A thermal stress analysis of three-dimensional beams by one-dimensional hierarchical finite elements

G. De Pietro^{1,2}, Y. Hui^{1,2,3}, G. Giunta¹, S. Belouettar¹ and E. Carrera²

¹Luxembourg Institute of Science and Technology, Luxembourg ²Politecnico di Torino, Italy ³School of Civil Engineering, Wuhan University, China

2nd International Conference on Mechanics of Composites Porto, Portugal

July 11, 2016

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

Scope

Thermo-mechanical response investigation of three-dimensional composite beam structures through hierarchical one-dimensional finite elements based on Carrera unified formulation.

The intention behind this approach is two-fold:

- reduce the computational cost (when compared to full three-dimensional solutions).
- ensure accurate three-dimensional results via a one-dimensional approach.

Outline

The presentation is organised as follows:

- Theoretical background
- Numerical results
- Conclusions

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

Classical Beam Theories

\S Euler-Bernoulli's theory:

$$u_x = u_{x1} - u_{y1,x}y - u_{z1,x}z u_y = u_{y1} u_z = u_{z1}$$

- Cross-section rigid on its plane.
- No shear stress (only axial stress).

§ Timoshenko's theory:

$$u_x = u_{x1} + u_{x2}y + u_{x3}z$$
$$u_y = u_{y1}$$
$$u_z = u_{z1}$$

- Cross-section rigid on its plane.
- Shear stress (corrective factor).

Hierarchical 1D FEM

July 11, 2016

ELE NOR

One-dimensional Hierarchical Displacement Approximation

Hierarchical 1D FEM

July 11, 2016

A B A B A B B B A A A

< 47 ▶

Beam cross section

$$\mathbf{u}(x, y, z) = F_{\tau}(y, z) \mathbf{u}_{\tau}(x) \text{ with } \tau = 1, 2, \ldots, N_{u}$$

§ The compact expression is based on Einstein's notation: subscript τ indicates summation.

- $\S N_u$ is the number of accounted terms.
- § $F_{\tau}(y,z)$ are generic approximating functions.

§ Thanks to this compact notation, the element stiffness matrix can be derived in terms of 'fundamental nuclei'.

§ Within this work, Taylor polynomials are chosen as expansion functions F_{τ} . Therefore, the generic N-order displacement field is:

$$u_{x} = u_{x1} + u_{x2}y + u_{x3}z + \dots + u_{x\frac{(N^{2}+N+2)}{2}}y^{N} + \dots + u_{x\frac{(N+1)(N+2)}{2}}z^{N}$$

$$u_{y} = u_{y1} + u_{y2}y + u_{y3}z + \dots + u_{y\frac{(N^{2}+N+2)}{2}}y^{N} + \dots + u_{y\frac{(N+1)(N+2)}{2}}z^{N}$$

$$u_{z} = u_{z1} + u_{z2}y + u_{z3}z + \dots + u_{z\frac{(N^{2}+N+2)}{2}}y^{N} + \dots + u_{z\frac{(N+1)(N+2)}{2}}z^{N}$$

G. De Pietro

July 11, 2016

 $\S N_u$ and F_τ as functions of N can be obtained via Pascal's triangle as shown in the following Table:

N	N_u	$F_{ au}$
0	1	$F_1 = 1$
1	3	$F_2 = y$ $F_3 = z$
2	6	$F_4 = y^2 \ F_5 = yz \ F_6 = z^2$
N	$\frac{(N+1)(N+2)}{2}$	$F_{\underline{\left(N^2+N+2\right)}} = y^N F_{\underline{\left(N^2+N+4\right)}} = y^{N-1}z \dots$
		$F_{\frac{N(N+3)}{2}}^{2} = yz^{N-1} F_{\frac{(N+1)(N+2)}{2}}^{2} = z^{N}$

§ N is a free parameter of the formulation.

§ By properly choosing N, different beam theories accounting for higher-order effects such as shear deformations and cross-section in- and out-of plane warping can be straightforwardly obtained.

One-dimensional Hierarchical Displacement Approximation

C	D.	0	\mathbf{P}	н,	h 1	t n	0
ч.		-		-	-	61	0

Hierarchical 1D FEM

July 11, 2016

< E

< 177 ▶

7 / 39

JOC ELE

Beam axis

The part of the displacement vector that depends upon the axial coordinate (\mathbf{u}_{τ}) is approximated as follows:

 $\mathbf{u}_{\tau}(x) = N_i(x) \mathbf{q}_{\tau i}$ with $\tau = 1, 2, ..., N_u$ and $i = 1, 2, ..., N_n$

 $\{\mathbf{q}_{\tau i}\}$ are the nodal displacements unknowns typical of a finite element approximation.

 $\{N_i(x)\}$ are the corresponding shape functions, which approximate the displacements along the beam axis in a C^0 sense up to an order $N_n - 1$ being N_n the number of nodes per element. This latter is a free parameter of the theoretical formulation.

Linear (B2), quadratic (B3) and cubic (B4) elements along the beam axis are considered.

Geometric Relations

A linear relation between strain and displacement vector is considered:

$$egin{aligned} oldsymbol{arepsilon}_{tn} &= \mathbf{D}_{np}\mathbf{u} + \mathbf{D}_{nx}\mathbf{u} \ oldsymbol{arepsilon}_{tp} &= \mathbf{D}_{p}\mathbf{u} \end{aligned}$$

Total strain components have been grouped into vectors $\boldsymbol{\varepsilon}_{tn}$ with components orthogonal to the cross-section and $\boldsymbol{\varepsilon}_{tp}$ with components laying on Ω .

 \mathbf{D}_{np} , \mathbf{D}_{nx} , and \mathbf{D}_{p} are linear differential matrix operators.

