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Scope
Within this talk, the hierarchical one-dimensional finite element mod-
elling based on Carrera’s unified formulation is used to investigate the
thermal-stress in isotropic and composite three-dimensional
beams.
The intention behind this approach is two-fold:

I reduce the computational cost (when compared to full three-dimensional
solutions).

I ensure accurate three-dimensional results via a one-dimensional
approach.

Outline
The presentation is organised as follows:

I Theoretical background

I Numerical results

I Conclusions
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Beam Structures and Modelling
A beam is a structure whose axial extension (l) is predominant if com-
pared to any other dimension orthogonal to it.
The cross-section (Ω) is identified by intersecting the beam with planes
that are orthogonal to its axis.
A Cartesian reference system is adopted: y- and z-axis are two orthog-
onal directions laying on Ω. The x coordinate is coincident to the axis
of the beam.

One-dimensional modelling: the beam is seen as a line that con-
nects the centroids of each cross-section.

Page 3/44 – AIDAA 2015 19 November 2015, Turin, Italy



Classical Theories

§ Euler-Bernoulli’s theory:

ux = ux1 − uy1,xy − uz1,xz
uy = uy1

uz = uz1

I Cross-section rigid on its plane.

I No shear stress (only axial stress).

§ Timoshenko’s theory:

ux = ux1 + ux2y + ux3z
uy = uy1

uz = uz1

I Cross-section rigid on its plane.

I Shear stress (corrective factor).
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One-dimensional Hierarchical Approximation
Several displacement-based theories can be formulated on the basis of
the following generic kinematic field:

u (x, y, z) = Fτ (y, z)uτ (x) with τ = 1, 2, . . . , Nu

§ Nu stands for the number of unknowns over the cross-section. It
depends on the approximation order N that is a free parameter of the
formulation.

§ The compact expression is based on Einstein’s notation: subscript
τ indicates summation. Thanks to this notation, problem’s governing
differential equations and boundary conditions can be derived in terms
of a single ‘fundamental nucleo’.

§ The complexity related to higher than classical approximation terms
is tackled and the theoretical formulation is valid for the generic ap-
proximation order and approximating functions Fτ (y, z).
Within this work, Fτ (y, z) are assumed to be Mac Laurin’s polynomi-
als.
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§ According to the previous choice of polynomial functions, the generic,
N -order displacement field is:

ux = ux1 + ux2y + ux3z + · · ·+ u
x

(
N2+N+2

)
2

yN + · · ·+ u
x

(N+1)(N+2)
2

zN

uy = uy1 + uy2y + uy3z + · · ·+ u
y

(
N2+N+2

)
2

yN + · · ·+ u
y

(N+1)(N+2)
2

zN

uz = uz1 + uz2y + uz3z + · · ·+ u
z

(
N2+N+2

)
2

yN + · · ·+ u
z

(N+1)(N+2)
2

zN

§ Nu and Fτ as functions of N can be obtained via Pascal’s triangle as
shown in the following Table:

N Nu Fτ

0 1 F1 = 1
1 3 F2 = y F3 = z
2 6 F4 = y2 F5 = yz F6 = z2

. . . . . . . . .

N
(N+1)(N+2)

2
F (

N2+N+2
)

2

= yN F (
N2+N+4

)
2

= yN−1z . . .

FN(N+3)
2

= yzN−1 F (N+1)(N+2)
2

= zN
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Finite Element Approximation
The part of the displacement vector that depends upon the axial coor-
dinated (uτ ) is approximated as follows:

uτ (x) = Ni (x)q
e
τi with τ = 1, 2, . . . , N and i = 1, 2, . . . , Nn

§ qτi are the nodal displacements unknowns typical of a finite element
approximation.

§ Ni (x) are the corresponding shape functions, which approximate the
displacements along the beam axis in a C0 sense up to an order Nn −
1 being Nn the number of nodes per element. This latter is a free
parameter of the theoretical formulation.
Linear (B2), quadratic (B3) and cubic (B4) elements along the beam
axis are considered.
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Geometric Equations
In the case of small displacements with respect to a characteristic di-
mension of Ω, linear relations between strain and displacement compo-
nents hold:

εn = Dnpu+Dnxu
εp = Dpu

Strain components have been grouped into vectors εn that lay on the
cross-section and εp laying on planes orthogonal to Ω.

