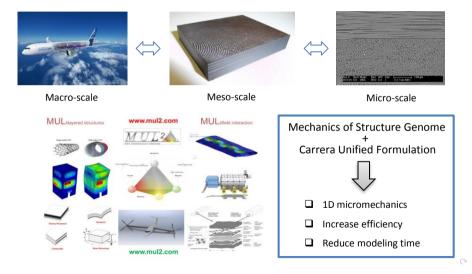


MICROMECHANICS MODELING OF UNIT CELLS USING CUF BEAM MODELS AND THE MECHANICS OF STRUCTURE GENOME

A.G. de Miguel, A. Pagani, W. Yu and E. Carrera

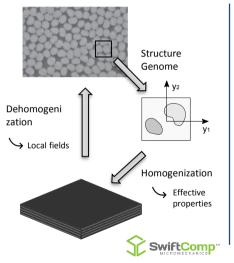
Dept. of Mechanical and Aerospace Eng., Politecnico di Torino School of Aeronautics and Astronautics, Purdue University



September 20th, 2017, TU Eindhoven, Netherlands

Introduction	MSG	CUF	Numerical results	Conclusions		
6th ECCOMAS Thematic Conference on the Mechanical Response of Composites – September 20th, 2017, TU Eindhoven						

Goals


Overview

□ Mechanics of Structure Genome (MSG) for micromechanical analysis

- Carrera Unified Formulation (CUF) : higher-order beam models for unit cells
- □ Hierarchical Legendre Expansions (HLE) as theory of structure
- □ Numerical results: fiber reinforced and particle reinforced composites
- Conclusions and perspectives

Micromechanics modeling: MSG

Principle of Minimum Information Loss

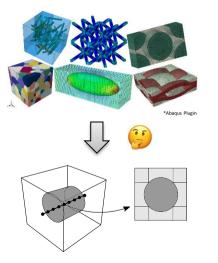
Express the kineamatics as a sum of the global displacements and the local fluctuations

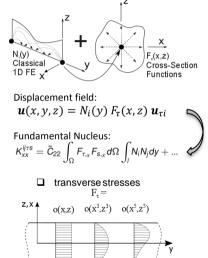
$$u_i = \bar{u}_i + \delta \chi_i$$
$$\varepsilon_{ij} = \bar{\varepsilon}_{ij} + \chi_{(i,j)}$$

Express the energy of the original model as

$$U(\varepsilon_{ij}) = U(\bar{\varepsilon}_{ij}, \chi_{(i,j)})$$

Using the Variational Asymptotic Method, minimize the energy to solve the fluctuations


$$\min_{\chi} U(\bar{\varepsilon}_{ij}, \chi_{(i,j)}) - U(\bar{\varepsilon}_{ij})$$


No ad-hoc assumptions One load step Different local solutions for a single run of the code

[1] Yu W. A unified theory for constitutive modeling of composites. J Mech Mater Struct (2016);11(4): pp 379-411.

Introduction MSG CUF Numerical results Conclusions

Beam kinematics through the unified formulation

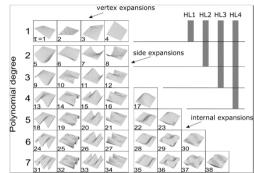
[2] Carrera E., Cinefra M., Petrolo M. and Zappino E. Finite element analysis of structures through unified formulation. John Wiley & Sons; 2014.

Hierarchical Legendre Expansions, HLE

Vertex polynomials

$$F_{\tau} = \frac{1}{4}(1-r_{\tau}r)(1-s_{\tau}s)$$

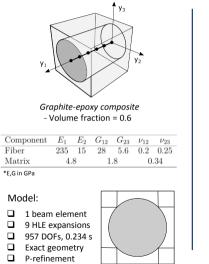
Side polynomials


$$F_{\tau} = \frac{1}{2}(1-s)\varphi_p(r)$$

Internal polynomials

$$F_{\tau} = \varphi_{\rho_r}(r)\varphi_{\rho_s}(s) \qquad p_r + p_s = p_s$$

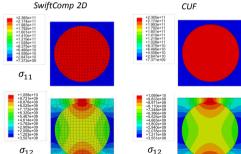
- Hierarchical kinematics
- Non-local distribution of unknowns
- Geometrically exact curved sections:


blending function method

[3] A. Pagani, A.G. de Miguel and E. Carrera. Cross-sectional mapping for refined beam elements with applications to shell-like structures. Computational Mechanics (2017) pp 1-18.