Constitutive Relations

In the case of thermo-mechanical problems, Hooke's law reads:

$$\boldsymbol{\sigma} = \tilde{\mathbf{C}}\boldsymbol{\varepsilon}_{e} = \tilde{\mathbf{C}}\left(\boldsymbol{\varepsilon}_{t} - \boldsymbol{\varepsilon}_{\vartheta}\right) = \tilde{\mathbf{C}}\left(\boldsymbol{\varepsilon}_{t} - \tilde{\boldsymbol{\alpha}}T\right) = \tilde{\mathbf{C}}\boldsymbol{\varepsilon}_{t} - \tilde{\boldsymbol{\lambda}}T$$

where subscripts 'e' and ' ϑ ' refer to the elastic and the thermal contributions, respectively. $\tilde{\mathbf{C}}$ is the material elastic stiffness, $\tilde{\boldsymbol{\alpha}}$ the vector of the thermal expansion coefficients, $\tilde{\boldsymbol{\lambda}}$ their product and T stands for temperature.

$$oldsymbol{\sigma}_p = ilde{\mathbf{C}}_{pp} arepsilon_{tp} + ilde{\mathbf{C}}_{pn} arepsilon_{tn} - ilde{oldsymbol{\lambda}}_p T \ oldsymbol{\sigma}_n = ilde{\mathbf{C}}_{np} arepsilon_{tp} + ilde{\mathbf{C}}_{nn} arepsilon_{tn} - ilde{oldsymbol{\lambda}}_n T \ oldsymbol{\epsilon}_{tn} + ilde{oldsymbol{\Delta}}_n arepsilon_{tn} + ilde{oldsymbol{\Delta}}_n arepsilon_{tn} + ilde{oldsymbol{\Delta}}_n arepsilon_{tn} + ilde{oldsymbol{\Delta}}_n arepsilon_n arepsilon_{tn} - ilde{oldsymbol{\lambda}}_n T \ oldsymbol{\epsilon}_{tn} + ilde{oldsymbol{\Delta}}_n arepsilon_{tn} arepsilon_n arepsilon_{tn} arepsilon_n arepsilon_{tn} arepsilon_n arepsilon_{tn} arepsilon_n arepsilon_{tn} arepsilon_n arepsilon_{tn} arepsilon_n areps$$

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

Fourier's Heat Conduction Equation

Fourier's heat conduction equation for a multi-layered structure holds:

$$K_1^k \frac{\partial^2 T^k}{\partial x^2} + K_2^k \frac{\partial^2 T^k}{\partial y^2} + K_3^k \frac{\partial^2 T^k}{\partial z^2} = 0, \qquad (1)$$

being K_i^k the thermal conductivity coefficients of the k-th layer. It has been solved via a Navier-type analytical solution, by assuming that the temperature does not depend upon the through-the-width co-ordinate y. The following temperature field:

$$T^{k}(x,z) = \Theta_{\Omega}(z) \Theta_{n}(x) = \left(\bar{T}_{1}^{k} e^{s_{1}^{k} z} + \bar{T}_{2}^{k} e^{s_{2}^{k} z}\right) \sin\left(\alpha x\right)$$

represents a solution of the considered heat conduction problem. ¹

¹For more details, please see refer to Giunta et al.(2016), A thermal stress finite element analysis of beam structures by hierarchical modelling, Composites Part B: Engineering, 95, 179-195.

G. De Pietro

July 11, 2016 10 / 39

Principle of Virtual Displacements

The stiffness matrices are obtained in a nuclear form via the weak form of the Principle of Virtual Displacements:

$$\delta \mathscr{L}_{int} = 0$$

where:

- δ represents a virtual variation and
- \mathscr{L}_{int} is the strain energy.

Stiffness Matrix

$$\delta \mathscr{L}_{\text{int}} = \int_{l^e} \int_{\Omega} \left(\delta \boldsymbol{\epsilon}_n^T \boldsymbol{\sigma}_n + \delta \boldsymbol{\epsilon}_p^T \boldsymbol{\sigma}_p \right) d\Omega dx$$

By substitution of the geometric relations, the material constitutive equations, the unified hierarchical approximation of the displacements it becomes:

G.	De	Pietro	

Principle of Virtual Displacements

$$\begin{split} \delta L_{\text{int}} &= \quad \delta \mathbf{q}_{\tau i}^{T} \int_{l_{e}} \int_{\Omega} \left\{ \left(\mathbf{D}_{nx} N_{i} \right)^{T} F_{\tau} \left[\mathbf{C}_{np} \left(\mathbf{D}_{p} F_{s} \right) N_{j} + \mathbf{C}_{nn} \left(\mathbf{D}_{np} F_{s} \right) N_{j} + \mathbf{C}_{nn} F_{s} \left(\mathbf{D}_{nx} N_{j} \right) \right] \right. \\ &+ \left(\mathbf{D}_{np} F_{\tau} \right)^{T} N_{i} \left[\mathbf{C}_{np} \left(\mathbf{D}_{p} F_{s} \right) N_{j} + \mathbf{C}_{nn} \left(\mathbf{D}_{np} F_{s} \right) N_{j} + \mathbf{C}_{nn} F_{s} \left(\mathbf{D}_{nx} N_{j} \right) \right] \\ &+ \left(\mathbf{D}_{p} F_{\tau} \right)^{T} N_{i} \left[\mathbf{C}_{pp} \left(\mathbf{D}_{p} F_{s} \right) N_{j} + \mathbf{C}_{pn} \left(\mathbf{D}_{np} F_{s} \right) N_{j} + \mathbf{C}_{pn} F_{s} \left(\mathbf{D}_{nx} N_{j} \right) \right] \right\} d\Omega \ dx \ \mathbf{q}_{sj} \\ &- \delta \mathbf{q}_{\tau i}^{T} \int_{l_{e}} \int_{\Omega} \left[\mathbf{D}_{p}^{T} F_{\tau} N_{i} \lambda_{\mathbf{p}} + \left(\mathbf{D}_{nx}^{T} + \mathbf{D}_{np}^{T} \right) F_{\tau} N_{i} \lambda_{\mathbf{n}} \right] \Theta_{\Omega} \Theta_{n} \ d\Omega \ dx \end{split}$$

This latter can be written in the following compact vector form:

$$\delta L_{\rm int} = \delta \mathbf{q}_{\tau i}^T \mathbf{K}^{\tau s i j} \mathbf{q}_{s j} - \delta \mathbf{q}_{\tau i}^T \mathbf{K}_{u \theta}^{\tau i}.$$
 (2)

