

Node-Dependent Kinematic One-dimensional FEM Models for the Analysis of Beams with Piezo-patches

E. Carrera, M.Cinefra, G. Li and E. Zappino

*Department of Mechanical and Aerospace Engineering Politecnico di Torino

イロト イロト イヨト イヨト

8th Conference on Smart Structures and Materials 6th International Conference on Smart Materials and Nanotechnology in Engineering SMART2017 6 June 2017, Madrid

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

Introduction	CUF 1D	NDK	Example 1	Example 2	Conclusions
•0	00	000	00	00	00

MUL2 - Our Research Group

・ロト・御ト・臣ト・臣・ のへ(

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

Introduction	CUF 1D oo	NDK 000	Example 1 00	Example 2 00	Conclusions

Overview

- Carrera Unified Formulation (CUF) for refined 1D models.
- Node-dependent kinematics (NDK).
- Modeling of piezo-patches with NDK beam elements.
- Output State Numerical examples.
- Conclusions.

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

CARRERA UNIFIED FORMULATION - REFINED 1D MODELS - POLITECNICO DI TORINO (ITALY) - WWW.MUL2.COM

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶

An Example: A Higher-order Deformation Beam Theory Written in CUF

- Displacement description

$$\begin{cases} u = F_1 u_1 & +F_2 u_2 & +F_3 u_3 & +F_4 u_4 & +F_5 u_5 & +F_6 u_6 + \cdots \\ v = F_1 v_1 & +F_2 v_2 & +F_3 v_3 & +F_4 v_4 & +F_5 v_5 & +F_6 v_6 + \cdots \\ w = F_1 w_1 & +F_2 w_2 & +F_3 w_3 & +F_4 w_4 & +F_5 w_5 & +F_6 w_6 + \cdots \\ - F_7 & F_1 = 1, \\ F_2 = x, \quad F_3 = z, \\ F_4 = x^2, \quad F_5 = xz, \quad F_6 = z^2, \end{cases}$$

- FEM discretization

$$\boldsymbol{u}(x, y, z) = N_i(y) \cdot \boldsymbol{u}_i(x, z) = N_i(y) \cdot \boldsymbol{F}_{\tau}(x, z) \cdot \boldsymbol{u}_{i\tau}$$

- PVD

$$\begin{split} \boldsymbol{u}(x, y, z) &= \boldsymbol{F}_{\tau}(x, z) N_{i}(y) \boldsymbol{u}_{i\tau} \qquad \delta \boldsymbol{u}(x, y, z) = \boldsymbol{F}_{s}(x, z) N_{j}(y) \delta \boldsymbol{u}_{js} \\ \delta L_{int} &= \int_{V} \delta \boldsymbol{e}^{T} \boldsymbol{\sigma} dV = \int_{V} \delta \boldsymbol{u}^{T} \boldsymbol{b}^{T} \boldsymbol{C} \boldsymbol{b} \boldsymbol{u} dV \\ &= \int_{V} \delta \boldsymbol{u}_{js}^{T} N_{j} \boldsymbol{I} \boldsymbol{F}_{s} \boldsymbol{b}^{T} \boldsymbol{C} \boldsymbol{b} \boldsymbol{F}_{\tau} \boldsymbol{I} N_{i} \boldsymbol{u}_{i\tau} dV \\ &= \delta \boldsymbol{u}_{js}^{T} \cdot \int_{V} \delta N_{j} \boldsymbol{I} \boldsymbol{F}_{s} \boldsymbol{b}^{T} \boldsymbol{C} \boldsymbol{b} \boldsymbol{F}_{\tau} \boldsymbol{I} N_{i} dV \cdot \boldsymbol{u}_{i\tau} = \delta \boldsymbol{u}_{js}^{T} \cdot \boldsymbol{K}_{ij\tau s} \cdot \boldsymbol{u}_{i} \\ \delta L_{ext} &= \int_{V} \delta \boldsymbol{u}^{T} \boldsymbol{P} dV = \delta \boldsymbol{u}_{js}^{T} \int_{V} N_{j} \boldsymbol{I} \boldsymbol{F}_{s} \boldsymbol{P} dV = \delta \boldsymbol{u}_{js}^{T} \sum_{s} N_{s} \boldsymbol{u}_{ss} \end{split}$$

