A thermal stress analysis of three-dimensional beams by one-dimensional hierarchical finite elements

G. De Pietro ${ }^{1,2}$, Y. Hui ${ }^{1,2,3}$, G. Giunta ${ }^{1}$, S. Belouettar ${ }^{1}$ and E. Carrera ${ }^{2}$

${ }^{1}$ Luxembourg Institute of Science and Technology, Luxembourg
${ }^{2}$ Politecnico di Torino, Italy
${ }^{3}$ School of Civil Engineering, Wuhan University, China

2nd International Conference on Mechanics of Composites Porto, Portugal

$$
\text { July 11, } 2016
$$

Scope

Thermo-mechanical response investigation of three-dimensional composite beam structures through hierarchical one-dimensional finite elements based on Carrera unified formulation.

The intention behind this approach is two-fold:

- reduce the computational cost (when compared to full three-dimensional solutions).
- ensure accurate three-dimensional results via a one-dimensional approach.

Outline

The presentation is organised as follows:

- Theoretical background
- Numerical results
- Conclusions

Classical Beam Theories

§ Euler-Bernoulli's theory:

$$
\begin{aligned}
& u_{x}=u_{x 1}-u_{y 1, x} y-u_{z 1, x} z \\
& u_{y}=u_{y 1} \\
& u_{z}=u_{z 1}
\end{aligned}
$$

- Cross-section rigid on its plane.
- No shear stress (only axial stress).

§ Timoshenko's theory:

$$
\begin{aligned}
& u_{x}=u_{x 1}+u_{x 2} y+u_{x 3} z \\
& u_{y}=u_{y 1} \\
& u_{z}=u_{z 1}
\end{aligned}
$$

- Cross-section rigid on its plane.
- Shear stress (corrective factor)

One-dimensional Hierarchical Displacement Approximation

Beam cross section

$$
\mathbf{u}(x, y, z)=F_{\tau}(y, z) \mathbf{u}_{\tau}(x) \text { with } \tau=1,2, \ldots, N_{u}
$$

\S The compact expression is based on Einstein's notation: subscript τ indicates summation.
$\S N_{u}$ is the number of accounted terms.
$\S F_{\tau}(y, z)$ are generic approximating functions.
§ Thanks to this compact notation, the element stiffness matrix can be derived in terms of 'fundamental nuclei'.
\S Within this work, Taylor polynomials are chosen as expansion functions F_{τ}. Therefore, the generic N-order displacement field is:

$$
\begin{aligned}
& u_{x}=u_{x 1}+u_{x 2} y+u_{x 3} z+\cdots+u_{x \frac{\left(N^{2}+N+2\right)}{2}} y^{N}+\cdots+u_{x \frac{(N+1)(N+2)}{2}} z^{N} \\
& u_{y}=u_{y 1}+u_{y 2} y+u_{y 3} z+\cdots+u_{y \frac{\left(N^{2}+N+2\right)}{2}} y^{N}+\cdots+u_{y \frac{(N+1)(N+2)}{2}} z^{N} \\
& u_{z}=u_{z 1}+u_{z 2} y+u_{z 3} z+\cdots+u_{z \frac{\left(N^{2}+N+2\right)}{2}} y^{N}+\cdots+u_{z \frac{(N+1)(N+2)}{2}} z^{N}
\end{aligned}
$$

$\S N_{u}$ and F_{τ} as functions of N can be obtained via Pascal's triangle as shown in the following Table:

N	N_{u}	F_{τ}	
0	1	$F_{1}=1$	
1	3	$F_{2}=y \quad F_{3}=z$	
2	6	$F_{4}=y^{2} \quad F_{5}=y z \quad F_{6}=z^{2}$	
\cdots	\cdots	\cdots	
N	$\frac{(N+1)(N+2)}{2}$	$F^{\frac{\left(N^{2}+N+2\right)}{2}=y^{N}} \quad F^{\frac{\left(N^{2}+N+4\right)}{2}}=y^{N-1} z$	\ldots
		$F_{\frac{N(N+3)}{2}}^{2}=y z^{N-1}$	$F_{\frac{(N+1)(N+2)}{2}}^{2}=z^{N}$

§ N is a free parameter of the formulation.
§ By properly choosing N, different beam theories accounting for higher-order effects such as shear deformations and cross-section in- and out-of plane warping can be straightforwardly obtained.

One-dimensional Hierarchical Displacement Approximation

Beam cross-section

N -order Taylor polynomials $u(x, y, z)=F_{\tau}(y, z) u_{\tau}(x)$

Beam axis

The part of the displacement vector that depends upon the axial coordinate $\left(\mathbf{u}_{\tau}\right)$ is approximated as follows:

$$
\mathbf{u}_{\tau}(x)=N_{i}(x) \mathbf{q}_{\tau i} \text { with } \tau=1,2, \ldots, N_{u} \text { and } i=1,2, \ldots, N_{n}
$$

$\S \mathbf{q}_{\tau i}$ are the nodal displacements unknowns typical of a finite element approximation.
$\S N_{i}(x)$ are the corresponding shape functions, which approximate the displacements along the beam axis in a C^{0} sense up to an order $N_{n}-1$ being N_{n} the number of nodes per element. This latter is a free parameter of the theoretical formulation.
Linear (B2), quadratic (B3) and cubic (B4) elements along the beam axis are considered.

Geometric Relations

A linear relation between strain and displacement vector is considered:

$$
\begin{gathered}
\varepsilon_{t n}=\mathbf{D}_{n p} \mathbf{u}+\mathbf{D}_{n x} \mathbf{u} \\
\varepsilon_{t p}=\mathbf{D}_{p} \mathbf{u}
\end{gathered}
$$

Total strain components have been grouped into vectors $\varepsilon_{t n}$ with components orthogonal to the cross-section and $\varepsilon_{t p}$ with components laying on Ω.
$\mathbf{D}_{n p}, \mathbf{D}_{n x}$, and \mathbf{D}_{p} are linear differential matrix operators.