§ The components of the element stiffness matrix fundamental nucleus $\mathbf{K}^{\tau sij} \in \mathbb{R}^{3 \times 3}$ are:

G. De Pietro

Hierarchical 1D FEM

July 11, 2016 12 / 39

$$\begin{split} K_{xy}^{\tau sij} &= I_{ij} \left(J_{\tau,ys,y}^{26} + J_{\tau,zs,z}^{45} \right) + I_{ij,x} J_{\tau,ys}^{66} + I_{i,xj} J_{\tau,y}^{12} + I_{i,xj,x} J_{\tau,x}^{16} \\ K_{yx}^{\tau sij} &= I_{ij} \left(J_{\tau,ys,y}^{26} + J_{\tau,zs,z}^{45} \right) + I_{ij,x} J_{\tau,ys}^{12} + I_{i,xj} J_{\tau,yx}^{66} + I_{i,xj,x} J_{\tau,x}^{16} \\ K_{xz}^{\tau sij} &= I_{ij} \left(J_{\tau,ys,z}^{36} + J_{\tau,zs,y}^{45} \right) + I_{ij,x} J_{\tau,zs}^{55} + I_{i,xj} J_{\tau,z}^{13} + I_{i,xj,x} J_{\tau,x}^{15} \\ K_{zx}^{\tau sij} &= I_{ij} \left(J_{\tau,ys,z}^{45} + J_{\tau,zs,y}^{36} \right) + I_{ij,x} J_{\tau,zs}^{15} + I_{i,xj} J_{\tau,zs}^{55} \\ K_{yz}^{\tau sij} &= I_{ij} \left(J_{\tau,ys,z}^{23} + J_{\tau,zs,y}^{44} \right) + I_{ij,x} J_{\tau,zs}^{45} + I_{i,xj} J_{\tau,zs}^{55} \\ K_{yz}^{\tau sij} &= I_{ij} \left(J_{\tau,ys,z}^{44} + J_{\tau,zs,y}^{23} \right) + I_{ij,x} J_{\tau,zs}^{45} + I_{i,xj} J_{\tau,zs}^{45} \\ K_{zy}^{\tau sij} &= I_{ij} \left(J_{\tau,ys,z}^{44} + J_{\tau,zs,y}^{23} \right) + I_{ij,x} J_{\tau,zs}^{36} + I_{i,xj} J_{\tau,zs}^{45} \\ \end{split}$$

where:

$$J^{gh}_{\tau_{(,\eta)}s_{(,\xi)}} = \int_{\Omega} \tilde{C}_{gh} F_{\tau_{(,\eta)}} F_{s_{(,\xi)}} \ d\Omega$$

$$I_{i_{(,x)}j_{(,x)}} = \int_{l^e} N_{i_{(,x)}} N_{j_{(,x)}} dx$$

Weighted sum (in the continuum) of each elemental cross-section area where the weight functions account for the spatial distribution of geometry and material.

In order to avoid shear locking, reduced integration is used for the term I_{ij} in $K_{xx}^{\tau s i j}$ since it is related to the shear deformations γ_{xy} and γ_{xz} .

G. De Pietro

Hierarchical 1D FEM

(日) (日) (日) (日) (日) (日) (日) (日) (日) July 11, 2016

Thermal load vector

The components of the thermal load vector fundamental nucleus $\overline{\mathbf{K}}_{u\theta}^{sj}$ are:

$$\begin{split} \overline{K}^{sj}_{u\theta x} &= I_{\theta_n j, x} J^1_{\theta_\Omega s} + I_{\theta_n j} J^6_{\theta_\Omega s, y} \\ \overline{K}^{sj}_{u\theta y} &= I_{\theta_n j} J^2_{\theta_\Omega s, y} + I_{\theta_n j, x} J^6_{\theta_\Omega s} \\ \overline{K}^{sj}_{u\theta z} &= I_{\theta_n j} J^3_{\theta_\Omega s, z} \end{split}$$

The generic term $J^g_{\tau_{(,\phi)}}$ is:

$$J^{g}_{\theta_{\Omega}s_{(,\phi)}} = \int_{\Omega} F_{s_{(,\phi)}} \ \overline{\lambda}_{g} \ \Theta_{\Omega} \ d\Omega,$$

whereas the term $I_{\theta_n j_{(x)}}$ stands for:

$$I_{\theta_n j_{(,x)}} = \int_{l^e} \Theta_n N_{j_{(,x)}} \ dx,$$

where the temperature has been written as:

$$T(x,y,z) = \Theta_n(x) \Theta_\Omega(y,z)$$

G. De Pietro

Hierarchical 1D FEM

July 11, 2016 14 / 39

Numerical Results

- The beam support is $[0, l] \times [-a/2, a/2] \times [-b/2, b/2]$. Square cross-section with a = b = 1 m are considered. Short beams are investigated (l/b = 5, l/b = 3.)
- Laminated and functionally graded beams are investigated.
- Different constraint configurations are considered.
- Three-dimensional FEM models are developed within the commercial code ANSYS and used for comparison.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem Convergence

Strain energy relative error Δ_E versus the normalised distance δ_{ii+1}/l between two consecutive nodes, l/a = 10, isotropic beam, N = 2.

The error is computed by comparing the strain energy to a closed form Navier-type solution, which in the framework of a theory is an exact solution.

G.	De	Pi	etro

Hierarchical 1D FEM

July 11, 2016 16 / 39

ELE NOR

Shear Locking

Transverse displacement ratio $\hat{u}_z = u_z (l/2, 0, 0) / u_z^{\text{Nav}} (l/2, 0, 0)$ versus l/b for *linear elements*, isotropic beam, N = 2 and 5.

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

17 / 39

ELE NOR

Laminated Beam

A [0/90] stacking sequences is investigated.

The material elastic and thermal properties (graphite-epoxy) are: $E_L = 172.72$ GPa, $E_T = 6.91$ GPa, $G_{LT} = 3.45$ GPa, $G_{TT} = 1.38$ GPa, $\nu_{LT} = \nu_{TT} = 0.25$, $K_L = 36.42$ W/mK, $K_T = 0.96$ W/mK, $\alpha_L = 0.57 \cdot 10^{-6} \text{K}^{-1}$ and $\alpha_T = 35.60 \cdot 10^{-6} \text{K}^{-1}$.