 $\boldsymbol{K}_{ij\tau s} = \int_{V} N_{j} \boldsymbol{I} \boldsymbol{F}_{s} \boldsymbol{b}^{T} \boldsymbol{C} \boldsymbol{b} \boldsymbol{F}_{\tau} \boldsymbol{I} N_{i} dV$

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

CUF 1D	NDK	Example 1	Example 2	Conclusions
00				

Refined 1D Models for Electro-mechanical Problems

$$\boldsymbol{u}(x, y, z) = \{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\}^T = F_{\tau}(x, z)\boldsymbol{u}_{\tau}(y)$$
$$\boldsymbol{q}(x, y, z) = \{\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{\phi}\}^T = F_{\tau}(x, z)\boldsymbol{q}_{\tau}(y)$$

ESL model adopting Taylor Expansions (TE)

LW model employing Lagrange Expansions (LE)

$$\boldsymbol{q}(x,y,z) = \sum_{\tau=1}^{N} x^{i_{\tau}} z^{j_{\tau}} \boldsymbol{q}_{\tau}(y)$$

Note:

 $-F_{\tau}$ are defined on the whole cross-section domain;

– Higher-order DOFs: mathematical weighting factors.

$$\boldsymbol{q}^{k}(x, y, z) = \sum_{\tau=1}^{N} L_{\tau}(x, z) \boldsymbol{q}_{\tau}^{k}(y)$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・

= nar

Note:

 $-F_{\tau}^{k}$ defined on each layer section domain; - All DOFs are physically meaningful.

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

CUF 1D	NDK	Example 1	Example 2	Conclusions
	000			

Beam Elements with Node-Dependent Kinematics (NDK)

- 1D Models with NDK

- Variable LW/ESL nodal capabilities.
- Global-local analysis
- Modeling of patches

- Application: Local kinematic refinement

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

Introduction	CUF 1D 00	NDK o●o	Example 1 00	Example 2 00	Conclusions

- Extension/Shear Actuation Mechanism

Electro-mechanical Constitutive Relations

Electro-mechanical Constitutive Equations

$$E = \{E_x, E_y, E_z\}^T = \{\partial_x, \partial_y, \partial_z\}^T \phi$$

$$\bar{\epsilon} = \{E_x, E_y, E_z\}^T = \{\partial_x, \partial_y, \partial_z\}^T = Dq$$

$$\bar{\sigma} = \{\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{xz}, \sigma_{yz}, \sigma_{xy}, D_x, D_y, D_z\}^T = \tilde{H}\bar{\epsilon}$$

$$a) EAM$$

$$a) EAM$$

$$a) EAM$$

$$a) EAM$$

$$b) SAM$$

$$f = AH_m A^T$$

$$A = \begin{bmatrix} T_{6\times6} \\ R_{3\times3} \end{bmatrix}$$

$$b) SAM$$

$$b) SAM$$

$$b) SAM$$

$$b) SAM$$

$$c = \delta q_{js'} \int_V N_j I F_s^j D^T \tilde{H} DF_s^t I N_i dV \cdot q_{i\pi} = \delta q_{sj'} K_{ij\pi} \cdot q_{i\pi}$$

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

Introduction	CUF 1D 00	NDK oo●	Example 1 00	Example 2 00	Conclusions

Modeling of Piezo-patches

- FEM Discretization

Figure: 1D modeling of piezo-patch.

- Electro-mechanical FN: K_{ijτs}

$$\begin{bmatrix} K_{xx} & K_{xy} & K_{xz} & K_{x\phi} \\ K_{yx} & K_{yy} & K_{yz} & K_{y\phi} \\ K_{zx} & K_{zy} & K_{zz} & K_{z\phi} \\ K_{\phi x} & K_{\phi y} & K_{\phi z} & K_{\phi \phi} \end{bmatrix} = \begin{bmatrix} MM_{3\times 3} & ME_{3\times 1} \\ BM_{1\times 3} & EE \end{bmatrix}$$

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

CUF 1D	NDK	Example 1	Example 2	Conclusions
		•0		

Beams with piezo-pathces with EAM and SAM

Figure: Extension mechanism (EAM).

Figure: Shear mechanism (SAM).

Figure: FEM discretization.

