyperelastic materials has shown very
important results in terms of large strains analysis of structures: the actual implemen-
tation of the MUL2 code is able to compete with different cases but convergent results
are not easily obtained. An accurate description of displacements, strains and stresses
have been reached but in all the cases locking phenomenon is observed: adopting refined
discretization of geometries and by increasing the number of elements, solution can be
obtained.
All the results, although the mathematical limitation already discussed, prove that imple-
mentation of parabolic solid elements used in this thesis is able to predict the actual behav-
ior of materials and structures, also by considering different constitutive laws. Complex
structures and innovative soft materials can be analyzed by this formulation of finite ele-
ments obtaining accurate results.
From a computational point of view, one important aspect have been remarked in this the-
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sis: the adoption of 3D FEM elements require muchmore computational costs with respect
of refined fully-nonlinear CUF elements: they are not convenient with respect of refined
higher-order 1D or 2D models and show the classical known limitations in Finite Element
Method, even if they are required in hyperelasticity to compete better with locking.

7.1 Future works
The present work is the first step in understanding complex structural problem also in-
volving geometrical an material non-linearities. However, in this context, several aspects
require further research efforts. Possible future works include fracture mechanics, non-
linear vibrations, fluid-structure interaction applications: several future developments can
be considered starting from these encouraging results.
Regarding the structural models adopted for hyperelastic materials, the adoption of a
mixed formulation (from a variational principle point of view) is the starting point for
severe correction of the locking phenomenon. In addition, the computation of the hy-
drostatic pressure as a general variable of the problem is required for much more accu-
rate large strains analysis of hyperleastic materials. Another goal that is intended to be
achieved is the description of hyperelastic materials adopting more complex strain-energy
function like models considering also second invariant of Cauchy-Green strain tensor, to
overcoming the current limitations of the classic first-invariant formulation.
Finally, a major future development is the coupling between CUF-based finite elements
with the in-house code of Fluid Dynamics research group of Polytechnic University of Bari
for fluid-structure interaction problem: under the IB (Immersed Boundary) method, one of
the most anticipated developments is the coupling of the two codes for the development of
fluid-structure interaction solver for aerospace, mechanical engineering applications. The
currently adopted structural solver based on isogeometric Kirchoff-Love shell models for
hyperelastic material lead to limitations that can be exceeded by adopting higher-order
CUF models described in this work or mixed solid elements.
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Appendix A
Explicit form of secant and tangent
stiffness matrices

According to Carrera et al. [10] and [13], the fundamental nucleus of the stiffness matrix
can be defined by using only two independent components without loss of generality. By
exploting the summation over indeces 𝜏 , 𝑠 , 𝑖 , and 𝑗 , used in the definition of real and virtual
displacement field FEM-CUF discretization, derivation of all the nine components of each
nucleus sub-matrices is straightforward. In the following, each volume integral over the
whole domain will be expressed with the symbol < (·) >=

∫
𝛺
(·)𝑑𝑉 , and, in order to write

expressions in a more compact and general way, u,𝑥 [𝑟 ] represents the 𝑟 -th component of
the vector 𝜕u

𝜕𝑥
; e.g. u,𝑥 [2] = 𝑢𝑦,𝑥 .

A.1 Fundamental nuclei of 1D CUF elements
In the particular case of 1D beam CUF elements described in ch. 3.2.1, fundamental nuclei
explicit expression of sub-matrices are carried out by adopting formal differential operator
matrices eq.(3.2.3) and eq.(3.2.4) in eq.(4.1.5). Since the derivation is independent on the
elasticity tensor C, expressions of fundamental nuclei are now derived for an isotropic
material, considering then the expression eq.(3.1.7).

The linear contribution fundamental nucleus is obtained by considering the volume
integral of the following row-by-coloumn matrix product:

K𝜏𝑠𝑖 𝑗
𝑙𝑙

=

∫
𝛺

Bsj
l
𝑇
C B𝜏 i

l 𝑑𝑉 (A.1.1)

The nine components of the 3 × 3 linear stiffness matrix fundamental nucleus of the
are provided below in the form K𝑖 𝑗𝜏𝑠

𝑙𝑙
[𝑟, 𝑐], where 𝑟 is the row number (𝑟 = 1, 2, 3) and 𝑐 is

the column number (𝑐 = 1, 2, 3).