Dnp, Dnx, and Dp are the following differential matrix operators:

Dnp =


0 0 0

∂

∂y
0 0

∂

∂z
0 0

 Dnx = I
∂

∂x
Dp =


0

∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y


I is the unit matrix.
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Constitutive Relations
In the case of thermo-mechanical problems, Hooke’s law reads:

σ = C̃εe = C̃ (εt − εϑ) = C̃ (εt − α̃T ) = C̃εt − λ̃T

where subscripts ‘e’ and ‘ϑ’ refer to the elastic and the thermal contri-
butions, respectively.

I C̃ is the material elastic stiffness,

I α̃ the vector of the thermal expansion coefficients,

I λ̃ their product and

I T stands for temperature.

According to the stress and strain vectors splitting, the previous equa-
tion becomes:

σp = C̃ppεtp + C̃pnεtn − λ̃pT

σn = C̃npεtp + C̃nnεtn − λ̃nT
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Matrices C̃pp, C̃pn, C̃np and C̃nn are:

C̃pp =

 C̃22 C̃23 0

C̃23 C̃33 0

0 0 C̃44

 C̃pn = C̃T
np =

 C̃12 C̃26 0

C̃13 C̃36 0

0 0 C̃45



C̃nn =

 C̃11 C̃16 0

C̃16 C̃66 0

0 0 C̃55


The coefficients λ̃n and λ̃p:

λ̃
T

n =
{

λ̃1 λ̃6 0
}

λ̃
T

p =
{

λ̃2 λ̃3 0
}

are related to the thermal expansion coefficients α̃n and α̃p:

α̃T
n =

{
α̃1 0 0

}
α̃T

p =
{

α̃2 α̃3 0
}

through the following equations:

λ̃p = C̃ppα̃p + C̃pnα̃n

λ̃n = C̃npα̃p + C̃nnα̃n
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Principle of Virtual Displacements
The stiffness matrices are obtained in a nuclear form via the weak form
of the Principle of Virtual Displacements:

δL e
int = 0

where:

I δ represents a virtual variation and

I L e
int is the strain energy.

Stiffness Matrix

δL e
int =

∫
l

∫
Ω

(
δεTnσn + δεTp σp

)
dΩdx

By substitution of the geometrical relations, the material constitutive
equations, the unified hierarchical approximation of the displacements
it becomes:
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Principle of Virtual Displacements

δL e
int =

δqT
τi

∫
l

∫
Ω

{
(DnxNi)

T Fτ

[
C̃np (DpFs)Nj + C̃nn (DnpFs)Nj + C̃nnFs (DnxNj)

]
+(DnpFτ )

T Ni

[
C̃np (DpFs)Nj + C̃nn (DnpFs)Nj + C̃nnFs (DnxNj)

]
+(DpFτ )

T Ni

[
C̃pp (DpFs)Nj + C̃pn (DnpFs)Nj + C̃pnFs (DnxNj)

]}
dΩ dx qsj

In a compact vectorial form:

δLint = δqT
τiK

τsijqsj

§ The components of the element stiffness matrix Kτsij ∈ R3×3 funda-
mental nucleo are:

Kτsij
xx = Iij

(
J66
τ,ys,y + J55

τ,zs,z

)
+ Iij,xJ

16
τ,ys + Ii,xjJ

16
τs,y + Ii,xj,xJ

11
τs

Kτsij
yy = Iij

(
J22
τ,ys,y + J44

τ,zs,z

)
+ Iij,xJ

26
τ,ys + Ii,xjJ

26
τs,y + Ii,xj,xJ

66
τs

Kτsij
zz = Iij

(
J44
τ,ys,y + J33

τ,zs,z

)
+ Iij,xJ

45
τ,ys + Ii,xjJ

45
τs,y + Ii,xj,xJ

55
τs
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Kτsij
xy = Iij

(
J26
τ,ys,y + J45

τ,zs,z

)
+ Iij,xJ

66
τ,ys + Ii,xjJ

12
τs,y + Ii,xj,xJ

16
τs

Kτsij
yx = Iij

(
J26
τ,ys,y + J45

τ,zs,z

)
+ Iij,xJ

12
τ,ys + Ii,xjJ

66
τs,y + Ii,xj,xJ

16
τs

Kτsij
xz = Iij

(
J36
τ,ys,z + J45

τ,zs,y

)
+ Iij,xJ

55
τ,zs + Ii,xjJ

13
τs,z + Ii,xj,xJ

15
τs

Kτsij
zx = Iij

(
J45
τ,ys,z + J36

τ,zs,y

)
+ Iij,xJ

13
τ,zs + Ii,xjJ

55
τs,z

Kτsij
yz = Iij

(
J23
τ,ys,z + J44

τ,zs,y

)
+ Iij,xJ

45
τ,zs + Ii,xjJ

36
τs,z

Kτsij
zy = Iij

(
J44
τ,ys,z + J23

τ,zs,y

)
+ Iij,xJ

36
τ,zs + Ii,xjJ

45
τs,z

where:

Jgh
τ(,η)s(,ξ)

=

∫
Ω

C̃ghFτ(,η)
Fs(,ξ) dΩ

Weighted sum (in the continuum) of each el-

emental cross-section area where the weight

functions account for the spatial distribution

of geometry and material.

Ii(,x)j(,x)
=

∫
l

Ni(,x)
Nj(,x)

dx

In order to avoid shear locking, reduced in-

tegration is used for the term Iij in Kτsij
exx

since it is related to the shear deformations

γxy and γxz .
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Thermo-mechanical coupling vector
The components of the thermo-mechanical coupling vector K

sj

uθ are:

K
sj

uθx = Iθnj,xJ
1
θΩs + IθnjJ

6
θΩs,y

K
sj

uθy = IθnjJ
2
θΩs,y

+ Iθnj,xJ
6
θΩs

K
sj

uθz = IθnjJ
3
θΩs,z

The generic term J
g

τ(,φ)
is:

J
g

θΩs(,φ)
=

∫
Ω

Fs(,φ)
λ

g
ΘΩ dΩ.

whereas the term Iθnj(,x)
stands for:

Iθnj(,x)
=

∫
l

ΘnNj(,x)
dx.

The temperature has been written as:

T (x, y, z) = Θn (x)ΘΩ (y, z)
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Fourier’s Heat Conduction Equation
The beam models are derived considering the temperature as an exter-
nal loading resulting from the internal thermal stresses. This requires
the temperature profile to be known over the whole beam domain.
Fourier’s heat conduction equation for a multi-layered beam:

∂

∂x

(
K̃k

1

∂T k

∂x

)
+

∂

∂y

(
K̃k

2

∂T k

∂y

)
+

∂

∂z

(
K̃k

3

∂T k

∂z

)
= 0

is solved via a Navier-type solution by ideally dividing the cross-section
Ω into NΩk non-overlapping sub-domains (or layers) along the through-
the-thickness direction z:

Ω =
N

Ωk

∪
k=1

Ωk

For a kth layer, the Fourier differential equation becomes:

K̃k
1

∂2T k

∂x2
+ K̃k

2

∂2T k

∂y2
+ K̃k

3

∂2T k

∂z2
= 0
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where K̃k
i are the thermal conductivity coefficients. In order to obtain

a closed form analytical solution, it is further assumed that the tem-
perature does not depend upon the through-the-width co-ordinate y.
The continuity of the temperature and the through-the-thickness heat
flux qz hold at each interface between two consecutive sub-domains:

T k
> = T k+1

⊥

qkz> = qk+1
z⊥ with qkz = K̃k

3

∂T k

∂z

Subscripts ‘>’ and ‘⊥’ stand for sub-domain’s top and bottom, respec-
tively. The following temperatures are also imposed at cross-section
through-the-thickness top and bottom:

TN
Ωk = T

N
Ωk

> sin (αx)

T 1 = T 1
⊥ sin (αx)

where T
N

Ωk

> and T 1
⊥ are maximal amplitudes and α is:

α =
mπ

l

with m ∈ N+ representing the half-wave number along the beam axis.
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The following temperature field:

T k (x, z) = Θk
Ω (z) sinΘn (x) = T̄ kes

kz sin (αx)

represents a solution of the considered heat conduction problem. T̄ k is
an unknown constant obtained by imposing the boundary conditions,
whereas s is:

sk1,2 = ±

√
Kk

1

Kk
3

α

Θk
Ω (z), therefore, becomes:

Θk
Ω (z) = T̄ k

1 e
s1z + T̄ k

2 e
s2z

or, equivalently:

Θk
Ω (z) = Ck

1 cosh

(√
Kk

1

Kk
3

z

)
+ Ck

2 sinh

(√
Kk

1

Kk
3

z

)
For a cross-section division into NΩk sub-domains, 2 · NΩk unknowns
Ck

j are present. The problem is mathematically well posed since the
boundary conditions yield a linear algebraic system of 2 ·NΩk equations
in Ck

j .
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Numerical Results

I The beam support is [0, l]× [−a/2, a/2]× [−b/2, b/2]. Square
cross-section with a = b = 1 m are considered. The length-to-side
ratio l/b is equal to 100 and 10.

I The thermal boundary conditions are: T> = 400 K and
T⊥ = 300 K. A half-wave is considered for the temperature
variation along the beam axis.

I Simply supported beams are considered for which a closed-form
Navier-type analytical solution is present.

I Three-dimensional FEM models are also developed within the
commercial code ANSYS.

I The degrees of freedom of the three-dimensional FEM
mechanical models are about 8 · 105. The number of DOFs for
the most expensive one-dimensional model (N = 14 with 121
nodes) are about 4 · 104.
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Isotropic Beam
Isotropic beams made of an aluminium alloy are first considered. The
mechanical properties are: E = 72 GPa, ν = 0.3, K = 121 W/mK,
α = 23 · 10−6 K−1.

Unless differently stated, the following displacements and stresses con-
sidered:

ũx = ux

(
0,−a

2
,
b

2

)
ũy = uy

(
l

2
,
a

2
,
b

2

)
ũz = uz

(
l

2
, 0,

b

2

)
σ̃xx = σxx

(
l

2
,
a

2
,
b

2

)
σ̃xz = σxz

(
0,−a

2
, 0
)

σ̃xy = σxy

(
0,

a

4
,
b

2

)
σ̃zz = σzz

(
l

2
, 0, 0

)
σ̃yy = σyy

(
l

2
, 0,

b

2

)
σ̃yz = σyz

(
l

2
,
a

4
,
b

4

)
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Problem Convergence
Strain energy relative error ∆E versus the normalised distance δii+1/l
between two consecutive nodes for linear element, l/a = 10 and N =
2.

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0.001  0.01  0.1  1

∆
E

δ
ii+1

/l

B2

B3

B4

The error is computed by comparing the strain energy to a closed form
Navier-type solution, which in the framework of a theory is an exact solution.
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Shear Locking
Transverse displacement ratio ûz = uz (l/2, 0, 0) /u

Nav
z (l/2, 0, 0) versus

l/a via linear elements, N = 2 and 5.

 0.1

 1

 10  100  1000

û
z

l/b

Selective integration
Full integration

N = 2
N = 5
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Displacement components [m] for a slender and short
isotropic beams

−10 × ũx 103 × ũy ũz

FEM 3Da 2.9287 4.6118 2.3347

FEM 3Db 2.9287 4.5977 2.3347
B2 B3, B4 B2 B3 B4 B2 B3, B4

N ≥ 3 2.9286 2.9287 4.6003 4.5997 4.5999 2.3345 2.3347
N = 2 2.9286 2.9287 4.6000 4.5994 4.5996 2.3345 2.3347

a: Elements’ number 40 × 40 × 40. b: Elements’ number 20 × 20 × 20.