G. De Pietro

Hierarchical 1D FEM

 →
 →
 ≥
 →

 July 11, 2016

ELE SQC

Displacement components [m] for a short laminated [0/90] simply supported beam. l/b = 3.

	-10^{3}	$\times \tilde{u}_x$	$10^3 \times \tilde{u}_y$			$-10^3 \times \tilde{u}_z$		
FEM $3D-R^a$	6.5	160		5.3068		8.7798		
FEM $3D-C^{b}$	6.5	161		5.3067		8.7	799	
TBT^{c}	-0.	0471		0.0000		-0.1	1627	
EBT^{c}	-0.	0471		0.0000		-0.1627		
	B2	B3, B4	B2	B3	B4	B2	B3, B4	
N = 14	6.5109	6.5107	5.3072	5.3069	5.3069	8.8172	8.8172	
N = 11	6.5077	6.5075	5.2930	5.2927	5.2927	8.8294	8.8294	
N = 9	6.4999	6.4997	5.2944	5.2941	5.2941	8.8341	8.8341	
N = 7	6.4977	6.4975	5.1728	5.1725	5.1725	8.8606	8.8606	
N = 5	6.4557	6.4555	5.0304	5.0302	5.0302	8.7907	8.7906	
N = 3	6.0633	6.0631	4.3927	4.3924	4.3925	8.6835	8.6834	
N = 2	6.6233	6.6230	1.3257	1.3256	1.3256	8.7811	8.7810	

a: Elements' number $40 \times 40 \times 40$. b: Elements' number $20 \times 20 \times 20$.

c: Navier-type solution.

Relative differences for $N \ge 9$ being 0.6% at worst

Stress components $\tilde{\sigma}_{xx}$, $\tilde{\sigma}_{xy}$ and $\tilde{\sigma}_{xz}$ [Pa] for a short laminated [0/90] simply supported beam. l/b = 3.

	$-10^{-8} \times \tilde{\sigma}_{xx}$			1	$10^{-6} \times \tilde{\sigma}_{xy}$			$-10^{-7} \times \tilde{\sigma}_{xz}$		
FEM $3D-R^a$		1.1519			7.6949			1.6506		
FEM $3D-C^b$		1.1473			7.7425			1.6555		
TBT^{c}		0.1708			0.0000			0.0000		
EBT^{c}	0.1708				$_d$			$-^{d}$		
	B2	B3	B4	B2	B3	B4	B2	B3	B4	
N = 14	1.1595	1.1599	1.1597	7.6536	7.6558	7.6540	1.6382	1.6389	1.6385	
N = 11	1.1558	1.1561	1.1560	7.6922	7.6945	7.6926	1.6433	1.6439	1.6435	
N = 9	1.1688	1.1691	1.1690	7.7875	7.7897	7.7879	1.7598	1.7605	1.7600	
N = 7	1.1345	1.1348	1.1347	8.1668	8.1691	8.1672	1.8267	1.8274	1.8269	
N = 4	1.2616	1.2619	1.2617	6.6134	6.6162	6.6141	1.4939	1.4946	1.4941	
N = 3	1.0608	1.0610	1.0609	5.2571	5.2596	5.2578	0.8788	0.8794	0.8790	
N = 2	0.9897	0.9899	0.9899	1.7501	1.7509	1.7503	0.5559	0.5564	0.5561	

a: Elements' number 60 × 60 × 60. b: Elements' number 20 × 20 × 20.

c: Navier-type solution. d: Result not provided by the theory.

Stress components $\tilde{\sigma}_{yy}$, $\tilde{\sigma}_{zz}$ and $\tilde{\sigma}_{yz}$ [Pa] for a short laminated [0/90] simply supported beam. l/b = 3.

	-	$10^{-7} \times \tilde{\sigma}$	y y	1	$0^{-6} \times \tilde{\sigma}_z$	$-10^{-6} \times \tilde{\sigma}_{yz}$			
FEM $3D-R^a$	4.0438				5.2706		3.0341		
FEM $3D-C^b$	3.9743				5.2944		3.0	583	
	B2	B3	B4	B2	B3	B4	B2	B3, B4	
N = 14	4.0576	4.0581	4.0581	5.3601	5.3581	5.3581	3.0746	3.0744	
N = 11	4.0384	4.0390	4.0389	5.4208	5.4188	5.4187	2.8618	2.8616	
N = 9	4.2086	4.2091	4.2091	4.8464	4.8445	4.8444	3.1198	3.1197	
N = 7	3.9584	3.9590	3.9589	4.9673	4.9653	4.9653	3.3943	3.3941	
N = 4	3.0461	3.0467	3.0466	10.190	10.188	10.188	2.0006	2.0004	
N = 3	4.6004	4.6009	4.6009	19.038	19.036	19.036	1.6835	1.6834	
N = 2	10.188	10.189	10.189	20.056	20.053	20.053	0.0198	0.0198	

a: Elements' number 60 × 60 × 60. b: Elements' number 20 × 20 × 20.

Relative differences for N = 14 being 1.7% at worst

Displacement cross-section variation

Axial displacement u_x [m] over the cross-section at x = l for l/b = 3, laminated cantilever beam.

(a) FEM 3D-R

G. De Pietro

<□> <同> <同> <同> <同> <同> <同> <同> <000 July 11, 2016

Displacement cross-section variation

G. De Pietro

Through-the-width displacement u_y [m] over the cross-section at x = l/2 for l/b = 3, laminated cantilever beam.

July 11, 2016

(4日) (日) (日) (日) (100)

Displacement cross-section variation

Through-the-thickness displacement u_z [m] over the cross-section at x = l for l/b = 3, laminated cantilever beam.

(a) FEM 3D-R

(b) N=14

G. De Pietro

Hierarchical 1D FEM

<□> <同> <同> < 回> < 回> < 回> < 回> < 回< のへの July 11, 2016

Axial stress σ_{xx} [Pa] over the cross-section at x = l/2 for l/b = 3, laminated cantilever beam.

