

Micromechanics modeling of unit cells using CUF beam models and the mechanics of structure genome

A.G. de Miguel¹, A. Pagani¹, W. Yu² and E. Carrera¹

¹ Dept. of Mechanical and Aerospace Eng., Politecnico di Torino ² School of Aeronautics and Astronautics, Purdue University

October 24th, 2017, Purdue University, West Lafayette IN

Introduction	MS	G	CUF	Numerical results	Conclusions
ļ	American Society for C	omposites – 32nd te	chnical conference – Octobe	r 23-25, 2017, West Lafayette IN, l	JSA
Goals					
		\Leftrightarrow			
Μ	lacro-scale		Meso-scale	Micro-	scale
M	ULtilayered structures	www.mul2.com	MUL tifield interaction	Machanics of Structur	a Gonomo

Overview

- Governing equations: Mechanics of Structure Genome (MSG) for micromechanical analysis
- Modelling procedure: Carrera Unified Formulation (CUF) and higherorder beam model
- □ Beam modeling of microstructures
- □ Numerical results: fiber reinforced and particle reinforced composites
- Conclusions and perspectives

Mechanics of Structure Genome

MSG for micromechanical analysis

Principle of Minimum Information Loss

Express the kinematics as a sum of the global displacements and the local fluctuations

$$u_i = \bar{u}_i + \delta \chi_i$$
$$\varepsilon_{ij} = \bar{\varepsilon}_{ij} + \chi_{(i,j)}$$

Express the energy of the original model as

$$U(\varepsilon_{ij}) = U(\bar{\varepsilon}_{ij},\chi_{(i,j)})$$

Using the Variational Asymptotic Method, minimize the energy to solve the fluctuations

$$\min_{\chi} U(\bar{\varepsilon}_{ij}, \chi_{(i,j)}) - U(\bar{\varepsilon}_{ij})$$

- No ad-hoc assumptions
- Straightforward numerical implementation
- Complete set of properties with a single run
- Different sets of local solutions

 $u_{y}(x, y, z) = u_{y_{1}}(y) - x u_{y_{2}}(y) - zu_{y_{3}}(y) + \psi(x, z)u_{y_{3}}(y)$ $u_{z}(x, y, z) = u_{z_{1}}(y) + x u_{z_{2}}(y)$

K. Washizu: " For a complete removal of the inconsistency and an improvement of the accuracy of the beam theory" -> <u>enrich beam</u> kinematics with higher-order terms

Carrera Unified Formulation

 $u_{x}(x, y, z) = F_{1}(x, z) u_{x_{1}}(y) + F_{2}(x, z) u_{x_{2}}(y) + F_{3}(x, z) u_{x_{3}}(y) + \dots + F_{M}(x, z) u_{x_{M}}(y)$ $u_{y}(x, y, z) = F_{1}(x, z) u_{y_{1}}(y) + F_{2}(x, z) u_{y_{2}}(y) + F_{3}(x, z) u_{y_{3}}(y) + \dots + F_{M}(x, z) u_{y_{M}}(y)$ $u_{z}(x, y, z) = F_{1}(x, z) u_{z_{1}}(y) + F_{2}(x, z) u_{z_{2}}(y) + F_{3}(x, z) u_{z_{3}}(y) + \dots + F_{M}(x, z) u_{z_{M}}(y)$

 $\mathbf{u}(x, y, x) = F_{\tau}(x, z) \, \mathbf{u}_{\tau}(y) \qquad \tau = 1, ..., M$

Refined beam elements for unit cells

[2] Carrera E., Cinefra M., Petrolo M. and Zappino E. Finite element analysis of structures through unified formulation. John Wiley & Sons; 2014.

Hierarchical Legendre Expansions, HLE

Vertex polynomials

$$F_{\tau} = \frac{1}{4}(1-r_{\tau}r)(1-s_{\tau}s)$$

Side polynomials

$$F_{\tau} = \frac{1}{2}(1-s)\varphi_p(r)$$

Internal polynomials

$$F_{\tau} = \varphi_{\rho_r}(r)\varphi_{\rho_s}(s) \qquad p_r + p_s = p_s$$

- Hierarchical kinematics
- Non-local distribution of unknowns
- Geometrically exact curved sections using the

blending function method

[3] A. Pagani, A.G. de Miguel and E. Carrera. Cross-sectional mapping for refined beam elements with applications to shell-like structures. Computational Mechanics (2017) pp 1-18.