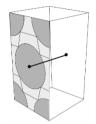
Introduction MSG CUF	Numerical results Conclusions
----------------------	-------------------------------

6th ECCOMAS Thematic Conference on the Mechanical Response of Composites - September 20th, 2017, TU Eindhoven


Numerical results: square pack

Homogenization

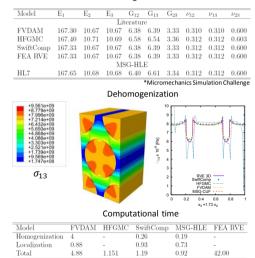
Model	E ₁ [GPa]	E ₂ [GPa]	G ₁₂ [GPa]	G23 [GPa]	ν_{12}	ν_{23}
		Refe	erences			
FEM [5]	142.6	9.60	6.00	3.10	0.25	0.35
MOC [2]	143	9.6	5.47	3.08	0.25	0.35
GMC [21]	143.0	9.47	5.68	3.03	0.253	0.358
HFGMC [22]	142.9	9.61	6.09	3.10	0.252	0.350
ECM [23]	143	9.6	5.85	3.07	0.25	0.35
SwiftComp	142.9	9.61	6.10	3.12	0.252	0.35
		CUI	-MSG			
HL2	143.17	9.70	6.29	3.19	0.252	0.346
HL4	143.16	9.64	6.09	3.12	0.252	0.349
HL6	143.16	9.62	6.09	3.12	0.252	0.35
HL8	143.16	9.62	6.08	3.12	0.252	0.350


Dehomogenization

Introduction	MSG	CUF	Numerical results	

6th ECCOMAS Thematic Conference on the Mechanical Response of Composites - September 20th, 2017, TU Eindhoven

Numerical results: hexagonal pack


Carbon-epoxy composite - Volume fraction = 0.6

Component	E_1	E_2	G_{12}	G_{23}	ν_{12}	ν_{23}
Fiber	276	19.5	70	5.74	0.28	0.7
Matrix	4.	76	1.	74	0.3	37

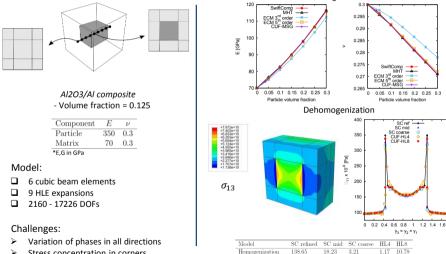
*E,G in GPa

Model:

- 1 beam element
- 15 HLE expansions
- 1206 DOFs

[4] A.G. de Miguel A. Pagani, W.Yu and E. Carrera. A. Pagani, Micromechanics of periodically heterogeneous materials using higher-order beam theories and the mechanics of structure genome. Composite Structures (2017) 180: pp 484-496.

CARRERA UNIFIED FORMULATION - MECHANICS OF STRUCTURE GENOME - 1D MODELS - WWW.MUL2.COM


Homogenization

Conclusions

Homogenization

Numerical results: particle inclusion

Stress concentration in corners

CARRERA UNIFIED FORMULATION - MECHANICS OF STRUCTURE GENOME - 1D MODELS - WWW.MUL2.COM

Dehomogenization

Total

120.02

258.67

41.08 14.62

59.31 17.82 3.96 6.71

5.13 17.49

Conclusions and perspectives

- □ Assessment of the model: MSG/CUF coupling can be a highly efficient tool for the micromechanics analysis of periodically heterogeneous materials
- □ The accuracy of the micromechanic analysis is controlled by the polynomial order of the expansions: no need of iterative refinements of the mesh
- □ Mapping of the exact geometry of the components through the bending function method
- □ Fibers and inclusions can be modelled by only a single expansion over the cross-section of the beam: great reduction of the complexity of the model with no loss of accuracy
- Multiscale analysis: high-order beams for macro, meso and micro scales
- Future developments: more complex SG, woven fabrics, multifield analysis (electric, thermal, magnetic), damage.

Progetto Internazionalizzazione DIMEAS/Purdue – Purdue University (West Lafayette, IN) – December 9 2016

FULLCOMP project

- □ FULLy integrated analysis, design, manufacturing and healthmonitoring of COMPosite structures
- Funded by the European Commission under a Marie Sklodowska
 -Curie Innovative Training Networks grant: 12 PhD students

Partners:

- i. Politecnico di Torino (Italy)
- ii. University of Bristol (UK)
- iii. ENSMA Bordeaux (France)
- iv. Leibniz Universitaet Hannover (Germany)
- v. LIST (Luxemburg)
- vi. ELAN-AUSY GmbH (Germany)
- vii. Universidade do Porto (Portugal)
- viii. University of Washington (USA)
- ix. RMIT (Australia)
- Learn more about us:
 - www.fullcomp.net
 - Researchgate, Linkedin, Facebook

Introduction	MSG	CUF	Numerical results	Conclusions
Progetto Internazionalizza	azione DIMEAS/Purdue – I	Purdue University (West La	afayette, IN) – December 9 2016	

Thank you for the attention, any questions?