Hierarchical 1D FEM

July 11, 2016

Shear stress σ_{xy} [Pa] over the cross-section at x/l = 2 for l/b = 3, laminated cantilever beam.

(a) FEM 3D-R

(b) N=14

Hierarchical 1D FEM

July 11, 2016

Shear stress σ_{xz} [Pa] over the cross-section at x/l = 2 for l/b = 3, laminated cantilever beam.

\mathbf{G} .	\mathbf{De}	Pietro

Hierarchical 1D FEM

July 11, 2016

Through-the-thickness normal stress σ_{zz} [Pa] over the cross-section at x = l/2for l/b = 3, laminated cantilever beam.

	G.	\mathbf{De}	Pietro
--	----	---------------	--------

Hierarchical 1D FEM

July 11, 2016

G. De Pietro

Through-the-width normal stress σ_{yy} [Pa] over the cross-section at x = l/2 for l/b = 3, laminated cantilever beam.

July 11, 2016

Shear stress σ_{yz} [Pa] over the cross-section at x = l/2 for l/b = 3, laminated cantilever beam.

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

Functionally Graded (FG) Beam

$$f = (f_1 - f_2) \left(\frac{z}{b}\right)^{n_z} + f_2$$
(3)

The elastic and thermal properties of the constituent materials are:

	E [GPa]	ν	$K \; [W/mK]$	$\alpha \ [10^{-6} \ \mathrm{K}^{-1}]$
Zirconia	151.01	0.300	2.09	10.
Monel	179.40	0.368	25.00	15.

Displacement components [m] for a short FG simply supported beam, l/b = 5, $n_z = 1$.

	$10^3 \times \overline{u}_z$		$-10^3 \times \overline{u}_x$		$10^4 \times \overline{u}_y$		
FEM $3D-R^a$	1.4	917	1.9	976		6.9765	
FEM $3D-C^{b}$	1.5	089	2.0	064		7.0247	
TBT^{c}	1.4	956	1.9	809		0.0000	
EBT^{c}	1.4957		1.9808		0.0000		
	B2	B3, B4	B2	B3, B4	B2	B3	B4
N = 13	1.5160	1.5161	2.0107	2.0107	7.0261	7.0255	7.0256
N = 10	1.5160	1.5161	2.0106	2.0107	7.0203	7.0197	7.0197
N = 7	1.5160	1.5161	2.0111	2.0112	6.9947	6.9942	6.9942
N = 4	1.5158	1.5159	2.0066	2.0066	6.8768	6.8763	6.8763
N = 2	1.4553	1.4554	2.0030	2.0030	6.1463	6.1458	6.1458

a: Elements' number $60 \times 60 \times 60$. b: Elements' number $20 \times 20 \times 20$.

c: Navier-type solution.

Relative differences for $N \ge 4$ being 1.6% at worst

Stress components $\tilde{\sigma}_{xx}$, $\tilde{\sigma}_{xy}$ and $\tilde{\sigma}_{xz}$ [Pa] for a FG simply supported beam, l/b = 5, $n_z = 1$.

		0						0		
	$10^{-6} \times \overline{\sigma}_{xx}$			1	$10^{-3} \times \overline{\sigma}_{xy}$			$-10^{-6} \times \overline{\sigma}_{xz}$		
FEM $3D-R^a$		8.5121			9.6899			2.9668		
FEM $3D-C^b$		8.7013			9.8166			2.9902		
TBT^{c}		10.245			0.0000			0.0000		
EBT^{c}		10.233			$-^d$			$-^{d}$		
	B2	B3	B4	B2	B3	B4	B2	B3	B4	
N = 13	8.7748	8.8411	8.7890	9.8564	9.8253	9.8426	3.0193	2.9964	3.0093	
N = 11	8.8734	8.9397	8.8876	9.7936	9.7625	9.7798	3.0138	2.9909	3.0038	
N = 9	8.8863	8.9524	8.9005	9.8572	9.8262	9.8435	2.9891	2.9663	2.9791	
N = 7	8.8519	8.9186	8.8662	10.057	10.026	10.043	3.0873	3.0645	3.0773	
N = 4	6.3049	6.3717	6.3193	1.8705	1.8403	1.8576	2.8007	2.7779	2.7907	
N = 2	22.250	22.316	22.264	25.875	25.844	25.860	2.8220	2.8002	2.8125	

a: Elements' number 60 × 60 × 60. b: Elements' number 20 × 20 × 20.

c: Navier-type solution. d: Result not provided by the theory.

Stress components $\overline{\sigma}_{yy}$, $\overline{\sigma}_{zz}$ and $\overline{\sigma}_{yz}$ [Pa] for a FG simply supported beam, l/b = 5, $n_z = 1$.

	$10^{-6} \times \overline{\sigma}_{yy}$			$10^{-6} \times \overline{\sigma}_{zz}$			$-10^{-6} \times \overline{\sigma}_{yz}$	
FEM $3D-R^a$	4.7891			6.3622			4.0031	
FEM $3D-C^b$	4.8664			6.4933			4.1017	
	B2	B3	B4	B2	B3	B4	B2	B3, B4
N = 13	4.9353	4.9490	4.9229	6.4851	6.4987	6.4726	4.0826	4.0824
N = 11	5.0380	5.0518	5.0256	6.6771	6.6909	6.6646	4.0817	4.0815
N = 9	5.0549	5.0684	5.0426	6.6987	6.7121	6.6863	4.0294	4.0292
N = 7	4.9814	4.9957	4.9690	6.6642	6.6784	6.6518	3.9214	3.9212
N = 4	1.9721	1.9866	1.9599	1.9702	1.9846	1.9580	1.7367	1.7366
N = 2	26.398	26.411	26.385	26.845	26.857	26.832	0.0552	0.0552

a: Elements' number $60 \times 60 \times 60$. b: Elements' number $20 \times 20 \times 20$.

Relative differences for N = 13, B4 being 3.3% at worst

Axial stress σ_{xx} [Pa] at x/l = 1/2, cantilever FG beam, l/b = 5.