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[1, 1] = < 𝐶11 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < 𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < 𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[1, 2] = < 𝐶66 𝐹𝜏 𝐹𝑠,𝑥 𝑁𝑖,𝑦 𝑁 𝑗 > + < 𝐶12 𝐹𝜏,𝑥 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >
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K𝑖 𝑗𝜏𝑠
𝑙𝑙

[1, 3] = < 𝐶13 𝐹𝜏,𝑥 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < 𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[2, 1] = < 𝐶12 𝐹𝜏 𝐹𝑠,𝑥 𝑁𝑖,𝑦 𝑁 𝑗 > + < 𝐶66 𝐹𝜏,𝑥 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[2, 2] = < 𝐶66 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < 𝐶55 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < 𝐶22 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[2, 3] = < 𝐶23 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 > + < 𝐶55 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[3, 1] = < 𝐶44 𝐹𝜏,𝑥 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < 𝐶13 𝐹𝜏,𝑧 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[3, 2] = < 𝐶55 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 > + < 𝐶23 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[3, 3] = < 𝐶44 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < 𝐶33 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < 𝐶55 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

The first-order nonlinear contribution fundamental nucleus is obtained by considering
the volume integral of the following row-by-coloumn matrix product:

K𝜏𝑠𝑖 𝑗
𝑙𝑛𝑙

=

∫
𝛺

Bsj
l
𝑇
C B𝜏 i

nl𝑑𝑉 (A.1.2)

The nine components of the 3 × 3 nonlinear stiffness matrix fundamental nucleus of
the are provided below in the form K𝑖 𝑗𝜏𝑠

𝑛𝑙𝑙
[𝑟, 𝑐], where 𝑟 is the row number (𝑟 = 1, 2, 3) and

𝑐 is the column number (𝑐 = 1, 2, 3):

For 𝑐 = 1:

K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑟 ]𝐶11 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < u,𝑥 [𝑟 ]𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑥 [𝑟 ]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶66 𝐹𝜏,𝑥 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

+ < u,𝑥 [𝑟 ]𝐶12 𝐹𝜏 𝐹𝑠,𝑥 𝑁𝑖,𝑦 𝑁 𝑗 > + < u,𝑧 [𝑟 ]𝐶44 𝐹𝜏,𝑥 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ]𝐶13 𝐹𝜏,𝑧 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 >

For 𝑐 = 2:

K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑟 ]𝐶12 𝐹𝜏,𝑥 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶66 𝐹𝜏 𝐹𝑠,𝑥 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ]𝐶66 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < u,𝑦 [𝑟 ]𝐶55 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ]𝐶22 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶23 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

+ < u,𝑧 [𝑟 ]𝐶55 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

For 𝑐 = 3:

K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑟 ]𝐶13 𝐹𝜏,𝑥 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < u,𝑥 [𝑟 ]𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ]𝐶55 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶23 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ]𝐶44 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < u,𝑧 [𝑟 ]𝐶33 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ]𝐶55 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

The components of K𝑖 𝑗𝜏𝑠
𝑙𝑛𝑙

are not given here, but they can be easily obtained from K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

. In

fact, it is clear from Eq. (??) that
(
K𝑖 𝑗𝜏𝑠
𝑙𝑛𝑙

)𝑇
=

1
2K𝑖 𝑗𝜏𝑠

𝑛𝑙𝑙
.
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Finally, the generic component [𝑟, 𝑐] of thematrixK𝑖 𝑗𝜏𝑠
𝑛𝑙𝑛𝑙

is summarized in the following:

2 × K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑛𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑟 ] u,𝑥 [𝑐] 𝐶11 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < u,𝑥 [𝑟 ] u,𝑥 [𝑐]𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑥 [𝑟 ] u,𝑥 [𝑐]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ] u,𝑦 [𝑐] 𝐶66 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ] u,𝑦 [𝑐]𝐶55 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < u,𝑦 [𝑟 ] u,𝑦 [𝑐]𝐶22 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

+ < u,𝑧 [𝑟 ] u,𝑧 [𝑐] 𝐶44 𝐹𝜏,𝑥 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < u,𝑧 [𝑟 ] u,𝑧 [𝑐]𝐶33 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ] u,𝑧 [𝑐]𝐶55 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ] u,𝑦 [𝑐]𝐶12 𝐹𝜏,𝑥 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

+ < u,𝑥 [𝑟 ] u,𝑦 [𝑐]𝐶66 𝐹𝜏 𝐹𝑠,𝑥 𝑁𝑖,𝑦 𝑁 𝑗 > + < u,𝑦 [𝑟 ] u,𝑥 [𝑐]𝐶12 𝐹𝜏 𝐹𝑠,𝑥 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ] u,𝑥 [𝑐]𝐶66 𝐹𝜏,𝑥 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ] u,𝑧 [𝑐]𝐶13 𝐹𝜏,𝑥 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑥 [𝑟 ] u,𝑧 [𝑐]𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 > + < u,𝑧 [𝑟 ] u,𝑥 [𝑐]𝐶13 𝐹𝜏,𝑧 𝐹𝑠,𝑥 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ] u,𝑥 [𝑐]𝐶44 𝐹𝜏,𝑥 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < u,𝑦 [𝑟 ] u,𝑧 [𝑐]𝐶23 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ] u,𝑧 [𝑐]𝐶55 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ] u,𝑦 [𝑐]𝐶55 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ] u,𝑦 [𝑐]𝐶23 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

