

*P. DEL SORBO, J. GIRARDOT, F.DAU, I. IORDANOFF Numerical analysis of Kevlar KM2 yarn subjected to transverse impact in high speed range

*Institute of Mechanics and Mechanical Engineering (I2M), Dept. Durability of Materials, Assemblies and Structures Esplanade des Arts et Metiers F-33400 Talence, FRANCE

ail: Pietro.DELSORBO@ensam.eu, Jeremie.GIRARDOT@ensam.eu, Frederic.DAU@ensam.eu, Ivan.IORDANOFF@ensam.eu

Generalities on Dry Fabrics

Application:

Characteristics:

- Aeronautic
- Military
- Civil
- Structural Parts

- High strength-to-weight ratio
- Damage Tolerance
- Impact resistance

ARTS ET MÉTIERS Parislech

Impact Problem on Dry Fabrics:

- Multiscale Problem
- Experimental Complications
- **FullComp Project ESR11:**

Numerical analyses of high velocity impacts using multiscale techniques

- **Rigorously** analyse **scale transitions** starting **from the microscale**
- Linking microstructural observations to mesoscopic and macroscopic properties

1. Transversal Impact on Flexible Filaments: an Introduction

2. Transversal Impact on Single Fibre

- 3. Transversal Impact on Single Yarn, Long Period Analysis
- 4. Transversal Impact on Single Yarn, Short Period Analysis
 - 5. Conclusion and Perspectives

Transversal Impact on Flexible Filaments : An Introduction

Experimental Observations:

- Wave propagation phenomena (Stress and Speed)
- Ballistic Limit

Classical Analytical and Numerical Approaches:

- Transversal behaviour neglected
- Material Parameters regulation
- Global kinematic \rightarrow Good agreement
- Ballistic limit → differs from experiments

$V = c \sqrt{2\epsilon \sqrt{\epsilon(1+\epsilon)} - \epsilon^2}$ $c_s = c \left(\sqrt{\epsilon(1+\epsilon)} - \epsilon\right)$ $c = \sqrt{\frac{E}{\rho}}$

Chocron, 2010

Song, 2011

Smith, 1958

5

28/06/2017

Transversal Impact on Flexible Filaments : Why Discrete Approach ?

Pros:

omp

• Fibre level modelling

- Yarn transverse behaviour is naturally modelled
- True stresses
- Large strains and large displacements are easily treated

28/06/2017

Cons:

- Computational cost
- Experimental validation

Pietro.DELSORBO@ensam.eu

Transversal Impact on Flexible Filaments : Fibre Model

Model has been solved using **DE code GranOO***.

Each **fibre** is discretized by a **series of spherical Discrete Elements***:

- Total fibre weight is equally distributed
 among Discrete Elements
- Material Mechanical Behaviour is provided by Bonds which connect DE couples
- Contact is easily managed by Discrete
 Element Method

*References

P. del Sorbo, 2017

J. Girardot, 2015 F. Dau, ASC-29, 2014.

28/06/2017

Transversal Impact on Flexible Filaments : Bond Constitutive Behaviour

Kevlar® KM2 600 fibre has been modelled as brittle and purely elastic.

4500 5000 0.00127/s 1496/s 4000 ----- 0.0127/s ----- 1755/s 0.127/s 4000 3500 1962/s $F = EA\varepsilon$ ----- 2186/s 3000 3000 - 2451/s Stress [MPa] Stress [MPa] 2500 2000 2000 \mathcal{E} = 1500 000 1000 500 $\varepsilon \geq \varepsilon_{lim}$ -1000 -500 -0.01 0.00 0.01 -0.01 0.00 0.01 0.05 0.06 0.07 0.02 0.03 0.04 0.05 0.06 0.02 0.03 0.04 Bond disabled Strain Strain Longitudinal Elastic Response of Kevlar KM2 600 Single Fibre (Cheng 2005)