Constitutive Relations

In the case of thermo-mechanical problems, Hooke's law reads:

$$
\boldsymbol{\sigma}=\tilde{\mathbf{C}} \varepsilon_{e}=\tilde{\mathbf{C}}\left(\varepsilon_{t}-\varepsilon_{\vartheta}\right)=\tilde{\mathbf{C}}\left(\varepsilon_{t}-\tilde{\boldsymbol{\alpha}} T\right)=\tilde{\mathbf{C}} \varepsilon_{t}-\tilde{\boldsymbol{\lambda}} T
$$

where subscripts ' e ' and ' ϑ ' refer to the elastic and the thermal contributions, respectively. $\tilde{\mathbf{C}}$ is the material elastic stiffness, $\tilde{\boldsymbol{\alpha}}$ the vector of the thermal expansion coefficients, $\tilde{\boldsymbol{\lambda}}$ their product and T stands for temperature.

$$
\begin{aligned}
\sigma_{p} & =\tilde{\mathbf{C}}_{p p} \varepsilon_{t p}+\tilde{\mathbf{C}}_{p n} \varepsilon_{t n}-\tilde{\boldsymbol{\lambda}}_{p} T \\
\sigma_{n} & =\tilde{\mathbf{C}}_{n p} \varepsilon_{t p}+\tilde{\mathbf{C}}_{n n} \varepsilon_{t n}-\tilde{\boldsymbol{\lambda}}_{n} T
\end{aligned}
$$

Fourier's Heat Conduction Equation

Fourier's heat conduction equation for a multi-layered structure holds:

$$
\begin{equation*}
K_{1}^{k} \frac{\partial^{2} T^{k}}{\partial x^{2}}+K_{2}^{k} \frac{\partial^{2} T^{k}}{\partial y^{2}}+K_{3}^{k} \frac{\partial^{2} T^{k}}{\partial z^{2}}=0 \tag{1}
\end{equation*}
$$

being K_{i}^{k} the thermal conductivity coefficients of the k -th layer. It has been solved via a Navier-type analytical solution, by assuming that the temperature does not depend upon the through-the-width co-ordinate y. The following temperature field:

$$
T^{k}(x, z)=\Theta_{\Omega}(z) \Theta_{n}(x)=\left(\bar{T}_{1}^{k} e^{s_{1}^{k} z}+\bar{T}_{2}^{k} e^{s_{2}^{k} z}\right) \sin (\alpha x)
$$

represents a solution of the considered heat conduction problem. ${ }^{1}$

[^0]
Principle of Virtual Displacements

The stiffness matrices are obtained in a nuclear form via the weak form of the Principle of Virtual Displacements:

$$
\delta \mathscr{L}_{\text {int }}=0
$$

where:

- δ represents a virtual variation and
- $\mathscr{L}_{\text {int }}$ is the strain energy.

Stiffness Matrix

$$
\delta \mathscr{L}_{\text {int }}=\int_{l^{e}} \int_{\Omega}\left(\delta \boldsymbol{\epsilon}_{n}^{T} \boldsymbol{\sigma}_{n}+\delta \boldsymbol{\epsilon}_{p}^{T} \boldsymbol{\sigma}_{p}\right) d \Omega d x
$$

By substitution of the geometric relations, the material constitutive equations, the unified hierarchical approximation of the displacements it becomes:

Principle of Virtual Displacements

$$
\begin{aligned}
\delta L_{\mathrm{int}}= & \delta \mathbf{q}_{\tau i}^{T} \iint_{l_{e}}\left\{\left(\mathbf{D}_{n x} N_{i}\right)^{T} F_{\tau}\left[\mathbf{C}_{n p}\left(\mathbf{D}_{p} F_{s}\right) N_{j}+\mathbf{C}_{n n}\left(\mathbf{D}_{n p} F_{s}\right) N_{j}+\mathbf{C}_{n n} F_{s}\left(\mathbf{D}_{n x} N_{j}\right)\right]\right. \\
& +\left(\mathbf{D}_{n p} F_{\tau}\right)^{T} N_{i}\left[\mathbf{C}_{n p}\left(\mathbf{D}_{p} F_{s}\right) N_{j}+\mathbf{C}_{n n}\left(\mathbf{D}_{n p} F_{s}\right) N_{j}+\mathbf{C}_{n n} F_{s}\left(\mathbf{D}_{n x} N_{j}\right)\right] \\
& \left.+\left(\mathbf{D}_{p} F_{\tau}\right)^{T} N_{i}\left[\mathbf{C}_{p p}\left(\mathbf{D}_{p} F_{s}\right) N_{j}+\mathbf{C}_{p n}\left(\mathbf{D}_{n p} F_{s}\right) N_{j}+\mathbf{C}_{p n} F_{s}\left(\mathbf{D}_{n x} N_{j}\right)\right]\right\} d \Omega d x \mathbf{q}_{s j} \\
& -\delta \mathbf{q}_{\tau i}^{T} \int_{l_{e}} \int_{\Omega}\left[\mathbf{D}_{p}^{T} F_{\tau} N_{i} \boldsymbol{\lambda}_{\mathbf{p}}+\left(\mathbf{D}_{n x}^{T}+\mathbf{D}_{n p}^{T}\right) F_{\tau} N_{i} \boldsymbol{\lambda}_{\mathbf{n}}\right] \Theta_{\Omega} \Theta_{n} d \Omega d x
\end{aligned}
$$

This latter can be written in the following compact vector form:

$$
\begin{equation*}
\delta L_{\mathrm{int}}=\delta \mathbf{q}_{\tau i}^{T} \mathbf{K}^{\tau s i j} \mathbf{q}_{s j}-\delta \mathbf{q}_{\tau i}^{T} \mathbf{K}_{u \theta}^{\tau i} . \tag{2}
\end{equation*}
$$

