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The paper presents a computationally efficient numerical tool for interface modeling in fiber-

reinforced composite structures. The proposed numerical tool is part of computational platform 

built for virtual testing of composites developed within the scheme of the Carrera Unified 

Formulation (CUF), a unified hierarchical formulation to generate refined structural theories 

through a variable kinematic description [1]. 1D CUF models can provide accurate 3D-like stress 

fields at a reduced computational cost, e.g., approximately one to two orders of magnitude of 

degrees of freedom less as compared to standard 3D brick elements. In this work, Lagrange-type 

polynomials (LE) are used to interpolate the displacement field over the cross section leading to a 

purely displacement-based refined one-dimensional model. The Component-Wise modeling 

(CW), an approach that stems out of LE models, is utilized to model various components of 

composite structures across scales, e.g., fiber, matrix, laminae and laminates [2]. Based on the 

works of Allix et al. [3] and Camanho et al. [4], a class of higher-order cohesive elements is 

implemented within the CW modeling framework for simulating interfacial fracture mechanics 

problems. Zero thickness cohesive cross-section elements are introduced along interface of various 

components of composite materials and structures (such as fiber-matrix interface and inter-laminar 

interface). Component-Wise modeling of a Double Cantilever Beam specimen (DCB) with 

cohesive element introduced across the interface is illustrated in Fig. 1.   

 

Figure 1: Double cantilever beam (DCB) specimen modeling with CUF-CW cohesive modeling technique 

Cohesive elements are equipped with a mixed-mode traction-separation law, which defines the 

constitutive behavior of the interface element. An efficient arc-length solver based on dissipation 
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energy constraint is implemented within the platform to trace complex equilibrium paths with 

multiple snapbacks [5]. Figure 2 depicts the load-displacement response of a DCB test under mode 

I condition. The post-peak response shows very good agreement with the analytical solution based 

on classical beam theory. 

 
Figure 2: Load-displacement response for mode I DCB simulation 

A numerical simulation campaign is undertaken to assess the accuracy and efficiency of the 

proposed tool. Numerical examples shall include benchmark composite delamination problems 

(DCB, ENF, MMB), free-edge delamination analysis and fiber-matrix debonding at the 

micromechanical scale. 
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