G. De Pietro

Hierarchical 1D FEM

July 11, 2016 35 / 39

Shear stress σ_{xz} [Pa] at x/l = 1/4, cantilever FG beam, l/b = 5.

G. De Pietro

Hierarchical 1D FEM

July 11, 2016 36 / 39
Through-the-width normal stress σ_{yy} [Pa] at x/l = 1/2, cantilever FG beam, l/b = 5.

G. De Pietro

Hierarchical 1D FEM

July 11, 2016 37 / 39

Conclusions

	Laminated		F	G
	Simply supported	Cantilever	Simply supported	Cantilever
u	$0.6\% (N \ge 9)$	$0.4\% \ (N \ge 9, B4)$	$1.6\% (N \ge 4)$	$0.4\% \ (N \ge 3)$
σ	$1.7\% \ (N = 14)$	1.9% (N = 14)	$3.3\% \ (N = 13, B4)$	$3.3\% \ (N = 13, B4)$

Model	DOFs
$FEM-3D^a$	$2.7 * 10^{6}$
$FEM-3D^b$	$1.1 * 10^5$
N = 14	$4.4 * 10^4$
N = 13	$3.8 * 10^4$
N = 9	$2.0 * 10^4$
N = 7	$1.3 * 10^4$
N = 4	$5.4 * 10^{3}$
N = 3	3.6×10^{3}

Hierarchical one-dimensional finite elements computational cost:

$$DOFs = 3 \cdot \frac{(N+1)(N+2)}{2} \cdot N_n$$

with N the order of the beam theory and ${\cal N}_n$ the number of total nodes.

- A unified formulation for one-dimensional beam finite elements has been presented for the thermal stress analysis.
- The numerical investigation and validation showed that the proposed formulation allows obtaining accurate results for all the considered cases with reduced the computational costs when compared to three-dimensional FEM solutions.

G. De Pietro

Hierarchical 1D FEM

July 11, 2016 38 / 39

Acknowledgements

This work has been carried out within the FULLCOMP project funded by the European Union's Horizon's 2020 research and innovation programme under grant agreement No 642121.

Many thanks for your kind attention!

Hierarchical 1D FEM

July 11, 2016

39 / 39

EL SQA

Laminated beam. Simply supported case.

As far as displacements and stresses are concerned, they have been evaluated at the following points:

$$\begin{split} \tilde{u}_x &= u_x \left(0, -\frac{a}{2}, -\frac{b}{2} \right) \qquad \tilde{u}_y = u_y \left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2} \right) \qquad \tilde{u}_z = u_z \left(\frac{l}{2}, 0, -\frac{b}{2} \right) \\ \tilde{\sigma}_{xx} &= \sigma_{xx} \left(\frac{l}{2}, 0, \frac{b}{2} \right) \qquad \tilde{\sigma}_{xz} = \sigma_{xz} \left(0, -\frac{a}{2}, \frac{b}{4} \right) \qquad \tilde{\sigma}_{xy} = \sigma_{xy} \left(0, \frac{a}{4}, \frac{b}{2} \right) \\ \tilde{\sigma}_{zz} &= \sigma_{zz} \left(\frac{l}{2}, 0, \frac{b}{4} \right) \qquad \tilde{\sigma}_{yy} = \sigma_{yy} \left(\frac{l}{2}, 0, \frac{b}{2} \right) \qquad \tilde{\sigma}_{yz} = \sigma_{yz} \left(\frac{l}{2}, -\frac{a}{4}, \frac{b}{4} \right) \end{split}$$
(4)

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

<<p>(日)

40 / 39

ABA ABA BIS OQO

FGM beam. Simply supported case.

As far as displacements and stresses are concerned, they have been evaluated at the following points:

$$\tilde{u}_{x} = u_{x} \left(0, \frac{a}{2}, b\right) \qquad \tilde{u}_{y} = u_{y} \left(\frac{l}{2}, a, b\right) \qquad \tilde{u}_{z} = u_{z} \left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right)$$
$$\tilde{\sigma}_{xx} = \sigma_{xx} \left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right) \qquad \tilde{\sigma}_{xy} = \sigma_{zz} \left(0, \frac{a}{4}, 0\right) \qquad \tilde{\sigma}_{xz} = \sigma_{xz} \left(0, 0, \frac{b}{2}\right)$$
$$\tilde{\sigma}_{yy} = \sigma_{yy} \left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right) \qquad \tilde{\sigma}_{zz} = \sigma_{zz} \left(\frac{l}{2}, \frac{a}{2}, \frac{b}{2}\right) \qquad \tilde{\sigma}_{yz} = \sigma_{yz} \left(\frac{l}{2}, \frac{a}{4}, \frac{3}{4}b\right)$$
(5)

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

ABA ABA BE OQO

Geometric Relations

In the case of small displacements with respect to a characteristic dimension of Ω , linear relations between strain and displacement components hold:

$$egin{aligned} oldsymbol{arepsilon}_n &= \mathbf{D}_{np}\mathbf{u} + \mathbf{D}_{nx}\mathbf{u} \ oldsymbol{arepsilon}_p &= \mathbf{D}_p\mathbf{u} \end{aligned}$$

Strain components have been grouped into vectors $\boldsymbol{\varepsilon}_n$ that lay on the crosssection and $\boldsymbol{\varepsilon}_p$ laying on planes orthogonal to Ω .

 \mathbf{D}_{np} , \mathbf{D}_{nx} , and \mathbf{D}_{p} are the following differential matrix operators:

$$\mathbf{D}_{np} = \begin{bmatrix} 0 & 0 & 0 \\ \frac{\partial}{\partial y} & 0 & 0 \\ \frac{\partial}{\partial z} & 0 & 0 \end{bmatrix} \quad \mathbf{D}_{nx} = \mathbf{I} \frac{\partial}{\partial x} \quad \mathbf{D}_{p} = \begin{bmatrix} 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \end{bmatrix}$$

I is the unit matrix.