By these expression, the fundamental nuclei of the sub-matrices of tangent matrix can
be obtained immediately, remembering the relations between secant and tangent stiffnes
matrix nuclei eq.(4.1.11).
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A.2 Fundamental nuclei of 2D CUF elements
In the particular case of 2D beam CUF elements described in ch. 3.2.2, fundamental nuclei
explicit expression of sub-matrices are carried out by adopting formal differential operator
matrices eq.(3.2.3) and eq.(3.2.4) in eq.(4.1.5). Since the derivation is independent on the
elasticity tensor C, expressions of fundamental nuclei are now derived for an isotropic
material, considering then the expression eq.(3.1.7).

The linear contribution fundamental nucleus is obtained by considering the volume
integral of the following row-by-coloumn matrix product:

K𝜏𝑠𝑖 𝑗
𝑙𝑙

=

∫
𝛺

Bsj
l
𝑇
C B𝜏 i

l 𝑑𝑉 (A.2.1)

The nine components of the 3 × 3 linear stiffness matrix fundamental nucleus of the
are provided below in the form K𝑖 𝑗𝜏𝑠

𝑙𝑙
[𝑟, 𝑐], where 𝑟 is the row number (𝑟 = 1, 2, 3) and 𝑐 is

the column number (𝑐 = 1, 2, 3).

K𝑖 𝑗𝜏𝑠0 [1, 1] = < 𝐶11 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < 𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < 𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < 𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 >

+ < 𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥𝑁 𝑗,𝑦 >,

K𝑖 𝑗𝜏𝑠0 [1, 2] = < 𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > + < 𝐶12 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < 𝐶45 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < 𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 >

+ < 𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >,

K𝑖 𝑗𝜏𝑠0 [1, 3] = < 𝐶13 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 > + < 𝐶44 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >

+ < 𝐶45 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < 𝐶36 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >,

K𝑖 𝑗𝜏𝑠0 [2, 1] = < 𝐶12 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > + < 𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < 𝐶45 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < 𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 >

+ < 𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >,

K𝑖 𝑗𝜏𝑠0 [2, 2] = < 𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < 𝐶55 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < 𝐶22 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < 𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < 𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 >,

K𝑖 𝑗𝜏𝑠0 [2, 3] = < 𝐶23 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 > + < 𝐶55 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

+ < 𝐶45 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 > + < 𝐶36 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 >,

K𝑖 𝑗𝜏𝑠0 [3, 1] = < 𝐶44 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 > + < 𝐶13 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >

+ < 𝐶45 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 > + < 𝐶36 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >,

K𝑖 𝑗𝜏𝑠0 [3, 2] = < 𝐶55 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 > + < 𝐶23 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

+ < 𝐶45 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 > + < 𝐶36 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >,
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K𝑖 𝑗𝜏𝑠0 [3, 3] = < 𝐶44 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < 𝐶33 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < 𝐶55 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < 𝐶45 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 >

+ < 𝐶45 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 > .

The nine components of the FN of the first-order nonlinear stiffness matrix K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

(𝑟, 𝑐)
can be derived in a similar way as

For 𝑐 = 1:
K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 1] = < u,𝑥 [𝑟 ]𝐶11 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑥 [𝑟 ]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 >

+ < u,𝑥 [𝑟 ]𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < u,𝑦 [𝑟 ]𝐶12 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶45 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ]𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

+ < u,𝑧 [𝑟 ]𝐶44 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 > + < u,𝑧 [𝑟 ]𝐶13 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >

+ < u,𝑧 [𝑟 ]𝐶45 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 > + < u,𝑧 [𝑟 ]𝐶36 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >,

For 𝑐 = 2:
K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 2] = < u,𝑥 [𝑟 ]𝐶12 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 >

+ < u,𝑥 [𝑟 ]𝐶45 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < u,𝑥 [𝑟 ]𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 >

+ < u,𝑥 [𝑟 ]𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 >

+ < u,𝑦 [𝑟 ]𝐶55 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < u,𝑦 [𝑟 ]𝐶22 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

+ < u,𝑦 [𝑟 ]𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < u,𝑧 [𝑟 ]𝐶23 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶55 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ]𝐶45 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 > + < u,𝑧 [𝑟 ]𝐶36 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >,

For 𝑐 = 3:
K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 3] = < u,𝑥 [𝑟 ]𝐶13 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 > + < u,𝑥 [𝑟 ]𝐶44 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >

+ < u,𝑥 [𝑟 ]𝐶45 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶36 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ]𝐶55 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶23 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ]𝐶45 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶36 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ]𝐶44 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ]𝐶33 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ]𝐶55 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶45 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < u,𝑧 [𝑟 ]𝐶45 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > .

The nine components of K𝑖 𝑗𝜏𝑠
𝑙𝑛𝑙

can be easily obtained from Eq. (??) as
(
K𝑖 𝑗𝜏𝑠
𝑙𝑛𝑙

)T
= K 𝑗𝑖𝑠𝜏

𝑛𝑙𝑙
/2.
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Finally, the nine components of the matrix K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑛𝑙

[𝑟, 𝑐] are provided in the following:

2 × K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑛𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑟 ] u,𝑥 [𝑐] 𝐶11 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ] u,𝑥 [𝑐]𝐶44 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑥 [𝑟 ] u,𝑥 [𝑐]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ] u,𝑥 [𝑐]𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < u,𝑥 [𝑟 ] u,𝑥 [𝑐]𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ] u,𝑦 [𝑐] 𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 >

+ < u,𝑦 [𝑟 ] u,𝑦 [𝑐]𝐶55 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < u,𝑦 [𝑟 ] u,𝑦 [𝑐]𝐶22 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

+ < u,𝑦 [𝑟 ] u,𝑦 [𝑐]𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ] u,𝑦 [𝑐]𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 >

+ < u,𝑧 [𝑟 ] u,𝑧 [𝑐] 𝐶44 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ] u,𝑧 [𝑐]𝐶33 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ] u,𝑧 [𝑐]𝐶55 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ] u,𝑧 [𝑐]𝐶45 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < u,𝑧 [𝑟 ] u,𝑧 [𝑐]𝐶45 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ] u,𝑦 [𝑐]𝐶12 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < u,𝑥 [𝑟 ] u,𝑦 [𝑐]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ] u,𝑦 [𝑐]𝐶45 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 >

+ < u,𝑥 [𝑟 ] u,𝑦 [𝑐]𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ] u,𝑦 [𝑐]𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 >

+ < u,𝑦 [𝑟 ] u,𝑥 [𝑐]𝐶12 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ] u,𝑥 [𝑐]𝐶66 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑦 >

+ < u,𝑦 [𝑟 ] u,𝑥 [𝑐]𝐶45 𝐹𝜏,𝑧 𝐹𝑠,𝑧 𝑁𝑖 𝑁 𝑗 > + < u,𝑦 [𝑟 ] u,𝑥 [𝑐]𝐶16 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑥 𝑁 𝑗,𝑥 >

+ < u,𝑦 [𝑟 ] u,𝑥 [𝑐]𝐶26 𝐹𝜏 𝐹𝑠 𝑁𝑖,𝑦 𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ] u,𝑧 [𝑐]𝐶13 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 >

+ < u,𝑥 [𝑟 ] u,𝑧 [𝑐]𝐶44 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ] u,𝑧 [𝑐]𝐶45 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 >

+ < u,𝑥 [𝑟 ] u,𝑧 [𝑐]𝐶36 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 > + < u,𝑧 [𝑟 ] u,𝑥 [𝑐]𝐶13 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >

+ < u,𝑧 [𝑟 ] u,𝑥 [𝑐]𝐶44 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 > + < u,𝑧 [𝑟 ] u,𝑥 [𝑐]𝐶45 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ] u,𝑥 [𝑐]𝐶36 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ] u,𝑧 [𝑐]𝐶23 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑦 [𝑟 ] u,𝑧 [𝑐]𝐶55 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ] u,𝑧 [𝑐]𝐶45 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >

+ < u,𝑦 [𝑟 ] u,𝑧 [𝑐]𝐶36 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 > + < u,𝑧 [𝑟 ] u,𝑦 [𝑐]𝐶55 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑦 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ] u,𝑦 [𝑐]𝐶23 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ] u,𝑦 [𝑐]𝐶45 𝐹𝜏 𝐹𝑠,𝑧 𝑁𝑖,𝑥 𝑁 𝑗 >

+ < u,𝑧 [𝑟 ] u,𝑦 [𝑐]𝐶36 𝐹𝜏,𝑧 𝐹𝑠 𝑁𝑖 𝑁 𝑗,𝑥 >
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A.3 Fundamental nuclei of 3D elements
In the particular case of 1D beam CUF elements described in ch. 3.2.1, fundamental nuclei
explicit expression of sub-matrices are carried out by adopting formal differential operator
matrices eq.(3.2.3) and eq.(3.2.4) in eq.(4.1.5). Since the derivation is independent on the
elasticity tensorC, expressions of fundamental nuclei are now derived for a general mate-
rial without particular hypotesis on the elasticity tensor, considering then the expression
eq.(3.1.6).