§ The components of the element stiffness matrix fundamental nucleus $\mathbf{K}^{\tau s i j} \in$ $\mathbb{R}^{3 \times 3}$ are:

$$
\left.\begin{array}{l}
K_{x x}^{\tau s i j}=I_{i j}\left(J_{\tau, y}^{66} s_{y}+J_{\tau, z}^{55} s, z\right.
\end{array}\right)+I_{i j, x} J_{\tau, y s}^{16}+I_{i, x} J_{\tau s, y}^{16}+I_{i, x_{x} j, x} J_{\tau s}^{11} .
$$

$$
\begin{aligned}
& K_{x y}^{\tau s i j}=I_{i j}\left(J_{\tau, y s, y}^{26}+J_{\tau, z s, z}^{45}\right)+I_{i j, x} J_{\tau, y s}^{66}+I_{i, x j} J_{\tau s, y}^{12}+I_{i, x j, x} J_{\tau s}^{16} \\
& K_{y x}^{\tau s i j}=I_{i j}\left(J_{\tau, y s, y}^{26}+J_{\tau, z s, z}^{45}\right)+I_{i j, x} J_{\tau, y s}^{12}+I_{i, x j} J_{\tau s, y}^{66}+I_{i, x j, x} J_{\tau s}^{16} \\
& K_{x z}^{\tau s i j}=I_{i j}\left(J_{\tau, y s, z}^{36}+J_{\tau, z s, y}^{45}\right)+I_{i j, x} J_{\tau, z s}^{55}+I_{i, x j} J_{\tau s, z}^{13}+I_{i, x j, x} J_{\tau s}^{15} \\
& K_{z x}^{\tau s i j}=I_{i j}\left(J_{\tau, y s, z}^{45}+J_{\tau, z s, y}^{36}\right)+I_{i j, x} J_{\tau, z s}^{13}+I_{i, x j} J_{\tau s, z}^{55} \\
& K_{y z}^{\tau s i j}=I_{i j}\left(J_{\tau, y s, z}^{23}+J_{\tau, z s, y}^{44}\right)+I_{i j, x} J_{\tau, z s}^{45}+I_{i, x j} J_{\tau s, z}^{36} \\
& K_{z y}^{\tau s i j}=I_{i j}\left(J_{\tau, y s, z}^{44}+J_{\tau, z s, y}^{23}\right)+I_{i j, x} J_{\tau, z s}^{36}+I_{i, x j} J_{\tau s, z}^{45}
\end{aligned}
$$

where:

$$
\begin{aligned}
J_{\tau_{(, \eta)}^{s}(, \xi)}^{g h} & =\int_{\Omega} \tilde{C}_{g h} F_{\tau_{(, \eta)}} F_{s_{(, \xi)}} d \Omega \\
I_{i_{(, x)} j_{(, x)}} & =\int_{l^{e}} N_{i_{(, x)}} N_{j_{(, x)}} d x
\end{aligned}
$$

Weighted sum (in the continuum) of each elemental cross-section area where the weight functions account for the spatial distribution of geometry and material.

In order to avoid shear locking, reduced integration is used for the term $I_{i j}$ in $K_{x x}^{\tau s i j}$ since it is related to the shear deformations $\gamma_{x y}$ and $\gamma_{x z}$.

Thermal load vector

The components of the thermal load vector fundamental nucleus $\overline{\mathbf{K}}_{u \theta}^{s j}$ are:

$$
\begin{aligned}
& \bar{K}_{u \theta x}^{s j}=I_{\theta_{n} j, x} J_{\theta_{\Omega} s}^{1}+I_{\theta_{n} j} J_{\theta_{\Omega} s_{y}}^{6} \\
& \bar{K}_{u \theta y}^{s j}=I_{\theta_{n} j} J_{\theta_{\Omega} s_{, y}}^{2}+I_{\theta_{n} j, x} J_{\theta_{\Omega} s}^{6} \\
& \bar{K}_{u \theta z}^{s j}=I_{\theta_{n} j} J_{\theta_{\Omega} s, z}^{3}
\end{aligned}
$$

The generic term $J_{\tau_{(, \phi)}}^{g}$ is:

$$
J_{\theta_{\Omega} S_{(, \phi)}}^{g}=\int_{\Omega} F_{s_{(, \phi)}} \bar{\lambda}_{g} \Theta_{\Omega} d \Omega,
$$

whereas the term $I_{\theta_{n} j_{(, x)}}$ stands for:

$$
I_{\theta_{n} j_{(, x)}}=\int_{l^{e}} \Theta_{n} N_{j_{(, x)}} d x
$$

where the temperature has been written as:

$$
T(x, y, z)=\Theta_{n}(x) \Theta_{\Omega}(y, z)
$$

Numerical Results

- The beam support is $[0, l] \times[-a / 2, a / 2] \times[-b / 2, b / 2]$. Square cross-section with $a=b=1 \mathrm{~m}$ are considered. Short beams are investigated $(l / b=5, l / b=3$.)
- Laminated and functionally graded beams are investigated.
- Different constraint configurations are considered.
- Three-dimensional FEM models are developed within the commercial code ANSYS and used for comparison.

Problem Convergence

Strain energy relative error Δ_{E} versus the normalised distance $\delta_{i i+1} / l$ between two consecutive nodes, $l / a=10$, isotropic beam, $N=2$.

The error is computed by comparing the strain energy to a closed form Navier-type solution, which in the framework of a theory is an exact solution.

Shear Locking

Transverse displacement ratio $\hat{u}_{z}=u_{z}(l / 2,0,0) / u_{z}^{\mathrm{Nav}}(l / 2,0,0)$ versus l / b for linear elements, isotropic beam, $N=2$ and 5 .

Laminated Beam

A [0/90] stacking sequences is investigated.
The material elastic and thermal properties (graphite-epoxy) are: $E_{L}=172.72$ $\mathrm{GPa}, E_{T}=6.91 \mathrm{GPa}, G_{L T}=3.45 \mathrm{GPa}, G_{T T}=1.38 \mathrm{GPa}, \nu_{L T}=\nu_{T T}=0.25$, $K_{L}=36.42 \mathrm{~W} / \mathrm{mK}, K_{T}=0.96 \mathrm{~W} / \mathrm{mK}, \alpha_{L}=0.57 \cdot 10^{-6} \mathrm{~K}^{-1}$ and $\alpha_{T}=$ $35.60 \cdot 10^{-6} \mathrm{~K}^{-1}$.

Displacement components [m] for a short laminated [0/90] simply supported beam. $l / b=3$.