- Case A: Piezo-patches cover the whole longitudinal range

Table: Results with mono-kinematics model

	EAM		SAM	
	(0, b, 0)	$(\frac{a}{2}, b, \frac{h_e}{2})$	(0, b, 0)	$(\frac{a}{2}, b, \frac{h_s}{2})$
ABAQUS	3.749	3.913	1.184	1.184
12LE9	3.748	3.897	1.184	1.184

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

Introduction	CUF 1D oo	NDK 000	Example 1 ⊙●	Example 2 00	Conclusions

Beams with piezo-pathces with EAM and SAM

- Case B: Piezo-patches with variable position

Figure: Extension mechanism (EAM).

<i>d</i> [m]	w*[10 ⁻⁸ m 12LE9	n] at Point a(0, b, 0) 12LE9-TE2	(EAM)
0.01	4.805	4.805	
0.03	3.565	3.563	
0.05	2.546	2.543	
0.07	1.527	1.527	
0.09	0.3863	0.3826	
DOFs	5765	3317	

CUF 1D	NDK	Example 1	Example 2	Conclusions
			••	

Cantilever beam with a surface-mounted piezo-patch

Figure: Side view.

Figure: Top view.

Figure: FEM discretization.

Biscani, F., Nali, P., Belouettar, S. and Carrera, E.,

Coupling of hierarchical piezoelectric plate finite elements via Arlequin method. Journal of Intelligent Material Systems and Structures, 23(7), pp.749-764.

 E_{1}, E_{2} E_3 G_{12} G_{13}, G_{23} V12 V13. V23 ſĠ₽aĨ [GPa] [GPa] ſĞPaĨ 81.3 64.5 30.6 25.6 0.329 0.432 e15,e24 e31.e32 e33 X11,X22 X33 C/m² C/m² C/m^2 -5.2 15.8 12.72 $1475\chi_{0}$ $1300\chi_{0}$ Vacuum permittivity: $\chi_0 = 8.85 \times 10^{-12}$ F/m ABAQUS 16LE9 16LE9^{x25}-TE2^{x48} 16LE9^{x49}-TE2^{x24} ABAOUS 16LE -1 J_{yy}[KPa] M[10⁻⁸m] -2 -4

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

Introduction	CUF 1D 00	NDK 000	Example 1 oo	Example 2	Conclusions

Cantilever beam with a surface-mounted piezo-patch

Mesh	Kinematics	$-u_{z}[10^{-8}m]$ (0, $\frac{b}{2}$, 0)	$-u_z[10^{-8}m]$ (0, b, 0)	$-\sigma_{yy}$ [KPa] (0, $\frac{c}{2}$, $-\frac{h}{2}$)	$-\sigma_{yz}$ [KPa] $(\frac{a}{2}, \frac{c}{2}, 0)$	DOFs
12×B4	4LE9	2.482	5.192	5.878	0.5149	2250
12×B4	16LE9	2.444	5.109	5.131	0.6692	12852
24×B4	16LE9	2.452	5.125	5.009	0.6612	25164
24×B4	16LE9 ^{×25} -TE2 ^{×48}	2.656	5.592	5.028	0.2979	14346
24×B4	16LE9 ^{×49} -TE2 ^{×24}	2.452	5.125	5.009	0.6612	19908
ABAQUS		2.451	5.125	5.087	0.6381	196281
Biscani-2D(LD3)		2.309	4.871	_		_

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

Introduction	CUF 1D	NDK	Example 1	Example 2	Conclusions
	00	000	00	00	●○

Main Conclusions

With node-dependent kinematic beam elements:

- Models with variable LW/ESL nodal capabilities can be conveniently formulated;
- The abrupt change of the cross-section introduced by the patches can be considered;
- Slender structures with surface mounted or embedded piezo-patches can be efficiently modeled;
- Mechanical and electro-mechanical constitutive relations can be separately applied to the base structure and the piezoelectric actuators, with the help of LW models;
- Solution The structural responses under piezoelectric actuation can be properly captured with reduced computational costs;
- When applied in the modeling of shear mechanism, the adopted kinematics should be able to capture the shearing effects appropriately.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino

Node-Dependent Kinematic One-dimensional FEM Models for the Analysis of Beams with Piezo-patches

E. Carrera, M.Cinefra, G. Li and E. Zappino

*Department of Mechanical and Aerospace Engineering Politecnico di Torino

イロト イロト イヨト イヨト

8th Conference on Smart Structures and Materials 6th International Conference on Smart Materials and Nanotechnology in Engineering SMART2017 6 June 2017, Madrid

Erasmo Carrera, Maria Cinefra, Guohong Li and Enrico Zappino