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[1, 1] = < 𝐶11𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶14𝑁𝑖𝑧𝑁 𝑗𝑥 > + < 𝐶66𝑁𝑖𝑦𝑁 𝑗𝑦 > +
+ < 𝐶46𝑁𝑖𝑧𝑁 𝑗𝑦 > + < 𝐶16𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶16𝑁𝑖𝑥𝑁 𝑗𝑦 > +
+ < 𝐶14𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶46𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶44𝑁𝑖𝑧𝑁 𝑗𝑧 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[1, 2] = < 𝐶16𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶12𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶15𝑁𝑖𝑧𝑁 𝑗𝑥 > +
+ < 𝐶66𝑁𝑖𝑥𝑁 𝑗𝑦 > + < 𝐶26𝑁𝑖𝑦𝑁 𝑗𝑦 > + < 𝐶56𝑁𝑖𝑧𝑁 𝑗𝑦 > +
+ < 𝐶46𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶24𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶45𝑁𝑖𝑧𝑁 𝑗𝑧 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[1, 3] = < 𝐶14𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶15𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶13𝑁𝑖𝑧𝑁 𝑗𝑥 > +
+ < 𝐶46𝑁𝑖𝑥𝑁 𝑗𝑦 > + < 𝐶56𝑁𝑖𝑦𝑁 𝑗𝑦 > + < 𝐶36𝑁𝑖𝑧𝑁 𝑗𝑦 > +
+ < 𝐶44𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶45𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶34𝑁𝑖𝑧𝑁 𝑗𝑧 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[2, 1] = < 𝐶16𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶66𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶46𝑁𝑖𝑧𝑁 𝑗𝑥 > +
+ < 𝐶12𝑁𝑖𝑥𝑁 𝑗𝑦 > + < 𝐶26𝑁𝑖𝑦𝑁 𝑗𝑦 > + < 𝐶24𝑁𝑖𝑧𝑁 𝑗𝑦 > +
+ < 𝐶15𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶56𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶45𝑁𝑖𝑧𝑁 𝑗𝑧 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[2, 2] = < 𝐶66𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶56𝑁𝑖𝑧𝑁 𝑗𝑥 > + < 𝐶22𝑁𝑖𝑦𝑁 𝑗𝑦 > +
+ < 𝐶25𝑁𝑖𝑧𝑁 𝑗𝑦 > + < 𝐶26𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶26𝑁𝑖𝑥𝑁 𝑗𝑦 > +
+ < 𝐶56𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶25𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶55𝑁𝑖𝑧𝑁 𝑗𝑧 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[2, 3] = < 𝐶46𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶56𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶36𝑁𝑖𝑧𝑁 𝑗𝑥 > +
+ < 𝐶24𝑁𝑖𝑥𝑁 𝑗𝑦 > + < 𝐶25𝑁𝑖𝑦𝑁 𝑗𝑦 > + < 𝐶23𝑁𝑖𝑧𝑁 𝑗𝑦 > +
+ < 𝐶45𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶55𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶35𝑁𝑖𝑧𝑁 𝑗𝑧 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[3, 1] = < 𝐶14𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶46𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶44𝑁𝑖𝑧𝑁 𝑗𝑥 > +
+ < 𝐶15𝑁𝑖𝑥𝑁 𝑗𝑦 > + < 𝐶56𝑁𝑖𝑦𝑁 𝑗𝑦 > + < 𝐶45𝑁𝑖𝑧𝑁 𝑗𝑦 > +
+ < 𝐶13𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶36𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶34𝑁𝑖𝑧𝑁 𝑗𝑧 >

K𝑖 𝑗𝜏𝑠
𝑙𝑙

[3, 2] = < 𝐶46𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶24𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶45𝑁𝑖𝑧𝑁 𝑗𝑥 > +
+ < 𝐶56𝑁𝑖𝑥𝑁 𝑗𝑦 > + < 𝐶25𝑁𝑖𝑦𝑁 𝑗𝑦 > + < 𝐶55𝑁𝑖𝑧𝑁 𝑗𝑦 > +
+ < 𝐶36𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶23𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶35𝑁𝑖𝑧𝑁 𝑗𝑧 >
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K𝑖 𝑗𝜏𝑠
𝑙𝑙

[3, 3] = < 𝐶44𝑁𝑖𝑥𝑁 𝑗𝑥 > + < 𝐶34𝑁𝑖𝑧𝑁 𝑗𝑥 > + < 𝐶55𝑁𝑖𝑦𝑁 𝑗𝑦 > +
+ < 𝐶35𝑁𝑖𝑧𝑁 𝑗𝑦 > + < 𝐶45𝑁𝑖𝑦𝑁 𝑗𝑥 > + < 𝐶45𝑁𝑖𝑥𝑁 𝑗𝑦 > +
+ < 𝐶34𝑁𝑖𝑥𝑁 𝑗𝑧 > + < 𝐶35𝑁𝑖𝑦𝑁 𝑗𝑧 > + < 𝐶33𝑁𝑖𝑧𝑁 𝑗𝑧 >