28/06/2017

(j) 🚯

Transversal Impact on Flexible Filaments : Contact Model

Contact is managed according to **Discrete Element Method**:

• Non linear contact relation (Cheng et al. 2005)

ET MÉTIERS

- Poisson Effect is not considered
- No contact if two elements are bonded
- Coulombian Friction model is adopted

 $F_f = Friction Force$

Pietro.DELSORBO@ensam.eu

Transversal Impact on Single Fiber: Set Up

Basic Hypotheses:

- Pure Axial behaviour •
- No Contact -> No transverse ٠ effect
- Impact -> Boundary Conditions •

Material:

ARTS ET MÉTIERS

Kevlar® KM2 600*

References

*M.Cheng et al., Journal of Engineering Materials and Technology, 2005

28/06/2017

Transversal Impact on Single Fibre: Results

Material:

omp

ARTS ET MÉTIERS

Kevlar® KM2 600*

 $E_{11} = 84.62 \ GPa$ $\sigma_{lim} = 3.88 \ GPa$

 $\rho = 1440 \; kg/m^3$

Induced Strain		Eul. Tran. Wave Speed	Lag. Long. Wave Speed		
Model	0.4982 %	505 m/s	7656 m/s		
Smith Th.	0.4984 %	504.2 m/s	7665 m/s		
Rel. Err.	0.04%	0.3%	0.1%		
VALIDATED !!!					

References

*M.Cheng et al., Journal of Engineering Materials and Technology, 2005

Transversal Impact on Single Yarn Long Period Analysis (0–50µs)

ARTS ET MÉTIERS

Transversal Impact on Single Yarn Long Period Analysis $(0-50\mu s)$

Transversal Impact on Single Yarn Long Period Analysis (0–50µs)

(•mp

Transversal Impact on Single Yarn Short Period Analysis (0–2µs)

ĭ ●mp

Transversal Impact on Single Yarn Short Period Analysis $(0-2\mu s)$

Particle Velocity [m/s]

Transversal Yarn behaviour :

(•mp

ARTS ET MÉTIERS

- Wave propagation phenomena
- Quantification of bounce velocity

Large Deformations

Transversal Impact on Single Yarn Short Period Analysis $(0-2\mu s)$

Longitudinal wave :

• 3D wave front

Fibre

Local stresses up to 100%
 higher than the analytical
 solution

Analytical

28/06/2017

Strain

CONCLUSIONS

- Novel numerical approach for microscopic analysis
- Yarn response to the impact have been investigated
- Influence of yarn discrete nature have been accounted
- Limits of the traditional approaches have been enhanced

PERSPECTIVES

- Consistent continuum model
 - Hyperelastic constitutive behaviour
 - Microscopic virtual material testing
- Numerical analyses of yarns with geometric complexities
 - Twisting
 - Braiding
- Mesoscale Applications

Thank You for Your Attention

Full Scale Microscopic Model: Results

ARTS ET MÉTIERS ParisTech

An energetic analysis has been performed to compare numerical to the analytical results:

- Contact effects accounted
- Different global wave reflection times

Appendix 3

ET MÉTIERS

Set up		GranOO Models	Nilakantan (2013)
Model		Symmetric	Complete
Nr. Fibres		400	400
Yarn Length		25.4 <i>mm</i>	25.4 <i>mm</i>
Fibre Diameter		$12 \mu m$	$12 \mu m$
Contact		GranOO Models	Nilakantan (2013)
Bullet-Fibres Friction		0.18	0.18
Fibres-Fibres Friction		0.20	0.20
Contact Stiffness		5e ⁵ N/m	n.d.
Bullet	GranOO Models		Nilakantan (2013)
Shape	Cylindrical		Cylindrical
Mass		9.91 mg	9.91 mg
Velocity		120 m/s	120 m/s
Radius		1.1 <i>mm</i>	1.1 <i>mm</i>

28/00/201519 – International Conference on Composite Structure