−102 × ũx 103 × ũy 102 × ũz

FEM 3Da 2.9511 4.5903 2.7603

FEM 3Db 2.9511 4.5903 2.7603
B2 B3, B4 B2 B3 B4 B2 B3, B4

N = 9, 10 2.9510 2.9511 4.5906 4.5902 4.5903 2.7601 2.7603
N = 7, 8 2.9511 2.9511 4.5906 4.5902 4.5902 2.7601 2.7603
N = 6 2.9510 2.9511 4.5901 4.5897 4.5897 2.7601 2.7603
N = 5 2.9510 2.9511 4.5899 4.5895 4.5895 2.7601 2.7603
N = 4 2.9515 2.9515 4.5893 4.5889 4.5889 2.7605 2.7607
N = 3 2.9515 2.9515 4.5892 4.5888 4.5888 2.7606 2.7607
N = 2 2.9492 2.9493 4.5645 4.5641 4.5641 2.7574 2.7575

a: Elements’ number 40 × 40 × 40. b: Elements’ number 20 × 20 × 20.
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Stress components [MPa] for a short isotropic beam

σ̃xx −σ̃xz σ̃xy

FEM 3Da 5.1254 3.1353 2.1063

FEM 3Db 5.1330 3.1338 2.1106
B2 B3 B4 B2 B3 B4 B2 B3 B4

N = 14 5.0794 5.2868 5.1369 3.1711 3.0906 3.1363 2.0971 2.1047 2.1002
N = 10 5.1094 5.3131 5.1670 3.1532 3.0727 3.1184 2.1189 2.1266 2.1220
N = 9 5.1111 5.3149 5.1686 3.1532 3.0727 3.1184 2.1204 2.1280 2.1235
N = 7 5.1431 5.3505 5.2007 3.1631 3.0826 3.1283 2.1435 2.1512 2.1467
N = 5 5.0699 5.2926 5.1275 3.3697 3.2892 3.3349 1.9983 2.0060 2.0014
N = 4 4.2994 4.5448 4.3570 2.7925 2.7120 2.7578 1.0515 1.0593 1.0548
N = 3 4.2549 4.5027 4.3125 2.7926 2.7121 2.7578 1.0096 1.0174 1.0128
N = 2 0.5261 0.7870 0.5837 2.5234 2.4431 2.4888 2.5845 2.5921 2.5874

a: Elements’ number 40 × 40 × 40. b: Elements’ number 20 × 20 × 20.

10 × σ̃zz −σ̃yy 10 × σ̃yz

FEM 3Da 7.6369 2.6898 5.4339

FEM 3Db 7.6828 2.6836 5.4878
B2 B3 B4 B2 B3 B4 B2 B3 B4

N = 14 8.0610 8.3715 7.6197 2.6398 2.6412 2.6909 5.4214 5.4212 5.4213
N = 10 8.0524 8.3609 7.6112 2.6529 2.6533 2.7040 5.4237 5.4234 5.4237
N = 9 8.0526 8.3610 7.6113 2.6569 2.6569 2.7080 5.4247 5.4244 5.4246
N = 7 8.0812 8.4009 7.6399 2.6541 2.6496 2.7052 5.4001 5.4003 5.4000
N = 5 8.1837 8.4681 7.7424 2.3692 2.3567 2.4202 4.6323 4.6315 4.6322
N = 4 7.4561 7.8019 7.0148 1.7941 1.7644 1.8451 2.9494 2.9498 2.9493
N = 3 7.4333 7.7792 6.9920 1.9537 1.9231 2.0048 2.5478 2.5479 2.5478
N = 2 32.196 32.486 31.755 11.028 10.994 11.079 0.2602 0.2599 0.2601

a: Elements’ number 40 × 40 × 40. b: Elements’ number 20 × 20 × 20.
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Displacement cross-section variation
Axial displacement ux [m] over the cross-section at x/l = 0, B4 for
l/b = 10, isotropic beam.

XY

Z

-.029511

-.028661

-.027811

-.026961

-.026112

-.025262

-.024412

-.023562

-.022712

-.021862

(a) FEM 3D-R

XY

Z

-.029511

-.028661

-.027811

-.026961

-.026111

-.025262

-.024412

-.023562

-.022712

-.021862

(b) N = 2
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Displacement cross-section variation
Through-the-width displacement uy [m] over the cross-section at x =
l/2, B4 for l/b = 10, isotropic beam.