The first-order nonlinear contribution fundamental nucleus is obtained by considering the
volume integral of the following row-by-coloumn matrix product:

K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙

=

∫
𝛺

Bsj
nl
𝑇
C B𝜏 i

l 𝑑𝑉 (A.3.1)

The nine components of the 3 × 3 nonlinear stiffness matrix fundamental nucleus of
the are provided below in the form K𝑖 𝑗𝜏𝑠

𝑛𝑙𝑙
[𝑟, 𝑐], where 𝑟 is the row number (𝑟 = 1, 2, 3) and

𝑐 is the column number (𝑐 = 1, 2, 3): For 𝑐 = 1:

K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑟 ]𝐶11𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]𝐶16𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]𝐶14𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑟 ]𝐶16𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶66𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑟 ]𝐶14𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]𝐶44𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑟 ]𝐶16𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶66𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶46𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑟 ]𝐶12𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶24𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑟 ]𝐶15𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑟 ]𝐶14𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ]𝐶46𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ]𝐶44𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑟 ]𝐶15𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑟 ]𝐶13𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑧 [𝑟 ]𝐶36𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑧𝑁 𝑗,𝑧 >

For 𝑐 = 2:

K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑟 ]𝐶16𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]𝐶12𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]𝐶15𝑁𝑖,𝑧𝑁 𝑗,𝑥 >

+ < u,𝑥 [𝑟 ]𝐶66𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶26𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶56𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]𝐶24𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑟 ]𝐶66𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶22𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶25𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]𝐶25𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]𝐶55𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ]𝐶24𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑟 ]𝐶56𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶25𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶55𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑟 ]𝐶36𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑧 [𝑟 ]𝐶23𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑧𝑁 𝑗,𝑧 >
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For 𝑐 = 3:

K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑟 ]𝐶14𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]𝐶15𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]𝐶13𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]𝐶36𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑟 ]𝐶44𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]𝐶45𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]𝐶34𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]𝐶36𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑟 ]𝐶24𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶25𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]𝐶23𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑟 ]𝐶45𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]𝐶55𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]𝐶35𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑟 ]𝐶44𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶55𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑧 [𝑟 ]𝐶33𝑁𝑖,𝑧𝑁 𝑗,𝑧 >

The components of K𝑖 𝑗𝜏𝑠
𝑙𝑛𝑙

are not given since they are straightforword, since
(
K𝑖 𝑗𝜏𝑠
𝑙𝑛𝑙

)𝑇
=

1
2K𝑖 𝑗𝜏𝑠

𝑛𝑙𝑙
.

The second-order nonlinear contribution fundamental nucleus is obtained by considering
the volume integral of the following row-by-coloumn matrix product:

K𝜏𝑠𝑖 𝑗
𝑛𝑙𝑙

=

∫
𝛺

Bsj
nl
𝑇
C B𝜏 i

nl𝑑𝑉 (A.3.2)

The nine components of the 3 × 3 nonlinear stiffness matrix fundamental nucleus of the
are provided below in the form K𝑖 𝑗𝜏𝑠

𝑛𝑙𝑙
[𝑟, 𝑐], where 𝑟 is the row number (𝑟 = 1, 2, 3) and 𝑐 is

the column number (𝑐 = 1, 2, 3).
The outer-diagonal component are given by the general expression:

2 × K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑛𝑙

[𝑟, 𝑐] = < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶11𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶16𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶14𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶16𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶66𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶14𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑐]u,𝑥 [𝑟 ]𝐶44𝑁𝑖,𝑧𝑁 𝑗,𝑧 > + < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶16𝑁𝑖,𝑥𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶12𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶15𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶66𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶26𝑁𝑖,𝑦𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶56𝑁𝑖,𝑧𝑁 𝑗,𝑦 > + < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶24𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑦 [𝑐]u,𝑥 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶14𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶15𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶13𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶36𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶44𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶45𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑐]u,𝑥 [𝑟 ]𝐶34𝑁𝑖,𝑧𝑁 𝑗,𝑧 > + < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶16𝑁𝑖,𝑥𝑁 𝑗,𝑥 > +
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+ < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶66𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶46𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶12𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑦𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶24𝑁𝑖,𝑧𝑁 𝑗,𝑦 > + < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶15𝑁𝑖,𝑥𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑥 [𝑐]u,𝑦 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶66𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶22𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶25𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶25𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑐]u,𝑦 [𝑟 ]𝐶55𝑁𝑖,𝑧𝑁 𝑗,𝑧 > + < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶36𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶24𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶25𝑁𝑖,𝑦𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶23𝑁𝑖,𝑧𝑁 𝑗,𝑦 > + < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶45𝑁𝑖,𝑥𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶55𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑧 [𝑐]u,𝑦 [𝑟 ]𝐶35𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶14𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶46𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶44𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶15𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶13𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶36𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑐]u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑧𝑁 𝑗,𝑧 > + < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶24𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶56𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶25𝑁𝑖,𝑦𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶55𝑁𝑖,𝑧𝑁 𝑗,𝑦 > + < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶36𝑁𝑖,𝑥𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶23𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑦 [𝑐]u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶44𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶55𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑐]u,𝑧 [𝑟 ]𝐶33𝑁𝑖,𝑧𝑁 𝑗,𝑧 >