6. De Pietro	Hierarchical 1D FEM	July 11, 2016	42 / 39

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Constitutive Relations

In the case of thermo-mechanical problems, Hooke's law reads:

$$\boldsymbol{\sigma} = \tilde{\mathbf{C}}\boldsymbol{\varepsilon}_{e} = \tilde{\mathbf{C}}\left(\boldsymbol{\varepsilon}_{t} - \boldsymbol{\varepsilon}_{\vartheta}\right) = \tilde{\mathbf{C}}\left(\boldsymbol{\varepsilon}_{t} - \tilde{\boldsymbol{\alpha}}T\right) = \tilde{\mathbf{C}}\boldsymbol{\varepsilon}_{t} - \tilde{\boldsymbol{\lambda}}T$$

where subscripts 'e' and ' ϑ ' refer to the elastic and the thermal contributions, respectively.

- $\tilde{\mathbf{C}}$ is the material elastic stiffness,
- $\tilde{\alpha}$ the vector of the thermal expansion coefficients,
- $\hat{\lambda}$ their product and
- T stands for temperature.

According to the stress and strain vectors splitting, the previous equation becomes:

$$\sigma_{p} = \tilde{\mathbf{C}}_{pp} \varepsilon_{tp} + \tilde{\mathbf{C}}_{pn} \varepsilon_{tn} - \tilde{\boldsymbol{\lambda}}_{p} T$$
$$\sigma_{n} = \tilde{\mathbf{C}}_{np} \varepsilon_{tp} + \tilde{\mathbf{C}}_{nn} \varepsilon_{tn} - \tilde{\boldsymbol{\lambda}}_{n} T$$

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

Matrices $\tilde{\mathbf{C}}_{pp}, \, \tilde{\mathbf{C}}_{pn}, \, \tilde{\mathbf{C}}_{np}$ and $\tilde{\mathbf{C}}_{nn}$ are:

$$\tilde{\mathbf{C}}_{pp} = \begin{bmatrix} \tilde{C}_{22} & \tilde{C}_{23} & 0\\ \tilde{C}_{23} & \tilde{C}_{33} & 0\\ 0 & 0 & \tilde{C}_{44} \end{bmatrix} \quad \tilde{\mathbf{C}}_{pn} = \tilde{\mathbf{C}}_{np}^{T} = \begin{bmatrix} \tilde{C}_{12} & \tilde{C}_{26} & 0\\ \tilde{C}_{13} & \tilde{C}_{36} & 0\\ 0 & 0 & \tilde{C}_{45} \end{bmatrix}$$
$$\tilde{\mathbf{C}}_{nn} = \begin{bmatrix} \tilde{C}_{11} & \tilde{C}_{16} & 0\\ \tilde{C}_{16} & \tilde{C}_{66} & 0\\ 0 & 0 & \tilde{C}_{55} \end{bmatrix}$$

The coefficients $\tilde{\boldsymbol{\lambda}}_n$ and $\tilde{\boldsymbol{\lambda}}_p$:

$$\tilde{\boldsymbol{\lambda}}_n^T = \left\{ \begin{array}{ccc} \tilde{\lambda}_1 & \tilde{\lambda}_6 & 0 \end{array} \right\} \quad \tilde{\boldsymbol{\lambda}}_p^T = \left\{ \begin{array}{ccc} \tilde{\lambda}_2 & \tilde{\lambda}_3 & 0 \end{array} \right\}$$

are related to the thermal expansion coefficients $\tilde{\alpha}_n$ and $\tilde{\alpha}_p$:

$$\tilde{\boldsymbol{\alpha}}_n^T = \left\{ \begin{array}{ccc} \tilde{\alpha}_1 & 0 & 0 \end{array} \right\} \quad \tilde{\boldsymbol{\alpha}}_p^T = \left\{ \begin{array}{ccc} \tilde{\alpha}_2 & \tilde{\alpha}_3 & 0 \end{array} \right\}$$

through the following equations:

$$egin{aligned} & ilde{oldsymbol{\lambda}}_p = ilde{f C}_{pp} ilde{oldsymbol{lpha}}_p + ilde{f C}_{pn} ilde{oldsymbol{lpha}}_n \ & ilde{oldsymbol{\lambda}}_n = ilde{f C}_{np} ilde{oldsymbol{lpha}}_p + ilde{f C}_{nn} ilde{oldsymbol{lpha}}_n \end{aligned}$$

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

Image: A marked and A marked

Fourier's Heat Conduction Equation

Fourier's heat conduction equation for the k-th layer of the beam holds:

$$\tilde{K}_1^k \frac{\partial^2 T^k}{\partial x^2} + \tilde{K}_2^k \frac{\partial^2 T^k}{\partial y^2} + \tilde{K}_3^k \frac{\partial^2 T^k}{\partial z^2} = 0$$

where \tilde{K}_{i}^{k} are the thermal conductivity coefficients.

In order to obtain a closed form analytical solution, it is further assumed that the temperature does not depend upon the through-the-width co-ordinate y. The following temperature field:

$$T^{k}(x,z) = \Theta_{\Omega}^{k}(z) \Theta_{n}(x) = \left(\bar{T}_{1}^{k} e^{s_{1}^{k} z} + \bar{T}_{2}^{k} e^{s_{2}^{k} z}\right) \sin\left(\alpha x\right)$$

represents a solution of the considered heat conduction problem. \bar{T}^k are unknown constants, whereas s is:

$$s_{1,2}^k = \pm \sqrt{\frac{K_1^k}{K_3^k}} \ \alpha$$

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□□ のQ@

For a cross-section division into N_{Ω^k} sub-domains, $2 \cdot N_{\Omega^k}$ unknowns \bar{T}_j^k are present. The problem is mathematically well posed since the boundary conditions yield a linear algebraic system of $2 \cdot N_{\Omega^k}$ equations in \bar{T}_j^k .

			-21- 3100
G. De Pietro	Hierarchical 1D FEM	July 11, 2016	46 / 39

A D N A D N A D N A D N D D N O O

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

Axial displacement u_x [m] at x/l = 1, cantilever FGM beam, l/b = 5.

G.	De	Pie	etro

Hierarchical 1D FEM

July 11, 2016

Axial displacement u_x [m] at x/l = 1, cantilever FGM beam, l/b = 5.