	$-10^{3} \times \tilde{u}_{x}$		$10^{3} \times \tilde{u}_{y}$			$-10^{3} \times \tilde{u}_{z}$	
FEM 3D-R ${ }^{\text {a }}$	6.5160		5.3068			8.7798	
FEM 3D-C ${ }^{\text {b }}$	6.5161		5.3067			8.7799	
TBT^{c}	-0.0471		0.0000			-0.1627	
$\mathrm{EBT}^{\text {c }}$	-0.0471		B2	0.0000		-0.1627	
	B2	B3, B4		B3	B4	B2	B3,B4
$N=14$	6.5109	6.5107	5.3072	5.3069	5.3069	8.8172	8.8172
$N=11$	6.5077	6.5075	5.2930	5.2927	5.2927	8.8294	8.8294
$N=9$	6.4999	6.4997	5.2944	5.2941	5.2941	8.8341	8.8341
$N=7$	6.4977	6.4975	5.1728	5.1725	5.1725	8.8606	8.8606
$N=5$	6.4557	6.4555	5.0304	5.0302	5.0302	8.7907	8.7906
$N=3$	6.0633	6.0631	4.3927	4.3924	4.3925	8.6835	8.6834
$N=2$	6.6233	6.6230	1.3257	1.3256	1.3256	8.7811	8.7810

a : Elements' number $40 \times 40 \times 40$. b: Elements' number $20 \times 20 \times 20$.
c : Navier-type solution.

Relative differences for $N \geq 9$ being 0.6% at worst

Stress components $\tilde{\sigma}_{x x}, \tilde{\sigma}_{x y}$ and $\tilde{\sigma}_{x z}[\mathrm{~Pa}]$ for a short laminated [0/90] simply supported beam. $l / b=3$.

	$-10^{-8} \times \tilde{\sigma}_{x x}$			$10^{-6} \times \tilde{\sigma}_{x y}$			$-10^{-7} \times \tilde{\sigma}_{x z}$		
FEM 3D-R ${ }^{\text {a }}$	1.1519			7.6949			1.6506		
FEM 3D-C ${ }^{6}$		1.1473			7.7425			1.6555	
TBT ${ }^{\text {c }}$		0.1708			0.0000			0.0000	
EBT^{c}		0.1708			- ${ }^{\text {d }}$			- ${ }^{\text {d }}$	
	B2	B3	B4	B2	B3	B4	B2	B3	B4
$N=14$	1.1595	1.1599	1.1597	7.6536	7.6558	7.6540	1.6382	1.6389	1.6385
$N=11$	1.1558	1.1561	1.1560	7.6922	7.6945	7.6926	1.6433	1.6439	1.6435
$N=9$	1.1688	1.1691	1.1690	7.7875	7.7897	7.7879	1.7598	1.7605	1.7600
$N=7$	1.1345	1.1348	1.1347	8.1668	8.1691	8.1672	1.8267	1.8274	1.8269
$N=4$	1.2616	1.2619	1.2617	6.6134	6.6162	6.6141	1.4939	1.4946	1.4941
$N=3$	1.0608	1.0610	1.0609	5.2571	5.2596	5.2578	0.8788	0.8794	0.8790
$N=2$	0.9897	0.9899	0.9899	1.7501	1.7509	1.7503	0.5559	0.5564	0.5561

a : Elements' number $60 \times 60 \times 60$. b : Elements' number $20 \times 20 \times 20$.
c : Navier-type solution. d : Result not provided by the theory.

Stress components $\tilde{\sigma}_{y y}, \tilde{\sigma}_{z z}$ and $\tilde{\sigma}_{y z}[\mathrm{~Pa}]$ for a short laminated [0/90] simply supported beam. $l / b=3$.

	$-10^{-7} \times \tilde{\sigma}_{y y}$			$10^{-6} \times \tilde{\sigma}_{z z}$			$-10^{-6} \times \tilde{\sigma}_{y z}$	
FEM 3D-R ${ }^{\text {a }}$	4.0438			5.2706			3.0341	
FEM 3D-C ${ }^{\text {b }}$	3.9743			5.2944			3.0583	
	B2	B3	B4	B2	B3	B4	B2	B3, B4
$N=14$	4.0576	4.0581	4.0581	5.3601	5.3581	5.3581	3.0746	3.0744
$N=11$	4.0384	4.0390	4.0389	5.4208	5.4188	5.4187	2.8618	2.8616
$N=9$	4.2086	4.2091	4.2091	4.8464	4.8445	4.8444	3.1198	3.1197
$N=7$	3.9584	3.9590	3.9589	4.9673	4.9653	4.9653	3.3943	3.3941
$N=4$	3.0461	3.0467	3.0466	10.190	10.188	10.188	2.0006	2.0004
$N=3$	4.6004	4.6009	4.6009	19.038	19.036	19.036	1.6835	1.6834
$N=2$	10.188	10.189	10.189	20.056	20.053	20.053	0.0198	0.0198

a : Elements' number $60 \times 60 \times 60$. b : Elements' number $20 \times 20 \times 20$.

Relative differences for $N=14$ being 1.7% at worst

Displacement cross-section variation

Axial displacement $u_{x}[\mathrm{~m}]$ over the cross-section at $x=l$ for $l / b=3$, laminated cantilever beam.

Displacement cross-section variation

Through-the-width displacement $u_{y}[\mathrm{~m}]$ over the cross-section at $x=l / 2$ for $l / b=3$, laminated cantilever beam.

(a) FEM 3D-R

(b) $\mathrm{N}=14$

Displacement cross-section variation

Through-the-thickness displacement $u_{z}[\mathrm{~m}]$ over the cross-section at $x=l$ for $l / b=3$, laminated cantilever beam.

(a) FEM 3D-R

(b) $\mathrm{N}=14$

Stress cross-section variation

Axial stress $\sigma_{x x}[\mathrm{~Pa}]$ over the cross-section at $x=l / 2$ for $l / b=3$, laminated cantilever beam.

Stress cross-section variation

Shear stress $\sigma_{x y}[\mathrm{~Pa}]$ over the cross-section at $x / l=2$ for $l / b=3$, laminated cantilever beam.