Instead, the diagonal component are given by the general expression:

2 × K𝑖 𝑗𝜏𝑠
𝑛𝑙𝑛𝑙

[𝑟, 𝑟 ] = < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶11𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶16𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶14𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶16𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶66𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶14𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶46𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑟 ]u,𝑥 [𝑟 ]𝐶44𝑁𝑖,𝑧𝑁 𝑗,𝑧 > + < 2u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶16𝑁𝑖,𝑥𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶12𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶66𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
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+ < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶15𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶46𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶12𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶66𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < 2u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶24𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑧𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶15𝑁𝑖,𝑥𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶24𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < 2u,𝑥 [𝑟 ]u,𝑦 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶66𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶26𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶22𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶25𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶56𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶25𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑟 ]u,𝑦 [𝑟 ]𝐶55𝑁𝑖,𝑧𝑁 𝑗,𝑧 > + < 2u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶14𝑁𝑖,𝑥𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶15𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶46𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶13𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶44𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶15𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < 2u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶36𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑦 > + < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶13𝑁𝑖,𝑥𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶44𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶36𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < 2u,𝑥 [𝑟 ]u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑧𝑁 𝑗,𝑧 > +
+ < 2u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶46𝑁𝑖,𝑥𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶24𝑁𝑖,𝑦𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶56𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶36𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑧𝑁 𝑗,𝑥 > + < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶24𝑁𝑖,𝑥𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶56𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < 2u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶25𝑁𝑖,𝑦𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶23𝑁𝑖,𝑧𝑁 𝑗,𝑦 > + < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶55𝑁𝑖,𝑧𝑁 𝑗,𝑦 > +
+ < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶36𝑁𝑖,𝑥𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑥𝑁 𝑗,𝑧 > +
+ < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶23𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶55𝑁𝑖,𝑦𝑁 𝑗,𝑧 > +
+ < 2u,𝑦 [𝑟 ]u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑧𝑁 𝑗,𝑧 > + < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶44𝑁𝑖,𝑥𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑦𝑁 𝑗,𝑥 > + < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑧𝑁 𝑗,𝑥 > +
+ < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶45𝑁𝑖,𝑥𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶55𝑁𝑖,𝑦𝑁 𝑗,𝑦 > +
+ < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑧𝑁 𝑗,𝑦 > + < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶34𝑁𝑖,𝑥𝑁 𝑗,𝑧 > +
+ < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶35𝑁𝑖,𝑦𝑁 𝑗,𝑧 > + < u,𝑧 [𝑟 ]u,𝑧 [𝑟 ]𝐶33𝑁𝑖,𝑧𝑁 𝑗,𝑧 >

By these expression, the fundamental nuclei of the sub-matrices of tangent matrix can
be obtained immediately, remembering the relations between secant and tangent stiffnes
matrix nuclei eq.(4.1.11).
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Appendix B
Numerical integration by Gauss-Legendre
quadrature

In the evaluation of the fundamental nuclei of nonlinear stiffness matrices, integral have to
be computed. Under the isoparametric formulation adopted in the present thesis of the 3D
solid finite elements, integration by Gauss-Legendre quadrature technique is performed.

In general, integrals of shape functions, derivative of shape functions and displacement
derivatives over the domain has to be computed over the physical considered domain. In
the specific case of the present formulation, isoparametric formulation is adopted: the
same formulation is used either for the displacement field expression either for geomet-
rical quantities. One of the most powerful aspect of the adoption of the Gauss-Legendre
quadrature is the computation of integrals independently on the geometry by a finite sum.

Gauss-Legendre quadrature is performed in the natural reference frame of the element:
the physical reference frame, by the Jacobian, can be manipulated starting from natural
reference frame of coordinates 𝜉, 𝜂, 𝜈 , as already shown in the description of Q4 2D and
H8 3D finite element.