Code* description

- 1. Modeling of the section of the constituents coarse domains
- 2. Discretization of the reference axis
- 3. Asignment of the properties for each constituent
- 4. Input the order of the expansion of the domains, p
- 5. Homogenization -> effective properties
- 6. Input the global solutions
- 7. Dehomogenization -> local fields

*Travel Scholarship and Code Competition at ASC2017

American Society for Composites - 32nd technical conference - October 23-25, 2017, West Lafayette IN, USA

Numerical results: square pack

Homogenization

Model	E ₁ [GPa]	E ₂ [GPa]	G ₁₂ [GPa]	G23 [GPa]	ν_{12}	ν_{23}
		Refe	erences			
FEM [5]	142.6	9.60	6.00	3.10	0.25	0.35
MOC [2]	143	9.6	5.47	3.08	0.25	0.35
GMC [21]	143.0	9.47	5.68	3.03	0.253	0.358
HFGMC [22]	142.9	9.61	6.09	3.10	0.252	0.350
ECM [23]	143	9.6	5.85	3.07	0.25	0.35
SwiftComp	142.9	9.61	6.10	3.12	0.252	0.350
		CUI	-MSG			
HL2	143.17	9.70	6.29	3.19	0.252	0.346
HL4	143.16	9.64	6.09	3.12	0.252	0.349
HL6	143.16	9.62	6.09	3.12	0.252	0.350
HL8	143.16	9.62	6.08	3.12	0.252	0.350

Dehomogenization

Introduction	MSG	CUF	Numerical results	Conclusions
	American Society for Composites -	- 32nd technical conferen	ce – October 23-25, 2017, West Lafavette IN	USA

Numerical results: hexagonal pack

Carbon-epoxy composite - Volume fraction = 0.6

Component	E_1	E_2	G_{12}	G_{23}	ν_{12}	ν_{23}
Fiber	276	19.5	70	5.74	0.28	0.7
Matrix	4.	76	1.	74	0.3	37

*E,G in GPa

Model:

- 1 beam element
- 15 HLE expansions
- 1206 DOFs

[4] A.G. de Miguel A. Pagani, W.Yu and E. Carrera. A. Pagani, Micromechanics of periodically heterogeneous materials using higher-order beam theories and the mechanics of structure genome. Composite Structures (2017) 180: pp 484-496.

Numerical results: particle inclusion

Conclusions and future work

- □ Assessment of the model: MSG/CUF coupling can be a highly efficient tool for the micromechanics analysis of periodically heterogeneous materials
- □ The accuracy of the micromechanic analysis is controlled by the polynomial order of the expansions: no need of iterative refinements of the mesh
- □ Mapping of the exact geometry of the components through the bending function method
- □ Fibers and inclusions can be modelled by only a single domain over the cross-section of the beam: great reduction of the complexity of the model with no loss of accuracy
- Multiscale analysis: high-order beams for macro, meso and micro scales
- Future developments: more complex SG, woven fabrics, multifield analysis (electric, thermal, magnetic), damage.

Acknowledgements

- □ **FULLCOMP** (FULLy integrated analysis, design, manufacturing and health-monitoring of COMPosite structures)
 - Partners:
 - i. Politecnico di Torino (Italy)
 - ii. University of Bristol (UK)
 - iii. ENSMA Bordeaux (France)
 - iv. Leibniz Universitaet Hannover (Germany)
 - v. LIST (Luxemburg)
 - vi. ELAN-AUSY GmbH (Germany)
 - vii. Universidade do Porto (Portugal)
 - viii. University of Washington (USA)
 - ix. RMIT (Australia)
 - Learn more about us:
 - www.fullcomp.net
 - Researchgate, Linkedin, Facebook

□ Compagnia San Paolo (INTESA San Paolo) in the framework of 'Joint Projects for the Internationalization of the Research'

Introduction	MSG	CUF	Numerical results	Conclusions	
	American Society for Composites – 32nd technical conference – October 23-25, 2017, West Lafayette IN, USA				

Thank you for the attention, any questions?