Stress cross-section variation

Shear stress $\sigma_{x z}[\mathrm{~Pa}]$ over the cross-section at $x / l=2$ for $l / b=3$, laminated cantilever beam.

Stress cross-section variation

Through-the-thickness normal stress $\sigma_{z z}[\mathrm{~Pa}]$ over the cross-section at $x=l / 2$ for $l / b=3$, laminated cantilever beam.

(a) FEM 3D-R

$-.270 \mathrm{E}+08^{-.226 \mathrm{E}+08}-.182 \mathrm{E}+08^{-.138 \mathrm{E}+08}{ }_{-.942 \mathrm{E}+07^{-.503 \mathrm{E}+07}{ }_{-631111}{ }^{-375 \mathrm{E}+07} .825 \mathrm{E}+07}$
(b) $\mathrm{N}=14$

Stress cross-section variation

Through-the-width normal stress $\sigma_{y y}[\mathrm{~Pa}]$ over the cross-section at $x=l / 2$ for $l / b=3$, laminated cantilever beam.

Stress cross-section variation

Shear stress $\sigma_{y z}[\mathrm{~Pa}]$ over the cross-section at $x=l / 2$ for $l / b=3$, laminated cantilever beam.

Functionally Graded (FG) Beam

$$
\begin{equation*}
f=\left(f_{1}-f_{2}\right)\left(\frac{z}{b}\right)^{n_{z}}+f_{2} \tag{3}
\end{equation*}
$$

The elastic and thermal properties of the constituent materials are:

	$E[\mathrm{GPa}]$	ν	$K[\mathrm{~W} / \mathrm{mK}]$	$\alpha\left[10^{-6} \mathrm{~K}^{-1}\right]$
Zirconia	151.01	0.300	2.09	10.
Monel	179.40	0.368	25.00	15.

Displacement components [m] for a short FG simply supported

 beam, $l / b=5, n_{z}=1$.| | $10^{3} \times \bar{u}_{z}$ | | $-10^{3} \times \bar{u}_{x}$ | | $10^{4} \times \bar{u}_{y}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FEM 3D-R ${ }^{\text {a }}$ | 1.4917 | | 1.9976 | | 6.9765 | | |
| FEM 3D-C ${ }^{\text {b }}$ | 1.5089 | | 2.0064 | | 7.0247 | | |
| TBT^{c} | 1.4956 | | 1.9809 | | 0.0000 | | |
| EBT^{c} | 1.4957 | | 1.9808 | | 0.0000 | | |
| | B2 | B3, B4 | B2 | B3, B4 | B2 | B3 | B4 |
| $N=13$ | 1.5160 | 1.5161 | 2.0107 | 2.0107 | 7.0261 | 7.0255 | 7.0256 |
| $N=10$ | 1.5160 | 1.5161 | 2.0106 | 2.0107 | 7.0203 | 7.0197 | 7.0197 |
| $N=7$ | 1.5160 | 1.5161 | 2.0111 | 2.0112 | 6.9947 | 6.9942 | 6.9942 |
| $N=4$ | 1.5158 | 1.5159 | 2.0066 | 2.0066 | 6.8768 | 6.8763 | 6.8763 |
| $N=2$ | 1.4553 | 1.4554 | 2.0030 | 2.0030 | 6.1463 | 6.1458 | 6.1458 |

a : Elements' number $60 \times 60 \times 60$. b : Elements' number $20 \times 20 \times 20$.
c : Navier-type solution.

Relative differences for $N \geq 4$ being 1.6% at worst

Stress components $\tilde{\sigma}_{x x}, \tilde{\sigma}_{x y}$ and $\tilde{\sigma}_{x z}[\mathrm{~Pa}]$ for a FG simply supported beam, $l / b=5, n_{z}=1$.

	$10^{-6} \times \bar{\sigma}_{x x}$			$10^{-5} \times \bar{\sigma}_{x y}$			$-10^{-6} \times \bar{\sigma}_{x z}$		
FEM 3D-R ${ }^{\text {a }}$	8.5121			9.6899			2.9668		
FEM 3D-C ${ }^{\text {b }}$		8.7013			9.8166			2.9902	
TBT ${ }^{\text {c }}$		10.245			0.0000			0.0000	
EBT^{c}		10.233			-d			$-{ }^{d}$	
	B2	B3	B4	B2	B3	B4	B2	B3	B4
$N=13$	8.7748	8.8411	8.7890	9.8564	9.8253	9.8426	3.0193	2.9964	3.0093
$N=11$	8.8734	8.9397	8.8876	9.7936	9.7625	9.7798	3.0138	2.9909	3.0038
$N=9$	8.8863	8.9524	8.9005	9.8572	9.8262	9.8435	2.9891	2.9663	2.9791
$N=7$	8.8519	8.9186	8.8662	10.057	10.026	10.043	3.0873	3.0645	3.0773
$N=4$	6.3049	6.3717	6.3193	1.8705	1.8403	1.8576	2.8007	2.7779	2.7907
$N=2$	22.250	22.316	22.264	25.875	25.844	25.860	2.8220	2.8002	2.8125

a : Elements' number $60 \times 60 \times 60$. b : Elements' number $20 \times 20 \times 20$.
c : Navier-type solution. d : Result not provided by the theory.

Stress components $\bar{\sigma}_{y y}, \bar{\sigma}_{z z}$ and $\bar{\sigma}_{y z}[\mathrm{~Pa}]$ for a FG simply supported beam, $l / b=5, n_{z}=1$.

	$10^{-6} \times \bar{\sigma}_{y y}$			$10^{-6} \times \bar{\sigma}_{z z}$			$-10^{-6} \times \bar{\sigma}_{y z}$	
FEM 3D-R ${ }^{a}$	4.7891						6.3622	4.0031
FEM 3D-C								
	B 2	4.8664	B 3	B 4	B 2	6.4933	B 3	B 4
$N=13$	4.9353	4.9490	4.9229	6.4851	6.4987	6.4726	4.0826	4.0824
$N=11$	5.0380	5.0518	5.0256	6.6771	6.6909	6.6646	4.0817	4.0815
$N=9$	5.0549	5.0684	5.0426	6.6987	6.7121	6.6863	4.0294	4.0292
$N=7$	4.9814	4.9957	4.9690	6.6642	6.6784	6.6518	3.9214	3.9212
$N=4$	1.9721	1.9866	1.9599	1.9702	1.9846	1.9580	1.7367	1.7366
$N=2$	26.398	26.411	26.385	26.845	26.857	26.832	0.0552	0.0552

a : Elements' number $60 \times 60 \times 60$. b : Elements' number $20 \times 20 \times 20$.