In the most general case, each natural variable is defined over the real interval [−1, 1],
and the generic volume integral in the natural reference frame is obtained by:∫

𝛺𝑁

𝑓 (𝜉, 𝜂, 𝜈)𝑑𝜉𝑑𝜂𝑑𝜈 =

∫ 1

−1

∫ 1

−1

∫ 1

−1
𝑓 (𝜉, 𝜂, 𝜈)𝑑𝜉𝑑𝜂𝑑𝜈 ≈

𝑁𝐺𝑃∑︁
𝑙=1

𝑁𝐺𝑃∑︁
𝑚=1

𝑁𝐺𝑃∑︁
𝑘=1

𝑓 (𝜉𝑙 , 𝜂𝑚, 𝜈𝑘)𝑤𝑙𝑤𝑚𝑤𝑘

(B.0.1)
The computation of the whole integral requires only the computation of the function in
specified points in the natural reference frame, the so-called Gauss points, which coordi-
nates are known, multiplied by the quadrature weight, standardized value since they are
defined in the natural reference frame. The isoparametric formulation allow rapidly the
transformation of integrals from the physical to natural reference frame thanks to the Ja-
cobian.
Starting from the fundamental theorem of change of variables in integral computation, an
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integral in the physical reference frame can be written as:∫
𝛺

𝑓 (𝑥,𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 =
∫
𝛺𝑁

𝑓 (𝜉, 𝜂, 𝜈) |J(𝜉, 𝜂, 𝜈) |𝑑𝜉𝑑𝜂𝑑𝜈 (B.0.2)

Applying the above definition of Gauss-Legendre quadrature, the integral will be:∫
𝛺

𝑓 (𝑥,𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 =
𝑁𝐺𝑃∑︁
𝑙=1

𝑁𝐺𝑃∑︁
𝑚=1

𝑁𝐺𝑃∑︁
𝑘=1

𝑓 (𝜉𝑙 , 𝜂𝑚, 𝜈𝑘) |J(𝜉𝑙 , 𝜂𝑚, 𝜈𝑚) |𝑤𝑙𝑤𝑚𝑤𝑘 (B.0.3)

The accuracy of the estimated integrals is strictly dependent on the number of Gauss
points used. Gauss-Legendre quadrature is also adopted to prevent shear locking phe-
nomena during the computation of the stiffness matrices: by reducing the number of
Gauss-points, the overestimation due to locking of the stiffness matrix can be mitigate
by an underestimation of integrals by reducing the number of Gauss-points, that has to
be correctly located to computed correct quantities.
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Appendix C
Strain-energy functions adopted

According to first-invariant hypereleasticity, the general expression of the strain-energy
function is given by the volumetric part and the isochoric part depending only on the first
invariant of the volumetric right Cauchy-Green strain tensor, namely:

𝛹 (C) =𝛹𝑣𝑜𝑙 (𝐽 ) +𝛹𝑖𝑠𝑜 (C̄) =𝛹𝑣𝑜𝑙 (𝐼3) + �̄� (𝐼1) (C.0.1)

In the actual implementation of hyperelastic finite elements, the volumetric strain energy
function acts like a penalization constraint on incompressibility, so:

𝛹𝑣𝑜𝑙 (𝐽 ) =
1
𝐷1

(𝐽 − 1)2 =
𝑘

2 (𝐽 − 1)2 (C.0.2)

where the incompressibility parameter 𝐷1 = 2/𝑘 is defined from the bulk modulus 𝑘 .
Instead, in the case of isochoric part, there are in literature different models adopted de-
pending on the specific application. In the present work, the followingmodels are adopted:

• Neo-Hookean model: defined starting from the infinitesimal shear modulus 𝜇

�̄� (𝐼1) =
𝜇

2 (𝐼1 − 3) (C.0.3)

• Gent model: two model parameter base of 𝐽𝑚 , the limit value of (𝐼1 − 3)

�̄� (𝐼1) = −𝜇𝐽𝑚2 log
(
1 − 𝐼1 − 3

𝐽𝑚

)
(C.0.4)

• Exp-Ln model: derived by Khajesaeid et al.[CITA], where 𝑎, 𝑏 are tuning parameter

�̄� (𝐼1) =
𝜇

2

[
1
𝑎
𝑒𝑥𝑝 (𝑎(𝐼1 − 3)) + 𝑏 (𝐼1 − 2) (1 − log(𝐼1 − 2)) − 1

𝑎
− 𝑏

]
(C.0.5)

• Fung-Demiray model: typically used for biological applications, where 𝛽 = 𝜇 and 𝛼
is a stiffening parameter

�̄� (𝐼1) =
𝛽

2𝛼 [exp(𝛼 (𝐼1 − 3)) − 1] (C.0.6)
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