G.	De	Pie	etro

Hierarchical 1D FEM

July 11, 2016

<<p>(日)

Axial displacement u_x [m] at x/l = 1, cantilever FGM beam, l/b = 5.

G.	De	Pie	\mathbf{tro}

Hierarchical 1D FEM

July 11, 2016

<<p>(日)

Through-the-width displacement u_y [m] at x/l = 1/2, cantilever FGM beam. l/b = 5.

G.	De	Pietro

Hierarchical 1D FEM

July 11, 2016

Through-the-width displacement u_y [m] at x/l = 1/2, cantilever FGM beam. l/b = 5.

	G.	\mathbf{De}	Pietro
--	----	---------------	--------

Hierarchical 1D FEM

July 11, 2016

Through-the-width displacement u_y [m] at x/l = 1/2, cantilever FGM beam. l/b = 5.

	G.	\mathbf{De}	Pietro	
--	----	---------------	--------	--

Hierarchical 1D FEM

July 11, 2016

Axial stress σ_{xx} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

(a) FEM $3D^a$, $n_z = 0.5$

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

Axial stress σ_{xx} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

G.	De	Pie	etro

Hierarchical 1D FEM

July 11, 2016

Axial stress σ_{xx} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

	G.	\mathbf{De}	Pietro	
--	----	---------------	--------	--

Hierarchical 1D FEM

July 11, 2016

Shear stress σ_{xz} [Pa] at x/l = 1/4, cantilever FGM beam, l/b = 5.

G.	De	Pie	etro

Hierarchical 1D FEM

July 11, 2016

Shear stress σ_{xz} [Pa] at x/l = 1/4, cantilever FGM beam, l/b = 5.

	G.	\mathbf{De}	Pietro	
--	----	---------------	--------	--

Hierarchical 1D FEM

July 11, 2016

Shear stress σ_{xz} [Pa] at x/l = 1/4, cantilever FGM beam, l/b = 5.

G.	De	Pie	etro

Hierarchical 1D FEM

July 11, 2016

Through-the-width normal stress σ_{yy} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

G.	De	Pietro	

July 11, 2016

Through-the-width normal stress σ_{yy} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

G.	De	Pietro	

Hierarchical 1D FEM

July 11, 2016

G. De Pietro

Through-the-width normal stress σ_{yy} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

Hierarchical 1	D	FEM
----------------	---	-----

July 11, 2016

Shear stress σ_{xy} [Pa] at x/l = 1/4, cantilever FGM beam, l/b = 5.

Hierarchical 1D FEM

July 11, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□□ のQ@

Shear stress σ_{xy} [Pa] at x/l = 1/4, cantilever FGM beam, l/b = 5.

G.	\mathbf{De}	Pietro

Hierarchical 1D FEM

July 11, 2016

▲ロト ▲圖ト ▲画ト ▲画ト 通言 めんの

Shear stress σ_{xy} [Pa] at x/l = 1/4, cantilever FGM beam, l/b = 5.

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□□ のQ@

Through-the-thickness normal stress σ_{zz} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

	G.	\mathbf{De}	Pietro	
--	----	---------------	--------	--

July 11, 2016

Through-the-thickness normal stress σ_{zz} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

G.	De	Pietro	

Hierarchical 1D FEM

July 11, 2016

Through-the-thickness normal stress σ_{zz} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

G.	\mathbf{De}	Pietro

Hierarchical 1D FEM

July 11, 2016

Shear stress σ_{yz} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

G.	De	Pie	etro

Hierarchical 1D FEM

July 11, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□□ のQ@

Shear stress σ_{yz} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

Hierarchical 1D FEM

July 11, 2016

Shear stress σ_{yz} [Pa] at x/l = 1/2, cantilever FGM beam, l/b = 5.

	G.	\mathbf{De}	Pietro	
--	----	---------------	--------	--

Hierarchical 1D FEM

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□□ のQ@ July 11, 2016

Results overview: displacements in slender beams.

Isotropic		
	Simply supported	Cantilever
u	$0.3\%~(N\geq3)$	$1.3\% \ (N \ge 3)$

Laminated		
	Simply supported	Cantilever
u	$1.1\% \ (N \ge 9)$	$1.0\% \ (N \ge 9)$

FGM		
	Simply supported	Cantilever
u	$1.1\% \ (N \ge 7)$	1.1% on $u_x, u_z \ (N \ge 3)$
		7.0% on u_y

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへ⊙
Results overview: displacements and stresses in short beams.

	Isotropic				
	Simply supported	Cantilever			
u	$0.4\% \ (N \ge 3)$	$0.6\% \ (N \ge 3)$			
σ	$0.3\% \ (N = 14, B4)$	$0.7\% \ (N = 14)$			

	Laminated				
	Simply supported	Cantilever			
u	$0.6\% \ (N \ge 9)$	$0.4\% \ (N \ge 9, B4)$			
σ	$1.7\% \ (N = 14)$	$1.9\% \ (N = 14)$			

	FGM				
	Simply supported	Cantilever			
u	$1.6\% \ (N \ge 4)$	$0.4\% \ (N \ge 3)$			
σ	3.3% (N = 13, B4)	$3.3\% \ (N = 13, B4)$			

G. De Pietro

Hierarchical 1D FEM

July 11, 2016

73 / 39

Computational costs in terms of degrees of freedom (DOFs)

Hierarchical one-dimensional finite elements computational cost:

$$DOFs = 3 \frac{(N+1)(N+2)}{2} N_n$$

with N the order of the beam theory and N_n the number of total nodes.

Model	DOFs	
$\text{FEM-}3D^a$	$2.7 * 10^6$	
$\text{FEM-}3D^b$	$1.1*10^5$	
N = 14	$4.4 * 10^4$	
N = 13	$3.8 * 10^4$	
N = 9	$2.0 * 10^4$	
N = 7	$1.3 * 10^{4}$	
N = 4	$5.4*10^3$	
N=3	$3.6 * 10^{3}$	

G.	De	\mathbf{Pi}	etro

Hierarchical 1D FEM

July 11, 2016