Relative differences for $N=13, B 4$ being 3.3% at worst

Stress cross-section variation

Axial stress $\sigma_{x x}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FG beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(c) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=0.5$

(d) $\mathrm{N}=13, n_{z}=2$

Stress cross-section variation

Shear stress $\sigma_{x z}[\mathrm{~Pa}]$ at $x / l=1 / 4$, cantilever FG beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(c) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=0.5$

(d) $\mathrm{N}=13, n_{z}=2$

Stress cross-section variation

Through-the-width normal stress $\sigma_{y y}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FG beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(c) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=0.5$

(d) $\mathrm{N}=13, n_{z}=2$

Conclusions

	Laminated			FG	
	Simply supported	Cantilever	Simply supported	Cantilever	
u	$0.6 \%(N \geq 9)$	$0.4 \%(N \geq 9, B 4)$	$1.6 \%(N \geq 4)$	$0.4 \%(N \geq 3)$	
σ	$1.7 \%(N=14)$	$1.9 \%(N=14)$	$3.3 \%(N=13, B 4)$	$3.3 \%(N=13, B 4)$	

Model	DOFs
FEM-3 D^{a}	$2.7 * 10^{6}$
FEM-3D D^{b}	$1.1 * 10^{5}$
$N=14$	$4.4 * 10^{4}$
$N=13$	$3.8 * 10^{4}$
$N=9$	$2.0 * 10^{4}$
$N=7$	$1.3 * 10^{4}$
$N=4$	$5.4 * 10^{3}$
$N=3$	$3.6 * 10^{3}$

Hierarchical one-dimensional finite elements computational cost:

$$
D O F s=3 \cdot \frac{(N+1)(N+2)}{2} \cdot N_{n}
$$

with N the order of the beam theory and N_{n} the number of total nodes.

- A unified formulation for one-dimensional beam finite elements has been presented for the thermal stress analysis.
- The numerical investigation and validation showed that the proposed formulation allows obtaining accurate results for all the considered cases with reduced the computational costs when compared to three-dimensional FEM solutions.

Acknowledgements

This work has been carried out within the FULLCOMP project funded by the European Union's Horizon's 2020 research and innovation programme under grant agreement No 642121.

Many thanks for your kind attention!

Laminated beam. Simply supported case.

As far as displacements and stresses are concerned, they have been evaluated at the following points:

$$
\begin{array}{lll}
\tilde{u}_{x}=u_{x}\left(0,-\frac{a}{2},-\frac{b}{2}\right) & \tilde{u}_{y}=u_{y}\left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right) & \tilde{u}_{z}=u_{z}\left(\frac{l}{2}, 0,-\frac{b}{2}\right) \\
\tilde{\sigma}_{x x}=\sigma_{x x}\left(\frac{l}{2}, 0, \frac{b}{2}\right) & \tilde{\sigma}_{x z}=\sigma_{x z}\left(0,-\frac{a}{2}, \frac{b}{4}\right) & \tilde{\sigma}_{x y}=\sigma_{x y}\left(0, \frac{a}{4}, \frac{b}{2}\right) \\
\tilde{\sigma}_{z z}=\sigma_{z z}\left(\frac{l}{2}, 0, \frac{b}{4}\right) & \tilde{\sigma}_{y y}=\sigma_{y y}\left(\frac{l}{2}, 0, \frac{b}{2}\right) & \tilde{\sigma}_{y z}=\sigma_{y z}\left(\frac{l}{2},-\frac{a}{4}, \frac{b}{4}\right) \tag{4}
\end{array}
$$

FGM beam. Simply supported case.

As far as displacements and stresses are concerned, they have been evaluated at the following points:

$$
\begin{array}{rlrl}
\tilde{u}_{x} & =u_{x}\left(0, \frac{a}{2}, b\right) & \tilde{u}_{y}=u_{y}\left(\frac{l}{2}, a, b\right) & \tilde{u}_{z}=u_{z}\left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right) \\
\tilde{\sigma}_{x x}=\sigma_{x x}\left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right) & \tilde{\sigma}_{x y}=\sigma_{z z}\left(0, \frac{a}{4}, 0\right) & \tilde{\sigma}_{x z}=\sigma_{x z}\left(0,0, \frac{b}{2}\right) \\
\tilde{\sigma}_{y y}=\sigma_{y y}\left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right) & \tilde{\sigma}_{z z}=\sigma_{z z}\left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right) & \tilde{\sigma}_{y z}=\sigma_{y z}\left(\frac{l}{2}, \frac{a}{4}, \frac{3}{4} b\right)
\end{array}
$$

Geometric Relations

In the case of small displacements with respect to a characteristic dimension of Ω, linear relations between strain and displacement components hold:

$$
\begin{gathered}
\boldsymbol{\varepsilon}_{n}=\mathbf{D}_{n p} \mathbf{u}+\mathbf{D}_{n x} \mathbf{u} \\
\boldsymbol{\varepsilon}_{p}=\mathbf{D}_{p} \mathbf{u}
\end{gathered}
$$

Strain components have been grouped into vectors ε_{n} that lay on the crosssection and ε_{p} laying on planes orthogonal to Ω.
$\mathbf{D}_{n p}, \mathbf{D}_{n x}$, and \mathbf{D}_{p} are the following differential matrix operators:

$$
\mathbf{D}_{n p}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
\frac{\partial}{\partial y} & 0 & 0 \\
\frac{\partial}{\partial z} & 0 & 0
\end{array}\right] \quad \mathbf{D}_{n x}=\mathbf{I} \frac{\partial}{\partial x} \quad \mathbf{D}_{p}=\left[\begin{array}{ccc}
0 & \frac{\partial}{\partial y} & 0 \\
0 & 0 & \frac{\partial}{\partial z} \\
0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y}
\end{array}\right]
$$

\mathbf{I} is the unit matrix.