XY

Z

-.00459

-.00357

-.00255

-.00153

-.510E-03

.510E-03

.00153

.00255

.00357

.00459

(a) FEM 3D-R

XY

Z

-.00459

-.00357

-.00255

-.00153

-.510E-03

.510E-03

.00153

.00255

.00357

.00459

(b) N = 2
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Displacement cross-section variation
Through-the-thickness displacement uz [m] over the cross-section at
x = l/2, B4 for l/b = 10, isotropic beam.

XY

Z

.019305

.020227

.021149

.022071

.022993

.023915

.024837

.025759
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(a) FEM 3D-R

XY

Z

.019305

.020227

.021149

.022071

.022993

.023915

.024837

.025759

.026681

.027603

(b) N = 2
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Stress cross-section variation
Axial stress σxx [Pa] over the cross-section at x = l/2, B4 for l/b = 10,
isotropic beam.

XY

Z

-.321E+07

-.228E+07

-.134E+07

-406667
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(a) FEM 3D-R

XY
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-.228E+07

-.134E+07
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.520E+07

(b) N = 7
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Stress cross-section variation
Shear stress σxz [Pa] over the cross-section at x/l = 0, B4 for l/b = 10,
isotropic beam.

XY

Z
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Stress cross-section variation
Shear stress σxy [Pa] over the cross-section at x/l = 0 , B4 for l/b = 10,
isotropic beam.
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(a) FEM 3D-R
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Stress cross-section variation
Through-the-thickness normal stress σzz [Pa] over the cross-section at
x = l/2, B4 for l/b = 10, isotropic beam.
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Stress cross-section variation
Through-the-width normal stress σyy [Pa] over the cross-section, B4 for
l/b = 10, isotropic beam.
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(b) N = 13
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Stress cross-section variation
Shear stress σyz [Pa] over the cross-section at x = l/2, B4 for l/b = 10,
isotropic beam.
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Laminated Beam
A [0/90] stacking sequences is investigated.

The material elastic and thermal properties are: EL = 172.72 GPa,
ET = 6.91 GPa, GLT = 3.45 GPa, GTT = 1.38 GPa, νLT = νTT =
0.25, KL = 36.42 W/mK, KT = 0.96 W/mK, αL = 0.57 ·10−6K−1 and
αT = 35.60 · 10−6K−1.
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Displacement components [m] for a short laminated [0/90]
beam

103 × ũx 103 × ũy −102 × ũz

FEM 3D-Ra 2.9118 7.2636 5.9587

FEM 3D-Cb 2.9118 7.2633 5.9589
B2 B3 B4 B2 B3 B4 B2 B3 B4

N = 14 2.9191 2.9192 2.9192 7.2813 7.2809 7.2809 5.9734 5.9738 5.9738
N = 11 2.9207 2.9208 2.9208 7.2554 7.2550 7.2550 5.9781 5.9785 5.9785
N = 10 2.9213 2.9214 2.9214 7.3252 7.3248 7.3248 5.9820 5.9824 5.9824
N = 9 2.9230 2.9230 2.9230 7.2652 7.2648 7.2648 5.9841 5.9845 5.9845
N = 8 2.9275 2.9275 2.9275 7.1785 7.1781 7.1781 5.9855 5.9859 5.9859
N = 7 2.9203 2.9204 2.9204 7.2285 7.2281 7.2281 5.9859 5.9863 5.9863
N = 6 2.9155 2.9156 2.9156 7.3180 7.3176 7.3176 5.9989 5.9993 5.9993
N = 5 2.9250 2.9251 2.9251 7.3445 7.3441 7.3441 6.0036 6.0040 6.0040
N = 4 2.8792 2.8793 2.8793 8.2410 8.2406 8.2406 5.9276 5.9280 5.9280
N = 3 2.8122 2.8123 2.8123 8.0597 8.0592 8.0592 5.8456 5.8460 5.8460
N = 2 2.7856 2.7857 2.7857 2.8734 2.8732 2.8732 5.7710 5.7714 5.7714

a: Elements’ number 40 × 40 × 40. b: Elements’ number 20 × 20 × 20.
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Stress components σ̃xx, σ̃xz, σ̃xy [MPa] for a short lami-
nated [0/90] beam