Constitutive Relations

In the case of thermo-mechanical problems, Hooke's law reads:

$$
\boldsymbol{\sigma}=\tilde{\mathbf{C}} \varepsilon_{e}=\tilde{\mathbf{C}}\left(\varepsilon_{t}-\varepsilon_{\vartheta}\right)=\tilde{\mathbf{C}}\left(\varepsilon_{t}-\tilde{\boldsymbol{\alpha}} T\right)=\tilde{\mathbf{C}} \varepsilon_{t}-\tilde{\boldsymbol{\lambda}} T
$$

where subscripts ' e ' and ' ϑ ' refer to the elastic and the thermal contributions, respectively.

- $\tilde{\mathbf{C}}$ is the material elastic stiffness,
- $\tilde{\boldsymbol{\alpha}}$ the vector of the thermal expansion coefficients,
- $\tilde{\lambda}$ their product and
- T stands for temperature.

According to the stress and strain vectors splitting, the previous equation becomes:

$$
\begin{aligned}
\sigma_{p} & =\tilde{\mathbf{C}}_{p p} \varepsilon_{t p}+\tilde{\mathbf{C}}_{p n} \varepsilon_{t n}-\tilde{\boldsymbol{\lambda}}_{p} T \\
\sigma_{n} & =\tilde{\mathbf{C}}_{n p} \varepsilon_{t p}+\tilde{\mathbf{C}}_{n n} \varepsilon_{t n}-\tilde{\boldsymbol{\lambda}}_{n} T
\end{aligned}
$$

Matrices $\tilde{\mathbf{C}}_{p p}, \tilde{\mathbf{C}}_{p n}, \tilde{\mathbf{C}}_{n p}$ and $\tilde{\mathbf{C}}_{n n}$ are:

$$
\begin{gathered}
\tilde{\mathbf{C}}_{p p}=\left[\begin{array}{ccc}
\tilde{C}_{22} & \tilde{C}_{23} & 0 \\
\tilde{C}_{23} & \tilde{C}_{33} & 0 \\
0 & 0 & \tilde{C}_{44}
\end{array}\right] \quad \tilde{\mathbf{C}}_{p n}=\tilde{\mathbf{C}}_{n p}^{T}=\left[\begin{array}{ccc}
\tilde{C}_{12} & \tilde{C}_{26} & 0 \\
\tilde{C}_{13} & \tilde{C}_{36} & 0 \\
0 & 0 & \tilde{C}_{45}
\end{array}\right] \\
\tilde{\mathbf{C}}_{n n}=\left[\begin{array}{ccc}
\tilde{C}_{11} & \tilde{C}_{16} & 0 \\
\tilde{C}_{16} & \tilde{C}_{66} & 0 \\
0 & 0 & \tilde{C}_{55}
\end{array}\right]
\end{gathered}
$$

The coefficients $\tilde{\boldsymbol{\lambda}}_{n}$ and $\tilde{\boldsymbol{\lambda}}_{p}$:

$$
\tilde{\boldsymbol{\lambda}}_{n}^{T}=\left\{\begin{array}{lll}
\tilde{\lambda}_{1} & \tilde{\lambda}_{6} & 0
\end{array}\right\} \quad \tilde{\boldsymbol{\lambda}}_{p}^{T}=\left\{\begin{array}{lll}
\tilde{\lambda}_{2} & \tilde{\lambda}_{3} & 0
\end{array}\right\}
$$

are related to the thermal expansion coefficients $\tilde{\boldsymbol{\alpha}}_{n}$ and $\tilde{\boldsymbol{\alpha}}_{p}$:

$$
\tilde{\boldsymbol{\alpha}}_{n}^{T}=\left\{\begin{array}{ccc}
\tilde{\alpha}_{1} & 0 & 0
\end{array}\right\} \quad \tilde{\boldsymbol{\alpha}}_{p}^{T}=\left\{\begin{array}{ccc}
\tilde{\alpha}_{2} & \tilde{\alpha}_{3} & 0
\end{array}\right\}
$$

through the following equations:

$$
\begin{aligned}
& \tilde{\boldsymbol{\lambda}}_{p}=\tilde{\mathbf{C}}_{p p} \tilde{\boldsymbol{\alpha}}_{p}+\tilde{\mathbf{C}}_{p n} \tilde{\boldsymbol{\alpha}}_{n} \\
& \tilde{\boldsymbol{\lambda}}_{n}=\tilde{\mathbf{C}}_{n p} \tilde{\boldsymbol{\alpha}}_{p}+\tilde{\mathbf{C}}_{n n} \tilde{\boldsymbol{\alpha}}_{n}
\end{aligned}
$$

Fourier's Heat Conduction Equation

Fourier's heat conduction equation for the k-th layer of the beam holds:

$$
\tilde{K}_{1}^{k} \frac{\partial^{2} T^{k}}{\partial x^{2}}+\tilde{K}_{2}^{k} \frac{\partial^{2} T^{k}}{\partial y^{2}}+\tilde{K}_{3}^{k} \frac{\partial^{2} T^{k}}{\partial z^{2}}=0
$$

where \tilde{K}_{i}^{k} are the thermal conductivity coefficients.
In order to obtain a closed form analytical solution, it is further assumed that the temperature does not depend upon the through-the-width co-ordinate y. The following temperature field:

$$
T^{k}(x, z)=\Theta_{\Omega}^{k}(z) \Theta_{n}(x)=\left(\bar{T}_{1}^{k} e^{s_{1}^{k} z}+\bar{T}_{2}^{k} e^{s_{2}^{k} z}\right) \sin (\alpha x)
$$

represents a solution of the considered heat conduction problem. \bar{T}^{k} are unknown constants, whereas s is:

$$
s_{1,2}^{k}= \pm \sqrt{\frac{K_{1}^{k}}{K_{3}^{k}}} \alpha
$$

For a cross-section division into $N_{\Omega^{k}}$ sub-domains, $2 \cdot N_{\Omega^{k}}$ unknowns \bar{T}_{j}^{k} are present. The problem is mathematically well posed since the boundary conditions yield a linear algebraic system of $2 \cdot N_{\Omega^{k}}$ equations in \bar{T}_{j}^{k}.

Displacement cross-section variation

Axial displacement $u_{x}[\mathrm{~m}]$ at $x / l=1$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(b) $\mathrm{N}=13, n_{z}=0.5$

Displacement cross-section variation

Axial displacement $u_{x}[\mathrm{~m}]$ at $x / l=1$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=1$

(b) $\mathrm{N}=13, n_{z}=1$

Displacement cross-section variation

Axial displacement $u_{x}[\mathrm{~m}]$ at $x / l=1$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=2$

Displacement cross-section variation

Through-the-width displacement $u_{y}[\mathrm{~m}]$ at $x / l=1 / 2$, cantilever FGM beam. $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(b) $\mathrm{N}=13, n_{z}=0.5$

Displacement cross-section variation

Through-the-width displacement $u_{y}[\mathrm{~m}]$ at $x / l=1 / 2$, cantilever FGM beam. $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=1$

(b) $\mathrm{N}=13, n_{z}=1$

Displacement cross-section variation

Through-the-width displacement $u_{y}[\mathrm{~m}]$ at $x / l=1 / 2$, cantilever FGM beam. $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=2$

Stress cross-section variation

Axial stress $\sigma_{x x}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(b) $\mathrm{N}=13, n_{z}=0.5$

Stress cross-section variation

Axial stress $\sigma_{x x}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=1$

(b) $\mathrm{N}=13, n_{z}=1$

Stress cross-section variation

Axial stress $\sigma_{x x}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=2$

Stress cross-section variation

Shear stress $\sigma_{x z}[\mathrm{~Pa}]$ at $x / l=1 / 4$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(b) $\mathrm{N}=13, n_{z}=0.5$

Stress cross-section variation

Shear stress $\sigma_{x z}[\mathrm{~Pa}]$ at $x / l=1 / 4$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=1$

(b) $\mathrm{N}=13, n_{z}=1$

Stress cross-section variation

Shear stress $\sigma_{x z}[\mathrm{~Pa}]$ at $x / l=1 / 4$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=2$

Stress cross-section variation

Through-the-width normal stress $\sigma_{y y}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(b) $\mathrm{N}=13, n_{z}=0.5$

Stress cross-section variation

Through-the-width normal stress $\sigma_{y y}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=1$

(b) $\mathrm{N}=13, n_{z}=1$

Stress cross-section variation

Through-the-width normal stress $\sigma_{y y}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=2$

Stress cross-section variation

Shear stress $\sigma_{x y}[\mathrm{~Pa}]$ at $x / l=1 / 4$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(b) $\mathrm{N}=13, n_{z}=0.5$

Stress cross-section variation

Shear stress $\sigma_{x y}[\mathrm{~Pa}]$ at $x / l=1 / 4$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=1$

(b) $\mathrm{N}=13, n_{z}=1$

Stress cross-section variation

Shear stress $\sigma_{x y}[\mathrm{~Pa}]$ at $x / l=1 / 4$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=2$

Stress cross-section variation

Through-the-thickness normal stress $\sigma_{z z}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(b) $\mathrm{N}=13, n_{z}=0.5$

Stress cross-section variation

Through-the-thickness normal stress $\sigma_{z z}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=1$

(b) $\mathrm{N}=13, n_{z}=1$

Stress cross-section variation

Through-the-thickness normal stress $\sigma_{z z}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=2$

Stress cross-section variation

Shear stress $\sigma_{y z}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=0.5$

(b) $\mathrm{N}=13, n_{z}=0.5$

Stress cross-section variation

Shear stress $\sigma_{y z}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=1$

(b) $\mathrm{N}=13, n_{z}=1$

Stress cross-section variation

Shear stress $\sigma_{y z}[\mathrm{~Pa}]$ at $x / l=1 / 2$, cantilever FGM beam, $l / b=5$.

(a) FEM $3 \mathrm{D}^{a}, n_{z}=2$

(b) $\mathrm{N}=13, n_{z}=2$

Results overview: displacements in slender beams.

	Isotropic	
	Simply supported	Cantilever
u	0.3%	$(N \geq 3)$

Laminated		
	Simply supported	Cantilever
u	1.1%	$(N \geq 9)$

	FGM		
	Simply supported	Cantilever	
u	$1.1 \%(N \geq 7)$	1.1% on $u_{x}, u_{z}(N \geq 3)$	
		7.0% on u_{y}	

Results overview: displacements and stresses in short beams.

	Isotropic	
	Simply supported	Cantilever
u	$0.4 \%(N \geq 3)$	$0.6 \%(N \geq 3)$
σ	$0.3 \%(N=14, B 4)$	$0.7 \%(N=14)$

Laminated		
	Simply supported	Cantilever
u	$0.6 \%(N \geq 9)$	$0.4 \%(N \geq 9, B 4)$
σ	$1.7 \%(N=14)$	$1.9 \%(N=14)$

FGM		
	Simply supported	Cantilever
u	$1.6 \%(N \geq 4)$	$0.4 \%(N \geq 3)$
σ	$3.3 \%(N=13, B 4)$	$3.3 \%(N=13, B 4)$

Computational costs in terms of degrees of freedom (DOFs)

Hierarchical one-dimensional finite elements computational cost:

$$
D O F s=3 \frac{(N+1)(N+2)}{2} N_{n}
$$

with N the order of the beam theory and N_{n} the number of total nodes.

Model	DOFs
FEM- $3 D^{a}$	$2.7 * 10^{6}$
FEM- $3 D^{b}$	$1.1 * 10^{5}$
$N=14$	$4.4 * 10^{4}$
$N=13$	$3.8 * 10^{4}$
$N=9$	$2.0 * 10^{4}$
$N=7$	$1.3 * 10^{4}$
$N=4$	$5.4 * 10^{3}$
$N=3$	$3.6 * 10^{3}$

[^0]: ${ }^{1}$ For more details, please see refer to Giunta et al.(2016), A thermal stress finite element analysis of beam structures by hierarchical modelling, Composites Part B: Engineering, 95, 179-195.