−σ̃xx σ̃xz σ̃xy

FEM 3D-Ra 197.44 2.7923 2.1428

FEM 3D-Cb 197.69 2.7941 2.1479
B2 B3 B4 B2 B3 B4 B2 B3 B4

N = 14 198.26 198.32 198.28 2.7571 2.7447 2.7516 2.1430 2.1443 2.1434
N = 11 198.23 198.30 198.26 2.5753 2.5630 2.5698 2.1658 2.1671 2.1662
N = 10 197.94 198.00 197.97 2.5452 2.5329 2.5398 2.1742 2.1755 2.1746
N = 9 198.89 198.95 198.91 2.8818 2.8694 2.8763 2.1754 2.1767 2.1758
N = 8 199.88 199.95 199.91 2.8468 2.8345 2.8414 2.2105 2.2118 2.2109
N = 7 198.81 198.87 198.84 3.3072 3.2948 3.3017 2.2748 2.2761 2.2752
N = 6 194.03 194.09 194.05 3.5028 3.4903 3.4972 2.3185 2.3198 2.3189
N = 5 191.96 192.02 191.99 3.3370 3.3245 3.3314 1.9073 1.9086 1.9077
N = 4 196.96 197.02 196.99 3.9790 3.9665 3.9734 1.7738 1.7753 1.7743
N = 3 196.77 196.83 196.80 1.7305 1.7184 1.7252 1.7871 1.7886 1.7877
N = 2 212.50 212.56 212.52 2.1559 2.1439 2.1506 0.9702 0.9707 0.9704

a: Elements’ number 40 × 40 × 40. b: Elements’ number 20 × 20 × 20.
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Displacement cross-section variation
Axial displacement ux [m] over the cross-section at x/l = 0 , B4 for
l/b = 10, laminated [0, 90] beam.
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Displacement cross-section variation
Through-the-width displacement uy [m] over the cross-section at x =
l/2, B4 for l/b = 10, laminated [0, 90] beam.
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Displacement cross-section variation
Through-the-thickness displacement uz [m] over the cross-section at
x = l/2, B4 for l/b = 10, laminated [0, 90] beam.

XY

Z

-.072442

-.071014

-.069585

-.068157

-.066729

-.0653

-.063872

-.062444

-.061015

-.059587

(a) FEM 3D-R

XY

Z

-.072442

-.071014

-.069585

-.068157

-.066729

-.0653

-.063872

-.062444

-.061015

-.059587

(b) N = 14

Page 38/44 – AIDAA 2015 19 November 2015, Turin, Italy



Stress cross-section variation
Axial stress σxx [Pa] over the cross-section at x = l/2, B4 for l/b = 10,
laminated [0, 90] beam.
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Stress cross-section variation
Shear stress σxz [Pa] over the cross-section at x/l = 0, B4 for l/b = 10,
laminated [0, 90] beam.
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Stress cross-section variation
Shear stress σxy [Pa] over the cross-section at x/l = 0, B4 for l/b = 10,
laminated [0, 90] beam.
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Stress cross-section variation
Through-the-thickness normal stress σzz [Pa] over the cross-section at
x = l/2, B4 for l/b = 10, laminated [0, 90] beam.
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Stress cross-section variation
Through-the-width normal stress σyy [Pa] over the cross-section at x =
l/2, B4 for l/b = 10, laminated [0, 90] beam.

XY

Z

-.625E+08

-.363E+08

-.102E+08

.160E+08

.422E+08

.683E+08

.945E+08

.121E+09

.147E+09

.173E+09

(a) FEM 3D-R

XY

Z

-.625E+08

-.363E+08

-.102E+08

.160E+08

.422E+08

.683E+08

.945E+08

.121E+09

.147E+09

.173E+09

(b) N = 14

Page 43/44 – AIDAA 2015 19 November 2015, Turin, Italy



Conclusions

I A unified formulation for one-dimensional beam finite elements
has been presented for the thermal stress analysis.

I Higher-order models that account for shear deformations and in-
and out-of-plane warping can be formulated straightforwardly.

I The numerical investigation and validation showed that the pro-
posed formulation allows obtaining accurate results reducing the
computational costs when compared to three-dimensional FEM
solutions.
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